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Abstract: Here we report on a massively-parallel Fourier-optics convolutional processor 
accelerated 160x over spatial-light-modulators using digital-mirror-display technology as input and 
kernel. Testing the system on MNIST and CIFAR-10 datasets shows 96% and 54% accuracy, 
respectively.  

1. Introduction and Rationale
The rise of machine-learning has shown significant utility in i) deep-learning such as image and language 
classification, ii) nonlinear optimization such as in predictive control including target tracking, and iii) 
generative adversary networks. While electronic implementations provide utility, they often do not scale 
well in terms of inference delay or power consumption; for instance, a single game of AlphaGo Zero costs 
about $3,000 in electricity, and transistor scaling does not improve performance. Within the trend of 
hardware-specific accelerators driving a tend in computing heterogeneity, we envision future accelerators 
to include photonic process units (PPU), which utilize 1) one-shot (non-iterative) executions towards 
delivering O(1) process capability; 2) massive (106) parallelism such as form free-space digital light 
processing technology; 3) ‘cheap’ convolutions enabled by a ‘free’ Fourier transform performed by a lens; 
and 4) maturing foundry PDKs of high-performance photonic integrated circuits (PIC) [1-4]. Here we show 
a prototype of a Fourier-optics enabled 4f systems utilizing digital-mirror-display (DMD) technology for 
convolutional filtering and convolutional neural networks (CNN) (Fig. 1a).  

2. Results and Discussion
The main idea is to perform massively parallelized vector matrix multiplications (VMM) in the Fourier 
domain as point-wise multiplications reducing the elsewise (e.g. GPU) O(n2) multiplications to O(n); that 
is, any multiplication can be simplified by summing the digits of each n-digit factor and then multiplying. 
Furthermore, the in electronics costly Fourier transformation is here performed passively by a lens of this 
4f Fourier processor (Fig. 1b), where in the Fourier-domain spatial frequency filtering is performed 
(~kernel). However, unlike spatial light modulators (SLM), which clock at 60 Hz rely on slow liquid crystal 
technology, here we deploy fast DMDs with the same spatial resolution but 10 kHz fast rates (~160x kernel 
speed-up, Fig. 1c). However, since DMDs are phase insensitive, phase information is not considered, but 
could be accounted for in a Vanderlugt lens system by sacrificing portion spatial resolution. 

We built such a dual DMD system where the first DMD loads the image (or signal) and the second 
DMD performs the amplitude-based filter (Fig. 1c). As a test we loaded an image consisting of a differently 
rotated bar test-pattern into the processor. Then changing the kernel DMD, by rotating an exemplary (and 
ad-hoc selected) edge-detection kernel, we show that individual bar patterns can be selected. Such 
frequency processing can further be performed not only with images but also with bit-strings, RF-signals, 
or any other signal encoded in the optical domain.  

In order to gain further insights into the accuracy resolution losses and performance of this 4f 
Fourier processor, we a) developed a physical accurate model of the 4f diffraction-based filtering of the 4f 
system, and b) perform offline kernel training and use the trained weights as Fourier kernels. Regarding the 
former, we develop a model that considers the phase-noise, limited numerical aperture, effects originating 
from aberration and diffraction of the lenses, and an accurate transfer function of the DMDs, which include 
dead-zones of the pixels of the DMD. Using this accurate description of our physical 4f system, we can 
now turn to the many offline training procedures in the field of machine-learning to train the kernels 
accurately (Fig. 1d). In brief a select an application-oriented open dataset (here MNIST, CIFAR-10) and 
perform a relatively standard gradient descent back-propagation-based training algorithm. For this, the 
network structure consists of 1x Fourier convolution layer, 1x fully connected (FC) layer (128-10) and use 
the ADAM optimizer. For the Fourier Conv. layer, the kernel is initialized with real numbers matching the 
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DMD hardware and the size of the Kernel is an input image (32x32 pixels). The trained kernel weights then 
become the 2nd DMD cell values. The Fourier Conv. layer workflow is as follows:  1) Apply FFT on input 
image and transformation to Fourier domain. 2) Multiply the result with the Kernel in the Fourier plane.  3) 
Apply inverse Fourier transform to obtain result in space domain, then take the L2 norm (Matrix). 4) Feed 
the output to FC layer Kernel. Lastly, we test the convolution precision, namely, the inference accuracy, 
addressing the effects of a reduced bit-density (1-bit) of the DMD. We then test i) full and ii) 1-8 bits 
precision but restrict the kernel weights range to 0-1 (for the 1-8 bits) matching the DMD’s bit-resolution. 
For the 1-bit case, negative = ‘0’, positive = ‘1’ (binarization). For other precisions, quantization is used 
(each forward pass, adjust weights). The result for this single Conv. layer network suggests that by initializing the 
kernel in Fourier domain directly using real number does not impact the learning result (at least for this single-layer 
version with MNIST or CIFAR). For the 1-bit mode, the result is not comparable to standard convolution, but still 
significantly better than only using 2 FC layers. However, for the 2-bit mode and above the result is close to standard 
convolution and above 4-bit precision the result is even better, probably due to the extra regularization effect of 
quantization as well as the ‘simple’ dataset. MNIST results (not-shown) give a 96.5% accuracy.  

 
Table 1. Inference results of a trained convolutional layer for the CIFAR-10 dataset showing comparable results to the full-precision 
kernel. The 160x time-accelerated optical 4f convolutional processor based on DMDs shows a 10% reduced accuracy.    
In conclusion, here we discussed, built, and tested a massively parallel (2 million channel) optical convolutional 
Fourier processor. We demonstrate signal process capability with fast (~0.1ms) updating filters using a dual digital-
mirror-display 4f-system approach. Offline trained kernels and performing inference classification tasks on CIFAR-
10 dataset of this 1-layer convolutional processor shows an encouraging (-10%) accuracy against full-precision [5].    
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Figure 1. a, The ‘free’ Fourier transform in optics provided by a lens enables natural; convolutions. Together with 10^6 parallel channels 
from display technology, high-end convolutional processors can be built in optics (100’s TMAC/s). b&c, Schematic and prototype of 4f 
DMD -based processor enabling speed-up times over SLMs of 160x. d, Training concepts and rational for system accurate modeling.    


