MEMRES: A Fast Memory System Reliability Simulator

Shaodi Wang*, Henry (Chaohong) Huf, Hongzhong ZhengJr and Puneet Gupta*
*Department of Electrical Engineering, University of California, Los Angeles
TSamsung Semiconductor, Milpitas, CA, USA

Abstract—With scaling technology, emerging non-volatile devices and
data-intensive applications memory faults have become a major reliability
concern for computing systems. With various hardware and software
approaches proposed to address this issue, a comprehensive evaluation is
required to understand the effectiveness of these solutions. Considering
the complex nature of various memory faults as well as interactions
between various correction mechanisms we propose MEMRES, a fast
memory system reliability simulator. It enables memory fault simulation
with ECC algorithms and modern memory reliability management,
including memory page retirement, mirroring, scrubbing, and hardware
replacement. MEMRES is computationally efficient in obtaining memory
failure probabilities in presence of multiple failure mechanisms and com-
plex correction scheme, allowing for optimization of memory reliability.

I. INTRODUCTION

Increasing data-heavy applications motivate the need of a reliable
memory system. However, growing memory density and volume have
resulted in increasing memory fault rate [1]. Scaling technology and
emerging non-volatile technologies exacerbate the problem [2] [3].
In addition, failure recovery affects system’s serviceability, and faulty
memory replacement increases costs in data center. Hence, improving
the reliability of future memory system is essential. This requires deep
understanding of failure mechanisms.

Experimental field studies find that memory failure is caused by
a large variety of memory fault types [4], and hard failures are
the dominating factor [1]. Various techniques (see Fig. 1) have
been proposed to enhance system reliability and prolong lifetime.
However, most previous memory reliability studies have relied on
analytical models like [5]. These models are insufficient to handle a
variety of memory fault types simultaneously and deal with reliability
enhancement techniques for multiple reasons. Firstly, a new fault type
may significantly change existing fault models [5] such as data-link
error [6] [7]. Secondly, memory failure modeling is strongly depen-
dent on reliability enhancement techniques. For instance, single-bit
error is the most critical fault in a memory system without error-
correcting code (ECC) but becomes less critical for a memory system
with single-error correcting and double-error detecting (SECDED)
ECC [8] [9]. Thirdly, sophisticated ECCs increase the difficulty for
analytical model derivation, e.g., [5], for the dynamic random-access
memory (DRAM) with a double-Chipkill [10] [11]. Fourthly, fault
rate is strongly application dependent [1], which is hard to model.
Fifthly, memory reliability management (see Fig. 1) further increases
modeling difficulty. Therefore, efficient simulation methodologies
that can overcome these difficulties must be introduced.

Various fault simulators have been well developed and used in
industry and academia [12] [13]. However, they focus on simulating
fault propagation and detection. This makes them unsuitable to
analyze memory fault due to unacceptably long run time on circuit
simulation (i.e., orders of magnitude slower than simulated time). In
order to obtain failure probability of memory system, a large amount
of Monte-Carlo simulations are required, increasing the difficulty
of using slow simulators to analyze memory reliability problems.
Recently, Faultsim [14], a fast Monte-Carlo DRAM fault simulator,
was proposed, which took a few hours to obtain seven-year DRAM

Memory reliability management Simulation
Hardware Memory
Sparing Scrubbing
Memory Memory Page ‘
Mirroring Retirement
ECC algorithms Modeling
SECDED Chipkill '
ECC designs
In-memo In-controller
Fig. 1. The reliability enhancement techniques.

failure probability. Compared to analytical methodology, it saves
effort on model derivation for various memory designs. However,
Faultsim does not account for memory access behavior, which is
crucial to modeling memory reliability management. Memory access
patterns also affect simulation accuracy because failure behavior
strongly depends on applications [1].

In this paper, we propose MEMRES, a comprehensive memory
fault simulator. It performs long-term (i.e., over years) application-
based fault simulation of memory system with modern reliability en-
hancement techniques. Our contributions are summarized as follows:

o We implement a comprehensive memory fault simulator with
efficient data structures and accurate modeling. This simulator
takes a few hours to obtain precise probability and reasons for
memory system failure.

o Application-based memory access behavior is modeled and
incorporated in MEMRES. The access behavior ignored by
existing models and simulators has been demonstrated to sig-
nificantly impact fault behavior. Considering the memory access
model not only improves MEMRES’s accuracy, but is also a key
to model memory reliability management.

+ Memory reliability management is modeled including memory
scrubbing, row/column/rank sparing, memory page retirement,
and memory mirroring. This enables system-level memory reli-
ability evaluation.

o Multiple failure mechanisms including data-link error [6] [7]
are modeled and demonstrated to affect the effectiveness of
reliability enhancement techniques.

MEMRES modeling and implementation are described in Section
II. MEMRES is validated in Section III. The examples of MEMRES
simulation are shown in Section IV. In the end, we conclude our
work in Section V.

II. MEMRES FRAMEWORK

Fig. 2 illustrates the overview of MEMRES. MEMRES comprises
of pre-sim processing and Monte-Carlo simulator.

The pre-sim processing is a one-time procedure for fault and
memory access model fitting. It passes fitted parameters including
access range (AR) and fault failure-in-time (FIT) to Monte-Carlo
simulator. The AR is to model the memory access behavior of

Application Fault
Memory Trace Model
Pre-Sim Processing

E 5 ¥
Fault modeling Memory access
(FIT) modeling (AR)

Monte-Carlo Simulator

Fault ECC: Fault
detection &

Memory T - -
Algo 3

injection
correction
Simulating cy

System Arch

Memory tnirroring
Memory page retirement
Hardware sparing
Memory scrubbing

Reliability
Management
Config

~ System .
- Failure Rate = -1

Failure Pareto /
~_ /,/

Fig. 2. The framework overview of MEMRES.

applications. The FIT (i.e., expected number of failures in a unit
of device-time) models fault rate.

Inputs to Monte-Carlo simulator include memory architecture (see
Fig. 3), ECC algorithm and configuration of memory reliability man-
agement. During the Monte-Carlo simulation, the simulator divides
memory lifetime into short intervals and then simulates one interval
after another. For each interval, a sequence of three steps is performed
as illustrated in Fig. 2. During the initial step, probabilities of different
fault types are computed through the use of a fault model, and
faults are injected according to the probabilities. In the second step,
if a fault is accessed, ECC is performed to detect and correct the
error produced by the fault. In the final step, memory reliability
management is used to remove the detected faults. MEMRES has two
termination conditions. The appearance of uncorrected fault causes
crash of simulated memory system and stops the simulation. If there
is no such fault, the simulation continues till the end of preset time.
Outputs of MEMRES include a memory system failure probability
as a function of operating time; and failure pareto (i.e., a histogram
showing the probability of system failure caused by different reasons).

Columns

I Data link error

,
;
;
A
;
.

w fault

Fig. 3. Memory architecture and memory fault types. To read/write a word,
one channel and rank are selected, and then all chips in the selected rank are
read simultaneously. Eight banks are built in a chip. The data sharing same
address (e.g., 4 bits or 8 bits) in chips across a rank are read together in a
word (64 bits).

A. Data Structure

Many detected faulty bits are found to gather and form big faulty
regions, e.g., a row, a column, and a bank [4]. A fault type is
then defined according to the faulty region as can be seen in Fig.
3 which shows examples of different types of faults. Faultsim [14]
uses a data structure of Mask and Address to represent large faults,
where Mask specifies the fault size, and Address locates the fault
in memory space. This data structure is not only fast in calculation
but also occupies little memory. However, not all addresses covered
by such representation are faulty. The percentage of faulty bits in
different fault types varies from 20% to 90% [4]. In addition to Mask
and Address, we use Cover-rate (ranging from 0 to 1) to represent
the percentage of faulty bits in a fault type. The Mask, Address,
and Cover-rate form one basic data structure, fault range (FR), in
MEMRES. Fig. 4 shows examples of FRs A, B, and C.

As can be seen from Fig. 4, Address and Mask are sets of binary
bits. They represent a region of device addresses (i.e., address of
physical location in memory). The setting rule of Address and Mask
is described as below. Initially, all bits are set to 0. If certain bit of
all binary addresses covered by the representing FR is fully masked
(i.e., changing this bit of the addresses does not move them out of
the FR), this bit of Mask is set to 1, and that of Address is set to
0. Otherwise the bit of Mask is set to 0 and the bit of Address is
set to the same number as covered addresses (i.e., addresses covered
by a FR should have the same number in such bit). For example, in
Fig. 4, A (a column fault) has the mask of “11100”, where the*“111”
means that all row addresses are covered by the FR (i.e., the three
bits cannot decide whether an address is or is not covered by the
FR), and “000” points the FR to unique column address. If bits are
set correctly, the Address should have the same binary representation
as the smallest address covered by the FR. For example, in Fig. 4,
the A’s Address of “000100” locates the FR at the column 5, which
equals to the device address of row 1 and column 5.

One FR can represent a fault with the size equaling to powers of
two. It can represent all fault types in Fig. 3. A fault with size S
not exactly equaling powers of two can be divided into no more than
logs parts such that each part can be represented by an FR. The
FR helps MEMRES to save memory space by orders of magnitude
compared to traditional simulators.

In order to catch application dependent fault behavior and model

000 001 010 011 100 101 110 111

000

001

010

011

100

101

110

111

Fault/Access Range Representation

Mask ADDRESS Coverrate
Row |ColUMN| Row | COLUMN
Al 111 000 000 100 0.75
B| 000 011 011 000 0.5
C| 000 000 001 001 1

Fig. 4. Examples of AR/FRs A, B, And C. A is a column FR/AR, B is a
4-bits FR/AR, and C is a single-bit FR/AR.

system-level reliability enhancement techniques, MEMRES uses AR
to model memory access behavior. AR also comprises of Mask,
Address, and Cover-rate. Mask specifies the size of memory access
covered by an AR, Address locates the memory access region, and
Cover-rate represents the percentage of accessed addresses in the AR.

B. Pre-sim Processing

In the pre-sim processing, memory traces are processed to be
represented by ARs. At first, the whole memory access space is
divided into multiple regions. In a simulation cycle. each region is
covered by an AR. Cover-rate specifies the percentage of accessed
addresses in the region. In this model, accesses in the region covered
by an AR are assumed to be random implying that Cover-rate also
represents the probability of an address being accessed. ARs differ
from regions since memory access density varies from location. And
for the same region, ARs also vary from simulation cycles for the
reason that memory access load changes over time.

Although AR can be set to cover large memory space so that
fewer ARs are used in simulation, the modeling accuracy is improved
when small ARs are used. Smaller ARs more accurately catch access
behaviors by holding more precise Cover-rate. Nevertheless, smaller
ARs result in more ARs and increasing runtime. The expectation and
variance of the number of cycles for a fault being accessed once in
our modeling are (1—¢)®/(1—(1—c)®) and (1—¢)*/(1—(1—c)*)?
respectively, where c is the Cover-rate product of the fault’s FR and
the AR accessing the fault, and s is the size of the fault. As can be
seen, when there is large fault or high Cover-rate in AR and FR, the
error of expectation and variance is very limited even if the Cover-
rate is not accurate. Therefore, for memories with intensive access or
large amount of faults, large ARs can be used to speed up simulation
without losing accuracy.

FIT is calculated for each AR to obtain accurate application
dependent fault rate. Emerging memory may require specific fault
modeling.

C. Basic Operations

Computation using FR/AR is efficient. Three basic bitwise op-
erations in MEMRES are INTERSECT, MERGE, and REMOVE.
They have the closure property (i.e., both the operands and results
of these operations are FR/ARs). Most operations in MEMRES are
implemented by them.

INTERSECT is the most used operation in MEMRES. It tests
whether two faults from different chips can be accessed in a word
(64 bits) and whether an AR accesses an FR. The answer is only
true if two data structures intersect, meaning that the two FR/ARs
(may come from different chips) share identical addresses. Fig. 5 (a)
shows an example of calculating INTERSECT(A, B). When FR/ARs
A and B intersect, the bit-wise formula shown in (1) results ’1”’s for
all bits. And the FR/AR of intersection between A and B is obtained
using (2).

(A]\/Iask + B]\/Iask) + AAddT‘ess 57 BAddress (1)
INTERSECT vask = Anask&Barask 2

INTERSECTAddress = AAddress + BAddress
INTERSECTCoveTTate = AC’over’r‘ate . BCoverrate

MERGE is mainly used to combine two data structures, such as
merging two faults to obtain the combined fault. In Fig. 5 (b), a
MERGE operation of A and B is illustrated. Four steps are applied
in this operation. Firstly, find an intersection between A and B.
Secondly, create an FR/AR for the intersection with the Cover-rate
calculated using (3). The third step entails removing the intersection

Procedure 1 Remove FR/AR B from PR/AR A
Input: PR/AR A and PR/AR B contained by A.
Output: The collection of the remaining FR/ARs in A after remov-
ing B
1: for i from the index of the MSB to the that of the LSB do

2: if T}uask(i) =1 && BMask(i) == 0 then

3: //split T' into two halves 70 and T'1

4: Copy T to T0 and T'1

5: Set T0rrask (Z) =0and T1prrask (7,) = 0. Set T0address (7,)

=0 and TlAddress(i) =1
6 if 70 intersects B then
7: Add T'1 into the collection R. Set T' = T0
8: else
9 Add T0 into the collection R. Set T'=T'1
10: end if

11: end if

12: if T == B then
13: break loop
14: end if

15: end for

16: return R

from A and B. Procedure 1 details the removing step, which uses
the least number of AR/FRs to cover the remaining parts of A and
B. Finally, the intersection and remaining parts are stored together in
a collection. In order to merge A to a collection of AR/FRs B, the
MERGE is iteratively performed between A (or the remaining parts
of A) and every AR/FR in B.
Coverrate =1 — (1 - ACove'r"l'ate) . (1 - BCove7'7'ate) (3)
REMOVE is mainly used to clear faults or to block access to
certain addresses. For instance, after a rank replacement (i.e. replacing
a faulty rank with a spare one) all faults in the rank are cleared. Fig.
5 (c) illustrates removing B from A. Firstly, find the intersection
between A and B. Secondly, Procedure 1 is used to remove the
intersection from A. Thirdly, create an FR/AR for the intersection
with Cover-rate calculated using (4). Finally, store the remaining parts
of A and the intersection in a collection (if the intersection’s Cover-
rate is positive).
Coverrate =1 — (1 - ACO’UCT’I‘H.tE) / (1 - BCoch'r‘atE) (4)

D. Fault Injection

Fault behavior is application dependent. In [4], large volume of
memory faults appear at the beginning of usage, and then faults occur
at a stable rate in the remaining lifetime. Different behavior is shown
in [1] that fault appearing rate increases with time. Analytical models
assume a constant FIT like [5] to simplify derivation meaning. In
MEMRES, the fault model is not restricted to any above situations
and can dynamically change as a function of time. At the beginning of
every simulating cycle, probability of injecting fault; under memory
access space AR; is calculated in (5). Fault injection is performed
based on the probability.

P (i, AR]) =1- exp (7FITZ‘,J' . Tcycle) (5)
where FIT; ; is the failure rate for fault; under AR;, and Teycie
is the time interval of simulation. Extending the interval in a simu-
lation decreases the total number of intervals resulting to speed up
simulation. Nevertheless, high fault rate demands short simulation
interval in order to maintain the accuracy of random fault injection.
Because MEMRES injects a maximum of one fault for each type
in an interval. The error of the single fault injection model used in
MEMRES, the probability of appearance of multiple faults of one
type, increases with interval length. For the fault rates reported in

000 001 010 011 100 101 110 111 000 001 010 011 100 101 110 111 000 001 010 011 100 101 110 111
r——" 1]
000 [000 A, 000 A,
[(0.6) (0.6)
001 ! ! 001 001
i i | As | A
010 B (0.5) 010 B(0.5) 0.6) 010 B (0.5) 0.6)
011 P N I o 011 B, (0.5 ! B3‘ B 05‘ 011} _________ N !
Lo o __f0.6] . | 109 sz B0 L) |
100 i 100 100
I
|
! ! 101 A, 101 1
INTERSECT(A, B)| | MERGE(A, B) [0.6) REMOVE(B, A) | ¢)
110 - 110 110
1 |
1 |
1 | 1A(0.6) 1 A(0.6) 11 A (0.6)
INTERSECT(A,B) =1 MERGE(A, B)= { LA, A),A;, B, B, B, } REMOVE(B,A)= {L A, A, Ay}
(a) (b) (c)

Fig. 5. The basic operations used in MEMRES: (a) INTERSECT, (b) MERGE, and (c) REMOVE. Cover-rates of A and B are 0.6 and 0.5 respectively.

[4], one hour length of a simulation interval is acceptable. If a fault
is to injected to an AR, its injection location is randomly chosen in
the AR.

Data link bus creates many errors due to bus write/read interfer-
ence, clock jitter and voltage variation. Bit error rates (BER) of 10™'*
and 107' are reported in [6] and [7] respectively. But single-bit data-
link error can be easily corrected by ECC, and multiple-bits data-link
error is very rare. Data-link error may affect memory system when
it occurs simultaneously with other memory errors. To avoid useless
data-link error injection to a memory with ECC, whether to inject
data-link error is only checked when a memory fault is accessed.
The injection probability is calculated as in (6).

Ppus =1— (1 — BER)"+™ (6)
where BE'R is error rate of single-bit data link, N, is the expected
number of accesses of the memory fault in current simulation interval
and NV, is the number of bits in the bus excluding faulty bits from
memory (e.g., N is 63 when a single-bit memory fault is read by a
64-bits bus).

E. ECC Algorithms

SECDED and Chipkill are the most popular ECC algorithms in
modern systems. SECDED can correct single-bit error and detect
double-bit error. Chipkill can correct and detect one faulty symbol
(i.e., bits from single chip). Stronger Chipkill may detect and correct
two symbols [5]. In MEMRES, ECC algorithm is configurable
with four parameters: maximum detectable faulty bits, maximum
correctable faulty bits, maximum detectable faulty symbols, and
maximum correctable faulty symbols. The four parameters cover the
functionality of most ECC algorithms. Although stronger ECC leads
to overhead of hardware, delay, and power inefficiency, this is outside
the scope of this paper.

FE. Memory Reliability Management

Memory faults are classified into two classes: transient and per-
manent. Transient faults cause soft error and disappear after being
overwritten while permanent fault frequently produces hard errors
and cannot be repaired. ECC can correct some memory errors,
though faults, especially permanent faults, accumulate with time
and may produce uncorrectable multiple-bits errors. To avoid fault
accumulation, modern systems use memory reliability management
to deactivate existing faults. These techniques need identified fault
location, which can be identified by ECC from detected errors.
MEMRES models the identification process. We use one collection

of FRs called faulty addresses collection (FAC) to store all faulty
addresses. It merges all existing faults. Errors are produced when
the FAC is accessed by ARs (i.e., ARs intersect with FAC). Then
detectable errors are saved in a collection called error record (ER).
MEMRES analyzes ER so that addresses frequently producing errors
are classified as permanent faults. Both FAC and ER are updated
using the MERGE operation during every simulation interval.
Modeling of memory reliability managements is detailed below:

o Memory scrubbing periodically removes transient faults to avoid
accumulation. In MEMRES, the scrubbing cycle is configurable.
During the scrubbing, MEMRES removes all transient faults
from FAC using the REMOVE operation.

o Hardware sparing is used to remove permanent faults. For
example, rank sparing protects ranks with spare ones. The
protected rank is replaced when detected permanent faults reach
a configurable threshold. Then REMOVE is applied to clear
faults belonging to the replaced hardware from MEMRES’s
database.

o Memory page retirement (MPR) retires faulty memory pages.
MPR blocks these pages and moves data to other pages to
avoid accessing these faults again. The page here uses physical
address, but AR uses device addresses. So such retired page
firstly needs to be mapped to physical addresses. Then they are
removed from all memory access (ARs) using REMOVE. The
maximum number of retired pages in a rank is configurable.

« Memory mirroring is done such that two memory spaces store
the same data. The system only visits one space until errors
are detected, and then it shifts to the other one. This protection
is frequently used for critical data. In MEMRES, the mirrored
space is configurable. When access to space A is changed to its
mirror B, MEMRES performs three operations: deleting A from
memory access (ARs) using REMOVE, changing the deleted
ARs’ Address to B, and adding them back to memory access
(ARs) using MERGE.

III. FRAMEWORK VALIDATION

We cannot substantially validate our framework. Large scale exper-
imentation is too expensive and impractical to most research groups
given the desire to look at failures over an extended period of time.
Existing simulators take unacceptable time to complete the validation
task, and existing analytical models do not support memory reliability
management. Nevertheless, in this section, we derive an analytical

;: 1.00 Simulator Validation

d I =
8 —— A RRR
Z ,z.d(("'/. 1
3 bees

v

E-] A

[A

= Val

S 0.10 A

g A

] / .
= / ——Analytical (BUS BER 1e-11)
£
el / + Simulation (BUS BER 1e-11)
S
E oo |

E o.01

o
2 0 1 2 3 4 5 6 7

Time (year)

Fig. 6. The normalized failure probability for a 16GB main memory as a
function of time.

model to compare its accuracy with MEMRES. High-level reliability
managements are not validated.

Here we derive an analytical model with Cover-rate (Cover-rate
is not included in existing models) for a memory with SECDED.
SECDED cannot correct any multiple-bits errors, which may be
caused by multiple-bits faults or multiple intersecting single-bit faults.
We omit the derivation for the case of multiple-bits fault, which
is a simple exponential distribution model. For multiple single-bit
faults’ intersection, we only consider the case of two single-bit faults’
intersection, because the probability of intersections of over two faults
is orders of magnitude less likely than that of two faults, which
thereby contributes little to memory failure. The intersections of two
single-bit faults are classified into two classes: two intersecting single-
bit memory faults and one single-bit memory fault collided with a
data-link error.

The analytical model for the intersection of two single-bit memory
faults is shown as belTow:

Pom (T) :/P1 (t1)- (N

0

T—t;

P (tl —+ tz) - Ps (T —t1 — tz)

0
where Py, (T) is the probability of the intersection occurring within
time T, P (¢1) is the probability of the first fault appearing at time
t1, Pa(t1 + t2) is the probability of the second fault appearing at
t1 + t2, and Ps(T — t1 — t2) is the probability of the two faults
intersecting and being accessed within T — t1 — t2. P(t1) is detailed
as exp (—A1t1)- (1 — exp (—A1dt1)), where A1 is its failure rate, the
first term in parenthesis is the probability of the fault not appearing
from the start to time ¢;, and the following one is the probability of
it appearing during (¢1,¢1 + dt1) that can be further simplified to
A1dtq. Similarly, P> (1 +t2; can also be simplified. Ps(T —t1 —12)
is 1— (1 —Cp)NeT=117%2) \yhere I is the intersection of the two
faults and the ARs accessing them, and C7 is the Cover-rate of I,
and N, is the number of access to [in unit time.

The model for a memory fault coupled with a with data link error

is calculated below: -

P (T) = /P1 (tl) P (T — tl) (8)
0

where Pi(t1) has the same meaning as in (7), P>(T — t1) is the
probability of a data-link error occurring simultaneously with the

memory error.
Fault FITs are obtained from [4]. As is illustrated in Fig. 6,
MEMRES matches with the analytical model for a 16-GB memory
with SECDED. The failure probability increases with time for the

50%

Distribution of fault types causing memory failure
40%

I MEMRES
W Analytical derivation

30%

Percent

20%

10%

0% ||| I 1111] E—
Faultl Fault2 Fault3 Faultd Fault5 Fault6 Fault?
Fault types

Fig. 7. The histogram of reasons for memory failure. We omit names of fault
types for this validation.

reason that memory faults accumulate. The slight mismatch (< 10%)
is observed in the region of high failure probability. This is because
the analytical model ignores high order coupling effects between
multiple faults. In reality and simulation, a memory fault causing
memory failure results in system crash and masks other potential
faults, while in analytical model the probability of each fault is
individually calculated without considering interaction. In addition,
error of ignoring the high order effects grows with increasing failure
probability. However, high order effects are too complicated to be
analytically modeled.

Fig. 7 shows the probability fraction of different fault types to cause
memory failure. Small difference exists again between MEMRES and
the analytical model. For the most critical Faultl, analytical model
underestimates its contribution comparing to MEMRES, but reverse
situations are shown for non-critical faults. Again the difference is
present due to the high order effect ignored by the model. The critical
fault is more likely to mask other faults in reality.

The run time complexity of MEMRES is O (N -log (M)g) where
M is the size of memory system and N is the failure rate. The
size and number of data structures scale with the address length,
log(M). INTERSECT scales with the size of data structure, log(M).
MERGE and REMOVE, the main operations, described in Procedure
1 scale with the number of data structure (log(M)) and INTERSECT
(log(M)), which is log (M)?. The number of operations is proportion
to the product of the number of injected faults and the number of
data structures, which is N - log(M). The complexity of total run
time is the product of the number of operations and the operations’
complexity, which is O (N -log (M)3) The memory consumption
is decided by the number and size of data structures, which is
o (N -log (M)2) In experiments, the wall time for the validation
(100,000 7-years simulations) of Fig. 6 and Fig. 7 on a workstation
is 26 minutes.

IV. EXAMPLES OF MEMRES USAGE

In Fig. 8, a memory with SECDED is simulated. As the data-link
BER increases from 107 *® to 107*%, more single-bit memory errors
are collided with data-link errors resulting in more uncorrectable
errors. As a result, the failure rate increases by 25% (from 0.8 to
1.0) demonstrating that ECC-correctable errors can still cause failure
when high volume of data-link errors are produced. This increase
may saturate with data-link BER after all single-bit memory errors
have collided with data-link errors. To reduce such failures, data-link
BER has to be controlled below 10~ 4.

To explore the features of system-level reliability enhancement
techniques, MEMRES is used to evaluate the reliability of a 128-GB
memory with memory reliability managements. The input of failure
rates is obtained and scaled from [4]. We separately apply three

System failure rate vs. Data-link error rate

£ 1

e

S 08

3

£ 06

2

[

& 04

s —@-In-controller SECDED
= 0.2

[}

E

5 0

= 1.E-15 1.E-14 1.E-13 1.E-12 1.E-11 1.E-10

Data-link error rate

Fig. 8. Normalized memory failure rate vs. data link error rate for a memory
system with SECDED.

TABLE I
SIMULATION CONFIGURATIONS OF MEMORY RELIABILITY MANAGEMENT
Configurations Config. 1 | Config. 2 | Config. 3
SECDED v v v
Memory scrubbing v v v
Rank sparing v v
Memory page retirement v

combinations of memory reliability managements as is presented in
Table I. SECDED and memory scrubbing with the cycle of 48 hours
are efficient to clear transient faults. Hence, we apply them as the
baseline in Config. 1. Rank sparing, added in Config. 2, protects
half of the ranks. Memory page retirement, added in Config. 3, can
retire a maximum of 6.25% of pages in each rank. Fig. 9 shows the
normalized 7-years probability of system failure caused by different
fault types. All probabilities are normalized to the highest rate of each
fault type. From Config. 1 to Config. 2, the added rank sparing only
reduces the probability of multi-banks fault, while other fault types
show higher failure rate. This is because the threshold (percentage
of faulty addresses in a rank) to trigger rank sparing is set to too
high (10%). All fault types except multi-banks fault cannot trigger
it. This also demonstrates that system-level reliability enhancement
techniques should be carefully evaluated and calibrated. Since other
faults are less masked by multi-banks fault, the probabilities of
failure caused by them increase relatively (i.e., the high order effects
discussed in Section III). From Config. 2 to Config. 3, the MPR
efficiently reduces failure probability except for multi-banks fault
and single-lane fault, of which sizes are too big to be handled by
MPR. The failure probability increase for those two big fault types
in Config. 3 is also due to the high order effects.

Histogram of system critical faults

Z =Config.1 & Config.2 # Config.3
2 1 i i
2
208
o
g 0.6
Eoas
©
o2
©®
E o
ZD Single-bank Single-row Multi-banks Single-lane Single-word
fault fault + Data- fault fault fault
link error
Fault types

Fig. 9. The probability of critical fault types that cause system failure. The
probability of each bar is normalized to the highest rate of its fault type.

V. CONCLUSION

The proposed MEMRES facilitates a fast and convenient way to
assess the reliability of modern memory systems. It can perform
application-based memory fault simulation with ECC and memory
reliability management. The accuracy of MEMRES is validated by
the comparison with the derived analytical model. The effective-
ness of modern reliability enhancement techniques including ECC
algorithms, ECC designs, and memory reliability can be calibrated
and optimized for targeting application through MEMRES. In the
future, MEMRES can assist the emerging memory system design by
appropriately modeling fault behavior of non-volatile devices.

REFERENCES

[1] B. Schroeder, E. Pinheiro, and W.-D. Weber, “Dram errors in the wild: a
large-scale field study,” in ACM SIGMETRICS Performance Evaluation
Review, vol. 37, no. 1. ACM, 2009, pp. 193-204.

[2] W. Zhao, Y. Zhang, T. Devolder, J.-O. Klein, D. Ravelosona, C. Chap-
pert, and P. Mazoyer, “Failure and reliability analysis of stt-mram,”
Microelectronics Reliability, vol. 52, no. 9, pp. 1848-1852, 2012.

[3] J. Li, C. Augustine, S. Salahuddin, and K. Roy, “Modeling of failure
probability and statistical design of spin-torque transfer magnetic random
access memory (stt mram) array for yield enhancement,” in Design
Automation Conference, 2008. DAC 2008. 45th ACM/IEEE. 1EEE,
2008, pp. 278-283.

[4] V. Sridharan and D. Liberty, “A study of dram failures in the field,” in
High Performance Computing, Networking, Storage and Analysis (SC),
2012 International Conference for, Nov 2012, pp. 1-11.

[5] X. Jian, N. Debardeleben, S. Blanchard, V. Sridharan, and R. Kumar,

“Analyzing reliability of memory sub-systems with double-chipkill de-

tect/correct,” in Dependable Computing (PRDC), 2013 IEEE 19th Pacific

Rim International Symposium on, Dec 2013, pp. 88-97.

N. Miura, K. Kasuga, M. Saito, and T. Kuroda, “Isscc 2010/session

24/dram & flash memories/24.3,” 2010.

[71 N. Nguyen, Y. Frans, B. Leibowitz, S. Li, R. Navid, M. Aleksic, F. Lee,
F. Quan, J. Zerbe, R. Perego et al., “A 16-gb/s differential i/o cell with
380fs 1j in an emulated 40nm dram process,” in VLSI Circuits, 2008
IEEE Symposium on. 1EEE, 2008, pp. 128-129.

[8] M. Blaum, R. Goodman, and R. McEliece, “The reliability of single-
error protected computer memories,” Computers, IEEE Transactions on,
vol. 37, no. 1, pp. 114-119, 1988.

[91 W. Mikhail, R. Bartoldus, and R. Rutledge, “The reliability of memory
with single-error correction,” IEEE Transactions on Computers, vol. 31,
no. 6, pp. 560-564, 1982.

[10] T.J. Dell, “A white paper on the benefits of chipkill-correct ecc for pc
server main memory,” IBM Microelectronics Division, pp. 1-23, 1997.

[11] ——, “A white paper on the benefits of chipkill-correct ecc for pc server
main memory,” IBM Microelectronics Division, pp. 1-23, 1997.

[12] C.-F. Wu, C.-T. Huang, and C.-W. Wu, “Ramses: a fast memory fault
simulator,” in Defect and Fault Tolerance in VLSI Systems, 1999.
DFT’99. International Symposium on. IEEE, 1999, pp. 165-173.

[13] T. M. Niermann, W.-T. Cheng, and J. H. Patel, “Proofs: A fast, memory-
efficient sequential circuit fault simulator,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol. 11, no. 2,
pp- 198-207, 1992.

[14] D. Roberts and P. Nair, “Faultsim: A fast, configurable memory-
resilience simulator,” The Memory Forum: In conjunction with ISCA-
41, Tech. Rep., 2014.

[6

—

