
Improving Performance of an NBTI Simulator

Johnny Yam
jyam@ucla.edu

Advisor: Professor Puneet Gupta

Abstract- The MATLAB version of the Negative
Bias Temperature Instability (NBTI) simulator
has poor runtime performance. By porting the
code to C, optimizing the code with some basic
performance increasing algorithms, and utilizing
Graphic Processing Units (GPUs) to compute
heavy arithmetic in parallel, we see an increase
in performance as high as twelve times in the
overall runtime compared to the MATLAB
version.

I. INTRODUCTION

Negative Bias Temperature Instability has
become a reliability issue in modern semi-
conductors particularly in PMOS transistors that
are almost always negatively biased. Because
these transistors operate in this region, the NBTI
degradation increases the threshold voltage and
consequently decreases the drain current and
transconductance of these MOSFETs. The NBTI
simulator aims to model this problem numerically
through a reaction-diffusion model [1].

The MATLAB version of the NBTI
simulator is slow; thus, I aim to increase the
performance of this simulator. Since it is widely
known that running low level C code can have
better runtime performance under certain
situations when compared to MATLAB [2], I first
port the MATLAB code into C. I perform my own
optimizations using dynamic programming and
divide and conquer algorithms on certain parts of
the code. Then I further increased the performance
of the simulator by performing the some of the
calculations in parallel by utilizing GPUs with a
NVDIA CUDA-enabled machine.

There are two main bottlenecks in the
NBTI simulator: calculating the stress and low
frequency matrices, which perform numerous
matrix-matrix multiplications, and determining the
profile vector, which utilizes the stress and low

frequency matrices and performs multiple
matrix-vector multiplications. The stress and
low frequency matrices are both square matrices
calculated by raising a base matrix to a certain
power. Typical dimensions of the matrices
include 4000x4000, where the stress matrix is
typically made-up by the base matrix raised to
the power of 20, while the low frequency matrix
is made-up by the base matrix raised to the
power of 50,000.

II. PROCEDURE

A. Matrix-Matrix Multiplication

The first step is to port the MATLAB
version of the NBTI simulator to C code. To
perform the matrix-matrix multiplications in C, I
used the GSL CBLAS library, Level 3 CBLAS
Functions [3]. Initially, I naively performed one
matrix multiplication at a time in a linear
fashion: I would multiply the two base matrices
together to get a matrix with a power of 2, then
multiple that matrix with the base matrix again
to get a matrix with a power of 3, multiple the
result with the base matrix again to get matrix
with a power of 4, and so on. Doing the matrix
multiplication this way was very slow,
magnitudes slower than the MATLAB version.

Because of the nature of how the stress
and low frequency matrices were generated, I
realized that I could construct them through a
hybrid of a divide-and-conquer and dynamic
programming algorithm. For example, to
generate the stress matrix with the base matrix
raised to the power of 20, I could generate the
matrix by constructing the highest power of 2,
which is 16 (24), which can be efficiently
generated by multiplying two base matrices
raised to the power of 8, which can be generated
by multiplying the two base matrices raised to
the power of 4, which can be generated by

puneet
Pencil

puneet
Pencil

puneet
Pencil

multiplying two base matrices raised to the power
of 2, which can be generated by multiplying two
base matrices together. Then once I have a matrix
whose value is equal to the base matrix raised to
the power of 16, I can create the stress matrix by
multiply that matrix with the matrix whose value
is equal to the base matrix raised to the power of
4, which I already calculated previously and kept
that value in a look-up table, so I don’t have to
recalculate it. Through these optimizations, I can
generate the stress and low frequency matrices in
O(log(n)) versus O(n) time, where n is the power
the base matrix is raised to generate the stress
matrix. Because the low frequency matrix is also
comprised of the base matrix raised to some
power, I can create the low frequency matrix in
similar fashion.

B. Running Out of Memory

Although this provided a boost in the
runtime performance of the NBTI simulator, the
algorithm utilized a lot of space. For example, to
generate the low frequency matrix with the base
matrix raised to the power of 50,000, I would have
to allocate memory for at least thirteen 4000x4000
matrices of type double (base matrix32768,
base16384, base8192, base4096, et cetera). That along
takes up over 1.5 Gigabytes!

To help combat this problem, I first
determined which powers of two of the base
matrix are need to calculate the stress and low
frequency matrices. For the stress matrix (power
of 20) for example, I need the power of 16 and the
power of 4 matrices. Thus, I could free the
memory of the power of 2 and power 8 matrices.
Doing this, however, still was not enough to
calculate the low frequency matrix when the grid
points are large; I was still running out of
memory. Thus, I resorted to serializing the needed
matrices into files. I initially tried to use the TPL
library to serialize the data. However, the C
version of the NBTI simulator was still running
out of memory. I then looked at the source code of
the TPL Library and realized that in process of
serializing the data, the TPL Library also tries to
allocate memory for itself [4]! Thus, I resorted to
just storing the needed matrices as binary data in
files, temporarily freeing memory to be used else

where, and retrieving the data by reading from
the file when needed.

However, this still did not complete
solve the problem as there were still situations,
particularly when the matrices dimensions are
large, when the program would run out of
memory. As a result, I set a limit on the grid
number to 5000. If a user tries to input a number
larger than 5000, I will issue a warning that the
program might and crash and prompt the user if
he or she wishes to continue.

C. Matrix-Vector Multiplications
 The second main bottleneck in the NBTI
simulator is in a region of the code where there
is a for-loop inside another for-loop. The inner
for loop contains two matrix-vector
multiplications and typically iterates over 1200
times. Hence, in the inner for-loop alone, there
are typically over 2400 matrix-vector
multiplications. The number of iterations for the
outer for-loop is dependent on the simulation
time; the longer a user wants to simulate for, the
larger the number of iterations in the outer for-
loop. I initially used the Level 2 CBLAS matrix-
vector multiplication function from the GSL
Library [3]. However, performance using this
function was horrible. In fact, using the GSL
Library gave poor performance in general; both
a single matrix-matrix multiple and a single
matrix-vector multiplication in MATLAB are
noticeable faster than using their GSL CBLAS
counterparts. Therefore, I started looking into
different matrix multiplication libraries and
functions. Through my initial inspection, I
thought that the stress and low frequency
matrices were sparse. Thus, I looked into sparse
matrix operations and came across the NIST
Sparse Blas [5]. To use this library, I converted
and stored the stress and low frequency matrices
into sparse format, and used the sparse versions
in the matrix-vector multiplication in the
double-loop area. Despite the fact that matrices
are not sparse, utilizing the sparse matrix-vector
multiplication function almost always had better
runtime performance than the matrix-vector
multiplication from the GSL Library.
 Another option to improve performance
was to use single precision floating point versus

double precision. However, the output compared
to the MATLAB version from the single precision
did not match. Thus, double precision is needed.

D. Incorporating GPUs

To further improve the runtime
performance of the NBTI simulator, I used the
CUDA CUSPARSE Library to perform both the
matrix-matrix multiplication in calculating the
stress and low frequency matrices, and in
determining the profile vector in the double for-
loop area, which requires matrix-vector
multiplications. The main issue with using CUDA
is that the GPUs are on a separate device;
therefore, I have to allocate and copy data back
and forth from the host and the device. In
addition, the CUSPARSE matrix multiplication
functions expect the sparse matrices to be in row-
major format. However, for dense matrices, the
CUSPARSE functions expect them to be in
column-major format. Since the CUSPARSE
library only provides sparse-dense and no sparse-
sparse or dense-dense matrix multiplication [6], I
must format the matrices in both row-major and
column-major formats. Despite all this overhead
of moving data and formatting the matrices, we
see a huge performance increase by utilizing the
GPUs (see Fig. 1).

Because of these restrictions, I tried
looking into the CUBLAS library. However, the
CUBLAS Library only has support for single
precision floating point [7], and as I mentioned
earlier, the output various too much from the
output with double precision.

III. RESULTS

 I ran the MATLAB, C, and the CUDA
version of the NBTI simulator five times each,
varying the grid points and simulation time, and
calculated the average runtime for each. I ran the
MATLAB and C versions of the program on a
machine with eight Intel® Xeon® E5335 CPUs.
The CUDA version of the simulator ran on a
machine with four Intel® Xeon® E5355 CPUs
and an nVIDIA GeForce GTX260 graphics card.
The following is a graph of the total runtime
comparisons for the grid points (matrix
dimension) equal to 4000:

Average Total Runtime at gridNumber=4000

0

100

200

300

400

500

600

700

800

0 1 2 3 4 5 6 7

simTime (s)

R
u
nt

im
e

(s
)

Matlab

C code

CUDA

Fig. 1. Average total runtime of the NBTI simulator set at

4000 grid points versus simulator time

We see that when the number of grid points
equals 4000, the CUDA version has overall on
average of about a ten times increase in
performance over the MATLAB version and
about a six times increase in performance over
the C version.
 The following is the average runtime
performance for calculating the stress and low
frequency matrices versus the number of grid
points:

Average Calculate Matrix Time

0

200

400

600

800

1000

1200

1400

0 1000 2000 3000 4000 5000 6000

gridNumber

R
u
n
ti
m

e
(s

)

Matlab

C code

CUDA

Fig 2. Average runtime to calculate the stress and low
frequency matrices versus the number of grid points

Overall, we see that CUDA version performs
significantly better than the MATLAB and the C
code. At 4000, we see that CUDA has an over a

twelve times increase in performance over the
MATLAB and over a ten times increase at 3000
and 2000 grid points. However, at 5000, we see
that the CUDA only has a three times increase in
performance versus the MATLAB code. I theorize
that this is because the amount of memory and
multiplication operations that can get distributed
across on the GPUs get saturated some where
between 4000 and 5000 grid points. Thus, some of
the operations have to wait for others to finish
before it can use a GPU. In addition, because

Next let’s look at the average runtime in
the double for-loop region:

Average "Double-for-loop" Runtime

0

5

10

15

20

25

0 1000 2000 3000 4000 5000 6000

gridNumber

R
u
n
ti
m

e
(s

)

Matlab

C code

CUDA

Fig 3. Average runtime in the double for-loop versus grid points

We see that the CUDA version is relatively
consistent in performing four times better than the
MATLAB version. We also notice that the C code
version is slightly slower than the MATLAB code.

IV. CONCLUSION

 I aimed to improve the runtime
performance of the MATLAB version of the
NBTI simulator by first porting the code to C and
then to CUDA. Through utilizing more efficient
algorithms, such as divide and conquer and
dynamic programming, we see that the C version
of the simulator overall performs slightly faster
than the MATLAB version. I further increased the
performance of the simulator by using GPUs to
perform parallel calculations. We see that the
CUDA version at grid points under 4000 has an
overall performance increase of about ten times

the MATLAB version and six times increase
over the C code version.

V. FUTURE WORK

 I was surprised that in the double for-
loop region, where numerous matrix-vector
multiplications are performed only had on
average a four times performance increase when
compared to the MATLAB version. Thus, I aim
to create my own CUDA kernel function that
performs the matrix-vector multiplication to see
if I can achieve better performance.
 In addition, I hope to make the C and
CUDA versions of the simulator more robust,
particularly when the number of grid points is
large.

VI. ACKNOWLEDGMENTS

I would like to thank Dr. Puneet Gupta, Tuck
Chan, Liangzhen Lai, and John Lee, for
assisting me in development of the C and
CUDA versions of the NBTI simulator.

REFERENCES

[1] C h a n , T u c k - B o o n , J o h n S a r t o r i , P u n e e t G u p t a ,

a n d R a k e s h K u m a r . " O n t h e e f f i c a c y o f N B T I
m i t i g a t i o n t e c h n i q u e s ” IEEE/ACM 2011 Design,
Automation and Test in Europe, Mar 18, 2011

[2] T i w a r i , P a l a k . "M A T LA B V s C . " Ma t h K B :
Y o u r M a t h e m a t i c a l K n o w l e d g e B a s e . A d v e n e t
L L C , 1 7 M a y 2 0 1 0 . W e b . 1 J u n 2 0 1 1 .
< h t t p : / / w w w . m a t h k b . c om / Uw e / F o r u m . a s p x / MA
T LA B / 1 5 5 3 3 3 / MA T LAB - V s - C > .

[3] " G S L C B LAS L i b r a r y - G N U S c i e n t i f i c L i b r a r y
- - R e f e r e n c e M a n u a l . " A p p e n d i x D G S L C B L A S
L i b r a r y . G N U G P L , n . d . W e b . 1 J u n 2 0 1 1 .
< h t t p : / / w w w . g n u . o r g / s o f t w a r e / g s l / m a n u a l / h t m
l _ n o d e / G S L - C B LA S - L i b r a r y . h t m l > .

[4] H a n s o n , T r o y . " E f f i c i e n t s e r i a l i z a t i o n i n
C . " T P L e a s i l y s t o r e a n d r e t r i e v e b i n a r y d a t a
i n C . N . p . , n . d . W e b . 1 J u n 2 0 1 1 .
< h t t p : / / t p l . s o u r c e f o r g e . n e t / > .

[5] P o z o , R o l d a n . " S p a r s e B a s i c L i n e a r A l g e b r a
S u b p r o g r a m s (B LA S) L i b r a r y . " N . p . , 0 1 J a n
2 0 0 6 . W e b . 1 J u n 2 0 1 1 .
< h t t p : / / m a t h . n i s t . g o v / s p b l a s / > .

[6] " C U D A C U S P AR S E L I B R AR Y . "
N V I D I AC o r p o r a t i o n , A u g 2 0 1 0 . W e b . 1 J u n
2 0 1 1 .
< h t t p : / / d e v e l o p e r . d o w n l o a d . n v i d i a . c o m / c o m p u
t e / c u d a / 3 _ 2 / t o o l k i t / d o c s / C U S P AR S E _ L i b r a r y .
p d f > .

[7] " C U D A C UB LAS L I B RA RY . " N V I D I A
C o r p o r a t i o n , A u g 2 0 1 0 . W e b . 1 J u n 2 0 1 1 .
< h t t p : / / d e v e l o p e r . d o w n l o a d . n v i d i a . c o m / c o m p u
t e / c u d a / 1 _ 0 / C UB LA S _ L i b r a r y _ 1 . 0 . p d f > .

