Batch Processing: The Complete Synthesize, Place, and Route Flow

Daniel Liu, John Lee, Puneet Gupta University of California, Los Angeles, NanoCAD Lab {daniel,lee,puneet}@ee.ucla.edu

Abstract

Design automation has been growing rapidly over the past decade, and the advancement of design tools hashelped the design of VLSI circuits vastly. This article explains the full standard synthesize, place and route (SPR) design flow of digital circuits.

Key Words: RTL, Verilog, Encounter, TCL script, delay, power, area, technology library.

1. Introduction

Modern digital circuits contain vast amounts of cells which makes it impossible for human to manage manually. Nevertheless, thanks to computer aided design, even the design of digital circuits with millions of gates are manageable. This is enabled by the electronic design automation flow for digital circuits, Synthesis-Place and Route (SPR), which is an indispensable and crucial process for design engineer. In this report, the basics and the of the major parts in the SPR flow will be described, as well as a demonstration of the usage of a few scripts to compare the results of some benchmark designs synthesized with different technology libraries.

2. The SPR Flow

The design flow of Automatically Synthesized Integrated Circuits (ASICs), and general digital design consists of three main steps, namely synthesis, placement of the standard cells, and routing of the design.

Logic synthesis is the process of converting a highlevel description of a design into gate-level netlist, or RTL. Synthesis tools (i.e. RTL compiler) read in the hardware description language (HDL) of the design and construct it with standard cells from the supplied technology library with optimizations. The technology libraries are foundry-specific and are usually known and categorized by the transistor size, or minimum pitch (e.g. 60nm or 90nm). The technology library, or the so-called standard cell library, is composed of basic logic gates, such as NAND, NOR, INV, Flip-flop, XOR, MUX and etc, that are widely used in all digital circuits.

There are several advantages to designing in high-level description and compiling the design through synthesis. For example, high-level design is less prone to human errors since designs are described by a high level abstraction and need not to worry significantly on design constraints yet, but only on the functionality. Having an automated and independent logic synthesis step also makes the work of designers technology-independent and therefore portable and reusable. In addition, the synthesized netlist is almost design-style-independent and is automatically optimized by synthesis tools.

After synthesis, the gate netlist is obtained, and the next step is to place the standard cells to their optimal positions. Yet, before placing the cells, some floorplanning of the die is required, to create sites for the standard cells. The floorplanning process takes into account information such as the percent utilization of the total die and the orientation of the power rails. Once floorplanning is done, the cells are ready to be placed on the die. With Cadence Encounter, placing the standard cells can be done by a single command, and the placer automatically makes its best effort, using various algorithms, to put the cells to their optimal position for later routing.

The last step is to route the design. This includes routing of the power wires ('sroute' in Encounter), and the signal interconnects between pins and gates ('nanoroute'), and the clock lines.

Of course, it is always necessary to physically verify the validity of the design after all the processes. Design rule check (DRC) and layout versus schematic (LVS) check are two of these verifications. DRC checks whether the design violates any design rules that may cause problems after fabrication, while LVS checks if the final layout matches the netlist at the transistor level. The layout of the design is written as a GDSII, which is a industry standard database format for IC layout. The exported file will contain the information of the actual polygons and layers that are necessary for manufacturing.

3. Synthesis Script Explained

The following is a sample script for Cadence RTL Compiler for synthesizing benchmark circuit c17. Comments have been added to improve the readability and understanding of the code.

Script for Cadence RTL Compiler synthesis # To run: rc < rc.tcl

All HDL files, separated by spaces
set hdl_files {c17.v, gatelib.v}

Name of the design
set DNAME c17
The Top-level Module
set DESIGN c17

Set clock pin name in design. If `clk` just leave untouched, # otherwise change clk set clkpin clk

Target delay in ps for optimization set delay 5

Path in which the synthesizer looks for the design HDL files
set_attribute hdl_search_path {/} /
Path in which the synthesizer looks for the technology librar
set_attribute lib_search_path ~/NangateOpenCellLibrary/liberty

On a scale of 0 to 9, set the level of information to be shown for # the synthesis process (9 max, 0 min, 6 is recommended) set_attribute information_level 6 /

Set target technology library liberty file (contains delay / power info)
set_attribute library FreePDK45_lib_v1.0_typical.lib

Read in the hardware description files (HDL)
read_hdl -v2001 \${hdl_files}

Elaboration is only required for top-level design

- # build data structures
- # infers registers in design
- # performs high-level HDL optimization (e.g. dead code removal)

- checks semantics elaborate \$DESIGN

Apply Constraints

set clock [define_clock -period \${delay} -name \${clkpin}
[clock ports]]

external_delay -input 0 -clock {{clkpin} [find / -port ports_in/*] external_delay -output 0 -clock {{clkpin} [find / -port ports_out/*]

Sets transition to default values for Synopsys SDC format,

fall/rise 400ps

dc::set_clock_transition .1 \${clkpin}

check_design -unresolved report timing -lint

#*Synthesis

The process of transforming HDL design into a gate-level netlist, # given all the specified constraints and optimization settings synthesize -to_mapped

Write out the report of timing, power, and the cells used report timing > reports/timing_synth.rep report gates > reports/cell_synth.rep report power > reports/power_synth.rep

Write out the synthesized file write_hdl -mapped > output/\${DNAME}_synth.v # SDC is the synopsis design constraints file write sdc > \${DNAME}.sdc

report timing -lint -verbose puts \n puts "Synthesis Finished!" puts \n puts "Check timing.rep, area.rep, gate.rep and power.rep for synthesis results" puts \n quit

4. Floorplan, Place and Route Script Explained

The next step after synthesis is the floorplanning, cell placement, and wire routing:

Script for Cadence SOC Encounter # To run: source this TCL script in Encounter # see the "Encounter Text Command Reference (fetxtcmdref.pdf) # for more information on the commands

Setup design and create floorplan # Load in config file "enc.conf"

loadConfig ./enc.conf

Create Initial Floorplan
Aspect ratio 1.0, 70% utilization, and 20 units
core to left/bottom/right/top distance
(Aspect ratio specifies the chip's core dimensions as the ratio
of the height divided by the width)
floorplan -r 1.0 0.7 20 20 20 20

Define Global Power Nets
globalNetConnect VDD -type pgpin -pin VDD -inst * -module {}
globalNetConnect VSS -type pgpin -pin VSS -inst * -module {}

Create Power structures (only after floorplanning)

Create a powering with metal 1 and 2

addRing -spacing_bottom 5 -width_left 5 -width_bottom 5 -width_top 5 -spacing_top 5 -layer_bottom metal1 -width_right 5 -around core -center 1 -layer_top metal1 -spacing_right 5 -spacing_left 5 -layer_right metal2 -layer_left metal2 -nets { VDD VSS }

Place standard cells

Runs placement based on the global settings for placement, # RC extraction, timing analysis, and trial routing placeDesign

Route power nets
Routes power structures (after placing power rings)
sroute -noBlockPins -noPadRings -noPadPins

Perform trial route and get initial timing results
trialRoute does not guarntee DRC, only used to estimate parasitic
values for timing analysis
trialroute
buildTimingGraph
setCteReport
report_timing -nworst 10 -net > timing.rep.1.placed

Run Clock Tree Synthesis

createClockTreeSpec -output encounter.cts -bufferList BUF_X1 BUF_X2 BUF_X4 BUF_X8 BUF_X16 BUF_X32 INV_X1 INV_X2 INV_X4 INV_X8 INV_X16 INV_X32 specifyClockTree -clkfile encounter.cts # cts.rguide is the name of the routing guide file

ckSynthesis -rguide cts.rguide -report report.ctsrpt -macromodel report.ctsmdl -fix_added_buffers

# Output Results of C trialRoute -highEffort	TS (Clock Tree Synthesis CTS) (Clock Tree Synthesis Clock Tree Synthesis	nthesis)			
extractRC reportClockTree	-postRoute	-localSkew	-report		
skew.post_troute_local.ctsrpt					
reportClockTree -pos	tRoute -report repor	t.post_troute.ctsrpt			

Run Post-CTS Timing analysis

setAnalysisMode -setup -async -skew -autoDetectClockTree buildTimingGraph setCteReport report_timing -nworst 10 -net > timing.rep.3.cts

Perform post-CTS IPO

setIPOMode -highEffort -fixDrc -addPortAsNeeded -incrTrialRoute -restruct -topomap setExtractRCMode -default -assumeMetFill extractRC

Run Post IPO-2 timing analysis

buildTimingGraph
setCteReport
report_timing -nworst 10 -net > timing.rep.4.ipo2

Connect all new cells to VDD/GND

globalNetConnect VDD -type tiehi globalNetConnect VDD -type pgpin -pin VDD -override

globalNetConnect VSS -type tielo globalNetConnect VSS -type pgpin -pin VSS -override

Run global Routing # utilizes the nano router

globalDetailRoute

Write the final gds file streamOut outputs/i2c_master_route.gds -libName DesignLib -structureName i2c master -stripes 1 -units 2000 -mode ALL

save the netlist

saveNetlist -excludeLeafCell i2c_master_final.v

5. The Batch Scripts

In order to synthesize, place, and route a batch of designs automatically, two script were created: `synth.sh`

and `placeRoute.sh` . These scripts work similarly as the scripts above, but the batch script will run the same settings to all the target design.

The read-me files are shown below, and for brevity of this report, the actual scripts are not shown. The scripts are located on the server `dfm.ee.ucla.edu`.

Documentation for 'synth.sh' (referred to as "the script") _____ 2010 Summer Author: UCLA undergraduate Daniel Liu, Purpose: To synthesize a batch of verilog designs by simply running one script. Dependency: Cadence RTL logic synthesis tool (RC), synthesize.tcl (needs to be in the same directory) How the script? to run To run the script, have all you designs verilog files in a directory and put the directory in the same folder as the script (synth.sh) Then, simply execute the command `./synth.sh` in the terminal. After the script is done executing, two folders will be created in each of the design directories. The two folders `output` and `reports` are: What do the folders contain? After running the script. ->Folder `output`: This folder will hold the synthesized verilog files after running the script (with a flattened version). ->Folder `reports`: This folder will hold the files which contains the information of the synthesized design (e.g. power and etc..) `placeRoute.sh` ("the script") Documentation for 2010 Summer UCLA undergraduate Author: Daniel Liu. Purpose: To run placement and routing on a batch of sythesized verilog designs by simply running one script. Dependency: Cadence Encounter, sythesized verilog file

How	to	run	the	script?

This script is intended to ru after the `synth.sh` script is ran. It looks for the synthesized verilog file in the `output` directory and runs placement and routing using that file.

To run, simply execute the command `./placeRoute.sh` in the terminal.

After the script is done executing, some files will appear in each of the design's `output` directories, including the Encounter file, DEF, GDSII, and so on.

6. Simulation Results on Benchmark Circuits

Some benchmark circuits were chosen arbitrarily to be synthesized, placed, and routed using two different technology libraries. The technology libraries used are 'Nangate' and 'ST'. The comparison results are shown in the tables on the right.

Note:

Nan* -> NangateOpenCellLibrary_PDKv1_3_v2009_07 (45nm) ; ST->CORE65LPSVT (65nm)

ISCAS85 POWER

	Leakage Pwr (nW)		Switching Pwr (nW)	
	Nan*	ST	Nan*	ST
c17	125.38	3.985	671.22	2649
c432	1862.45	74.32	11176.52	50843.46
c499	9058.12	223.98	123168.46	504059.31
c880	5505.35	111.7	33042.86	83568
c1355	9098.4	227.7	121594.22	484819.63
c1908	10160.78	296.39	118342.82	454048.78
c2670	13777.8	310.8	96593.31	256835
c3540	23267.42	583.34	160874.55	475153.73
c5315	26723.09	629.9	254770.95	763669.34
c6288	46050.87	1160	797042.6	2344400
c7552	39450.99	927.08	362362.14	1057355.83

TIMING

	Delay (pico-second)		
	Nan*	ST	
c17	60	27	
c432	416	340	
c499	487	392	
c880	402	318	

c1355	484	391
c1908	793	705
c2670	600	527
c3540	1097	989
c5315	1099	978
c6288	2110	1756
c7552	895	762

CELL INFORMATION

	Number of Cells		Total Cell Area (dbu)	
	Nan*	ST	Nan*	ST
c17	9	5	7.45	35.36
c432	112	151	104.01	680.68
c499	499	385	484.92	2188.16
c880	323	295	334.89	1245.4
c1355	492	402	476.94	2216.76
c1908	658	731	588.13	2761.72
c2670	1021	1014	824.87	2968.16
c3540	1595	1559	1396.23	5292.04
c5315	2033	2036	1904.03	6664.32
c6288	2883	2570	2704.95	11395.28
c7552	2952	2984	2546.68	9105.2

WIRE LENGTH

	Total Wire Length (um)		Total # of VIA	s
	Nan*	ST	Nan*	ST
c17	85.69	44.9	14	5
c432	448.18	1463.74	219	417
c499	1834.44	4452.81	1193	1110
c880	2118.92	4708.98	1113	1262
c1355	2030.38	4695.36	1205	1236
c1908	2408.85	7842.55	1644	2029
c2670	5482.58	11231.38	2501	3276
c3540	5697.51	22609.77	3910	6083
c5315	11076.16	33152.49	6384	9704
c6288	6805.69	51165.28	6359	11901
c7552	12740.29	43185.36	7466	11417

ISCAS89

POWER

	Leakage Pwr (nW)		Switching Pwr (nW)	
	Nan*	ST	Nan*	ST
s1196	6825.63	94.3	21740055.13	35552616.99
s1238	6585.08	92.83	4372778.16	35807965.14
s13207	26473.67	421.15	369016693	632872177.17
s1423	10303.43	220.54	108029318.84	151306761.87
s1488	9749.8	169.93	9737424.42	12447953.21
s1494	9134.86	199.9	9736492.41	12463243.5
s15850	11714.06	193.73	194984050.06	268259588.09
s27	391.05	5.34	3792229.34	6068937.11

s298	2193.6	40.7	20837491.46	28879281.45
s344	2818.81	46.03	17733193.91	29592536.14
s349	2753.87	44.51	18538082.68	29609543.12
s35932	175475.32	3531.15	2524902627.13	3525519287.32
s382	3036.98	52.96	31243005.95	42670468.12
s38417	176701.67	2954.21	1842011936.4	3098272066.39
s38584	139508.68	2087.58	1409407547.86	2301113264.86
s386	2698.92	43.5	9048620.17	12084195.98
s400	2866.36	55.84	32404103.66	43117293.62
s444	3063.78	57.17	31775246.6	42831903.01
s526	3776.2	74.25	31918175	42621131.52
s5378	19390.2	364	180778137.74	353535213.15
s641	2878.32	50.68	2748260.43	36217718.77
s713	2938.47	51.8	27233697.13	36256792.65
s820	5011.63	103.11	7707411.56	10521690.63
s832	5036.86	96.03	7707727.08	10469147.27

TIMING

	Delay (pico-second)		
	Nan*	ST	
s1196	384	314	
s1238	362	374	
s13207	422	363	
s1423	696	598	
s1488	474	422	
s1494	446	450	
s15850	459	428	
s27	236	235	
s298	347	350	
s344	378	354	
s349	368	359	
s35932	428	372	
s382	371	362	
s38417	819	681	
s38584	500	454	
s386	384	342	
s400	404	355	
s444	367	354	
s526	356	385	
s5378	482	474	
s641	409	370	
s713	389	366	
s820	403	385	
s832	408	377	

CELL INFORMATION

	Number of Cells		Total Cell Area (dbu)	
	Nan*	ST	Nan*	ST
s1196	423	385	481.99	1352.52
s1238	415	363	471.62	1316.64
s13207	1063	1206	2530.19	6169.84
s1423	557	639	878.07	2730.52
s1488	566	514	557	1791.4

s1494	529	544	532.53	2022.28
s15850	511	555	1073.04	2670.2
s27	23	17	32.98	69.16
s298	117	115	169.97	479.44
s344	137	122	198.7	525.2
s349	139	121	194.18	526.24
s35932	8071	9753	15700.12	42509.48
s382	166	173	248.44	666.64
s38417	8023	7752	15304.84	38503.4
s38584	7173	7224	11970.53	29354.52
s386	161	135	175.83	489.84
s400	156	169	236.47	702.52
s444	167	172	247.38	709.28
s526	222	210	288.61	871
s5378	978	1045	1652.13	4735.12
s641	170	167	235.94	669.24
s713	187	174	247.91	668.2
s820	320	293	306.7	1107.6
s832	303	282	303.77	1034.28

WIRE LENGTH

	Total Wire Length (um)		Total # of VIAs	
	Nan*	ST	Nan*	ST
s1196	3312.55	7003.14	2149	2294
s1238	3109.76	6031.11	2158	2134
s13207	6541.18	23068.71	4531	6833
s1423	2608.26	9177.17	1795	2780
s1488	4661.25	8139.55	2981	2651
s1494	5116.87	8895.45	2842	2698
s15850	2534.37	7380.59	1902	2426
s27	133.09	127.99	46	63
s298	603.37	1328.88	429	498
s344	721.41	1413.22	464	515
s349	689.47	1365	394	505
s35932	70318.6	366367.02	32225	61471
s382	721.94	1229.6	548	516
s38417	60654.36	256954.18	36963	53079
s38584	72234.55	318853.84	34268	59325
s386	724.08	1689.35	487	622
s400	683.68	1901.09	515	714
s444	695.82	1670.57	524	657
s526	794.74	2429.24	659	887
s5378	7528.72	21261.4	4216	5998
s641	924.57	2298.41	521	673
s713	1105.29	2257.22	595	686
s820	1785.71	3890.34	1098	1268
s832	1747.9	3623.19	1115	1159

Other

POWER

	Leakage Pwr (nW)		Switching Pwr (nW)	
	Nan*	ST	Nan*	ST
cpu	59858.25	1164.54	293245453	921708289
fpu	1063538.81	28122.22	575937089	1394867607
nova	1461508.62	17318.76	37981512.5	107178839

TIMING

	Delay (pico-second)		
	Nan*	ST	
cpu	1042	934	
fpu	10454	9411	
nova	2724	2453	

CELL INFORMATION

	Number of Cells		Total Cell Area (dbu)	
	Nan*	ST	Nan*	ST
cpu	2743	2452	4407.09	11992.76
fpu	63348	60660	63965.55	262837.64
nova	53143	47231	123008.77	254010.64

WIRE LENGTH

	Total Wire Length (um)		Total # of VIAs	
	Nan*	ST	Nan*	ST
cpu	19256.54	83845	12898	23246
fpu	405090.03	6699556.94	243524	1088722
nova	751634.95	TBA	387889	TBA

7. Conclusion

As we can see from the data, the results from 65nm(ST) and 45nm(Nangate) libraries are reasonable; bigger transistors produce less leakage power because it suffers less from short channel effects and Vth scaling, making it less unlikely for electrons to leak through. On the other hand, since transistors are bigger, it takes more energy to switch the gates, which results in a larger switching power in the ST library.

The other two measures, cell area and wire length also increase with the dimension of the gates or transistors. Again, as we can see, circuits synthesized using the ST library tend to use up more area as well as longer wire length.

8. Ongoing Project

Currently, I am working on a project will John Lee from NanoCAD Lab on multi-row-height cell placement.

We wish to find the wire length, area, etc trade-offs using standard cells of different heights.

John and I have tried modifying the LEF of the Nangate technology library so that gates above 4X are stretched to have a higher height and smaller width. We wanted to see if Encounter can be "tricked" to place the stretched cells on different rows automatically. However, this did not succeed. Then we also tried alternating the DEF file so we specifically ask Encounter to create different row heights and let it place the cells automatically. In this case, Encounter complains about the row heights are not integer multiples of a single row. Therefore, we still haven't successfully found the tradeoffs of multi-row-height cell placement.

We will continue to work on the project. Since we did not get Encounter to place the cells correctly, we will try conducting the project using a different tool, mPL. The tool mPL is an open-source program, and we shall be able to do what we desire.

10. References

[1] P. Gupta, "EE209S The VLSI Design Manufacturing Interface", *EE209S*, University of California