
Batch Processing: The Complete Synthesize, Place, and Route Flow

Daniel Liu, John Lee, Puneet Gupta
University of California, Los Angeles, NanoCAD Lab

{daniel,lee,puneet}@ee.ucla.edu

Abstract
Design automation has been growing rapidly over the
past decade, and the advancement of design tools
hashelped the design of VLSI circuits vastly. This article
explains the full standard synthesize, place and route
(SPR) design flow of digital circuits.

Key Words: RTL, Verilog, Encounter, TCL script,
delay, power, area, technology library.

1. Introduction

Modern digital circuits contain vast amounts of cells
which makes it impossible for human to manage
manually. Nevertheless, thanks to computer aided design,
even the design of digital circuits with millions of gates
are manageable. This is enabled by the electronic design
automation flow for digital circuits, Synthesis-Place and
Route (SPR), which is an indispensable and crucial
process for design engineer. In this report, the basics and
the of the major parts in the SPR flow will be described,
as well as a demonstration of the usage of a few scripts to
compare the results of some benchmark designs
synthesized with different technology libraries.

2. The SPR Flow

The design flow of Automatically Synthesized
Integrated Circuits (ASICs), and general digital design
consists of three main steps, namely synthesis, placement
of the standard cells, and routing of the design.

Logic synthesis is the process of converting a high-
level description of a design into gate-level netlist, or
RTL. Synthesis tools (i.e. RTL compiler) read in the
hardware description language (HDL) of the design and
construct it with standard cells from the supplied
technology library with optimizations. The technology
libraries are foundry-specific and are usually known and
categorized by the transistor size, or minimum pitch (e.g.
60nm or 90nm). The technology library, or the so-called
standard cell library, is composed of basic logic gates,

such as NAND, NOR, INV, Flip-flop, XOR, MUX and
etc, that are widely used in all digital circuits.

There are several advantages to designing in high-level
description and compiling the design through synthesis.
For example, high-level design is less prone to human
errors since designs are described by a high level
abstraction and need not to worry significantly on design
constraints yet, but only on the functionality. Having an
automated and independent logic synthesis step also
makes the work of designers technology-independent and
therefore portable and reusable. In addition, the
synthesized netlist is almost design-style-independent and
is automatically optimized by synthesis tools.

After synthesis, the gate netlist is obtained, and the
next step is to place the standard cells to their optimal
positions. Yet, before placing the cells, some
floorplanning of the die is required, to create sites for the
standard cells. The floorplanning process takes into
account information such as the percent utilization of the
total die and the orientation of the power rails. Once
floorplanning is done, the cells are ready to be placed on
the die. With Cadence Encounter, placing the standard
cells can be done by a single command, and the placer
automatically makes its best effort, using various
algorithms, to put the cells to their optimal position for
later routing.

The last step is to route the design. This includes
routing of the power wires (`sroute` in Encounter), and the
signal interconnects between pins and gates (`nanoroute`),
and the clock lines.

Of course, it is always necessary to physically verify
the validity of the design after all the processes. Design
rule check (DRC) and layout versus schematic (LVS)
check are two of these verifications. DRC checks whether
the design violates any design rules that may cause
problems after fabrication, while LVS checks if the final
layout matches the netlist at the transistor level. The
layout of the design is written as a GDSII, which is a
industry standard database format for IC layout. The
exported file will contain the information of the actual
polygons and layers that are necessary for manufacturing.

3. Synthesis Script Explained

The following is a sample script for Cadence RTL
Compiler for synthesizing benchmark circuit c17.
Comments have been added to improve the readability
and understanding of the code.

Script for Cadence RTL Compiler synthesis
To run: rc < rc.tcl

All HDL files, separated by spaces
set hdl_files {c17.v, gatelib.v}

Name of the design
set DNAME c17
The Top-level Module
set DESIGN c17

Set clock pin name in design. If `clk` just leave untouched,
otherwise change clk
set clkpin clk

Target delay in ps for optimization
set delay 5

Path in which the synthesizer looks for the design HDL files
set_attribute hdl_search_path {./} /
Path in which the synthesizer looks for the technology librar
set_attribute lib_search_path ~/NangateOpenCellLibrary/liberty

On a scale of 0 to 9, set the level of information to be shown for
the synthesis process (9 max, 0 min, 6 is recommended)
set_attribute information_level 6 /

Set target technology library liberty file (contains delay / power info)
set_attribute library FreePDK45_lib_v1.0_typical.lib

Read in the hardware description files (HDL)
read_hdl -v2001 ${hdl_files}

Elaboration is only required for top-level design
- build data structures
- infers registers in design
- performs high-level HDL optimization (e.g. dead code removal)
- checks semantics
elaborate $DESIGN

Apply Constraints
set clock [define_clock -period ${delay} -name ${clkpin}
[clock_ports]]

external_delay -input 0 -clock ${clkpin} [find / -port ports_in/*]
external_delay -output 0 -clock ${clkpin} [find / -port ports_out/*]

Sets transition to default values for Synopsys SDC format,
fall/rise 400ps
dc::set_clock_transition .1 ${clkpin}

check_design -unresolved
report timing -lint

#*Synthesis
The process of transforming HDL design into a gate-level netlist,
given all the specified constraints and optimization settings
synthesize -to_mapped

Write out the report of timing, power, and the cells used
report timing > reports/timing_synth.rep
report gates > reports/cell_synth.rep

report power > reports/power_synth.rep

Write out the synthesized file
write_hdl -mapped > output/${DNAME}_synth.v
SDC is the synopsis design constraints file
write_sdc > ${DNAME}.sdc

report timing -lint -verbose
puts \n
puts "Synthesis Finished!"
puts \n
puts "Check timing.rep, area.rep, gate.rep and power.rep for synthesis
results"
puts \n
quit

4. Floorplan, Place and Route Script
Explained

The next step after synthesis is the floorplanning, cell
placement, and wire routing:

Script for Cadence SOC Encounter
To run: source this TCL script in Encounter
see the “Encounter Text Command Reference (fetxtcmdref.pdf)
for more information on the commands

Setup design and create floorplan
Load in config file “enc.conf”
loadConfig ./enc.conf

Create Initial Floorplan
Aspect ratio 1.0, 70% utilization, and 20 units
core to left/bottom/right/top distance
(Aspect ratio specifies the chip’s core dimensions as the ratio
of the height divided by the width)
floorplan -r 1.0 0.7 20 20 20 20

Define Global Power Nets
globalNetConnect VDD -type pgpin -pin VDD -inst * -module {}
globalNetConnect VSS -type pgpin -pin VSS -inst * -module {}

Create Power structures (only after floorplanning)
Create a powering with metal 1 and 2
addRing -spacing_bottom 5 -width_left 5 -width_bottom 5 -width_top 5
-spacing_top 5 -layer_bottom metal1 -width_right 5 -around core
-center 1 -layer_top metal1 -spacing_right 5 -spacing_left 5 -layer_right
metal2 -layer_left metal2 -nets { VDD VSS }

Place standard cells
Runs placement based on the global settings for placement,
RC extraction, timing analysis, and trial routing
placeDesign

Route power nets
Routes power structures (after placing power rings)
sroute -noBlockPins -noPadRings -noPadPins

Perform trial route and get initial timing results
trialRoute does not guarntee DRC, only used to estimate parasitic
values for timing analysis
trialroute
buildTimingGraph
setCteReport
report_timing -nworst 10 -net > timing.rep.1.placed

Run Clock Tree Synthesis
createClockTreeSpec -output encounter.cts -bufferList BUF_X1
BUF_X2 BUF_X4 BUF_X8 BUF_X16 BUF_X32 INV_X1 INV_X2
INV_X4 INV_X8 INV_X16 INV_X32
specifyClockTree -clkfile encounter.cts
cts.rguide is the name of the routing guide file
ckSynthesis -rguide cts.rguide -report report.ctsrpt -macromodel
report.ctsmdl -fix_added_buffers

Output Results of CTS (Clock Tree Synthesis)
trialRoute -highEffort -guide cts.rguide
extractRC
reportClockTree -postRoute -localSkew -report
skew.post_troute_local.ctsrpt
reportClockTree -postRoute -report report.post_troute.ctsrpt

Run Post-CTS Timing analysis
setAnalysisMode -setup -async -skew -autoDetectClockTree
buildTimingGraph
setCteReport
report_timing -nworst 10 -net > timing.rep.3.cts

Perform post-CTS IPO
setIPOMode -highEffort -fixDrc -addPortAsNeeded -incrTrialRoute
-restruct -topomap
setExtractRCMode -default -assumeMetFill
extractRC

Run Post IPO-2 timing analysis
buildTimingGraph
setCteReport
report_timing -nworst 10 -net > timing.rep.4.ipo2

Connect all new cells to VDD/GND
globalNetConnect VDD -type tiehi
globalNetConnect VDD -type pgpin -pin VDD -override

globalNetConnect VSS -type tielo
globalNetConnect VSS -type pgpin -pin VSS -override

Run global Routing
utilizes the nano router
globalDetailRoute

Write the final gds file
streamOut outputs/i2c_master_route.gds -libName DesignLib
-structureName i2c_master -stripes 1 -units 2000 -mode ALL

save the netlist
saveNetlist -excludeLeafCell i2c_master_final.v

puts "**************************************"
puts "* Encounter script finished *"
puts "* -------- *"
puts "* Layout: final.gds2 *"
puts "* Netlist: final.v *"
puts "* Timing: timing.rep.5.final *"
puts "**************************************"
exit

5. The Batch Scripts

In order to synthesize, place, and route a batch of
designs automatically, two script were created: `synth.sh`

and `placeRoute.sh` . These scripts work similarly as the
scripts above, but the batch script will run the same
settings to all the target design.

The read-me files are shown below, and for brevity of
this report, the actual scripts are not shown. The scripts
are located on the server `dfm.ee.ucla.edu` .

Documentation for `synth.sh` (referred to as "the script")

Summer 2010
Author: Daniel Liu, UCLA undergraduate
Purpose: To synthesize a batch of verilog designs by
simply running one script.
Dependency: Cadence RTL logic synthesis tool (RC),
synthesize.tcl (needs to be in the same directory)

How to run the script?

To run the script, have all you designs verilog files in a
directory and put the directory in the same folder as the
script (synth.sh) .

Then, simply execute the command `./synth.sh` in the
terminal.

After the script is done executing, two folders will be
created in each of the design directories.
The two folders are: `output` and `reports`

What do the folders contain?

After running the script.

->Folder `output`: This folder will hold the synthesized
verilog files after running the script (with a flattened
version).
->Folder `reports`: This folder will hold the files which
contains the information of the synthesized design (e.g.
power and etc..)

Documentation for `placeRoute.sh` ("the script")

Summer 2010
Author: Daniel Liu, UCLA undergraduate
Purpose: To run placement and routing on a batch of
sythesized verilog designs by simply running one script.
Dependency: Cadence Encounter, sythesized verilog file

How to run the script?

This script is intended to ru after the `synth.sh` script is
ran. It looks for the synthesized verilog file in the `output`
directory and runs placement and routing using that file.

To run, simply execute the command `./placeRoute.sh` in
the terminal.

After the script is done executing, some files will appear
in each of the design's `output` directories, including the
Encounter file, DEF, GDSII, and so on.

6. Simulation Results on Benchmark Circuits

Some benchmark circuits were chosen arbitrarily to be
synthesized, placed, and routed using two different
technology libraries. The technology libraries used are
`Nangate` and `ST`. The comparison results are shown in
the tables on the right.

Note:
Nan* -> NangateOpenCellLibrary_PDKv1_3_v2009_07 (45nm) ;
ST->CORE65LPSVT (65nm)

ISCAS85
POWER

Leakage Pwr (nW) Switching Pwr (nW)
Nan* ST Nan* ST

c17 125.38 3.985 671.22 2649
c432 1862.45 74.32 11176.52 50843.46
c499 9058.12 223.98 123168.46 504059.31
c880 5505.35 111.7 33042.86 83568
c1355 9098.4 227.7 121594.22 484819.63
c1908 10160.78 296.39 118342.82 454048.78
c2670 13777.8 310.8 96593.31 256835
c3540 23267.42 583.34 160874.55 475153.73
c5315 26723.09 629.9 254770.95 763669.34
c6288 46050.87 1160 797042.6 2344400
c7552 39450.99 927.08 362362.14 1057355.83

TIMING

Delay (pico-second)
Nan* ST

c17 60 27
c432 416 340
c499 487 392
c880 402 318

c1355 484 391
c1908 793 705
c2670 600 527
c3540 1097 989
c5315 1099 978
c6288 2110 1756
c7552 895 762

CELL INFORMATION

Number of Cells Total Cell Area (dbu)
Nan* ST Nan* ST

c17 9 5 7.45 35.36
c432 112 151 104.01 680.68
c499 499 385 484.92 2188.16
c880 323 295 334.89 1245.4
c1355 492 402 476.94 2216.76
c1908 658 731 588.13 2761.72
c2670 1021 1014 824.87 2968.16
c3540 1595 1559 1396.23 5292.04
c5315 2033 2036 1904.03 6664.32
c6288 2883 2570 2704.95 11395.28
c7552 2952 2984 2546.68 9105.2

WIRE LENGTH

Total Wire Length (um) Total # of VIAs
Nan* ST Nan* ST

c17 85.69 44.9 14 5
c432 448.18 1463.74 219 417
c499 1834.44 4452.81 1193 1110
c880 2118.92 4708.98 1113 1262
c1355 2030.38 4695.36 1205 1236
c1908 2408.85 7842.55 1644 2029
c2670 5482.58 11231.38 2501 3276
c3540 5697.51 22609.77 3910 6083
c5315 11076.16 33152.49 6384 9704
c6288 6805.69 51165.28 6359 11901
c7552 12740.29 43185.36 7466 11417

ISCAS89

POWER

Leakage Pwr (nW) Switching Pwr (nW)
Nan* ST Nan* ST

s1196 6825.63 94.3 21740055.13 35552616.99

s1238 6585.08 92.83 4372778.16 35807965.14

s13207 26473.67 421.15 369016693 632872177.17

s1423 10303.43 220.54 108029318.84 151306761.87

s1488 9749.8 169.93 9737424.42 12447953.21

s1494 9134.86 199.9 9736492.41 12463243.5

s15850 11714.06 193.73 194984050.06 268259588.09

s27 391.05 5.34 3792229.34 6068937.11

s298 2193.6 40.7 20837491.46 28879281.45

s344 2818.81 46.03 17733193.91 29592536.14

s349 2753.87 44.51 18538082.68 29609543.12

s35932 175475.32 3531.15 2524902627.13 3525519287.32

s382 3036.98 52.96 31243005.95 42670468.12

s38417 176701.67 2954.21 1842011936.4 3098272066.39

s38584 139508.68 2087.58 1409407547.86 2301113264.86

s386 2698.92 43.5 9048620.17 12084195.98

s400 2866.36 55.84 32404103.66 43117293.62

s444 3063.78 57.17 31775246.6 42831903.01

s526 3776.2 74.25 31918175 42621131.52

s5378 19390.2 364 180778137.74 353535213.15

s641 2878.32 50.68 2748260.43 36217718.77

s713 2938.47 51.8 27233697.13 36256792.65

s820 5011.63 103.11 7707411.56 10521690.63

s832 5036.86 96.03 7707727.08 10469147.27

TIMING

Delay (pico-second)
Nan* ST

s1196 384 314
s1238 362 374
s13207 422 363
s1423 696 598
s1488 474 422
s1494 446 450
s15850 459 428
s27 236 235
s298 347 350
s344 378 354
s349 368 359
s35932 428 372
s382 371 362
s38417 819 681
s38584 500 454
s386 384 342
s400 404 355
s444 367 354
s526 356 385
s5378 482 474
s641 409 370
s713 389 366
s820 403 385
s832 408 377

CELL INFORMATION

Number of Cells Total Cell Area (dbu)
Nan* ST Nan* ST

s1196 423 385 481.99 1352.52
s1238 415 363 471.62 1316.64
s13207 1063 1206 2530.19 6169.84
s1423 557 639 878.07 2730.52
s1488 566 514 557 1791.4

s1494 529 544 532.53 2022.28
s15850 511 555 1073.04 2670.2
s27 23 17 32.98 69.16
s298 117 115 169.97 479.44
s344 137 122 198.7 525.2
s349 139 121 194.18 526.24
s35932 8071 9753 15700.12 42509.48
s382 166 173 248.44 666.64
s38417 8023 7752 15304.84 38503.4
s38584 7173 7224 11970.53 29354.52
s386 161 135 175.83 489.84
s400 156 169 236.47 702.52
s444 167 172 247.38 709.28
s526 222 210 288.61 871
s5378 978 1045 1652.13 4735.12
s641 170 167 235.94 669.24
s713 187 174 247.91 668.2
s820 320 293 306.7 1107.6
s832 303 282 303.77 1034.28

WIRE LENGTH

Total Wire Length (um) Total # of VIAs
Nan* ST Nan* ST

s1196 3312.55 7003.14 2149 2294
s1238 3109.76 6031.11 2158 2134
s13207 6541.18 23068.71 4531 6833
s1423 2608.26 9177.17 1795 2780
s1488 4661.25 8139.55 2981 2651
s1494 5116.87 8895.45 2842 2698
s15850 2534.37 7380.59 1902 2426
s27 133.09 127.99 46 63
s298 603.37 1328.88 429 498
s344 721.41 1413.22 464 515
s349 689.47 1365 394 505
s35932 70318.6 366367.02 32225 61471
s382 721.94 1229.6 548 516
s38417 60654.36 256954.18 36963 53079
s38584 72234.55 318853.84 34268 59325
s386 724.08 1689.35 487 622
s400 683.68 1901.09 515 714
s444 695.82 1670.57 524 657
s526 794.74 2429.24 659 887
s5378 7528.72 21261.4 4216 5998
s641 924.57 2298.41 521 673
s713 1105.29 2257.22 595 686
s820 1785.71 3890.34 1098 1268
s832 1747.9 3623.19 1115 1159

Other

POWER

Leakage Pwr (nW) Switching Pwr (nW)
Nan* ST Nan* ST

cpu 59858.25 1164.54 293245453 921708289
fpu 1063538.81 28122.22 575937089 1394867607
nova 1461508.62 17318.76 37981512.5 107178839

TIMING

Delay (pico-second)
Nan* ST

cpu 1042 934
fpu 10454 9411
nova 2724 2453

CELL INFORMATION

Number of Cells Total Cell Area (dbu)
Nan* ST Nan* ST

cpu 2743 2452 4407.09 11992.76
fpu 63348 60660 63965.55 262837.64
nova 53143 47231 123008.77 254010.64

WIRE LENGTH

Total Wire Length (um) Total # of VIAs
Nan* ST Nan* ST

cpu 19256.54 83845 12898 23246
fpu 405090.03 6699556.94 243524 1088722
nova 751634.95 TBA 387889 TBA

7. Conclusion

As we can see from the data, the results from
65nm(ST) and 45nm(Nangate) libraries are reasonable;
bigger transistors produce less leakage power because it
suffers less from short channel effects and Vth scaling,
making it less unlikely for electrons to leak through. On
the other hand, since transistors are bigger, it takes more
energy to switch the gates, which results in a larger
switching power in the ST library.

The other two measures, cell area and wire length also
increase with the dimension of the gates or transistors.
Again, as we can see, circuits synthesized using the ST
library tend to use up more area as well as longer wire
length.

8. Ongoing Project

Currently, I am working on a project will John Lee
from NanoCAD Lab on multi-row-height cell placement.

We wish to find the wire length, area, etc trade-offs using
standard cells of different heights.

John and I have tried modifying the LEF of the
Nangate technology library so that gates above 4X are
stretched to have a higher height and smaller width. We
wanted to see if Encounter can be “tricked” to place the
stretched cells on different rows automatically. However,
this did not succeed. Then we also tried alternating the
DEF file so we specifically ask Encounter to create
different row heights and let it place the cells
automatically. In this case, Encounter complains about the
row heights are not integer multiples of a single row.
Therefore, we still haven’t successfully found the trade-
offs of multi-row-height cell placement.

We will continue to work on the project. Since we did
not get Encounter to place the cells correctly, we will try
conducting the project using a different tool, mPL. The
tool mPL is an open-source program, and we shall be able
to do what we desire.

10. References

[1] P. Gupta, “EE209S The VLSI Design Manufacturing
Interface”, EE209S, University of California

