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Introduction 

Over the last thirty years, the deterministic static 

timing analysis has been sufficient for digital circuit 

design. However, in recent years the increased 

variations in digital circuit, such as perturbation in the 

fabrication process (Process Variations) and changes 

in the operating environment of the circuit 

(Environmental Variations), have introduced 

difficulties that cannot be handled well by 

deterministic static timing analysis. As a consequence, 

deterministic static timing analysis is insufficient now 

that parametric variations are growing. Statistical 

static timing analysis (SSTA) is the solution to 

account for both global and independent variations in 

digital circuit timing analysis.  

 

Statistical Static Timing Analysis Method 

Our statistical Static Timing Analysis (SSTA) follows 

the paper “First-Order Incremental Block-Based 

Statistical Timing Analysis” [1] that using Canonical 

Delay Model to represent nominal value, global 

cor relat ions and independent  randomness .  

 

 Canonical Delay Model: 

 

 

 

Figure 1: The formula above describes the Canonical 

Delay Model. The a0 represents the nominal mean, ai 

represents the global sensitivities and an+1 represents the 

independent sensitivity. The idea is the same for 

expression B. 

 

 

 

Using the Canonical Delay Model to perform 

statistical “addition” function is trivial.  

 

1) If the number of global sensitivities are the 

same for expression A and B . Then ai will 

add with bi .  

2) If the number of global sensitivities are not 

the same. The missing number of global 

sensitivities from either expression A or B 

will be treated as 0 and then number of 

global sensitivities will match and add up 

correspondingly.  

 

The independent sensitivities from expression A and 

B are not correlated. The statistical “add” operator 

will compute the effective variance by adding 

variance of independent sensitivities from expression 

A and B together and then output the result from the 

square root of the sum as the new independent 

sensitivity. 

 

However, the statistical “maximum” function is a 

little bit more complicated because it will calculate 

the probability of distribution of max(A,B) 

 

First of all, standard deviation   of distribution A and 

B is computed: 

     
    

         

 

   is calculated by the square root of the sum of 

variances of global sensitivity and independent 

sensitivity. The idea is the same for    

 

 

 

 



The probability of expression A larger than B is TA:  

TA=  
     

 
      

a0 and b0 are the nominal mean 

 

1) If the difference between a0 and b0 is larger than 5 

times the standard deviation, the distribution with 

larger nominal mean will be returned because that 

distribution will dominate.  

2) If the difference between a0 and b0 is less than 5 

times the standard deviation, the mean will be 

calculated based on the following equation.  

                  
     

 
  

 

Every individual global sensitivity (  ) will be 

calculated by the following expression: 

 

                 

 

The total variance will be calculated by the 

following expression: 

 

   
    

        
    

         

              
     

 
  

                

 

In order to find the independent sensitivity for 

max(A,B), the total variance calculated above 

will be used to subtract the sum of variances of 

global sensitivities, which will result the 

variances of independent sensitivities. Finally, the 

independent sensitivity for max(A,B) will just be 

the square root of the variances of independent 

sensitivities.  

 

The statistical “minimum” function will take the    

negative of A and B as the input to the statistical 

“maximum” function. Then the negative of the 

output of the max function will be the return value 

of  the  s ta t is t ical  “minimum” func t ion.  

 

 

 

Implementation Sample 

 // Calculating the standard deviation of A and B 

double Z=(a.mean-b.mean)/std; 

// Calculating the mean for max(A,B) 

temp.mean=a.mean*phi(Z)+b.mean*(1-phi(Z)) 

+std*Gauss_pdf(Z); 

//Calculating the total variances 

double 

Var=(pow(a.sigma(),2)+pow(a.mean,2))*phi(Z) 

+(pow(b.sigma(),2)+pow(b.mean,2))*(1-phi(Z)) 

+(a.mean+b.mean)*std*Gauss_pdf(Z) 

-pow(temp.mean,2); 

 

if(b.global_sensitivity.size()<a.global_sensit

ivity.size()){ 

  for(int i=0; 

i<(a.global_sensitivity.size()-b.global_s

ensitivity.size());i++) 

   b.global_sensitivity.push_back(0); 

}else{ 

  for(int i=0; 

i<(b.global_sensitivity.size()-a.global_s

ensitivity.size());i++) 

   a.global_sensitivity.push_back(0); 

} 

double sum=0; 

//Calculating global sensitivities 

for(int i=0; 

i<max(a.global_sensitivity.size(),b.global_sen

sitivity.size());i++){ 

 temp.global_sensitivity.push_back( 

global_sensitivity[i]*phi(Z) 

+(1-phi(Z))*b.global_sensitivity[i]); 

sum+=pow(temp.global_sensitivity[i],2); 

} 

//Calculating the independent sensitivities 

temp.indep_sensitivity=sqrt(Var-sum); 

 

 

 

 

 

 

 

 

 

 

 



UCLA Statistical Timer Feature 

UCLA Statistical Timer has two options, statistical 

and deterministic. 

 

 If an input sensitivity file is specified, the UCLA 

Statistical Timer will calculate the Statistical 

quantities 

 

 If no input sensitivity file is specified, the UCLA 

Statistical Timer will set the global sensitivities 

as well as the independent sensitivity to be 0 by 

default and calculate the deterministic quantities 

 

For inputting the sensitivity file, a sensitivity file 

needs to be written, which will follow the following 

syntax: 

 

cellName [space] indep = Number[space] global= 

Number,Number,Number 

 

or 

Instance_Name [space] indep = Number[space] 

global= Number,Number,Number 

 

The instance_name has higher priority than the cell 

name. That is if an inverter (cell Name: INV, 

Instance_name: i_1) have two definitions of 

sensitivities, the one using the instance name syntax 

will overwrite its cell name’s sensitivities. 

The specification flag for the sensitivity file is 

“–sens”. The Timer will load all the sensitivities to the 

map for the later usage.  

 

For example: 

Option can be something like the following: 

-cell z10_test_bench –lib designs –view physical 

–liberty cbl250.lib –sdc z10_test_01.sdc –report critical 

–sens sens.txt 

 

Experimental Results 

Experiments are run to test the accuracy of the 

method and the correctness of the implementation and 

Monte Carlo size is 1000 samples. 

Four benchmarks are used: 

1. z10  

2. s382 

3. s444 

4. s13207 

 

The numbers in those four benchmarks indicate how 

many logic components it consists of. As one can see, 

the testing experiments start from fairly small scale 

benchmarks to large scale benchmarks. As a result, 

one can compare the correctness of the 

implementation as well as the runtime for increased 

scale benchmarks. 

 

Each benchmark is run with three different types of 

variations: 

a) Mixed, combined          0.07, .03, and 

       = 0.02 

b) Independent only, with        = 0.02 

c) Global Variation only, with          = .07, .03 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1. z10_bench 

a) Mixed 

 

 

 

 

 

 

 

 

 

 

 

b)  Independent only 

 

 

 

 

 

 

 

 

 

 

Summary Table  

 SSTA Result Monte Carlo   SSTA  RunTime Deterministic 

Runtime 

Difference (%) 

Mean -0.1705 -0.1595  Real Time 1.29 s 1.19 s 8.4% 

Standard  

Deviation 

0.2305 0.242  User Time 0.073 s 0.061 s  

Skew / -0.2268  System 

Time 

0.045 s 0.048 s  

Kurtosis / 3.9186   

Summary Table  

 SSTA 

Result 

Monte 

Carlo 

  SSTA  

RunTime 

Deterministic 

Runtime 

Difference 

(%) 

Mean -0.1704 -0.1679  Real Time 1.30 s 1.21 s 7.43% 

Standard  

Deviation 

0.0303 0.0312  User Time 0.062 s 0.060 s  

Skew / -0.1514  System 

Time 

0.052 s 0.050 s  

Kurtosis / 0.0365   



 

c)  Global only 

 

 

 

 

 

 

 

 

 

 

 

2. s382_bench  

a) Mixed 

Summary Table  

 SSTA 

Result 

Monte 

Carlo 

  SSTA  

RunTime 

Deterministic 

Runtime 

Difference 

(%) 

Mean -0.1638 -0.1555  Real Time 1.22 s 1.21 s 8.26% 

Standard  

Deviation 

0.2285 0.2284  User Time 0.068 s 0.062 s  

Skew / -0.262  System 

Time 

0.051 s 0.048 s  

Kurtosis / 3.238   

Summary Table  

 SSTA 

Result 

Monte  

Carlo 

(500 

samples) 

Monte 

Carlo 

(1000 

samples) 

 SSTA  

RunTime 

Determinis

tic 

Runtime 

Difference 

(%) 

Mean -1.415 -1.348 -1.366 Real 

Time 

1.50 s 1.35 s 11.11% 

Standard  

Deviation 

0.7186 0.7564 0.744 User 

Time 

0.155 s 0.128 s  



 

 

 

 

 

 

 

b)  Independent only 

 

 

 

 

 

 

 

 

 

 

 

c)  Global only 

Skew / -0.700 -0.23 System 

Time 

0.174 s 0.145 s  

Kurtosis / 3.989 1.803  

Summary Table  

 SSTA 

Result 

Monte 

Carlo 

  SSTA  

RunTime 

Deterministic 

Runtime 

Difference 

(%) 

Mean -1.388 -1.3984  Real Time 1.50 s 1.42 s 5.63% 

Standard  

Deviation 

0.0419 0.0432  User Time 0.182 s 0.167 s  

Skew / -0.23075  System 

Time 

0.118 s 0.112 s  

Kurtosis / 0.3179   

Summary Table  

 SSTA 

Result 

Monte 

Carlo 

  SSTA  

RunTime 

Deterministic 

Runtime 

Difference 

(%) 

Mean -1.378 -1.353  Real Time 1.47 s 1.41 s 4.25% 

Standard  

Deviation 

0.724 0.707  User Time 0.177 s 0.162 s  

Skew / -0.104  System 0.104 s 0.101 s  



 

 

 

 

3. s444_bench  

a) Mixed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b)  Independent only 

Time 

Kurtosis / 1.13   

Summary Table  

 SSTA 

Result 

Monte Carlo 

(500 samples) 

  SSTA  

RunTime 

Determinis

tic 

Runtime 

Difference 

(%) 

Mean -1.376 -1.321  Real 

Time 

1.94 s 1.48 s 31.08% 

Standard  

Deviation 

0.651 0.677  User 

Time 

0.174 s 0.166 s  

Skew / -0.552  System 

Time 

0.177 s 0.147 s  

Kurtosis / 2.356      

Summary Table  

 SSTA 

Result 

Monte 

Carlo 

  SSTA  

RunTime 

Deterministic 

Runtime 

Difference 

(%) 



 

 

 

 

 

 

 

 

c) Global only 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mean -1.324 -1.3317  Real Time 1.50 s 1.46 s 2.73% 

Standard  

Deviation 

0.0358 0.0398  User Time 0.147 s 0.142 s  

Skew / -0.3653  System 

Time 

0.164 s 0.154 s  

Kurtosis / 0.4451   

Summary Table  

 SSTA 

Result 

Monte 

Carlo 

  SSTA  

RunTime 

Deterministic 

Runtime 

Difference 

(%) 

Mean -1.3398 -1.318  Real Time 1.55 s 1.50 s 3.33% 

Standard  

Deviation 

0.6531 0.614  User Time 0.156 s 0.151 s  

Skew / -0.0904  System 

Time 

0.88 s 0.79 s  

Kurtosis / 2.379   



4. s13207_bench  

a) Mixed 

 

 

 

 

 

 

 

 

 

 

 

 

 

b)  Independent only 

 

 

 

 

 

 

 

 

 

 

Summary Table  

 SSTA 

Result 

Monte Carlo 

(500 samples) 

  SSTA  

RunTime 

Determinis

tic 

Runtime 

Difference 

(%) 

Mean -3.9 -3.669  Real 

Time 

35.00 s 28.84 s 21.36% 

Standard  

Deviation 

1.637 1.771  User 

Time 

1.661 s 1.412 s  

Skew / -1.23  System 

Time 

1.319 s 1.23 s  

Kurtosis / 5.692   

Summary Table  

 SSTA 

Result 

Monte 

Carlo 

  SSTA  

RunTime 

Deterministic 

Runtime 

Difference 

(%) 

Mean -3.719 -3.726  Real Time 34.91s 32.21 s 8.38% 

Standard  

Deviation 

0.0524 0.0606  User Time 1.586s 1.437 s  

Skew / -0.2838  System 

Time 

1.557 s 1.499 s  

Kurtosis / 0.1568   



 

c) Global only 

 

 

 

 

 

 

 

 

 

 

 
Summary 

The experimental results and data indicate that the Gaussian distribution gotten from UCLA Statistical Timer is 

pretty close to the Monte Carlo results, especially for the graphs of “independent sensitivities only”. Even 

though the mean and standard deviation gotten from the UCLA Statistical Timer and Monte Carlo are very close, 

the graphs of mixed sensitivities (consists of both global and independent sensitivities) and the graphs of 

“global sensitivities only” always have a peak around their mean. It may be caused by our small Monte Carlo 

sample size. For the future work, we will definitely try larger Monte Carlo sample size to see how the 

distribution may fit better. 

 

 

 

Summary Table  

 SSTA 

Result 

Monte 

Carlo 

  SSTA  

RunTime 

Deterministic 

Runtime 

Difference 

(%) 

Mean -3.812 -3.641  Real Time 24.07 s 23.69 s 1.6% 

Standard  

Deviation 

1.637 1.419  User Time 1.58 s 1.45 s  

Skew / -0.668  System 

Time 

1.38 s 1.29 s  

Kurtosis / 3.17   
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