Compression with Multi-ECC: Enhanced Error
Resiliency for Magnetic Memories

“Irina Alam, “Saptadeep Pal and Puneet Gupta
Department of Electrical and Computer Engineering, University of California, Los Angeles,
{irinal, saptadeep and puneetg}@ucla.edu

Abstract—Emerging non-volatile magnetic memories such as
the spin-torque-transfer random access memories (STT-RAMs)
provide superior density and energy benefits compared to con-
ventional DRAM or Flash based memories. However, these
technologies often suffer from reliability issues and thus strong
conventional reliability schemes are required. These schemes have
large overhead of storage which in turn can potentially eclipse the
density and energy benefits these technologies promise. Moreover,
the read and write operations in STT-RAMs show asymmetric
behaviour i.e., bit-flip probability of 1—0 is significantly higher
than 0—1. However, conventional ECC schemes treat both 0 and
1 flips similarly and thus results in unbalanced reliability of these
two types of errors. In this work, we propose a new ECC protec-
tion scheme for STT-RAM based main memories, compression
with multi-ECC (CME). First we try to compress every cache
line to reduce the size of the cache line and then based on the
amount of compression possible, we use the saved additional bits
to increase the protection using stronger ECC codes if possible.
Compression itself reduces the hamming weight of the cache lines,
thus reducing the probability of 1—0 bit-flips. Opportunistically
using stronger ECC codes further helps tolerate multiple bit-flips
in a cache line. Our results show that for STT-RAM based main
memories, CME can reduce the block failure probability by up
to 81.6% (average 50.7%) and 78.4% (average 51.2%) over using
a (72,64)SECDED for each cache line word, when maximum of 4
reads and 2 reads respectively are allowed to a cache line before
a write-back/restore operation is done.

Index Terms—STT-RAM, Cache line Compression, Multi-ECC

I. INTRODUCTION

Emerging non-volatile memory (NVM) technologies are
being considered as potential replacements for DRAM and
Flash technologies, both of which are nearing their scaling
limits. Most of these new non-volatile technologies (Phase
Change Memory[PCM], STT-RAM, Resistive RAM[ReRAM],
etc.) promise better scaling, higher density and reduced cost-per-
bit [1]. However, they come with their own set of challenges.
The biggest problem that these emerging technologies face
is the high stochastic bit error rate. In fact, the reliability
challenges of NVMs can offset the density and energy advan-
tages that they offer. Increase in demand for memory capacity
requires aggressive scaling of area-per-bit of storage. At higher
density, these non-volatile emerging memory technologies tend
to be more susceptible to stochastic bit errors [2]. Due to the
random nature of the bit errors, these memory technologies
require stronger in-field error-correcting codes (ECC) [3].

The stochastic nature of failures in NVMs is similar to
the radiation induced soft errors in DRAM and SRAM and

*I. Alam and S. Pal contributed equally to this work

occur without any warning. In order to ensure integrity of the
data, error detection mechanism, followed by correction of the
error(s) needs to be incorporated in a system. In conventional
systems, ECC schemes are deployed to recover from memory
errors which requires adding redundancy information alongside
the original data (or message). For DRAM based memory, the
most commonly used ECC schemes to recover from bit error or
faulty chip error are SECDED (Single-Error Correcting, Double-
Error Detecting) scheme [4] and Chipkill-Correct scheme [5].

In the emerging NVM technologies, the stochastic bit error
rate, however, is much higher than the single-bit soft error
rate in DRAM. For example, in PCM, a two-bit cell may have
a 10%-times higher error rate than DRAM and require much
stronger ECC [3], [6]. As a result, the conventional ECC
schemes used in DRAM based memory need to be extended for
these new memory technologies to provide multi-bit protection
to maintain acceptable limits of yield and performance.
However, the cost and complexity of stronger error detection
and correction circuitry increases exponentially. Also, stronger
ECC requires larger number of ECC bits. This has overhead
not just in terms of storage but also power and performance.

Out of the various magnetic NVMs that have been proposed,
Spin-Transfer Torque Random Access Memory (STT-RAM)
is one of the most promising non-volatile technologies and
has already been introduced in to commercial products [7],
[8]. However, it also suffers from a very high Bit Error Rate
(BER) [9], [10]. As the NVM technology scales to below
45nm, read disturbance error, retention error due to thermal
instability alongside write error rates are growing, leading to
unacceptably high bit error rates (BER). Several circuit level
and bit-cell design solutions have been proposed to lower the
error rates [11]. Also, a few recent efforts have been made to
either reduce the error rate or to provide stronger error resiliency
with the least possible overhead [3], [12], [13]. Most of these
solutions however result in very high power and area overhead.

In this paper, we propose CME (Compression with Multi-
ECC), a novel scheme to provide strong error correction in Mag-
netic RAM (MRAMs) based main memory subsystems. Though
the proposed technique would be useful for many different types
of MRAMs, for our evaluations, we consider the characteristics
(error-rates) of STT-RAM. We use a slightly modified version
of the compression scheme suggested in [14] to compress
each cache line. Once compressed, the available bits are oppor-
tunistically utilized to provide strong error protection. In case
the cache line can be compressed to a size of less than half, the

cache line is replicated, so that consecutive reads from the same
cache line can be done from different copies of the compressed
data. This helps reduce errors due to read disturbance errors,
which is a major source of error. Compression also allows em-
ploying stronger protection without incurring additional storage
overheads of redundancy required for stronger ECC schemes.

The rest of the paper is organized as follows. Section II
provides a brief background of STT-RAMs, their fault
models, previous work on STT-RAM reliability and cache line
compression. Section III then details our proposed scheme.
Section IV highlights our experimental methodology and
Section V includes the results and a brief discussion on the
overhead of our scheme. Section VI finally concludes our work.

II. BACKGROUND
A. STT-RAM Basics

In an STT-RAM cell, data is stored in a magnetic tunneling
junction (MTJ). As current is passed through a mono-domain
ferromagnet, the angular momentum of the electrons flips the
direction of magnetization in the ferromagnet. The basic struc-
ture of a STT-RAM cell is given in Figure 1. The MTJ consists
of a tunneling oxide (MgO) separating two ferromagnetic layers.
One layer (reference layer) has fixed magnetization and the
other is a free layer whose direction of magnetization flips
depending on the direction of current of sufficient density. The
relative alignment of the two layers results either in a high
resistance path (when opposite and usually represents 1) or a
low resistance path (when parallel and usually represents 0).

Errors in STT-RAM can be broadly classified under three
categories: read errors, write errors and retention errors due
to thermal instability.

1) Read Errors: The read operation in STT-RAM s is unidirec-
tional. As technology scales below 45nm, read current doesn’t
reduce beyond 20t A while the write current reduces to around
30uA [10]. Thus, read current is getting closer to the write cur-
rent such that the read operation now has the potential to alter
the stored value. Such an error is called read disturbance error.
The data that is read is correct but the stored value becomes
erroneous and subsequent reads from this location may contain
multiple bit-flips. Since the read current is unidirectional, the
unintentional bit flip during read is asymmetric and happens
only in one direction (1—0 when reading a ‘1°). Thus, reducing
the number of 1‘s (or Hamming distance) in a cache line will
help to reduce the read disturbance errors (RDEs) considerably.

2) Write Errors: In STT-RAM, a write failure happens if
the switching current is removed before the MTJ switching
completes. The time required for flipping the cell content
varies due to the stochastic switching characteristics of the
MT]J. However, this failure is also asymmetric. Since, 0—1
flipping requires larger switching current than 1—0 flipping
due to the lower spin-transfer efficiency, the chances of
write error happening are much higher during a 0—1 flip
than a 1—0 transition. As mentioned in [12], the bit error
rate of 0—1 flipping is Pgro—1 ~= 35 X 103 while that of
1—0 flipping is Prr1-0~=10"". They have also analyzed
and concluded that the reliability of a word in a cache line

Free Layer Free Layer

MgO MgO

Reference Layer Reference Layer
— —

Parallel State Anti-Parallel State

Fig. 1: Schematic of STT-RAM showing the anti-parallel and

parallel states
|—VDD/Z |—VDD |—VDD
I(Read) 1(Write-0) I(Write-1)
Reference Layer Reference Layer Reference Layer
horence 1§
Mgo Mgo MgO
Free Layer Free Layer Free Layer

Fig. 2: Read and write mechanisms for STT-RAM is shown here

decreases exponentially with increase in Hamming Weight.
Thus, just like RDEs, Write Error Rate (WER) can also be
reduced by reducing the Hamming Weight of a cache line.
3) Retention Errors: In STT-RAM, the third major source of
error is retention error where the data stored in the STT-RAM
cell flips after a certain period of time. This false switching
of data during standby state is due to the inherent thermal
instability of STT-RAMs. The critical current or the write
current is proportional to the thermal stability of the cell. Higher
thermal stability requires a higher write current and/or a longer
write pulse. Thus there is a fundamental trade-off between
write-ability (write time and/or power) and retention time.

B. Previous Work On STT-RAM Reliability

To reduce errors due to read disturbance, restore operation
can be used which writes back the data every time there is
a read operation [10]. However, restore operations have a
huge overhead in terms of latency, energy and complexity.
One recent work [15] suggests the use of data compression
to enable replication of bits in the memory. If cache lines are
replicated, then a restore operation would be needed only after
all the copies have been read. This can potentially decrease
the number of restore operations required after every read to
deal with read error disturbances.

To deal with write errors, [12] suggests reducing the
Hamming weight of each cache line. If the number of 1’s
is reduced in each line, it would considerably reduce the
probability of having write errors since a 0— 1 flip requires
longer time and larger current and is thus, more prone to
write errors. To reduce the Hamming weight of the cache line,
[12] suggests using static/dynamic XOR between words of
each cache line exploiting the value locality of stored data.
However, few recent works [3], [16] suggest improvements
at the circuit level to improve BER of magnetic memories.
But most of these techniques either target mitigation from one
type of error (write or read error) or have very large overheads
in terms of circuit complexity, area or power.

Main Memory

Fig. 3: Processor Memory system architecture with CME

C. Previous Work On Cache Compression

Cache line compression techniques are being widely
proposed to satisfy the rising demand for memory storage
capacity and memory bandwidth [17], [18], [19]. These
techniques exploit spatial and value locality of the data in
typical applications. Common usage of arrays and typical
data-structures results in regular data access patterns, while
value locality helps in representing an entire cache line using
small magnitude delta values. Moreover, often values used
in a program are low magnitude, however, these values get
represented inefficiently, for e.g., 4-byte integer type used to
represent values that usually need only 1-byte.

The Base-Delta-Immediate (BAI) compression scheme, as
proposed in [20], is frequently used. As the name suggests, the
main idea behind this compression scheme is to represent the
cache line in a compact form using a common base value plus
an array of relative differences (deltas), whose combined size
is much smaller than the original cache line. The base could
be a single value or there can be multiple bases. Another very
recent work on cache compression [14] claims to have better
compression ratio than BAI. The details of this compression
scheme (Bit-Plane-Compression) is provided in Section III
since we have used roughly the same scheme in our work.

III. OUR SCHEME - COMPRESSION WITH MULTI-ECC (CME)

In this section, we will discuss the details of Compression
with Multi-ECC scheme. Cache line compression is used
for two reasons. Firstly, it helps in reducing the Hamming
weight of each cache line. Secondly, it enables either data
replication (when the compressed cache line is less than half
its uncompressed size) or allows to use the available bits to
provide stronger error protection. The selection of the stronger
ECC scheme depends on the final size of the compressed
cache line such that the overall size of each cache line with
the redundant bits remains uniform across all cache lines.

A. Overall Architecture

As shown in Figure 3, every time a cache line is to be
stored in the memory, it is a two-step approach. It first
goes through the compression engine and then through the
Multi-ECC encoder. In case of a load operation, it first goes

through the ECC Decoder and then the de-compression engine.

As mentioned before in Section II-C, we used Bit-Plane
Compression (BPC) scheme proposed in [14] and is explained
in detail in the following subsection. In case of minimal or no
compression, BPC scheme might result in an increase in the
original cache line size. Hence, once compression is done, it
is checked if the size of the compressed cache line is less than

the original size of 512 bits. If not, then the raw unmodified
cache line is used and a (72,64)SECDED code is applied on
each 64-bit block. However, if compression reduces the size
of the cache line, then based on the final size of the cache line,
we opportunistically add stronger ECC/protection scheme.

B. Cache Line Compression Scheme

Bit Plane Compression (BPC) as described in [14] is a
two-step process. The first step is cache line manipulation and
transformation (Delta-BitPlane-XOR [DBX]) to improve com-
pressibility of data and thus reduce the compression hardware
complexity. DBX itself is a three step process as shown in Fig-
ure 4. The first step is similar to Base-Delta-Immediate where
the first 32-bit word of each cache line is kept intact and the sub-
sequent words go through pairwise delta operations. The result
of each delta operation is a 33-bit word (1 additional sign bit
for subtraction). Thus, the overall cache line size now increases
from 512 bits (32-bits x 16 words) to 527 bits (32-bit base-word
+ 33-bits x 15 delta-outputs). The following step is a series of
bit-plane (a set of bits corresponding to the same bit position
within each cache line word) rotation operations that the newly
formed 15 33-bit delta outputs go through. The base remains in-
tact and the 15 delta words now rotate and form 33 15-bit DBP
symbol. The final step in this data transformation is the XOR
operation between neighboring DBP symbols. The first DBP
symbol remains intact (acts as a second base) and the remaining
32 symbols transform into their respective DBX symbols.

The next step after data transformation is the compression
of the transformed data. BPC combines run-length encoding
(RLE) with a type of frequent pattern encoding (FPE) to
compress the transformed data. The work in [14] used
word-size of 64 bits in a 128-byte cache line, while for our
evaluations we use 32-bit words and 64-byte cache line. Hence,
our symbol encoding is slightly different from theirs and is
shown in table I. The base (first original) symbol is compressed
separately by original symbol encoder as {3b000}, {3b001,
4-bit data}, {3b010, 8-bit data}, or {3b011, 16-bit data} if
its value is O or fits into 4/8/16-bit signed integer, respectively.
Otherwise, the base symbol is encoded as {1‘bl, 32-bit data}.

TABLE I: Frequent Patterns for BPC and DBP/DBX symbol
encoding

DBP/DBX Pattern Length Code (binary)
0 (run-length 2~33) 7-bit {2’b01, (RunLength-2)[4:0]}
0 (run-length 1) 3-bit {30001}
All T's Shit 57500000}
DBX!=0 and DBP=0 5-bit {5°500001 }
Consecutive two 1’s 9-bit {5°b00010, StartingOnePosition[3:0]}
Single 1’s 9-bit {5°b00011, OnePosition[3:0]}
Uncompressed 16-bit {1’b1, UncompressedData[14:0] }

C. Multi-ECC on Compressed Cache Line

Compression helps to reduce the size of the cache line in most
cases. Once the reduction is done, the final size of the cache line
determines the ECC scheme to be used as shown in Table II.

The main idea is to be able to break up the cache line into
8 words and restrict the size of each word (original word +
ECC redundancy) in the cache line to 72 bits. This is to make

Data Block (512b = 32b X 16) Delta

olloflelle Subtract

i | [[k Consecutive SIS/

[=]| = w = |=||=

n n n Words ‘l_ll "\') &

gl2lele al[wffg{ecee e
+||+

] EI(E] glelg

Sl = ==

ol|le o wl "™

Qlle o

Qlle N

N« o

TABLE II: ECC scheme to be used depending on the compressed

cache line size

32-bit Words/Blocks

Delta-BP (DBP)

Delta-BP-XOR (DBX)

DBP32 = {0,0,0 DBX32={0,0,0,......1}

) DBP31={0,0,0 DBX31={0,0,0,.......1}

Bit-Plane DBP30 ={0,0,0 XOR DBX30 ={0,0,0,........0}
Rotation Neighbors

DBP1= {1,0,1,........0}
DBPO= {L,0,1,.......04

33-bit Delta Symbol

15-bit DBP Symbol

Fig. 4: An overview of the Bit-Plane Transformation scheme

0.014

y
<4
o
=4
N

0.01

0.008

0.006

Length of
compressed cache ECC scheme to be used
line (in bits)
>512 No compression (Use Raw Cache line + (72,64)SECDED)

<512 and >464

(72,64)SECDED on each 64-bit cache line word

0.004

Block Error Probabilit:

<464 and >416

(72,58)DECTED on each 58-bit cache line word

0.002

<416 and >256

(72,52)3EC4ED on each 52-bit cache line word

<256 and >128

Replicate the
cache line (2 copies) and (72,64)SECDED on each word

—~-HW=1 HW =3 HW=5 HW =10

~~HW =15 ~-HW =20 —-HW =25 —--HW =30

‘«1\
N

1EC2ED 2EC3ED 3EC4ED

ECC Scheme

4EC5ED 5EC6ED

Replicate the

=128 cache line (4 copies) and (72,64)SECDED on each word

| Original cacheline (512 bits)

post compression

| Compressed cacheline (440 bits) |

Pad the rest with zeros

| Compressed cacheline (440 bits) | Zeros (24 bits) |

k=58 r=14 DECTED

JI“‘I‘I! L e e e e

8-bit Tag
Fig. 5: An example of CME scheme where the compressed cache
line size is 440 bits

T
n=72

sure that the STT-RAM based memory subsystem adheres
to the standard DDR protocol. Figure 5 shows an example
of a cache line of size 440 bits post compression. The best
possible ECC scheme for this cache line is DECTED (Double
Error Correction, Triple Error Detection). For DECTED, with
codeword length n=72, minimum number of redundancy bits
required is r=14. Therefore, every message or block needs
to have a maximum length of k=58. This means that cache
line, post compression, needs to be broken down into 8 words,
each of size 58 bits. In order to be able to do so on a 440-bit
cache line, it needs to be padded with 24 Os to increase its
total size to 464 bits. After that, the cache line is divided
into 8 equal sized words and each word is encoded using a
DECTED encoder to a final codeword of length 72-bits.

It can be noted from Table II that, no stronger than 3EC4ED
(3 error correcting, 4 error detecting) code has been used even
for cases where stronger protection would be possible (for eg.
4ECSED can be used in cases where the compressed cache
line size is less than 368 bits). This is because stronger ECC
not only adds greater hardware complexity and overheads,
the redundant bits added to each word in the cache line
often increases the Hamming weight of the overall word
considerably, thus increasing chances of read disturb/write
errors. As seen in Figure 6, with stronger ECC, the block

Fig. 6: Block error probability is shown for different Hamming
weight (HW) blocks and ECC schemes. The probability of 1—0
bit-flip is considered to be 107>

error probability decreases rapidly till 3EC4ED, beyond which
the benefit of stronger ECC saturates.

For cache lines that can be compressed to less than half
the original size, we use the scheme presented in [15] where
compressed cache line is replicated. The main benefit of
replication is that it helps to provide protection against read
disturbance errors. As mentioned in [15], the average number
of read operation between two write operations for single
and dual-core systems are 1.61 and 1.32 respectively. Clearly,
between any 2 write operation, most cache blocks see less than
2 read operations. Thus, when the data is replicated once, the
first copy is used during the first read operation and the second
copy is used during the second read. If the first read operation
causes an unwanted flip in the data, the error doesn’t impact
the second read operation as the replicated copy is used during
the next read. Since the average number of read operations
between any two writes is less than 2, replicating the data once
is mostly good enough to prevent RDEs. Reduction in RDEs
means restore operations are no longer needed after every
read, which saves both time and energy. If the compressed
size is less than 1/4"" of the original size, we propose a 4x
replication for even stronger protection against RDEs.

D. Additional Tag Bits

Every cache line now needs additional tag bits to denote if the
cache line is compressed and what protection scheme is used.

As shown in Table III, we use 8 additional bits of tag to
each cache line to denote the transformation operation that
was done for that particular cache line.

¢ Bit0: Denotes if the stored cache line has been compressed
or not. If compressed then the first bit of the tag is ‘17;
else ‘0.

o BitsI-3: When the cache line is compressed, these three
additional bits denote the ECC/replication scheme used

TABLE III: 8-bit Tag per Cache Line for CME

Tag Bits When Compression is possible Whleil:)eRiiswr]sSSChe
Bit-0 - ‘1 ‘0
BPC + (72,64)SECDED ‘000
BPC + (72,58)DECTED ‘001”
Bits1-3 BPC + (72,58)DECTED ‘001° 000
BPC + (72,52)3EC4ED ‘010
BPC + Replication 011’
(2copies) + (72,64)SECDED
BPC + Replication 1200°
(4copies) + (72,64)SECDED
. (8,4)SECDED . s
Bitsa-7 redundancy for the first 4 Tag bits 0000

for that cache line as given in Table III, else the field
is populated with ‘000’.

e Bits4-7: For a compressed cache line, these 4-bits are
used to provide a SECDED protection on the first 4-bits
of tag. In the case of uncompressed cache line, ‘0000’
is used, which also happens to be the redundancy for
SECDED encoding of an all-zero message.

Along with the tag bits, the memory controller keeps a track
of the number of read operations per cache line in order to
enable write-back or restore operations after a certain number
of reads. This can be implemented using a similar mechanism
proposed in [21] for selective DRAM refresh. Also for the
replicated cache lines, the memory controller tracks the copy
that was last read so that the next read is from the next copy.

IV. EVALUATION METHODOLOGY

To evaluate our protection scheme for STT-RAMs, we first
compiled a set of applications from the SPEC CPU2006
benchmark suite for 64-bit RISC-V (RV64G) instruction set
v2.0 [22]. The list of applications from the benchmark suite
have been listed in Table IV. These applications are a mix
of integer and floating point benchmarks.

TABLE 1IV: Details about Evaluation Methodology

400.perlbench, 450.soplex, 473.astar,
401.bzip2, 403.gcc, 462.libquantum,
453.povray, 444.namd, 470.1bm, 447.dealll
512-bits (64-Byte)

SPEC CPU2006 Benchmarks used

Cache Line size

Write Error Rate (0—1) [11] 1x1078

Retention Error Rate/hour 1x10-5
0—1) [11]

Read Disturb Rate [10] 1x1073

After compilation, the applications were run on Spike [23],
a RISC-V simulator to extract the memory traces for both
data and instructions. Next, each application was subjected to
CME. The average block failure probability (average failure
probability of each word in the cache line) was computed under
a certain write, retention and read disturb error rates (given in
Table IV) based on the final set of cache lines obtained after
applying the CME scheme to the obtained memory traces.

The probability of a cache block/word of Hamming Weight W
not failing under a certain write/read bit error rate Pgg protected
by a t-error correction ECC is given by the following equation:

S (W Wi i
Pblock:Z(;)(1—PER) (Per) (1)

i=0
For overall block error rate, we calculated the probability of
failure using the knowledge obtained from the memory traces

about the number of reads between two consecutive write
instructions to a memory address. For examples, when there
are two read operations, the failure probability of any word in a
cache line replicated once or more is 0. When replication isn’t
possible and say, DECTED protection is used, the probability
of no fault is calculated by considering all the following cases:
(a) When two or less faults occur during the same operation
(either during write, any of the two reads or because of
retention error). (b) One fault occurs during one operation and
the other fault occurs during another operation. Based on our
memory trace statistics, we saw that most of the cachelines
are read once. However, there are still 2-5% of cachelines that
are read more than twice (some even more than 10 times).
In such cases, restore/write-back operation is needed after a
certain number of reads to avoid aggregation of bit flips due to
read disturb errors. As a result we analyze two cases: a) cache
line is written back after 2 reads when there are more than 2
consecutive reads, and b) cache line is written back after every
4 reads when there are more than 4 consecutive reads. For
the case of write-back after 2 reads, 4x replication is not used
as no cache line will be read consecutively more than twice.

V. RESULTS AND DISCUSSION

In this section we demonstrate that CME provides
considerable benefit in terms of block error reduction as
compared to a normal (72,64)SECDED.

A. Reduction in Hamming Weight

We evaluate the hamming weight reduction when using
BPC scheme and compare it against Dynamic-XOR scheme
proposed in [12] where the goal was to solely minimize the
weight of each cache line. From Figure 7 it can be seen that
for all applications both the schemes reduce Hamming Weight
of cache line as compared to the original weight. BPC reduces
Hamming Weight by upto 35% compared to the original weight.
For most applications, cache line after BPC compression ends
up with a lower Hamming Weight than Dynamic XOR. On
an average BPC has 6% lower weight than the Dynamic-XOR
scheme. Thus, BPC not only has the advantage of reducing
cache line size over Dynamic-XOR which, in turn, allows for
stronger ECC, it also reduces Hamming Weight of the entire
cache line, thus reducing chances of unwanted bit flips during
write and read operations in STT-RAMs.

B. Reduction in Block Error Probability

To evaluate the reduction in block errors, probability of
failure is computed per application for each word in all the
cache lines undergoing load operation as retrieved from the
memory traces for the following two cases:

o Scheme-1: Original cache line with only (72,64) SECDED
protection
o Scheme-2: Our proposed CME protection scheme

The results shown in Figure 8 are plotted for the scenarios
when there are maximum of two and four consecutive reads
from a particular cache line before the restore operation (where
the cache line is written back). It can be seen that just adding

W Weight_Raw 2 Weight_Dyn_XOR m Weight_Compressed

/
v
7
Qvo&

N &
&

® o4

Benchmarks

Fig. 7: Comparison of average Hamming weight of original
cache line, BPC and DBX schemes

SECDED_4_Reads = CME_4_Reads SECDED_2_Reads ®CME_2_Reads

5.00E-08 7
4.00E-08
3.00E-08

2.00E-08

Block Error Probability

1.00E-08

0.00E+00

MMl i

Benchmarks

Fig. 8: Reduction in block error rate induced due to
RER and RDR is shown.

WER,

a (72,64) SECDED on the original cache line (Scheme 1)
has much worse block failure probability than CME. This is
because CME reduces Hamming Weight (reducing chances of
1—0 flip during read), reduces cache line size enabling stronger
protection and enables replication in certain cases (for replica-
tion, read error probability = 0 if number of reads < number of
copies). In fact, successful compression and therefore stronger
protection was possible for 75.8% blocks across the benchmarks
used. As a result CME provides up to 81.6% and 78.4% lower
block failure probability than Scheme 1 respectively when
maximum 4-reads and 2-reads are allowed before the next
write-back to the cache line is performed. On an average, CME
has about 50.7% and 51.2% lower block failure probability
than Scheme 1. This massive reduction in error rate is achieved
with only 8-bit Tag overhead as mentioned in previous section.

It is intuitive to understand that allowing smaller number
of reads between multiple writes reduces read disturb error
and retention errors and thus block failure probability reduces.
However, for applications like 401.bzip2 and 450.soplex,
CME scheme provides lower block failure probability with
4 consecutive reads allowed than Scheme 1 with SECDED
protection and maximum 2 consecutive reads allowed. This
clearly shows that the restore or write-back operation can be
well minimized when CME scheme is allowed.

Moreover, we argue that the opportunistic use of stronger
ECC code is largely responsible for the large reduction in

error probability. This is because, even for applications with
low Hamming weight reduction (perlbench, bzip2, gcc etc.),
decrease in the block error probability has been significant.

C. Overhead of Multi-ECC scheme

The CME scheme requires support for multiple ECC engines
(SECDED, DECTED and 3EC4ED). Having multiple ECC
encoders and decoders on a memory controller on chip can
be costly in terms of both area as well as power. However,
if asymmetric quantum BCH coding [24] is used, G and
H matrices for a smaller ECC (for e.g., SECDED) can be
composed out of sub-matrices of G and H matrices of a
stronger ECC scheme (for eg. DECTED), therefore the same
hardware can be reused. Since in our case, the total codeword
length is same for all the cases (n=72 bits), eliminating rows
from the bottom of the H-matrix of a stronger code (for e.g.,
3EC4ED) would generate the H-matrix of a weaker code (for
e.g., DECTED) with the same codeword length. However,
for encoding using G-matrix, the rows (=k) of the G-matrix
decrease as we move towards a stronger ECC code for a given
constant codeword length (=n). Therefore, SECDED would
require the largest encoding hardware while 3EC4ED would
require the largest hardware for parity checking (H-matrix).
Therefore, the only area overhead would come from the larger
H-matrix compared to SECDED. Synthesizing the parity check
engine using an industrial 45nm library results in about only
about 3800 um? of additional area overhead compared to a only
SECDED implementation as in Scheme 1. Moreover, since only
one word is decoded at a time, reuse isn’t expected to have any
performance degradation. The additional decoding energy and
latency overhead of CME during read operation is much lesser
than the overhead of having restore operations after every read
that would have been otherwise required to achieve the same
error rate with just a simple (72,64) SECDED ECC protection.

VI. CONCLUSION

In this work, we proposed a new ECC protection scheme for
STT-RAM based main memories, compression with multi-ECC
(CME). First we try to compress every cache line to reduce the
size of the cache line and then based on the amount of compres-
sion possible, we use the saved additional bits to increase the
protection using stronger ECC codes if possible. Compression
itself reduces the hamming weight of the cache lines, thus
reducing the probability of 1—0 bit-flips. Opportunistically
using stronger ECC codes further helps tolerate multiple bit-
flips in a cache line. Our results show that for STT-RAM based
main memories, CME can reduce the block failure probability
by up to 81.6% (average 50.7%) and 78.4% (average 51.2%)
over using a (72,64)SECDED for each cache line word, when
maximum of 4 reads and 2 reads respectively are allowed to
a cache line before a write-back/restore operation is done.

VII. ACKNOWLEDGEMENT

The authors would like to thank Professor Lara Dolecek and
Clayton Schoeny from UCLA and the anonymous reviewers
for their feedback.

[1]

[2

—

[3]

[4]

[5]

[7]

[8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

REFERENCES

S. Mittal and J. S. Vetter, “A Survey of Software Techniques for
Using Non-Volatile Memories for Storage and Main Memory Systems,”
IEEE Transactions on Parallel and Distributed Systems, vol. 27,
pp. 1537-1550, May 2016.

S. Sills, S. Yasuda, A. Calderoni, C. Cardon, J. Strand, K. Aratani,
and N. Ramaswamy, “Challenges for High-Density 16Gb ReRAM with
27nm Technology,” in Symposium on VLSI Circuits (VLSI Circuits),
pp. T106-T107, June 2015.

Y. Emre, C. Yang, K. Sutaria, Y. Cao, and C. Chakrabarti, “Enhancing
the Reliability of STT-RAM through Circuit and System Level
Techniques,” in 2012 IEEE Workshop on Signal Processing Systems,
pp. 125-130, Oct 2012.

M. Y. Hsiao, “A Class of Optimal Minimum Odd-weight-column
SEC-DED Codes,” IBM Journal of Research and Development, vol. 14,
pp- 395-401, July 1970.

S. Kaneda and E. Fujiwara, “Single Byte Error Correcting Double Byte
Error Detecting Codes for Memory Systems,” IEEE Transactions on
Computers, vol. 31, no. 7, pp. 596-602, 1982.

N. H. Seong, S. Yeo, and H.-H. S. Lee, “Tri-level-cell Phase Change
Memory: Toward an Efficient and Reliable Memory System,” in
Proceedings of the 40th Annual International Symposium on Computer
Architecture (ISCA), pp. 440451, 2013.

H. Noguchi, K. Kushida, K. Ikegami, K. Abe, E. Kitagawa, S. Kashiwada,
C. Kamata, A. Kawasumi, H. Hara, and S. Fujita, “A 250-MHz 256b-1/0
1-Mb STT-MRAM with advanced perpendicular MTJ based dual cell
for nonvolatile magnetic caches to reduce active power of processors,
in 2013 Symposium on VLSI Technology, pp. C108—C109, June 2013.
D. Shum, D. Houssameddine, S. T. Woo, Y. S. You, J. Wong, K. W.
Wong, C. C. Wang, K. H. Lee, K. Yamane, V. B. Naik, C. S. Seet,
T. Tahmasebi, C. Hai, H. W. Yang, N. Thiyagarajah, R. Chao, J. W. Ting,
N. L. Chung, T. Ling, T. H. Chan, S. Y. Siah, R. Nair, S. Deshpande,
R. Whig, K. Nagel, S. Aggarwal, M. DeHerrera, J. Janesky, M. Lin,
H. J. Chia, M. Hossain, H. Lu, S. Ikegawa, F. B. Mancoff, G. Shimon,
J. M. Slaughter, J. J. Sun, M. Tran, S. M. Alam, and T. Andre, “CMOS-
embedded STT-MRAM arrays in 2x nm nodes for GP-MCU applications,”
in 2017 Symposium on VLSI Technology, pp. T208-T209, June 2017.
Y. Zhang, X. Wang, Y. Li, A. K. Jones, and Y. Chen, “Asymmetry
of MTJ switching and its implication to STT-RAM designs,” in 2012
Design, Automation Test in Europe Conference Exhibition (DATE),
pp. 1313-1318, March 2012.

R. Takemura, T. Kawahara, K. Ono, K. Miura, H. Matsuoka, and H. Ohno,
“Highly-scalable disruptive reading scheme for Gb-scale SPRAM and be-
yond,” in 2010 IEEE International Memory Workshop, pp. 1-2, May 2010.
S. Wang, H. C. Hu, H. Zheng, and P. Gupta, “MEMRES: A Fast
Memory System Reliability Simulator,” IEEE Transactions on Reliability,
vol. 65, pp. 1783-1797, Dec 2016.

W. Wen, M. Mao, X. Zhu, S. H. Kang, D. Wang, and Y. Chen, “CD-ECC:
Content-dependent error correction codes for combating asymmetric
nonvolatile memory operation errors,” in IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 1-8, Nov 2013.
N. Kim and K. Choi, “A design guideline for volatile stt-ram with ecc
and scrubbing,” in 2015 International SoC Design Conference (ISOCC),
pp- 29-30, Nov 2015.

J. Kim, M. Sullivan, E. Choukse, and M. Erez, “Bit-Plane Compression:
Transforming Data for Better Compression in Many-Core Architectures,”
in ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), pp. 329-340, June 2016.

S. Mittal, J. S. Vetter, and L. Jiang, “Addressing Read-disturbance Issue
in STT-RAM by Data Compression and Selective Duplication,” IEEE
Computer Architecture Letters, vol. PP, no. 99, pp. 1-1, 2017.

S. Wang, A. Pan, C. O. Chui, and P. Gupta, “Tunneling negative differ-
ential resistance-assisted stt-ram for efficient read and write operations,”
IEEE Transactions on Electron Devices, vol. 64, pp. 121-129, Jan 2017.
V. Sathish, M. J. Schulte, and N. S. Kim, “Lossless and Lossy
Memory I/O Link Compression for Improving Performance of GPGPU
Workloads,” in Proceedings of the 21st International Conference on
Parallel Architectures and Compilation Techniques, PACT ’12, (New
York, NY, USA), pp. 325-334, ACM, 2012.

M. Thuresson, L. Spracklen, and P. Stenstrom, “Memory-link
compression schemes: A value locality perspective,” IEEE Transactions
on Computers, vol. 57, pp. 916-927, July 2008.

>

[19]

[20]

[21]

(22]

[23]

[24]

A. R. Alameldeen and D. A. Wood, “Adaptive cache compression for
high-performance processors,” in Proceedings. 31st Annual International
Symposium on Computer Architecture, 2004., pp. 212-223, June 2004.
G. Pekhimenko, V. Seshadri, O. Mutlu, M. A. Kozuch, P. B. Gibbons, and
T. C. Mowry, “Base-delta-immediate compression: Practical data compres-
sion for on-chip caches,” in 21st International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT), pp. 377-388, Sept 2012.
J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “Raidr: Retention-aware
intelligent dram refresh,” in Proceedings of the 39th Annual International
Symposium on Computer Architecture, ISCA 12, (Washington, DC,
USA), pp. 1-12, IEEE Computer Society, 2012.

A. Waterman, Y. Lee, D. Patterson, and K. Asanovic, “The RISC-V
Instruction Set Manual Volume I: User-Level ISA Version 2.0,” 2014.
A. Waterman and Y. Lee, “Spike, a RISC-V ISA Simulator — git commit
3bfc00e.”

S. Aly Ahmed, “Asymmetric and Symmetric Subsystem BCH Codes
and Beyond,” 04 2008.

	Introduction
	Background
	STT-RAM Basics
	Read Errors
	Write Errors
	Retention Errors

	Previous Work On STT-RAM Reliability
	Previous Work On Cache Compression

	Our scheme - Compression with Multi-ECC (CME)
	Overall Architecture
	Cache Line Compression Scheme
	Multi-ECC on Compressed Cache Line
	Additional Tag Bits

	Evaluation Methodology
	Results and Discussion
	Reduction in Hamming Weight
	Reduction in Block Error Probability
	Overhead of Multi-ECC scheme

	Conclusion
	Acknowledgement
	References

