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ABSTRACT OF THE DISSERTATION

Hardware-Enabled Design for Security (DFS) Solutions

by

Wei-Che Wang

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2018

Professor Puneet Gupta, Chair

The Integrated Circuit (IC) supply chains of modern companies often involve multiple busi-

ness entities on a global scale, including offshore manufacturing, system integration and

distribution of VLSI chips and systems. While the industry is trying to lower the risks

imposed by the global supply chain production model, most existing techniques, such as

Physical Uncolonable Function (PUF), logic obfuscation, and hardware metering often suf-

fer from their unreliability characteristics for their parametric nature or high implementation

cost of the whole security system. Therefore, IC/IP Design for Security (DFS) solutions that

are efficient and practical for the industry are still yet to be discovered.

In this dissertation we study the behavior of PUFs and propose several sources of random-

ness to construct stability-guaranteed PUFs through Locally Enhanced Defectivity (LED)

mechanisms, such as Directed Self Assembly (DSA) and transistor gate oxide breakdown.

These PUFs are fabricated and demonstrated to be stable and random, which can be used

as reliable sources of hardware root-of-trust for DFS techniques.

To study the security of PUFs and to show the benefits of our proposed stability-

guaranteed PUFs, we present a new unified framework for evaluating PUF security through

guesswork analysis. This framework enables us to evaluate and quantify the effect of noise,

bias and model attacks on security. We also relate guesswork to other security measures such

as min-entropy, and mutual information. The model quantitatively measures the security of

various PUFs under different scenarios, and by doing so enables us to compare the security

ii



level of different sorts of PUFs.

To further utilize the stable PUFs, a secure lightweight entity authentication hardware

primitive (SLATE) is proposed and shown to be much smaller than existing strong PUFs

and lightweight ciphers. The proposed SLATE is a practical DFS solution for its extremely

lightweight implementation and is proven to be secure from both empirical and theoretical

perspectives.

Finally, the dissertation proposes an effective attack to reconstruct missing connections

in 2.5D split manufacturing, which is a technique used to prevent reverse engineering from

malicious foundry. A Satisfiability Modulo Theories (SMT) based grouping algorithm de-

pending purely on the circuit functionality but not physical implementation is proposed to

significantly reduce the runtime of Boolean Satisfiability (SAT) solver, which is used to re-

cover configuration keys of the connection network. Defence strategies of our attacks are

also studied.
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CHAPTER 1

Introduction

In order to optimize resource and cost, the Integrated Circuit (IC) supply chains of mod-

ern companies often involve multiple business entities on a global scale, including offshore

manufacturing, system integration and distribution of VLSI chips and systems. The diverse

and complex fabrication environment have made various attacks to the IC design easier, and

huge revenue loss has been reported for the past few years.

For an authentic Intellectual Property (IP) owner, the global multi-stage environment

makes it difficult to monitor the whole production process, and a rouge element, such as

a tester or even a foundry, can easily steal or misuse confidential secrets of a design. For

example, a malicious foundry may reverse engineer or overproduce the IC to cause unex-

pected loss to the IC design company. In 2013, the United States made over 6,700 seizures

of consumer electronic counterfeit shipments, and legitimate electronics companies miss out

on about $100 billion of global revenue every year because of counterfeiting. The IC supply

chain security has become a serious concern for the industry.

While the industry is trying to lower the risks imposed by the global supply chain pro-

duction model, most existing techniques, such as Physical Uncolonable Function (PUF),

logic obfuscation, and hardware metering, often suffer from their unreliability characteristics

for their parametric nature or high implementation cost of the whole security system. For

example, for a SRAM PUF to generate a 128-bit secret key, more than 4k SRAM cells are

needed under a condition with 15% bit error probability, which translates into a roughly 30x

overhead not including the hardware implementation of the Error Correction Code (ECC).

Therefore, practical IC/IP Design for Security (DFS) solutions that are efficient and practical

for the industry are still yet to be discovered.

1



For the rest of this chapter, a brief introduction is given regarding existing supply chain

security techniques, followed by an outline of my dissertation, including the improved reliable

DFS solutions that are adoptable to the industry.

1.1 Physical Unclonable Function (PUF)

A Physical Unclonable Function (PUF) is a small piece of circuitry such that its behavior,

or Challenge Response Pair (CRP), is uniquely defined and it is hard to be predicted and

replicated because of the intrinsic random physical nature and the uncontrollability of process

variations.

As a security primitive, PUF can enable low overhead hardware identification, tracing,

and authentication during the global manufacturing chain. The first PUF was introduced

more than a decade ago. Since then, many silicon PUF implementations have been proposed,

such as Arbiter PUF, Ring Oscillator (RO) PUF, SRAM PUF, and many other variations.

Figure 1.1 shows a conventional Ring Oscillator (RO) PUF. The PUF is composed of

many ROs with same design, and a challenge selects a pair of ROs to compare their fre-

quencies. If the value of the difference register is greater than zero, then the response is

one; otherwise, the response is zero. Even though the ROs are designed to be identical, the

frequencies of the ROs will be different due to the uncontrollable process variations, which

are considered to be random and unique for each chip. Therefore, a ROPUF can be used to

generate a secret key without storing any secret information in a memory device.
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Figure 1.1: Ring Ocsillator (RO) PUF. The one-bit response is obtained from the value of

the different register.

Since the key commonality between all current silicon PUF implementations is their use of

parametric manufacturing variations as the source of randomness, there exist several limita-

tions including noise and environmental fluctuations that can cost expensive implementation

overhead.

1.2 Function Obfuscation

The goal of logic obfuscation is to prevent reverse engineering by hiding the function of the

design. The obfuscation is achievable based on variety of techniques, such as embedded

reconfigurable logic insertion or IC camouflaging.

One of the most common function obfuscation implementations is to insert additional

XOR gates or wire swapping units to change the original circuit function. Figure 1.2 shows

a simple example of function obfuscation with two keys S1 and S2, which are only known to

the circuit designer. Before the insertion of keys, the circuit function is AB + B̄C̄ as shown

in Figure 1.2 (a). After the key insertion, the function of the circuit is obfuscated. The

circuit will perform one of the four possible functions as shown in Figure 1.2 (b) depending

on the values of the keys S1 and S2, where the correct values (S1 = 0 and S2 = 0 in this

case) are only known to the circuit designer. Since the number of possible functions grow
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exponentially wit the number of keys inserted, it is difficult for one to find out the correct

function of the circuit without knowing the secret key.

Figure 1.2: Function obfuscation with secret keys. (a) Original circuit with function AB +

B̄C̄. (b) Four possible functions when two keys (secret bits only known to the designer) are

inserted. The circuit will only function correctly when correct values of S1 and S2 are given.

For the gate insertion techniques, since the keys of the inserted gates are the same for

all fabricated chips, it is still possible for the attacker to obtain a working chip and correct

keys from the open market and reverse engineer the circuit function.

1.3 Hardware Metering

The goal of hardware metering is to prevent IC overproduction from malicious foundries.

Once a design house delivers a design to a foundry, the design house will have no control of

the amount of copies that the foundry can produce. Hardware metering techniques try to

lock each chip with a unique key so the IC/IP owner can have control over the number of

fabrications. Please note that the major difference between hardware metering and function

obfuscation is that a unique key of each chip is required for hardware metering, while for

function obfuscation, all chips would have a same key. Therefore, hardware metering often

provides higher security than function obfuscation.

Similar to function obfuscation, common hardware metering approaches use augmented

gates to lock and shuffle the I/O ports of each chip so no information about the function

is leaked to foundries or testers. Figure 1.3 shows a metering example with a unique key
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K and additional configurations S1 and S2. Assume that the correct function is AB + ĀB̄

and the unique key of each chip is only known to the IC/IP owner. If K = 0 for a specific

chip, the configurations to unlock the chip would be (S1, S2) = (0, 1); if K = 1 for another

chip, the configurations to unlock the chip would be (S1, S2) = (1, 0). The IC/IP owner can

decide the number of configurations released to control the number of working chips in the

open market.

Figure 1.3: Hardware metering. If K = 0 for a specific chip, the configurations to unlock

the chip would be (S1, S2) = (0, 1). Since K is unique for each chip, the IC/IP owner would

have control of the number of chip to unlock.

To generate unique keys, many existing hardware metering techniques exploit PUFs as

sources of the secret randomness, therefore the PUF responses should be stable. Also, the

insertion location should be chosen carefully to prevent advanced key-recovery attacks such

as fault analysis attack and Boolean satisfiability (SAT) attack.

1.4 Entity Authentication

PUF-based entity authentication protocols have been proposed since the idea of PUF was

introduced. The simple authentication scheme proposed in [2] employs the CRP mechanism

of strong PUFs, but the protocol is not practical because the PUF itself is not secure and

suffers from modeling attacks. Using an Optical PUF as stated in [3] is believed to be more

secure against modeling attacks, however it contradicts the low-cost design principle of a

PUF application. PUF-based mutual authentication protocols often require synchronized
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time stamp [4] or heavy computation costs, such as the reverse fuzzy extractor proposed

in [5].

Most of the existing PUF-based entity authentication protocols aim to compensate the

limitations of instability and vulnerability to modeling attacks, but unfortunately, these

approaches often undermine the benefits provided by the PUF technology, such as the

lightweight implementation or the replacement of costly secure data storage. Also, the use of

fuzzy extractor and helper data can often introduce unexpected security vulnerabilities [6],

making most existing PUF-based protocols impractical. Therefore, a lightweight and secure

authentication primitive is still yet to be discovered.

1.5 Split Manufacturing

In order to protect IC/IP owners from the malicious foundries or attackers, Layer-based

Split Manufacturing (LSM) was recently proposed as a protecting mechanism to minimize

the aforementioned risks. LSM divides a design into Front End of Line (FEOL) and Back

End of Line (BEOL) parts, and different parts are fabricated at different foundries. The

FEOL (higher complexity and cost) part is fabricated at an untrusted foundry. Since the

complete connections of the circuit are unknown to the untrusted foundry, the design cannot

be fully reverse engineered. After the FEOL fabrication, the wafer is shipped back to an

onshore trusted foundry for the BEOL fabrication and integration. While LSM may fit well

with the advanced 3D IC fabrication model, however, the yield loss due to wafer transporta-

tion, integration, and the requirement of design rule compatibility of two foundries are still

remaining as the major challenges.

Another split manufacturing strategy is the Module-based Split Manufacturing (MSM),

where the design is split into different modules, and all layers including FEOL and BEOL of

a module are fabricated at a same foundry. The modules are then sent back to an integrator

for final integration. Compared with LSM, the advantages of MSM include: 1) Better yield

because less transportation and alignment risks, and each module is packaged and tested as

normal chip before being sent to the integrator. 2) No design rule compatibility requirements
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since the connection is usaully done through chip-to-chip interposers.

1.6 Dissertation Outline

This dissertation first investigates sources of instabilities of existing delay based PUFs and

explores a new side channel attack that exploit systematic wafer fabrication correlations.

Then, the dissertation presents a physical implementation agnostic PUF that its biased

responses are efficiently eliminated during Register Transfer Level (RTL) design stage. Next,

two stability-guaranteed PUFs are presented with security evaluation frameworks. Following

the stable PUFs, a secure lightweight entity authentication hardware primitive is presented

and shown to be secure against many existing attacks. Finally, a MSM attacking model

based on SAT and Satisfiability Modulo Theories (SMT) solvers is proposed to show the

effectiveness to recover the missing connections and strategies to prevent such attack. The

rest of the dissertation is organized as follows:

Chapter 2 - Assessing Viability of Delay-Based PUFs: In this chapter, we ex-

plore a new silicon side channel attack for delay-based PUFs that exploits wafer fabrication

correlations and reemphasize that the local variation is the only desired entropy source of a

PUF. Furthermore, we investigate sources of noise in measured PUF delay signatures such

as measurement errors from metastability and temporal jitter.

Chapter 3 - UNBIAS PUF: A Physical Implementation Bias Agnostic PUF:

In this chapter, we propose novel weak and strong UNBIAS PUFs that can be implemented

purely by Register Transfer Language (RTL), such as verilog, without imposing any physical

design constraints or delay characterization effort to solve the biased responses caused by

asymmetric routing or systematic variations.

Chapter 4 - LEDPUF: Stability-Guaranteed Physical Unclonable Functions

through Locally Enhanced Defectivity: In this chapter, we propose several weak PUFs

and strong PUFs that are completely stable with 0% intra-distance. These PUFs are called

Locally Enhanced Defectivity Physical Unclonable Function (LEDPUF). A LEDPUF is a

pure functional PUF which eliminates the instability of conventional parametric PUFs, there-
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fore no helper data, fuzzy comparator, or any kinds of correction schemes are required. Two

sources of stable randomness are presented in this chapter: Directly Self Assembly (DSA)

LEDPUF and gate oxide breakdown LEDPUF using plasma induced damage during semi-

conductor manufacturing and voltage stressed damage post manufacturing

Chapter 5 - PUF Security Evaluation through Guesswork Analysis: In this

chapter we develop a new unified framework for evaluating the security of PUFs, based on

password security, by using information theoretic tools of guesswork. The guesswork model

allows us to quantitatively compare, with a single unified metric, PUFs with varying levels

of stability, bias and available side information. In addition, it generalizes other measures

to evaluate the security level such as min-entropy and mutual information. We evaluate

guesswork based security of some measured Static Random Access Memory (SRAM) and

Ring Oscillator PUFs as an example and compare them with LEDPUFs to show that stability

has a more severe impact on the PUF security than biased responses. Furthermore, we find

the guesswork of two new problems: Guesswork under probability of attack failure, and the

guesswork of strong PUFs that are used for authentication.

Chapter 6 - SLATE: A Secure Lightweight Entity Authentication Hardware

Primitive: In this chapter, we propose a novel Secure Lightweight Entity Authentication

hardware primitive called SLATE, where its secret key can be stored in a form of a weak

PUF or any secure key storage. SLATE is resistant to known attacks to strong PUFs or

logic obfuscations, such as model building attacks and Boolean Satisfiability (SAT) attacks,

and we show that the implementation cost of SLATE with a 176-bit key and 244 CRPs is

only 663 Gate Equivalents (GE). Compared to lightweight ciphers and existing secure strong

PUFs, which is 44% to 7.1× larger than SLATE, we show that SLATE is a practical security

primitive for resource constrained systems.

Chapter 7 - Reverse Engineering of 2.5D Split Manufactured ICs: In this

chapter we propose a SAT-based attack to reconstruct the wire connections of the 2.5D

split manufacturing netlists. Unlike previous attacks to split manufacturing that do not

guarantee 100% accuracy of the connections, our SAT-based attack can fully reconstruct the

missing wires and therefore the functionality of the chip can be completely reverse engineered.
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In addition, we show that the runtime of SAT attack is significantly reduced by applying

grouping hints obtained from SMT-based grouping algorithm, which is purely depending

on the circuit functionality, so no physical defensive mechanisms can prevent such attack.

We show that our grouping algorithm can speed up the SAT attack runtime by more than

1,000X and can successfully reverse engineer reasonable size benchmarks even when the split

nets contains more than one fanouts and the total cut size is relatively large.

Chapter 8 - Conclusion: This chapter concludes the dissertation by providing a brief

review of the motivation and works accomplished, and finally summarizes the contributions

of the dissertation.
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CHAPTER 2

Assessing Viability of Delay-Based PUFs

Physical Unclonable Function (PUF) is a promising hardware security primitive because of

its low area and power consumption. However, the stability of a PUF and how resilient

it is to attacks have been two major concerns for practical use of it. In this chapter we

explore a new silicon side channel attack for delay-based PUFs that exploits wafer fabrication

correlations and reemphasize that the local variation is the only desired entropy source of a

PUF. Furthermore, we investigate sources of noise in measured PUF delay signatures such

as measurement errors from metastability and temporal jitter. In each of these studies we

use a mix of actual silicon results and models to illustrate the challenges in delay-based PUF

adoption.

2.1 Introduction

Hardware security has become an important aspect in modern Integrated Circuit (IC) design

industry because of the global supply chain business model. Identifying and authenticating

each fabricated components of a chip could be a challenging task [7]. A Physical Unclonable

Function (PUF) is a small piece of circuitry such that its behavior, or Challenge Response

Pair (CRP) [3], is uniquely defined and is hard to be predicted and replicated because of the

intrinsic random physical nature and the uncontrollability of process variations. As a security

primitive, PUF can enable low overhead hardware identification, tracing, and authentication

during the global manufacturing chain. Also, the compact area and low energy requirements

make PUF an ideal solution for the security requirements of Internet of Things (IoT), which

is a rapidly emerging paradigm that the security between untrusted subsystems is known to
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be of essential importance [8].

The first PUF was introduced more than a decade ago [9]. Since then, many silicon PUF

implementations are proposed, including Arbiter PUF [10], Ring Oscillator (RO) PUF [11],

SRAM PUF [12], and many other variations. The fundamental application of PUFs lies in its

identification purposes, thus the calculation of inter-distance and intra-distance [3] inherently

became important measuring metrics on uniqueness and stability of a PUF respectively.

Inter-distance is defined as the distance of two responses from two PUFs given a same

challenge, and intra-distance is defined as the distance of two responses from a PUF given

a same challenge twice. The distances are often represented in Hamming Distance (HD),

which is defined as the number of bits that differ between two bit strings, and Fractional

Hamming Distance (FHD), which is defined as the HD divided by the length of the compared

strings. For an ideal PUF, the inter-distance should be 50%, and the intra-distance should

be 0%, meaning that the responses are unique and can be reproduced.

Studies of attacking PUF and PUF protocols have been considered the driving force of

the evolution of PUF. Machine-learning based attacks [1] extrapolate the PUF behavior on

whole CRP database by building a model from observing a limited fraction of CRPs, and

side-channel attacks [13] explore the weakness from the practical implementation of a system.

Invasive attacks and physical cloning tailored specifically on SRAM PUFs have also been

carried out [14].

While many studies of side channel attacks on timing analysis and power consumption

have been proposed [13], the systematic fabrication variation has not been widely discussed

and can also be analyzed for silicon side channel attacks. In our work, we model the fab-

rication variations obtained from real silicon data, and demonstrate the effectiveness of the

silicon side channel attacks based on the fabrication variation model. Our results show that

local randomness should be the only desired entropy source of the delay based PUF, which

has been observed previously as well in [15]; otherwise the silicon fabrication information

can be exploited as side-channel attack. Even though this is known but unfortunately the

importance of it has been ignored in studies of PUFs (for instance by assuming all variation

to be local in Monte Carlo simulations). For completeness, we evaluate memory PUFs as
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well for their susceptibility to such process side channel attacks.

2.1.1 Our Contributions

Key contributions of this work are summarized as follows:

• A silicon wafer variation model is utilized to demonstrate novel effective side channel

attack on delay-based silicon PUFs.

• Models of metastability, jitter accumulation, and corresponding error probabilities are

derived, and their impact on PUF statistics is discussed for the first time.

2.2 PUF Implementations

2.2.1 Experiment Platform

In our experiments, we use fifteen commercial 45nm SOI test chips with 176kB data memory

each to evaluate SRAM PUF, and 6 RO PUF chips with 13 RO pairs each for RO PUF

evaluation. The frequencies of these RO pairs are measured and compared, so the response

is 13 bits long for each PUF.

For arbiter PUF simulation, we gather 14 delay paths to form an arbiter PUF that are

measured one time from a commercial 65nm technology process. There are 36 thousand

arbiter PUFs from 23 wafer lots which contains 16 to 25 wafers each, and 90 arbiter PUFs

are fabricated on each wafer. The exact location of each PUF is known for silicon variation

analysis. The structure of the arbiter PUF used in our experiments is given in Figure 2.1.

2 of 14 delay paths are chosen to compare the timing difference, so each PUF can generate

a 91-bit response. Since the focus of this work is to assess the impact of silicon correlations

on PUFs but not the model building attacks, the arbiter PUF structure with each path

specifically implemented is used.
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Figure 2.1: The arbiter PUF structure for silicon variation evaluation.

2.2.2 Memory based PUF

A memory based PUF exploits the inherent threshold variation of the cross-coupled devices

to generate random responses, which can be used as a unique fingerprint of the IC or random

key generation. There are many implementations of memory based PUF on different storage

techniques including SRAM PUF [12], Flash [16], DRAM [17], and Memristors [18]. Among

these variations of memory based PUFs, SRAM PUF is considered to be one of the most

popular types of PUFs because they are easy to manufacture. Therefore, the focus of our

work on memory based PUF will be on SRAM PUF.

SRAM PUF is a primitive well suited for secure key generation because the key is not

stored on a non-volatile memory and is derived only when needed, meaning that it is pre-

sented only for a very short period of time. In a cryptographic secret key generation proce-

dure, it is important that the key is generated with high randomness, and SRAM PUF shows

a highly random response that has little fabrication correlation because the cross-coupled

transistors are placed very closely to each other, which intrinsically cancel out the spatial

correlations and systematic variations.

We evaluate the inter-distance distribution of SRAM PUF using fifteen commercial 45nm

SOI test chips, where each consists 176kB data memory. The results show that the intra-
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distance distribution is closely matched to a normal distribution with mean of 48.33%. This

is expected since the response of SRAM PUF is highly random. For intra-distance measure-

ment, the power-up state is measured 10 times during an 8-hour period, and the mean of

intra-distance distribution is only 2.57%.

Because of the independence of each SRAM cell, it is not possible to predict SRAM

PUFs using modeling or machine learning techniques. However, the states of SRAM cells

are known to be observable by physical read-out utilizing laser stimulation even if care is

taken to prevent the values from being revealed over standard channels. Therefore, the

design of SRAM PUF must be tamper evident, meaning that the invasive attacks must alter

the memory cell characteristics in such a way that the key derived from the PUF response

becomes unrecoverable [19]. For rest of this chapter we focus on delay-based PUFs where

the prominence of local variation is not guaranteed.

2.2.3 Delay based PUF

2.2.3.1 Arbiter PUF

The idea of an arbiter PUF [20] is to introduce a race condition on two paths and an arbiter

circuit is used to decide which one of the two paths reached first. The two paths should be

designed identically, then the outcome of the race will be unpredictable due to the inevitable

manufacturing variations.

An arbiter PUF is often used as an authentication primitive because it is fast and has large

CRP space. It is known to be vulnerable to model building attacks [21], but more complex

configurations and restricted access in real application can reduce the risk greatly [22].

Please note that the comparison of the two path delays are done in a post processing

procedure, so the arbiter circuit is assumed to be ideal. For real arbiter circuit such as a

D flip-flop or a SR latch, a measurement noise coming from metastable behaviors will be

discussed in section 2.4.

Figure 2.2 shows the distribution of inter-distance gathered from 36 thousand arbiter
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PUFs fabricated by a commercial 65nm technology process. The distribution is closely fit

to a normal distribution with a FHD mean of 0.4998 and variance of 0.0297.

Figure 2.2: The FHD inter-distance of 36 thousand arbiter PUFs with mean=0.4998 and

variance=0.0297.

2.2.3.2 Ring Oscillator (RO) PUF

A RO PUF consists ROs with the same intended frequency implemented in parallel. Similar

to arbiter PUF, the two frequencies will be slightly different due to process variations, and

a one-bit response is produced by comparing the frequencies [9]. RO PUF is often used as

static cryptographic key generation because of its high cost of timing and power for each

response generation.

We measure the inter-distance of 6 RO PUFs implemented as described in Section 2.1.

Results shows that the mean of inter-distance is 54.36%.

For intra-distance measurement, each pair of ROs is measured 300 times over a 15-hour

period. The results given in Table 2.1 which show that intra-distances varies from 0.3%

to 18%. This could be due to many reasons including temperature or voltage variations,

measurement uncertainties, or random noises. Detailed discussion on the sources of intra-

distance noises will be presented in section 5.
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Table 2.1: RO PUF Measurement

Biasing Level Intra-Distance (mean)

PUF 1 84.6% 18.0%

PUF 2 100.0% 6.6%

PUF 3 76.9% 4.1%

PUF 4 61.5% 6.6%

PUF 5 76.9% 12.2%

PUF 6 100.0% 0.3%

In addition to intra-distance, Table 2.1 also includes the biasing measurement, which is

defined as the percentage of the majority bit value in a response. For example, PUF6 has a

100% biasing measurement, meaning that all the bits in the response are either ones or zeros.

The results show that low intra-distance is an indication of high global correlation. This is

an intuitive and interesting phenomenon. Small intra-distance means that the response is

stable and resilient to noises, but it also means that the intrinsic difference is due to strong

systematic correlations. In our RO PUF layout implementation, 26 ROs are evenly placed

in two blocks, where a RO pair is formed by selecting two ROs from each of the block. It

is possible that ROs from a block is always faster than ROs from the other block due to

systematic wafer variation. Of course this biasing behavior can be eliminated or hidden by

a more complex layout consideration, however, the physical silicon systematic variation will

still occur and can be exploited as a side channel attack.

2.3 Process Side Channel Attacks

2.3.1 Variation models

To study the impact of silicon variation on delay-based PUFs, we adopt the models presented

in [23] to represent the variations of inter-wafer, inter-die, intra-wafer, and intra-die of a

commercial 65nm technology process. Each variation is represented by the variance of the
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corresponding data. Among all the sources of variations, intra-die variation, or also known

as local variation, is the only desired entropy source of a PUF. The variation calculations

are given below:

• Total variation σ2
total: Total variation is the sum of all the variations. The mean

m(total) is mean of all data, and the variance σ2
total of all the data is the total variation.

• Intra-die variance σ2
local: Each die is located on a (X,Y) location of a wafer. We first

calculate the mean m(w, x, y) of each die on each (X,Y) location to eliminate the effect

of intra-die local variations. Then we obtain the variance of these means to get σ2
global.

The intra-die variation is then calculated as below:

σ2
local = σ2

total - σ2
global.

• Inter-wafer variance σ2
wafer: Calculate the mean of each wafer m(w), and inter-wafer

variation σ2
wafer is the variance of these means.

• Intra-wafer variance σ2
XY : Intra-wafer variation is a systematic variation that can be

modeled by the (X,Y) location on a wafer. For each (X,Y) location, we calculate the

mean m(X, Y ) for all wafers, and the variance σ2
XY is the intra-wafer variation.

• Inter-die variance σ2
die: To obtain inter-die variation, we need to subtract inter-wafer

and intra-wafer variations from σ2
global. To model systematic correlations on (X,Y), we

use

fitting(X, Y ) = aX2 + bY 2 + cX + dY + eXY + f (2.1)

adopted from [23]. Then the inter-die variation σ2
die is defined as the variance of

m(w,X, Y )− fitting(X, Y )−m(w).

In summary, the total variation is the summation of the four independent variations:

σ2
total = σ2

wafer + σ2
die + σ2

XY + σ2
local

The values of standard deviations are given in Table 2.2. Table 2.3 compares the mean of

inter-distance of the PUFs that are randomly selected, fabricated on the same wafer, and
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Table 2.2: Process Variations

Description Variance

σ2
wafer Inter-Wafer 0.0018730

σ2
die Inter-Die 0.0015720

σ2
XY Intra-Wafer 0.0007158

σ2
local Intra-Die 0.0006204

Table 2.3: Intra-distances Comparison

FHD mean

Randomly Selected PUFs 0.4998

PUFs on the same wafer 0.4522

PUFs on the same (X,Y) 0.2886

fabricated on the same (X,Y) location on different wafers. Figure 2.3(a) shows the inter-

distance of PUFs selected from a same (X,Y) location on different wafers and Figure 2.3(b)

shows the inter-distance of PUFs selected from same wafer. The mean of the randomly

selected PUFs is close to 0.5 as labeled in the figure. It obvious that the mean of inter-

distance on the same (X,Y) is smaller than the mean of inter-distance on a same wafer.

Therefore, for silicon fabrication side channel attacks, an adversary with possession of a

reference PUF which is fabricated at the same (X,Y) location as the target PUF would have

a higher probability to guess the correct answer than random guessing or with possession of

a reference PUF that is fabricated on the same wafer as the target PUF.

When measuring inter-distance of two PUFs on a same wafer, the variations are composed

of σ2
local, σ

2
die, and σ2

XY . On the other hand, when measuring inter-distance of two PUFs on

a same (X,Y) location, the variances are σ2
die and σ2

local. Less variation sources explains

why PUFs fabricated on a same (X,Y) location are more similar to each other than PUFs

fabrication on a same wafer. In our experiment, the intra-die variation is the smallest

variation of all. The silicon side channel attacks would be less effective than we demonstrated
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Figure 2.3: The FHD inter-distance of (a) PUFs from same (X,Y) location on different wafers

(b) PUFs from a same wafer

if the intra-die variation, which is the true random local variation, is the dominating variation

of the total variation.

2.3.2 Process Side-Channel Attacks

From the silicon variation model and our experiments, we know that it is possible for an

adversary to exploit silicon fabrication side-channel information to attack delay-based PUFs.

One way is to use reference PUFs that are fabricated on the same wafer as the target PUF

to predict the behavior of the target PUF. In this kind of attack, the adversary should

keep at least one reference PUF from each wafer, and the probability of predicting each

bit response correctly is slightly better than not using silicon side-channel attack at all. A

19



better way of using silicon side-channel attack is to have access of a reference PUF that is

fabricated on another wafer but on the same (X,Y) location on a wafer as the target PUF.

The probability of guessing the correct bit response is much higher than the first attack

as shown in Table 2.3. In addition, since the intra-wafer variation is a parabolic function,

the adversary can just keep several reference PUFs with different distances to the center

of the wafer instead of keeping all PUFs on a sacrificial wafer. This would be helpful to

the adversary because the number of reference PUFs needed to predict the target PUF is

reduced, and the exact fabrication information of the (X,Y) location of the target PUF is not

needed, which otherwise would be difficult to obtain. The adversary then compares which

one of the reference PUFs has the smallest distance to the target PUF. The reference PUF

or the interpolation of the two reference PUFs can be used to predict the behavior of the

target PUF if the model fitting(X, Y ) is also known to the adversary. If more overhead is

acceptable, then adversary could keep few reference PUFs on every wafer. An example is

shown in Figure 2.4. Reference PUFs are selected at a fixed distance along a straight line

across the wafer center. Because of the radial nature of the variation, the adversary can

identify one of the reference PUFs that best matches the behavior of the target PUF.

Figure 2.4: (X,Y) variation shows a parabolic shape with the peak at the center of the wafer.
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2.4 Stability model

One of the most important properties of a PUF is the reliability. When A PUF is given a

same challenge multiple times, the responses should be as close to each other as possible.

However, PUF responses are much more instable than classical digital systems because PUFs

usually operate more closely at their stability limits. There are many sources that can cause

a PUF to be unreliable. In our work, we focus on two sources of instabilities that have

provisionally been ignored.

2.4.1 Metastability of the arbiter circuit

For an arbiter PUF, the arbiter circuit is usually a D flip-flop or a SR latch. If two signals

arrive at an arbiter within a short time, the arbiter circuit may enter a metastable state due

to setup time violation [24]. Once the arbiter circuit is in metastable state, the response

becomes unstable. The comparison done in [25] illustrates that SR latch is a better arbiter

circuit than D flip-flop because its smaller setup time window, and the arbiter circuit should

use up-sized transistors to minimize the metastable window. The metastable window for an

arbiter circuit is calculated as:

δ = T0e
−Tr
τ

where Tr is the required resolving time, T0 and τ are circuit dependent parameters [24].

One common technique to achieve better stability of a arbiter PUF is to select the paths

that intrinsically have large delay difference. Assume that metastability is the only source of

intra-distance. To eliminate the inconsistency caused by metastability of the arbiter circuit,

one way is to choose the paths that have a delay difference larger than the metastable window

δ. As shown in Figure 2.5, two delay paths are assumed to have a same normal distribution

N ∼ (m,σ2) with mean m and process variance σ2. The difference of the two paths will

then also be a normal distribution with N ∼ (0, 2σ2). Let δ be the difference threshold such

that a pair of paths will only be selected as an input challenge when the difference is larger
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than δ. The probability that a CRP be discarded as illustrated in Figure 2.5 is given below:

P [discarded] = 2× Φ(
δ√
2σ

)− 1

where the cumulative function Φ(x) gives the probability of the interval [−∞, x] of the

normal probability density function.

Figure 2.5: The difference of two normal distributions N ∼ (m,σ2) is another normal distri-

bution N ∼ (0, 2σ2).

Consider a simple example where for a D flipflop the metastability window is 10ps, delay

chain nominal delay of 1ns and local variation standard deviation of 2.5%, the fraction

CRPs that would be discarded due to metastability would be about 11%. One easy way to

improve this is to design longer delay chains such that their absolute delay variance is larger.

Of course, one still has to make sure that the layout remains compact, otherwise, the arbiter

PUF becomes susceptible to process side channel attack as discussed earlier.

2.4.2 Jitter accumulation

In this section, we analyze the level of impact of jitter as a noise source of RO PUF intra-

distance. Jitter is known as frequency/phase instability due to the delay variance of logic

gates connected into a ring, thus is considered to be a possible source of the RO PUF intra-

distance. One of the most important aspects of the jitter is its accumulation in time. For

free-running ROs in a RO PUF, the variance of accumulating jitter is proportional to the
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square root of the measuring time as given below:

σac =
√

2klσg

where k is the number of stages in the oscillator, l is the measuring time in average oscillating

periods, σg is the random jitter deviation of each gate, and σac is the accumulated random

jitter deviation [26].

Let RO1 and RO2 be the two ROs to be compared to generate a bit response, and let

T1 and T2 be the oscillating period of RO1 and RO2, respectively. As an example of RO1

shown in Figure 2.6, the counter is enabled for a length of Tm time, so the number of counts

of RO1 and RO2 is bTm
T1
c and bTm

T2
c, respectively.

Figure 2.6: The counter is enabled for a length of Tm time and counts the number of cycles

of RO1.

Assume that Tm is large enough that the accumulated jitter of RO1 and RO2 can be

approximated as:

σacr1 =

√
2k
Tm
T1
σg

σacr2 =

√
2k
Tm
T2
σg

For RO1, this is equvalent to that Tm1 becomes a random variable with N ∼ (Tm, σ
2
acr1),

thus Tm
T1

becomes a normal distribution with N ∼ (Tm
T1
,
σ2
acr1

T 2
1

). Same for RO2. Therefore,

to find the probability of the arbiter value sign(bTm
T1
c − bTm

T2
c) changes due to jitter, a new

distribution formed subtracting random variable Tm
T2

from Tm
T1

is given as:

N ∼ (Tm(
T1 − T2
T1T2

), 2kTmσ
2
g(

1

T 3
1

+
1

T 3
2

))
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The probability that the arbiter value is different from the majority value is thus derived as:

P [jitter error] = Φ(−|T1 − T2|
σg

√
TmT1T2

2k(T 3
1 + T 3

2 )
)

As shown in Figure 7, the shaded regions represents the probability P [jitter error] when

T1 is larger than T2. As Tm gets larger, the mean Tm(T1−T2
T1T2

) becomes farer from the origin,

which makes P [jitter error] smaller. For a fixed T1 and T2. We can see that P [jitter error]

becomes 0.5 in an extreme case when T1 = T2

Figure 2.7: The shaded region gives the P[jitter error] when T1 is larger than T2.

Consider a simple example with σg=35ps, k=7, and T=10ns from [26], assuming that the

difference between T1 and T2 is 0.5%. For Tm=100ns, which is roughly 10 cycles, we obtain

P [jitter error]=0.2033, and for Tm=1000ns, we get P [jitter error]=0. This shows that as

the measurement time gets larger, P [jitter error] becomes smaller, however the timing and

power cost for response generation also gets larger.

2.5 Conclusions

From the experiments, only 13% of the total silicon process variation is the local variation

that can really be the entropy source of a delay-based PUF as given in Table 2.2. This leads
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to possible silicon process side-channel attacks and we show that two PUFs on the same

(X,Y) location on different wafers are highly correlated. Also, since the portion of local

variation is relatively low compared with other sources of variation, our results in Table

2.1 shows that the low intra-distance could be coming from strong systematic correlations,

which will make the responses biased and with low randomness. Techniques such as entropy

distillation [15] can be applied to minimize the global and systematic wafer variation to

further increase the PUF security level. Unfortunately, the local variation has to be much

larger than sources of noise combined including temperature/voltage variations, wear-out,

jitters, and metastability. Given the relatively modest amount of local variations visible in

delay, further careful analysis and modeling to combine effects of causes of reduced stability

of delay-based PUFs is necessary and part of our ongoing work.

To conclude this chapter, we measured uniqueness and stability of SRAM PUFs, arbiter

PUFs, and RO PUFs based on silicon results. We also show that a delay-based PUF are

susceptible to silicon side-channel attacks because of systematic fabrication variations. Fi-

nally, we model two sources of instabilities of delay-based PUFs: metastability of the arbiter

circuit, and jitter accumulation of RO. We calculate the probability of a unstable CRP being

discarded due to metastability and suggest that longer (but compact in layout extent) delay

chains is one possible way to reduce impact of metastable comparisons. For the impact of

random jitter, we derived the probability of a jitter caused measurement error which shows

that increased measurement time is a viable way to decrease such error probability. In Chap-

ter 3 we will discuss a physical implementation agnostic PUF that is immune to biased wire

delay and systematic variations but is purely based on local process variations. In Chapter

4 we propose two stable sources of randomness to construct stability-guaranteed PUFs that

do not suffer from unstable CRPs.
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CHAPTER 3

UNBIAS PUF: A Physical Implementation Bias

Agnostic PUF

1 The Physical Unclonable Function (PUF) is a promising hardware security primitive be-

cause of its inherent uniqueness and low cost. To extract the device-specific variation from

delay-based PUFs, complex routing constraints are imposed to achieve symmetric path de-

lays; and systematic variations can severely compromise the uniqueness of the PUF. In

addition, the metastability of the arbiter circuit of an Arbiter PUF can also degrade the

quality of the PUF due to the induced instability. In this chapter we propose novel weak

and strong UNBIAS PUFs that can be implemented purely by Register Transfer Language

(RTL), such as verilog, without imposing any physical design constraints or delay character-

ization effort to solve the aforementioned issues. Efficient inspection bit prediction models

for unbiased response extraction are proposed and validated. Our experimental results of the

strong UNBIAS PUF show 5% intra-Fractional Hamming Distance (FHD) and 45% inter-

FHD on 11 Field Programmable Gate Array (FPGA) boards without applying any physical

layout constraints or additional XOR gates. The UNBIAS PUFs are also scalable because no

characterization cost is required for each challenge to compensate the implementation bias.

The intra-FHD measured at a high temperature condition is 8%, which is still well below

the margin of conventional Error Correction Code (ECC) with error reduction techniques

for PUFs.

1This work is done in collaboration with Michael Chen and his team at Mentor Graphics. Their contri-
bution is much appreciated.
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3.1 Introduction

Physical Unclonable Functions (PUFs) [9] have been considered as promising security prim-

itives for the Internet of Things (IoT) where the security between untrusted subsystems is

known to be of essential importance [8]. PUFs can also be exploited in a variety of appli-

cations, such as identification [27] or secret key generation [28]. Silicon delay based strong

PUFs have been studied intensively since its first appearance in [9] because of its low im-

plementation cost and large CRP space compared with a weak PUF [29]. Over the years,

a lot of effort has been devoted to achieve better security, stability, and efficient entropy

extraction of the PUFs [30, 31]. However, there are still design challenges that restrain a

strong PUF from being put in a widespread practical use.

One of the major design challenges for a silicon delay based PUF is the strict symmetric

delay path layout requirement. The wire delays of the competing paths should be designed

and matched carefully to avoid biased responses both for Field Programmable Gate Array

(FPGA) and Application-Specific Integrated Circuit (ASIC) designs, otherwise low inter-chip

uniques would make the PUF unusable [32,33]. In addition to asymmetric routing, another

source of the biased responses for silicon based PUF is the systematic process variation,

which can also degrade the quality of a PUF, such as uniqueness or unpredictability. Finally,

the metastability issue of the arbiter circuit for an Arbiter PUF can cause unstable PUF

responses, making a portion of the CRP unusable due to their instabilities [34].

3.1.1 Asymmetric Path Delay Routing

For a delay based PUF, the randomness should be contributed only by the subtle variations

between devices, so having biased delay differences due to asymmetric routing is detrimental

to delay based PUFs, and such impact should be eliminated. However, a precise control of

the routing can be a difficult and time consuming task.

To validate how severe the biased routing delay could be, we implemented a simple

Ring Oscillator (RO) PUF [9] on two Xilinx Artix-7 boards without imposing any routing

constraints. The RO PUF consists 72 pairs of ROs, where each RO is composed of 3 inverters
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as shown in Figure 3.1. The wire delays in nanosecond reported from the board of a RO pair

implementation are also included in the figure. From our experiments, the inter-Fractional

Hamming Distance (FHD) [3] of the 72-bit responses from the two boards is only 6%, which

means that this design is essentially only a constant number generator but not a PUF. The

reason is that the frequency is dominated by the wire delay, which ranges from 0.199ns

to 0.710ns as Figure 3.1 shows. Since the wire delay is already comparable to the inverter

delay [35], the logic gate variations can be easily masked. This experiment shows that biased

delay can be harmful to delay based PUFs.

Figure 3.1: RO PUF implemented on two FPGAs. The numbers indicate the wire delay in

nanoseconds, where the bias is so severe that the local process variation cannot be observed.

An implementation of an Arbiter PUF on FPGA is considered more difficult than a RO

PUF because the connections to the arbiter circuit must also be symmetric [36], and per-

forming completely symmetric routing is physically infeasible in most cases [33], resulting

small inter-FHD for an Arbiter PUF [37]. One of the most common solutions to the asym-

metric routing is to use hard-macros in FPGA designs [31,38], but it could be complicated,

and some less commonly-used features of the FPGA would be required especially for Arbiter

PUFs [39]. Other approaches try to extract randomness by XORing the outputs of multiple

Arbiter PUFs at the cost of large hardware overhead and less stability [40]. In [33, 41], the

authors try to insert configurable delay modules or programmable delay lines to balance out

the biased delay difference. However, a certain level of control of the routing is still required

because each delay unit can only provide limited adjustment, and each challenge should have

different delay module configurations, which limits the scalability for strong PUF designs.

In [42], the authors proposed using ‘middle’ bits instead of the Most Significant Bit (MSB) as
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the RO PUF response measurement. The measurement can effectively eliminate the biased

responses, but an efficient way of predicting the inspection bit is not described, and the mea-

surement can only work on a weak PUF but not a strong PUF, which provides much more

CRPs and applications [29]. A RTL-based PUF bit generation unit was proposed in [43],

but to the best of our knowledge, a strong PUF that can be implemented efficiently without

any layout constraints has not yet been proposed.

3.1.2 Systematic Process Variation

The existence of systematic process variation can degrade the quality of silicon based PUFs

because the local randomness should be the only desired entropy source of the delay based

PUF [15]. For example, different ROs fabricated on different regions on a die may have

different intra-wafer systematic variation, which can make ROs on a certain region of a die

always oscillate faster than ROs on another region [31]. The effect of systematic process

variation is similar to having biased wire delay between two ROs, which can also damage

the uniqueness of the PUF. Another possible vulnerability caused by systematic variation is

the induced process side channel attack as described in [44]. Due to intra-wafer systematic

variation [23], PUFs fabricated at the same region on different wafers can have similar

systematic behavior, which can be exploited as a process side channel attack.

To account for systematic variations, a compensation technique is proposed in [31], which

requires careful design decisions to compare RO pairs that are physically placed close to each

other. Many other techniques to extract true random local variation have also been proposed.

In [15], the systematic variation is modeled and subtracted from the PUF response to distill

true randomness with the cost of model calculation. Similarly, in [30], the averaged RO

frequency is subtracted from the original frequency, where the multiple measurements of

each RO can lead to large latency overhead. In [45], a method is proposed to extract local

random process variation from total variation, however, a second order difference calculation

is needed, and hard-macro technique must be applied to construct symmetric delay paths.
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3.1.3 Metastability of the Arbiter Circuit

The idea of an Arbiter PUF is to introduce a race condition on two paths and an arbiter

circuit is used to decide which one of the two paths reached first. The two paths should be

designed identically, then the outcome of the race will be unpredictable due to the inevitable

manufacturing variations. The arbiter circuit is usually a D flip-flop or a SR latch. If two

signals arrive at an arbiter within a short time, the arbiter circuit may enter a metastable

state due to setup time violation [24]. The metastable window δ for an arbiter circuit can

be calculated as:

δ = T0e
−Tr
τ

where Tr is the required resolving time, T0 and τ are circuit dependent parameters [24]. Once

the arbiter circuit is in metastable state, the response becomes unstable.

To eliminate the inconsistency caused by metastability of the arbiter circuit, one way

is to choose the paths that have a delay difference larger than the metastable window δ at

the cost of CRP characterization and discarding the unstable CRPs [34]. To estimate the

probability of unstable CRPs due to metastability, two delay paths are assumed to have a

same normal distribution N ∼ (m,σ2) with mean m and process variance σ2 as shown in

Figure 3.2. The difference of the two paths will then also be a normal distribution with

N ∼ (0, 2σ2). Let δ be the difference threshold such that a pair of paths will only be selected

as an input challenge when the difference is larger than δ. The probability that a CRP be

discarded as illustrated in Figure 3.2 is given below:

P [discarded] = 2× Φ(
δ√
2σ

)− 1

where the cumulative function Φ(x) gives the probability of the interval [−∞, x] of the

normal probability density function. Consider a simple example where for a D flipflop the

metastability window is 10ps, delay chain nominal delay of 1ns and local variation standard

deviation of 2.5%, the fraction CRPs that would be discarded due to metastability would be

about 11%.

In this chapter, we propose the physical implementation bias agnostic (UNBIAS) PUF
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Figure 3.2: The difference of two normal distributions N ∼ (m,σ2) is another normal distri-

bution N ∼ (0, 2σ2).

that is immune to physical implementation bias and metastability issues. The contributions

of this chapter include:

• The proposed weak and strong UNBIAS PUFs can be implemented purely by RTL

without imposing any physical routing constraints.

• Efficient inspection bit selection strategy based on intra-/inter-FHD prediction models

are proposed and verified on both UNBIAS PUFs.

The rest of the chapter is organized as follows: In Section 3.2, we introduce the proposed

weak UNBIAS PUF and strong UNBIAS PUF. In Section 3.3, the concept of the inspec-

tion bit is described with unbiased and biased delay examples. In Section 3.4, we propose

intra-FHD and inter-FHD prediction models for inspection bit identification. Finally, the

experimental results are presented in Section 3.5, and we conclude the chapter in Section

3.6.

3.2 Proposed UNBIAS PUF Structures

3.2.1 Weak UNBIAS PUF

The weak UNBIAS PUF is essentially a basic RO PUF without any layout constraints, and

the final one-bit response will be selected from the difference register, which is a multi-bit
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long register. As shown in Figure 3.3, the selection logic selects the RO pair for comparison

according to the challenge, and the counter counts the RO frequency for a fixed period of

time. The difference value is then stored in the difference register to generate the final

response.

Please note that the weak UNBIAS PUF is similar to previous work presented in [42].

The main purpose of the weak UNBIAS PUF is to validate the proposed prediction models

presented in Section 3.4.

Figure 3.3: The proposed Weak UNBIAS PUF structure without any symmetric routing

constraints.

3.2.2 Strong UNBIAS PUF

The proposed strong UNBIAS PUF compares two delay paths to generate PUF responses.

Similar to Arbiter PUF, each bit of the challenge of the UNBIAS PUF specifies the path

configuration of the delay path. As shown in Figure 3.4, the challenge c1 and c2 specify the

path configurations, and an one-bit response is extracted from the difference register, which

can be of several bits long. Once a challenge is given, a signal is applied at Trigger. The

two Clock counters begin to count the number of clock cycles of the system clock (CLK)

whenever the the signal from Trigger is propagated to the wire START, and stop counting

whenever the the signal from Trigger is propagated to the wire STOP. For each challenge,

the difference value of the two Clock counters is then stored in the difference register for

further response extraction, which is described in details in Section 3.3.
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Figure 3.4: The proposed strong UNBIAS PUF. The Clock counter starts counting clock

cycles of the system clock (CLK) when START arrives and stops when STOP arrives. The

difference of two Clock counters are stored in the difference register for further response

extraction.

The purpose of the ROs inserted between path configurations is to increase the path

delay so that it will take multiple clock cycles for the signal to propagate to stop the clock

counter. Without the ROs, the delay would be too short and the clock counters would

become unstable because STOP would arrive quickly after START. As shown in Figure

3.5, each RO is associated with a RO counter that counts the number of oscillations of the

RO. The RO counter starts counting when the signal from its previous path configuration

is arrived, and propagates the signal to the next path configuration only when the count

reaches a certain threshold. All the ROs are composed of same number of inverters and

neither configurations nor any layout constraints are needed.

Unlike the conventional Arbiter PUF, the strong UNBIAS PUF has no metastability

issues caused by a D flip-flop or a latch. The delay difference of the two paths is transformed

into counter values of the system clock. By judiciously extracting the response from the dif-

ference register, the physical implementation bias can be effectively mitigated, therefore the

UNBIAS PUF can be implemented purely by RTL without any routing or layout constraints.

Details of the response extraction are described in Section 3.3.
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Figure 3.5: ROs are inserted between path configurations to increase the path delay for

better stability. The signal from previous path configuration is propagated only when the

count of the RO counter reaches a certain threshold.

3.3 Bias-Immune Response Extraction

3.3.1 Modulo-like Operation

For the difference register described in Section 3.2, using a middle bit as the inspection bit

to generate the final one-bit response [42] can effectively bypass biased responses because it

essentially performs a modulo-like operation to the value stored in the register. Define biti

as the ith bit of the register and N as the decimal value of the register. For example, the

Least Significant Bit (LSB) is bit0. Assuming N > 0, the value of biti is given below:

biti =

0, if 0 ≤ (N mod 2i+1) < 2i

1, otherwise
(3.1)

Figure 3.6 shows an example of why performing modulo operation with a proper divisor

can help to compensate the biased delay and expose the desired gate delay variation. If the

delay values are directly compared in Figure 3.6, the upper path delay is always larger than

the lower path delay due to the significant bias. However, after performing modulo with a

proper divisor (4 in the example), the subtle delay difference between the gates are revealed,

so the two PUFs can be distinguished.
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Figure 3.6: Gate delays and biased wire delays are shown. Before the modulo operation the

two PUFs have the same response. After the modulo operation, the effect of the biased wire

delay is mitigated the responses of the two PUFs are different.

3.3.2 Inspection Bit on Unbiased/Biased Paths

In this section we describe how different selections of the inspection bit can change the intra-

and inter-FHD. Figure 3.7 shows an example of a distribution of values from difference

registers of symmetrically routed UNBIAS PUFs. The length of the difference register is

22-bit, so the range of the register value is between −221 and 221 − 1 as represented in 2’s-

complement. The large inter-chip measurement curve gives the distribution of the values

across all PUFs. Since the PUF is unbiased, roughly half of the difference values would

be greater than zero due to random local process variation, therefore the inter-FHD of the

UNBIAS PUFs would be close to 50%. In this case, the inspection bit is simply the MSB,

which divides the range of 22-bit difference value into two groups bin 1 and bin 0. All

measurements fall into bin 1 on the left output a 1; others output a 0. The small intra-chip

measurement curve gives the distribution of multiple measurements of the PUF on a same

chip. Due to noise, the difference values could be different, so the intra-FHD of the difference

register may not be a perfect 0%.

Even though symmetric UNBIAS PUF layout is much preferred, it is difficult and takes

much effort and overhead to achieve such requirement as described in Section 3.1.1. In

practice, if no layout constraints are imposed, the measurement distribution of the difference
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Figure 3.7: For a symmetrically routed PUF, the inter-FHD would be close to 50%. The

intra-FHD may not be zero due to measurement noise.

register can be as shown in Figure 3.8, where most of the difference values across chips

are greater than zero. In this case, using the MSB as the inspection bit would cause low

inter-FHD of the PUFs because most MSBs are 0’s.

Figure 3.8: For a biased PUF, most of the difference values across all chips could be greater

than zero, causing a low inter-FHD if the MSB is the inspection bit.

For the same biased distribution shown in Figure 3.8, if the ith bit is used as the inspection

bit of the difference register as Figure 3.9 shows, the range of the 22-bit difference value is

divided into multiple bins with width 2i, where the output of the measurement is decided

by the bin in which it resides. Note that in this case the response is not an indicator of

which delay is longer in the comparison. The smaller the width of the bin is, the closer the

inter-FHD is to 50% because roughly half of the outputs would reside in bin 1 even with

biased delay. On the other hand, the width of the bin should be large enough so that multiple

measurements of a same PUF should always fall into the same bin. In other words, the width
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of the bin should be larger than the variation of the intra-chip measurement distribution.

Therefore, the choice of inspection bit is a tradeoff between inter-FHD and intra-FHD for a

PUF with asymmetric routing.

Figure 3.9: For an asymmetrically routed PUF with proper inspection bit, roughly half of

the difference values across all chips would fall in bin 1, therefore the inter-FHD would be

close to 50%.

3.4 Inspection Bit Identification

3.4.1 Intra-FHD Prediction Model

The intra-FHD depends on the width of the bins w = 2i when the inspection bit is biti. A

straightforward way to determine the associated intra-FHD for each inspection location is to

gather multiple measurements of the same challenge on a same PUF, and simply calculate

the intra-FHD for each biti. A more efficient approach is to predict the intra-FHD without

calculating it for each biti.

To predict intra-FHDk of a challenge Ck of an inspection bit, we first obtain t measured

difference registers of the challenge Ck of a same PUF. Since the bin width and the range

of the difference register is known, the t difference values can be divided into two groups

(responses) according to the bins they reside in. Let the number of difference values fall

in bin 1 be none, and number of difference values fall in bin 0 be nzero. none and nzero

represent the number of responses of the challenge Ck to be one and zero during the t

measurements, respectively. Since the intra-FHD is essentially calculated from the response
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difference between any two measurements, the predicted intra-FHDk is calculated as:

intra-FHDk =
none × nzero(

t
2

) × 100%, (3.2)

where the final predicted intra-FHD would be the averaged intra-FHDk of all challenges.

As shown in Figure 3.10, the expected intra-FHD1 is 0% because all measurements fall

in the same bin and none × nzero = 0. The expected intra-FHD2 depends on the portion

of measured values that fall in bin 1. With larger bin width w, it is more likely that all

responses would fall into the same bin

Figure 3.10: Magnified view of Figure 3.9 with three bins. w is the bin width and the

measurement ranges for challenges C1 and C2 are specified. The expected intra-FHD1 is 0%

and the expected intra-FHD2 depends on the portion of measured values that fall in bin 1.

3.4.2 Inter-FHD Lower Bound Prediction Model

The inter-FHD depends on the bin width w with a given inspection bit biti. Assume the

distribution of inter-chip difference value is a Normal distribution N ∼ (µ, σ2). Define ε to

be the distance between the mean µ and the closest bin boundary on the left as Figure 3.11

shows. We first prove that the worst-case inter-FHD happens when ε = 0.5w, followed by

the prediction model of the inter-FHD for the worst-case scenario.
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3.4.2.1 Worst-Case Inter-FHD Identification

Given a fixed w, define A1(ε) and A0(ε) to be the total underlying area in bin 1 and bin 0 as

functions of ε, respectively. For any Normal distribution, A1(ε) and A0(ε) are calculated as:

A1(ε) =
∞∑

n=−∞

F (−ε+ 2nw + w)− F (−ε+ 2nw) (3.3)

A0(ε) = 1− A1(ε, w) (3.4)

where F (·) is the Cumulative Distribution Function (CDF) of the Normal distribution, and

n is the index for bin area summation.

The ratio Ratio(ε) is defined as:

Ratio(ε) =
A1(ε)

A0(ε)
, 0 < ε < w (3.5)

where the range of ε is from 0 to w because of its periodic structure.

The closer the Ratio(ε) is to one, the closer the inter-FHD would be to 50% because the

two areas are closer to each other. We want to show that the largest (most unbalanced)

ratio happens at ε = 0.5w as Figure 3.11 shows.

To find the extreme value of Ratio(ε) given a fixed w, we take derivative with respective

to ε of Equation 3.5 and replace A0(ε) by 1− A1(ε) from Equation 3.4:

d

dε
Ratio(ε) =

A′1(ε)

(1− A1(ε))2
(3.6)

From Equation 3.6 we see that to find the extreme value of Ratio(ε), it is equivalent to

find the solution of A′1(ε), which is given below:

d

dε
A1(ε) =

∞∑
n=−∞

f(−ε+ 2nw + w)− f(−ε+ 2nw) (3.7)

where f(·) is the Probability Density Function (PDF) of the Normal distribution. Equation

3.7 shows that A′1(ε) is the summation of differences between two PDF terms where one is

a shifted version by w of another. Therefore, applying ε = 0.5w to Equation 3.7, we get a

zero. Figure 3.11 shows that when ε = 0.5w, each difference term in Equation 3.7 has its

counter part at the mirrored location to the center, so that the summation becomes zero.
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Figure 3.11: Worst Inter-FHD happens when the mean is at the middle of a bin.

To conclude our derivation, given a w of an inspection bit, the extreme value of Ratio(ε)

happens when ε = 0.5w, and the inter-chip stander deviation σ is needed for the Ratio(ε)

calculation.

3.4.2.2 Inter-FHD Lower Bound Prediction

To predict inter-FHD, we calculate the probability of which any pair of chips produce different

responses. The inter-FHD prediction given the width w of the inspection bit is:

inter-FHD =
2Ratio(ε)

(1 +Ratio(ε))2
(3.8)

With Ratio(ε) = 1, the two areas are the same, resulting a predicted 50% inter-FHD.

Given a selected bit i, plugging in ε = 0.5w to Equation 3.8 would give the predicted inter-

FHD lower bound.

Please note that to predict inter-FHD, the inter-chip standard deviation σ is needed

because the calculation involves the CDF. However, the mean µ does not affect the prediction

because the extreme value is obtained by finding the worst-case ε. Also, since changing the

inspection bit results at least a 2x change of w, the inter-chip σ does not have to be calculated

with high accuracy. It can be obtained by pre-layout simulation or measuring a small number
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of chips.

3.4.3 Inspection Bit Selection

Given the Error Correction Code (ECC) specification corresponding to the PUF design, the

intra-FHD threshold can be defined. From the intra-FHD prediction model, choose a set of

candidate bits that would satisfy the intra-FHD threshold requirement. From the candidate

bits, a best inspection bit can be determined by applying the inter-FHD prediction model

given the standard deviation σ of the inter-chip delay distribution.

Please note that only one chip is needed for the inspection bit selection assuming that the

measurement noise is similar for all chips and the σ is obtained from pre-layout simulation.

The location of the final inspection bit, which is a public information, is passed to all PUFs

for the secret response generation.

3.5 Experimental Results

3.5.1 UNBIAS PUF Implementation

The UNBIAS PUF structures are implemented on 11 Altera DE2-115 FPGA boards. In

our implementation, no physical constraints, additional XORs, tunable delay units, or any

systematic variation compensation techniques are used. The design is purely a RTL design.

3.5.1.1 Weak UNBIAS PUF Implementation

The weak UNBIAS PUF contains 91 ROs with 90 RO pairs for less correlated responses [31],

therefore the number of CRPs is 90 and each PUF produces 90 bits. 19 inverters are used in

each RO to make sure that there is no timing violation of the adder and the counter register.

The response is stored in a 22-bit difference register, which is long enough to prevent the

counter from overflow.
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3.5.1.2 Strong UNBIAS PUF Implementation

The ROs inserted between path configurations are composed of 19 inverters, and the signal

will be propagated to the next path configuration when the RO counter associated to the RO

reaches a count of 50 thousand. The UNBIAS PUF has 10 path configurations, therefore the

length of the challenge is 10-bit long. The length of the difference register is 19-bit, and the

length of the final response for each challenge is one bit. For our experiment, 120 challenges

are applied, therefore 120 bits are obtained for each PUF. Please note that the RO structure

and the count of the RO counter are selected given the 50 MHz system clock of the FPGA.

The results are similar as long as no overflow occurs at the 19-bit difference register.

3.5.2 Prediction Model Validation

The inter-FHD is obtained from 11 FPGAs, and the intra-FHD is calculated by measuring

each PUF 10 times. The model validation is done on both weak and strong UNBIAS PUFs.

To show inter-chip variation and measurement noise of our experimental setup, we measure

the frequency of a single RO across the chips 10 times, and the inter-chip variation is 6.1%

with 0.2% measurement noise.

3.5.2.1 Weak UNBIAS PUF Model Validation

To validate the intra-FHD prediction model, we follow the procedure described in Section

3.4.1 with t = 10 measurements. The results of the intra-FHD prediction of bit14 and bit9

are shown in Figure 3.12. The intra-FHD of bit9 is much higher than bit14 because its bin

width is much smaller.

To validate the inter-FHD prediction model, for each RO pairs, we obtain an inter-chip

standard deviation σ from 11 FPGAs, and the final σ used in the prediction model is the

median of the σ from 90 RO pairs, which gives σ = 9721. The result of the inter-FHD lower

bound prediction is shown in Figure 3.14. The prediction gap is relatively large when w is

much larger than σ. However, as w becomes comparable to σ, where potential inspection
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Figure 3.12: Weak UNBIAS PUF intra-FHD predictions of bit9 and bit14 of 11 FPGAs. bit9

has much larger intra-FHD because its bin width is smaller.

bits begin to occur, the prediction curve rises up quickly and matches the measured data

well. To demonstrate that the inter-FHD prediction model does not require an accurate

inter-chip σ estimation, Figure 3.14 also shows the prediction range with σ± 15% variation.

We can see that the differences of the predictions are limited, which indicates that the σ can

either be obtained from pre-layout simulation or measurements of a small number of chips.

Figure 3.14 shows that and bit14 should be a proper inspection bit because the intra-FHD is

low and the inter-FHD is close to 50%.

3.5.2.2 Strong UNBIAS PUF Model Validation

Similar to the weak UNBIAS PUF, for the intra-FHD prediction model validation, same

procedure described in Section 3.4.1 is applied with t = 10 measurements. Figure 3.13

shows the results of the intra-FHD prediction of bit5 and bit10. The intra-FHD of bit5 is

much higher than bit10 because its bin width is much smaller.

Similar to the weak UNBIAS PUF, for each challenge, we obtain an inter-chip standard

deviation σ from 11 FPGAs, and the final σ used in the prediction model is the median of

the σ from 120 challenges, which gives σ = 521. The results shown in Figure 3.15 indicate

that the inter-FHD lower bound prediction is well matched with the measured data, and the

predictions with a ±15% variation of the σ are also presented. Figure 3.15 also shows that
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Figure 3.13: Strong UNBIAS PUF intra-FHD predictions of bit5 and bit10 of 11 FPGAs. bit5

has much larger intra-FHD because its bin width is smaller.

bit10 should be a proper inspection bit because the intra-FHD is low and the inter-FHD is

close to 45%

3.5.3 Uniqueness and Reliability Evaluation

For the weak UNBIAS PUF, the results of inter-FHD and intra-FHD with different inspection

bit selections are shown in Figure 3.14. As we can see from the figure, using bits closer to

the MSB gives low intra-FHD but also low inter-FHD. This verifies the fact that the delay

paths are biased if no physical implementation constraints are imposed. On the other hand,

using bits closer to the LSB gives 50% on both intra-FHD and inter-FHD because of the

measurement noise. As predicted, the best inspection location appears at bit14 with 47.1%

inter-FHD and 2.4% intra-FHD. The results also indicate that the systematic variation is

mitigated because no constraints are imposed on the locations of the ROs.

For the strong UNBIAS PUF, similar trends are shown in Figure 3.15. As predicted, the

best inspection location appears at bit10 with 45.7% inter-FHD and 5.1% intra-FHD.

Table 3.1 shows comparison results with previous work. With conventional Arbiter PUF

(APUF) shown in the second column, the results from [37] show that the circuit is essentially

a constant number generator with very little inter-FHD. The third column shows the 3-1

double Arbiter PUF with XORs [40], where symmetric layout and high hardware cost from
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Figure 3.14: Inter-, intra-FHD, and inter-FHD prediction using σ = 9721 with different

inspection bit selections of the weak UNBIAS PUF.

Figure 3.15: Inter-, intra-FHD, and inter-FHD prediction using σ = 521 with different

inspection bit selections of the strong UNBIAS PUF.

the duplicated circuits are required. The inter-FHD is close to 50% but the intra-FHD is

high due to the XORs. The fourth column shows the results from Path Delay Line (PDL)

PUF [33]. Symmetric PDL and delay characterization for each CRP are required, which

can cause scalability issues. The last column shows the proposed strong UNBIAS PUF. Its

behavior is unique and stable, and no symmetric layout or high characterization for each

CRP are required. As the number of path configurations increases or with faster system

clock, the ROs inserted could be reduced depending on the design environment.
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Table 3.1: Comparison between previous Arbiter PUFs and strong UNBIAS PUF

APUF

[37]

XOR

[40]

PDL

[33]

UNBIAS

PUF

inter-FHD 7.2% 50.6% 45.25% 45.7%

intra-FHD 0.24% 11.8% 4.1% 5.1%

Symm. Layout No Yes Yes No

Characterization No No Yes No

Hardware Overhead No >200% PDL RO

3.5.4 Temperature Variation

For temperature variation, we compare the intra-FHD at 20◦C and between 20◦C and 75◦C,

which is the reliability of the PUF if it is enrolled at 20◦C but verified at 75◦C.

Figure 3.16 shows the intra-FHD weak UNBIAS PUF using bit14 as the inspection bit.

The figure shows that for most PUFs, the intra-FHD at the extreme temperature is less than

15% except for two PUFs with about 18%. The instability of the weak UNBIAS PUF is

relatively large and similar to the results presented in [42] for the standard RO PUF.

Figure 3.16: Weak UNBIAS PUF intra-FHD.

For the strong UNBIAS PUF, we use bit10 as the inspection bit for the measurement.

The results are presented in Figure 3.17. The averaged intra-FHD at high temperature is

about 8% and the worst case is still less than 10%, which is within conventional ECC margin

with error reduction techniques for PUFs [46,47]. One possible explanation of smaller intra-
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FHD for the strong UNBIAS PUF is that with multiple RO delay units, the overall delay

variation is canceled out, where for the weak UNBIAS PUF, the variation of each RO is

directly compared.

Figure 3.17: Strong UNBIAS PUF intra-FHD.

3.6 Conclusions

The proposed UNBIAS PUF effectively reduces PUF implementation efforts by mitigating

the impact of biased delay paths and metastability issues. Without complex post-layout

analysis or hand-crafted physical design effort, the proposed measurement can still extract

local device randomness. The inspection bit can be determined efficiently from the intra-

FHD and inter-FHD prediction models.

Two UNBIAS PUFs, a weak and a strong PUF, are implemented on 11 FPGAs without

imposing any physical layout constraints. Experimental results show that the intra-FHD of

the strong UNBIAS PUF is 5.1% and the inter-FHD is 45.7%, and the prediction models

are closely fitted to the measured data for both UNBIAS PUFs. The intra-FHD of the

strong UNBIAS PUF at high temperature is about 8%, which is still within the margin of

conventional ECC techniques. The fact that the proposed scheme is immune to physical im-

plementation bias would allow the UNBIAS PUF to be integrated in a high-level description

of the design, such as during RTL design.
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CHAPTER 4

LEDPUF: Stability-Guaranteed Physical Unclonable

Functions through Locally Enhanced Defectivity

Instability has been an Achilles heel for physical unclonable functions (PUF) requiring com-

plex error correction or other stability enhancement approaches. This instability originates

from parametric nature of variations leveraged as a source of randomness, which constraints

PUF from being put in widespread practical use. In this chapter, we propose several weak

PUFs and strong PUFs that are completely stable with 0% intra-distance. These PUFs are

called Locally Enhanced Defectivity Physical Unclonable Function (LEDPUF). A LEDPUF

is a pure functional PUF which eliminates the instability of conventional parametric PUFs,

therefore no helper data, fuzzy comparator, or any kinds of correction schemes are required.

We propose two sources of randomness for LEDPUFs. The first is to use the Directed

Self Assembly (DSA) process to form random connections that are permanently closed or

opened. The weak DSA LEDPUF is constructed by forming arrays of DSA random connec-

tions, and the strong DSA LEDPUF is implemented by using the weak LEDPUF as the key

of a keyed-hash message authentication code (HMAC). Our simulation and statistical results

show that the entropy of the weak LEDPUF bits is close to ideal, and the inter-distances

of both weak and strong LEDPUFs are about 50%, which means that these LEDPUFs are

not only stable but also unique. The second source of randomness is extracted using two

random gate oxide breakdown mechanisms: plasma induced damage during semiconductor

manufacturing and voltage stressed damage post manufacturing. These gate oxide break-

down LEDPUFs can be easily implemented in commercial silicon processes without extra

cost on PUF manufacturing and design, and they are stable and resistant to physical at-

tacks. We fabricated bit generation units for the stable PUFs on 99 testchips with 65nm
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CMOS bulk technology. Measurement results show that the plasma induced breakdown can

generate completely stable responses for all 2871 bits (29 bits from each of the testchip) and

significant area reduction compared with SRAM PUF can be achieved by eliminating the

error correction code (ECC) hardware implementation. For the voltage stressed breakdown,

the area cost is further reduced, and its 0.12% bit error rate at a worst case corner can be

effectively accommodated by taking the majority vote from multiple measurements without

ECC. We show that the responses of gate oxide breakdown PUFs are unique. In addition,

we analyze the data of our testchips and show through various statistical distance measures

that the bits of our fabricated PUFs are independent.

4.1 Introduction

A Physical Unclonable Function (PUF) is a small piece of circuitry such that its behavior,

or Challenge Response Pair (CRP) [3], is uniquely defined and it is hard to be predicted and

replicated because of the intrinsic random physical nature and the uncontrollability of process

variations. As a security primitive, PUF can enable low overhead hardware identification,

tracing, and authentication during the global manufacturing chain. The first PUF was

introduced more than a decade ago [9]. Since then, many silicon PUF implementations have

been proposed, such as Arbiter PUF [10], Ring Oscillator (RO) PUF [11], SRAM PUF [12],

and many other variations. However, since the key commonality between all current silicon

PUF implementations is their use of parametric manufacturing variations as the source of

randomness, there exist several limitations that can cost expensive implementation overhead.

4.1.1 Limitations of Parametric PUFs

4.1.1.1 Random Local Variation Extraction

One of the major concerns of parametric PUFs is that local variation should be the only

entropy source for these PUFs [31]. However, from our experiments on a large silicon data set

[23], only 13% of total variation is random local variation, which means that most variation is
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coming from global or spatial variation. Any attempt to use global or spatial variation as the

source of randomness can make them vulnerable to a class of process side channel attacks. For

instance, two PUFs on the same (X,Y) location on different wafers are highly correlated (due

to large wafer-level systematics present in most modern fabrication processes). As a result,

a few sacrificial wafers can aid in developing a relatively straightforward side channel attack.

We tested this side channel attack on silicon RO PUF measurements in 65nm technology

across 300 wafers. Figure 4.1 shows that the inter-distance [31] on the same (X,Y) is much

smaller than the inter-distance across all PUFs. Therefore, an adversary with possession of

a reference PUF, which is fabricated at the same (X,Y) location as the target PUF, would

have a higher probability of guessing the correct answer than random guessing. The radial

nature of systematic across wafer variation [23] means that just a few reference PUFs drawn

carefully may be sufficient for attackers instead of keeping full sacrificial wafers.

Figure 4.1: The inter-distance of PUFs from same (X,Y) location on different wafers is much

smaller than that of across all PUFs, which demonstrates a possible side channel attack.

4.1.1.2 Measurement Noise

Measurement noise could be another big issue for parametric PUFs and it needs to be ac-

counted for carefully. For instance, metastability of the arbiter circuit for Arbiter PUFs and

accumulated jitter in RO PUFs can be sources of measurement noises. For weak PUF mea-

surement, we evaluate the intra-distance [31] of SRAM PUFs using fifteen commercial 45nm

SOI test chips, where each consists 176kB data memory. The power-up state is measured 10
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times during an 8-hour period, and the mean of intra-distance distribution is 2.57%. Since

the experiment is done in room temperature with exactly same settings, the difference is

essentially contributed by the measurement noise.

4.1.1.3 Environmental fluctuations and wearout

Existing silicon PUFs are in nature susceptible to environmental fluctuations [48] and wearout

[49]. To account for the instability issue, techniques such as error correction code (ECC),

helper data or fuzzy comparator must be applied. A possible worst case scenario is that

when the environmental factors change significantly but yet remain constant. For instance,

the PUF is enrolled at 20C and is verified at 80C. In this case, a fuzzy extraction process

may not be able to recover the initial PUF response, even for multiple samples of the PUF.

4.1.2 Techniques to Improve Parametric PUF Quality

A variety of techniques have been intensively studied over the years to extract random local

variations or to make a PUF more stable and reliable. A Non-Volatile Memory (NVM) based

PUF without helper data is presented in [50]. However, the PUF comes with hardware and

calibration overhead, and the results of uniqueness and entropy analysis are missing. In [15],

the local randomness is distilled by modeling and subtracting the systematic variation. A

similar technique is to subtract the averaged frequency from multiple measurements to reveal

the true local random variation [51]. However, the calculation and information storage

requirement comes with the cost of addition latency and hardware. Taking the majority

vote [52] or finding stable responses [34] are possible techniques to eliminate the measurement

noise, however, at the cost of large latency or reduced number of challenges. Other complex

implementations have been proposed to mitigate stability issues, and they often induce

lower hardware efficiency [31], additional circuit complexity [28], or making the PUF more

susceptible to attacks [53]. Also, to protect PUFs from the worst case scenario as described

creates a huge overhead as it requires to employ very strong ECC [54].
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4.1.3 The LEDPUF

The issues of parametric PUFs, such as the described instability, wearout, measurement

noise, limited local variation, and limited side channel attack resiliency, clearly motivate the

need to design PUFs that do not rely on parametric performance variations as the entropy

source. In this chapter we propose a weak and a strong LEDPUF.

Rather than comparing parameter deviations, the response of an LEDPUF is stability-

guaranteed because it depends on permanent randomness generated in (1) Directed Self

Assembly (DSA) process, which is highly compatible with existing CMOS technology and is

expected to be used in manufacturing in the near future [55], or (2) plasma induced oxide

breakdown and the voltage stressed oxide breakdown.

Compared to similar parametric PUFs such as hardware obfuscation [56] or digital

PUFs [57], LEDPUF is completely stable and less susceptible to side channel attacks or

model building attacks. The proposed LEDPUFs are also a functional PUFs where the logic

function itself is the signature and the strong LEDPUF can generate a variety of challenge-

response pairs as needed. The Boolean nature of the response without any parametric de-

pendence means that LEDPUF is not only immune to measurement noise and wearout, but

also offers a greater level of reliability compared to existing PUFs as the output is resistant

to changes in the environmental factors.

The contributions of this chapter are:

• The first stability-guaranteed silicon PUFs through locally enhanced defectivity are

proposed.

• Detailed constructions of the weak LEDPUF using random DSA connections are pre-

sented. It is the first weak PUF with 0% intra-distance without using any stability

enhancement techniques.

• The weak DSA LEDPUF with 0% intra-distance enables the construction of the strong

LEDPUF based on cryptographic hash functions.
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• The simulation statistics and entropy calculation are presented. The results show that

the proposed LEDPUFs can generate unique responses and their behaviors are hard

to predict.

• The plasma induced oxide breakdown and the voltage stressed oxide breakdown are

proposed to construct stable LEDPUFs. The oxide breakdown PUFs are resistant to

invasive attacks such as imaging attacks.

• Test structures violating antenna rules are fabricated with 65nm CMOS bulk technol-

ogy. Measured results from 99 testchips show that the responses are highly stable across

combinations of voltage (0.8V, 1.0V, 1.2V) and temperature variations (25°C, 100°C).

Compared to a practical SRAM PUF, significant area reduction can be achieved by

eliminating ECC implementation for the highly stable responses.

• We analyze the data from these testchips and show based on various statistical distance

measures that pairs of bits with the same antenna ratio as well as bits that are located

next to each other are effectively statistically independent.

4.2 LEDPUF construction through DSA

4.2.1 DSA Randomness Extraction

1 Self-assembly is a mechanism that describes block copolymers (BCP) composed of immisci-

ble blocks phase-separate into certain structures [58]. The guiding templates, which are used

to guide the self-assembly process [59], can be lithographically-printed trenches (Graphoepi-

taxy) or chemically-treated surfaces (Chemoepitaxy). During the graphoepitaxy process for

contact or via holes, the guiding templates are first lithographically printed, then the sur-

face is spin-coated with the BCP solution. The phase separation occurs during the thermal

annealing, and with a particular BCP and surface treatment of substrate [60], cylinders are

formed of one block in a matrix of the other block [61].

1I would like to express my appreciation to Dr. Andres Torres at Mentor Graphics for his support on the
DSA simulator.
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In case of a diblock copolymer made of two blocks, say A and B: at equilibrium, the

microphase separation is established by an energy balance between the stretching energy

for the polymer chains and the energy of interactions at the interface between A and B

microdomains [62]. Thermal equilibrium is achieved when the free energy is minimized, and

the minimum energy state strongly depends on the level of confinement achieved by the

layout of guiding templates. In other words, the size, shape, and critical dimension (CD) of

the guiding template can greatly affect the DSA defect density [63–65].

For bigger-sized templates, it becomes energetically less expensive to induce a defect

than to achieve a defect-free energy minimization [64, 66, 67]. Also, with less confinement

forces from the guiding template due to its large size, random interactions from thermal

fluctuation [68] or initial kinetics of collective density and state fluctuations [69] begin to

dominate the assembly process. Therefore, final assembly results can be random by designing

guiding templates that are large enough to cause random assembly errors even if there

are no lithographic variations. Figure 4.2 shows three simulation results of the same large

guiding template with an existing DSA simulator [70], where the model of the PS-b-PMMA

copolymer has been validated in [71]. The three layers inside the polygonal guiding template

are the top, middle, and bottom layers of a via. If a cylindrical via hole is formed correctly,

the three layers should be three overlapped concentric circles. However, for the large guiding

template, random arrangement with different orientations begin to occur. In other words,

the randomness of DSA is confined within predetermined local areas only by deliberately

designing ”bad” guiding templates.

Figure 4.2: Random via formations with a same large guiding template.
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4.2.1.1 Hard Defective Connection Formation

We leverage the randomness extracted from DSA to form randomly assembled connections,

and these connections are then used to fabricate LEDPUF. Though in conventional DSA,

the goal of the guiding template design is to achieve high confinement and avoid regions of

random phase transitions, we use the same theory but to enhance randomness in assembly.

To construct a DSA random hard defective connection, we configure the size of the guiding

template so that two vias are formed with a certain probability that they are connected

permanently. A DSA hard defective connection is composed of the two vias along with the

connection.

In our experiment, each simulation contains three guiding templates with a same shape,

and two vias are formed in each of the guiding templates. If the via pair in a same guiding

template is merged, the DSA hard defective connection is in closed state; otherwise, the

connection is in opened state. The states of the three connections in a simulation are

independent of each other as expected in real DSA process [71]. In our statistical analysis,

an open state is represented by a logic “1”, and a closed state is represented by a logic “0”.

500 simulation were performed in our experiments, so 1500 bits of raw data is obtained from

the simulation. Based on our analysis, the empirical entropy of triples of bits is only 0.0063

bits smaller than the entropy of independent triple of bits. Examples of a simulation result

in 2D and 3D views are shown in Figure 4.3 (a) and (b), respectively. In the 2D view, the

rectangular shapes with rounding corners are the guiding templates, and the shapes inside of

the guiding templates are the vias. If the via pair in a same guiding template is merged, the

DSA hard defective connection is formed as shown in Figure 4.3 (c), and it is in permanent

closed state; otherwise, the DSA hard defective connection is in permanent opened state as

shown in Figure 4.3 (d). In Figure 4.3 (a) and (b), two hard defective connections are in

opened state, and one connection is in closed state.
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Figure 4.3: (a) 2D view of 3 DSA hard defective connections on three pairs of vias. (b) 3D

view of 3 DSA hard defective connections on three pairs of vias. The connections on the top

and bottom are in permanent opened state; the middle one is in permanent closed state. (c)

Vias are partialy merged, so the DSA hard defective connection is in closed state. (d) Vias

are not merged, so the DSA hard defective connection is in opened state.

4.2.2 DSA LEDPUF Construction

4.2.2.1 Weak LEDPUF Construction

The proposed weak LEDPUF is composed of arrays of SSUs. Each SSU is constructed from

a DSA defective connection, which can be considered as random switches with permanent

states that determine the unique and stable function of the circuit. Figure 4.4 (a) shows the

implementation of a SSU. Two ends of the DSA connection are connected to VDD and GND

through opposite switches. Figure 4.4 (b) shows the abstraction of a SSU. In standby mode

or before the evaluation, the evaluation signal EVA is low and the output is zero. During

evaluation mode, EVA becomes high, and the output is either one or zero depending on the

permanent state of the DSA connection. If the DSA connection is closed, the output is one;

otherwise, the output is zero.

The proposed weak LEDPUF is constructed by arranging the SSUs in forms of arrays.

Figure 4.5 illustrates a weak LEDPUF with n rows and m columns, where the number of

SSUs is nm, and the number of CRPs is n. Since only one of the rows is being evaluated

at a time, a one-hot decoder is used so that only one bit of the EVA vector is logic 1. The
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Figure 4.4: (a) Stable signal unit implementation. When EVA is high, the output is either

one or zero permanently depending on the state of the DSA via. (b) Abstraction of a SSU.

challenge fed into the decoder is a log(n)-bit input, and the response is a m-bit output.

Figure 4.5: A weak LEDPUF with n challenges and m-bit response. Only one bit of the

EVA vector is logic 1 at a time.

Compared with existing weak SRAM PUFs, the weak LEDPUF has several evident

advantages:

• It is completely stable, so it has no area or latency overhead. To generate a bit

response, the weak LEDPUF requires only one SSU and a transistor, or 3 transistors

equivalently, as for a standard SRAM cell, 6 transistors are required. Once the state

of the DSA via is determined, the output is fixed permanently, so no additional ECC,

fuzzy extraction, or helper data is needed. As stated in [46], for a SRAM PUF to

generate a 128-bit response, more than 4k SRAM cells are needed under a condition

with 15% bit error probability. Therefore, the total number of transistors needed for
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SRAM PUF to generate a 128-bit response would be 24k, where for the weak LEDPUF,

only 384 transistors are needed, which is more than 600x less than a SRAM PUF, thus

the area is also much smaller even assuming that the hardware cost of the peripheral

circuits are similar.

• In addition to model building attacks [29], the weak LEDPUF is also more resistant to

existing attacks to SRAM PUFs, such as laser stimulation [72] or Photonic Emission

Analysis (PEA) [73]. The laser stimulation attack focuses on retrieving the on/off

state of transistors, but for weak LEDPUF, the states of the transistors, which depend

on the EVA signal, do not reveal secret information. The PEA attack does not work

effectively because for each SSU, the source voltage (VDD) of the NMOS is always

higher than the drain voltage, and the PMOS at the output will not stay in saturation

region since the output will be pulled down even if the DSA connection is formed.

When using a weak PUF for a CRP authentication scheme, it is meaningful to consider

the chance of guessing the response. The min-entropy [74]

Hmin (X) = − log2

(
max
i
pi

)
(4.1)

is a means of quantifying the chance of guessing the response in a single round. It corresponds

to the exponent of the probability of the most probable response, assuming that each element

is identically and independently distributed. Based on our own experimental results for the

formation of connections we evaluate the probability mass function of a bit generated by a

LEDPUF

pX (1) = 0.4626 pX (0) = 0.5374. (4.2)

The min-entropy of the empirical probability mass function is

Hmin (X) = 0.8962 (4.3)

whereas the maximal min-entropy, which is achieved by a fair coin toss, equals to 1. Hence,

when the response consists of m bits, the probability of guessing the response of the LEDPUF

is equal to 2−0.8962m. Essentially, it means that when the response of a LEDPUF is 1.11m
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bits long, the probability of guessing the response is equal to 2−m which is the probability

of guessing the result of m independent fair coin tosses.

Another possible attack is a dictionary attack in which the attacker guesses the most

probable responses in an ascending order. The number of attempts it takes to find the

response is coined guesswork [75] which we denote by G. For a stream of m bits which are

drawn i.i.d the expected guesswork is lower bounded by [76]

E {G} ≥ 1

4
2mHSh(x) (4.4)

where HSh (x) =
∑

i−Pi log2 (pi) is the Shannon entropy. Assigning (5.23) to the Shannon

entropy we get that

E {G} ≥ 1

4
20.996m. (4.5)

Further, the exponential growth rate of the expected guesswork (as a function of m) scales

according to the Renyi entropy [75] with parameter α = 1
2

lim
m→∞

1

m
log2E {G} = H1/2 (X) = 2 · log2

(∑
i

p
1/2
i

)
. (4.6)

Assigning the empirical probability (5.23) to (4.6), gives a growth rate that equals to 0.998,

whereas the maximal growth rate which is achieved by a fair coin toss, is again equal to 1.

Therefore, when the response is 1.002m bits long, the guesswork scaling behavior is equal to

the scaling behavior of m independent fair coin tosses.

Interestingly, the loss induced by the fact that the bits are not drawn uniformly, is much

higher when considering only a single guess. On the other hand, when considering multiple

guesses, the loss decreases significantly. It is also worth mentioning that even though the

loss for a single guess is not negligible, for large m the chance of guessing the response is

still very low.

Based on the empirical results (5.23) we deduce that the bits are drawn according to a

biased probability function. However, the probability mass function can always be adjusted

by changing slightly the size of the guiding template. Another possibility to balance out the

probability, is by using a randomness extractor [77], which outputs a shorter stream of bits

that correspond to independent fair coin tosses.
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4.2.2.2 Strong LEDPUF Construction

One of the shortcomings of using memory-based PUFs for CRPs, is the scaling of the hard-

ware size as a function of the number of CRPs [78]. In general, each channel response pair

requires a different set of circuits, and as a result the hardware size is proportional to the

number of CRPs. On the other hand for strong PUFs the hardware size scales logarithmically

as a function of the number of CRPs.

In order to create a strong LEDPUF we consider a keyed hash function along with a

weak LEDPUF. The weak LEDPUF response is used as a key for the keyed hash function.

The challenges serve as the input to the hash function, whereas the response is the output

of the keyed hash function. Figure 4.6 presents a strong LEFPUF based on a keyed hash

function and on a weak LEDPUF.

It is important that the keyed hash function uses the key in such a way that does not

enable the attacker to predict responses to unobserved challenges based on the observed ones.

Therefore, concatenating the key directly to the challenge, which is vulnerable to extension

or collision attacks, is not a good realization of the strong LEDPUF.

We create strong LEDPUF by using a weak LEDPUF as a key for a keyed-hash message

authentication code (HMAC) [79]. Any cryptographic hash function, such as SHA-1 or SHA-

2 can be used for HMAC. It is worth mentioning that in [80] the authors also propose the

use of PUFs with an HMAC in a somewhat similar manner; however, they do not take into

consideration the overhead incurred by the instability of parametric PUFs.

To give a rough estimation of the hardware implementation cost of the strong LEDPUF,

for a HMAC-SHA1, the implementation requires about 30k gates [81], and just the ECC

part, BCH for example, of a parametric PUF would require same order of gates [54].

The level of security of a strong LEDPUF depends on the underlying hash function and

the quality of the weak LEDPUF that serves as a key, whereas weak LEDPUFs rely solely

on the randomness in the manufacturing process.
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Figure 4.6: A strong LEDPUF based on a keyed hash function (HMAC or NMAC) and a

weak LEDPUF.

Table 4.1: Fractional Inter-distance of the LEDPUF

Response Bits Mean Standard Deviation

Weak LEDPUF 512 0.503 0.02

Strong LEDPUF 256 0.500 0.03

4.2.3 Experimental Results

4.2.3.1 Uniqueness Evaluation

For the weak LEDPUF, the uniqueness is evaluated by calculating the fractional inter-

distance [31] of 1000 weak LEDPUFs, each producing 512 bits of response. The distribution

is with mean=0.503 and standard deviation=0.02 as shown in the second row of Table 4.1.

Since the variance value is proportional to the inverse of the length of the response, as the

length of the response increases the variance value goes to zero while the mean value goes

to 0.505.

For the strong LEDPUF, the structure used in our experiment is based on the NMAC

structure, and the results are obtained from simulations. Each strong LEDPUF consists of

a weak LEDPUF that provides 2x256 bits for the two initial vectors (IV) of the nested hash,

and each response is a 256-bit stream because SHA-256 is used in the construction. The

same challenge is given to 1000 strong LEDPUFs, and the inter-distance of the responses is

a distribution with mean=0.500 and standard deviation=0.03 as shown in the third row of

Table 4.1.
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4.2.3.2 Stability-Guaranteed Weak LEDPUF Requirement

To construct a strong LEDPUF, only the weak LEDPUF can be used because of its 0%

intra-distance. If other existing weak PUFs with even small intra-distance are used, the

intra-distance of the strong LEDPUF would be increased dramatically due to the avalanche

effect. In other words, even a single bit flip of the weak PUF can completely change the

response of the strong LEDPUF. Figure 4.7 (a) shows that the intra-distance of the strong

LEDPUF jumps from 0% to 50% as the number of bit flips increases from zero to one.

Figure 4.7 (b) shows how the intra-distance of the strong LEDPUF rises as the intra-

distance of the weak PUF increases in logarithmic scale. Since 2x256 bits of the IVs are from

the weak PUF, for a weak PUF with 0.1% intra-distance, the probability that it generates a

same 512-bit response twice is about 60%, which translates to a roughly 20% intra-distance

of the strong LEDPUF. Therefore, only the weak LEDPUF with a guaranteed 0% intra-

distance can be used for the IV generation.

Figure 4.7: (a) A single bit flip from the weak PUF can induce a completely different response

of the strong LEDPUF due to the avalanche effect of the hash function. (b) Intra-distance

of the strong LEDPUF rises dramatically if other weak PUFs with small intra-distances are

used in the strong LEDPUF construction.
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4.3 LEDPUF construction through gate oxide breakdown

In this section, we first introduce the gate oxide breakdown and describe two approaches

exploiting the gate oxide breakdown as randomness sources of stable PUFs, followed by

PUF bit generation and attack resilience analysis.

4.3.1 Gate Oxide Breakdown

The gate oxide breakdown is detrimental to metal-oxide-semiconductor (MOS) devices be-

cause it can cause significant drifts of transistor parameters. The breakdown can be catego-

rized into two types: soft breakdown and hard breakdown, where both mechanisms introduce

significant sudden increase of the leakage current [82]. For soft breakdown, the conducting

path from gate to the substrate is formed by the charged traps in the gate oxide. Once

there is conduction, new traps begin to accumulate due to thermal damage, which in turn

increases the conductance. The positive feedback eventually leads to thermal runway and

oxide is physically melted in the breakdown spot. This type of breakdown is called hard

breakdown. The gate leakage current of an oxide with breakdown can be 100X larger than

the leakage current of an oxide without breakdown [83].

4.3.1.1 Plasma Induced Gate Oxide Breakdown

During silicon wafer fabrication, radio frequency (RF) plasma processes are widely used

for etching, photoresist stripping, or ion implantation [84]. In the plasma ambient, metal

segments, VIAs, or polysilicon electrodes, which are the antenna segments, can be electrically

charged by ions or electrons when the currents produced from the ion and electron do not

cancel out with each other through each RF cycle [85], and therefore produce the antenna

voltage. For the antenna segments connected to the gate inputs, the resulting electrical stress

from the antennas can potentially damage the underlying gate oxide and create a conducting

path from the gate to the substrate. The phenomenon is called plasma induced gate oxide

breakdown, or the antenna effect.
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Though the maximum voltage rise over half of the RF period can be modeled [84], the

actual voltage still cannot be predicted because the exact motion and amounts of ions and

electrons collected by the antenna segment are random and unpredictable. The higher the

gate voltage is, the higher the probability for the gate oxide breakdown to occur, thus causing

a device to fail. Also, systematic plasma variation across wafer does not have much impact

on the local randomness because the variation is negligible to a die [84].

To avoid the antenna effect, design rules of the antenna ratio (AR) [86] as shown in

equation (4.7) must be strictly followed during fabrication [87]. Practical design rules of AR

range from 100 to 5000 depending on the process details [86].

AR =
exposed antenna area

gate oxide area
(4.7)

Since both soft breakdown and hard breakdown can induce about 100X or more leakage

current than a good oxide, they are both considered as breakdown in our proposed stable PUF

construction. In [88], a device is considered as a failure if the gate leakage current is larger

than 1nA, and based on the criterion the author proposed a failure probability prediction

formula. However, the process parameters of our testchip fabrication are unknown prior

manufacturing therefore we implemented a variety of antenna ratios to measure breakdown

probabilities, which are presented in Section 4.3.2.2.

Many techniques have been proposed to solve antenna effect, such as jumper insertion [89]

or antenna-aware routing [90]. However, while foundries try to avoid antenna effect during

manufacturing, we exploit the uncontrollable physical phenomena as another randomness

source of a stable PUF.

4.3.1.2 Voltage Stressed Gate Oxide Breakdown

The purpose of antenna rules is to protect all transistors from having deviated parameters,

for example 20% gate leakage increase at 1.4xVDD [91], which could be harmful for a normal

fabrication but still far from causing a real breakdown. Therefore, to introduce a noticeable

plasma induced breakdown (100X increase of leakage current) with 50% probability of a

64



transistor, an AR larger than 1000X antenna rule may be required, which can result in large

area overhead.

To avoid using large antenna segments, we propose to induce gate oxide breakdown post

fabrication by applying high voltage stress to the gate of a transistor that essentially mimics

the charge accumulation during the plasma process. By voltage stressing the gate terminal of

a transistor, oxide breakdown can be introduced with small AR or even without violating the

antenna rules. The advantage of voltage stressed induced breakdown is that large antenna

segments are not required, while the uncontrollable process variation of gate oxide thickness

is magnified to achieve a breakdown probability close to 50%, which is desirable as a source

of randomness for PUFs. On the other hand, such a PUF construction requires an additional

one-time stress step post manufacturing (or during PUF enrollment). Please note that our

proposed voltage stressed gate oxide breakdown mechanism is different from the Erasable

PUF proposed in [92], where oxide breakdown is introduced to erase targeted bit cells instead

of being used as a stable source of randomness.

4.3.1.3 Stable Signal Unit Construction

The permanent gate oxide breakdown mechanism, which can be caused by plasma damage

or voltage stressed damage, is used to construct a Stable Signal Unit (SSU) as a source of

permanent defectivity. A SSU is a p-MOS transistor designed to violate antenna rules, and

its drain, source, and bulk terminals are connected to capture the effect of the gate oxide

breakdown at all possible locations. Similar to a gate oxide breakdown model given in [93],

the SSU is attached in series to a precision resistor as given in Fig. 4.8, where Fig. 4.8 (a)

shows a SSU without oxide breakdown and Fig. 4.8 (b) shows a SSU with oxide breakdown.

If no breakdown occurs as depicted in Fig. 4.8 (a), the device is essentially a capacitor or

a resistor much larger than the precision resistor, thus the output voltage would be lower

than 50% VDD when the evaluation signal EVA is VDD; if a breakdown happens, as shown

in Fig. 4.8 (b), the device can be seen as resistors much smaller than the precision resistor,

thus the output voltage would be higher than 50% VDD when EVA is VDD. The resistance
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of the precision resistor (10MΩ) is determined by actual measurements from 99 testchips as

described in Section 4.3.2.2. Different from the bit generation units in [94], our SSU does

not suffer from potential response time latency due to the limited leakage current when no

breakdown occurs.

Figure 4.8: Schematic of antenna SSU attached to a precision resistor.

4.3.1.4 Attack Resilience

It is worth mentioning that the SSU is more secure than an antifuse cell because an antifuse

cell is programmed with hard breakdown only, while the output of the SSU is decided by

both soft breakdown and hard breakdown, and a soft breakdown is much harder to detect

than a hard breakdown (albeit possible for a very resourceful attacker). For probing attack,

the efficiency is limited by the mechanical constraints. For imaging attacks, such as Scanning

Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), or Electron Beam

Induced Currents (EBIC), it is difficult to efficiently identify a soft breakdown for several

reasons:

1. It is difficult to detect a soft breakdown because its physical appearance is very similar

to a fresh gate oxide without any visible holes. Furthermore, SEM has limited ability to

observe traps inside the oxide, therefore it is difficult to see if a conducting path formed

by traps, or a soft breakdown, exists. It is also challenging for EBIC to identify a soft

breakdown because the limited current of a soft breakdown can induce measurement

noises [95], and the throughput of the electron beam is low.

2. It is difficult to observe a soft breakdown from a top-down or cross-section TEM because

the image does not effectively tell the depth of the traps [96]. In addition, to obtain a

66



cross-section TEM, the chip has to be vertically cut into thin films, which will destroy

the neighboring SSUs. Therefore, even if a hard breakdown information might be

retrieved from a cross-section view, the attacker cannot obtain the secrets of all SSUs

of a same PUF because of the destructive observation.

4.3.2 Testchip Fabrication and Measurement Results

4.3.2.1 SSU Implementations

The proposed SSUs are implemented and fabricated on 99 testchips with commercial 65nm

GP 1P9M 6X1Z1U CMOS bulk technology with 1V nominal voltage. The smallest gate

size (0.0072µm2) of the technology is used for all the SSUs. In our testchips the fabricated

SSUs intentionally violate antenna rules by a few hundred times to a few thousand times on

different layers.

On each chip, 29 SSUs are implemented with 17 different ARs, therefore the total number

of SSU implementations is 2871 from 99 chips. For each of the SSUs, the cell area and

detailed antenna violation report are given in Table 4.2, where a zero indicates that there is

no antenna rule violation on such layer. The antenna rule violation reports are provided to

the foundry to skip such design rule checks without extra cost for the foundry. The M T,

V T, and P T structures test the effects of metal, VIA, and polysilicon layers from small AR

to large AR, respectively. For each of the M T, V T, and P T, two SSUs with same AR are

implemented, therefore 24 bits of responses are obtained from these SSUs on a chip. The

remaining five test structures are of various combinations of the violating layers, and one

SSU is implemented for each of the five test structures. In summary, on each chip, 29 bits

are measured, and 24 bits of them are obtained from the duplicated 12 structures of M T,

V T, and P T.
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Table 4.2: Cell area, accumulated areas of VIA, metal, polysilicon, and polysilicon perimeter

of SSUs fabricated. The numbers are in µm2. A zero indicates no antenna rule violation on

such layer.

Cell VIA Metal Poly Poly Perim. (µm)

M T1 36 0.87 1144.57 0.00 0.00

M T2 360 1.17 1468.57 0.00 0.00

M T3 1200 0.00 4398.88 0.00 0.00

M T4 4800 0.16 36781.89 0.00 0.00

V T1 2.4 0.87 1108.57 0.00 0.00

V T2 8 2.31 1108.57 0.00 0.00

V T3 90 15.27 1185.66 0.00 0.00

V T4 804 144.91 1895.05 0.00 0.00

P T1 4.8 1.26 1917.53 0.00 0.00

P T2 27 1.26 1917.53 18.17 55.59

P T3 203 1.26 1917.53 180.07 128.43

P T4 1800 1.26 1917.53 1800.07 222.46

Test1 804 1071.86 5631.11 0.00 0.00

Test2 4.7 1.86 0.00 0.00 0.00

Test3 80 0.26 299.20 0.00 0.00

Test4 60 20.84 318.78 28.07 83.81

Test5 118 54.40 617.25 56.39 164.72
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4.3.2.2 Breakdown Probability Evaluation

To determine the gate oxide breakdown of a SSU, we use Agilent 34411A Digital Multimeter

to measure the equivalent resistance Req of each SSU, and from the distribution of Req we

choose a proper precision resistor as shown in Fig. 4.8 to determine whether or not an

oxide breakdown has occurred. Fig. 4.9 shows Req distribution of a SSU implementation

(V T1) with plasma induced and voltage stressed breakdown on 99 chips in an increasing

order at 25°C, 1V. For both distributions, the Req of a SSU implementation without oxide

breakdown is at least 100X larger than a SSU with oxide breakdown. After voltage stress,

the Req are in general smaller and much more oxide breakdowns are introduced. The results

are similar for all SSUs. The large gap in the figure can be effectively exploited to generate

stable digital signals from SSUs. Therefore, we choose, according to the Req measurements,

a 10MΩ precision resistor to measure the gate oxide breakdown of each SSU.

Figure 4.9: The Req distribution of a SSU implementation (V T1) with plasma induced and

voltage stressed oxide damage on 99 chips at 25°C, 1V.

4.3.2.3 Plasma Induced Breakdown

For the plasma induced breakdown, the results of breakdown probabilities of SSU imple-

mentations on 99 chips are shown in Table 4.3. From the table we see that the breakdown

probability of each SSU after plasma induced oxide damage is well below 50%. The Test1 SSU
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implementation has the highest breakdown probability of 16%, which means the responses

of SSUs are highly biased. This is undesirable for its low randomness in each response bit.

Using larger AR to further increase the breakdown probability may not be a proper approach

due to large area overhead. Also, as seen from Table 4.2 and Table 4.3, the breakdown prob-

ability does not increase dramatically as the AR increases. Our results show that even when

the AR is more than 1000X larger than the antenna rule, the breakdown probability is still

much lower than 50%.

4.3.2.4 Voltage Stressed Breakdown

For the voltage stressed breakdown, we stress 24 SSUs (M T, V T, and P T groups) on each

testchip by applying 5.5V to the EVA for 10 seconds. The results of the stress are shown in

Table 4.3. From the table we can see that breakdown probabilities, which are only slightly

correlated with the ARs, are elevated to at least 50% even for the SSUs with the smallest

ARs. Different stress voltages have been tried in our experiments, but only when the voltage

is 5.5V will the breakdown probability be elevated to 50%. These results show that more

unbiased responses compared to plasma induced breakdown can be achieved by using small

SSUs such as V T1. Therefore, a SSU can be implemented with much smaller area, possibly

even without violating the antenna rule, than the plasma induced breakdown approach.

4.3.2.5 Stability Evaluation

To evaluate the stability of the SSUs, we measure all SSU responses from 99 chips at 6

corners: temperatures at 25°C and 100°C with ±20% voltage variation at 0.8V, 1V, and

1.2V.

4.3.2.6 Plasma Induced Breakdown

For the plasma induced breakdown, all SSUs from 99 chips (total 2871 bits generated) are

completely stable at all corners during multiple measurements. This can be explained by the

fact that the change of Req at different corners are limited. Fig. 4.10 shows the change of
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Table 4.3: Breakdown probability of 17 AR implementations on 99 testchips.

Plasma Induced Voltage Stressed

M T1 0.5% 57.6%

M T2 0.5% 51.5%

M T3 2.5% 57.1%

M T4 2.0% 51.0%

V T1 0.5% 50.0%

V T2 6.1% 54.0%

V T3 0.0% 64.7%

V T4 0.0% 58.6%

P T1 1.0% 50.5%

P T2 2.5% 51.5%

P T3 1.0% 58.6%

P T4 1.0% 60.0%

Test1 16.2% N/A

Test2 2.0% N/A

Test3 5.1% N/A

Test4 1.0% N/A

Test5 3.0% N/A
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Req of a SSU (Test1) under voltage and temperature variations. In Fig. 4.10 (a), the Req of

the SSU with breakdown is only a few KΩ and the changes under extreme temperature and

voltage variations are limited. On the other hand, Fig. 4.10 (b) shows a SSU without oxide

breakdown, where the Req remains at less than 45MΩ, which is still orders of magnitude

larger than the SSU with oxide breakdown.

Figure 4.10: Equivalent resistance under extreme voltage and temperature variations. (a)

SSU with oxide breakdown. (b) SSU without oxide breakdown.

4.3.2.7 Voltage Stressed Breakdown

Unlike the plasma induced breakdown, for the voltage stressed breakdown, an extremely

small portion of the SSUs are not completely stable. To quantize the results of stability

evaluation for the voltage stressed breakdown, each SSU is measured 10 times at each corner

and we define the responses measured at 25°C with 1V, where all responses are consistent,

as the reference responses. A SSU is unstable at a corner if at least one of its values from the

10 measurements is different from the reference response. We define bit error rate (BER) the

number of unstable bits divided by 2376, which is the total number of SSUs stressed (24 SSUs

on each of the 99 chips). Table 4.4 shows the BER at each corner. We found that at several

corners, 1 to 3 SSUs out of 2376 SSUs implemented are unstable for the voltage stressed

breakdown. Since most responses of unstable SSUs are still consistent with the reference

responses, instead of performing a ”afterburn” phase to all broken oxides, where additional

hardware and calibration are required [97], we take majority vote of multiple measurements
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Table 4.4: Bit Error Rates of 2376 SSUs of the voltage stressed breakdown at 6 corners.

Corners 0.8V 1V 1.2V

25°C 0.04% 0.00% 0.12%

100°C 0.08% 0.08% 0.08%

to effectively eliminate the erroneous responses.

4.3.2.8 Uniqueness Evaluation

The inter-Fractional Hamming Distance (FHD) [37] is calculated as the uniqueness evaluation

of SSUs. Consider the 24 voltage stressed SSUs on each chip as a 24-bit weak PUF [98], the

distribution of inter-FHD of 99 chips are presented in Fig. 4.11. The average of inter-FHD

is 51.7% and the standard deviation is 11.4%, where for an ideal Binomial distribution with

success probability P=0.5, the mean is 50% and the standard deviation is 10.2%. Please

note that the results of uniqueness evaluation are focused on the voltage stressed breakdown

SSUs because for the plasma induced breakdown SSUs, the responses are highly biased and

post processing would be required to extract randomness, for example using OR gates at the

outputs of multiple SSUs to generate an unbiased bit as explained in Section 4.3.3.1.

Figure 4.11: Inter-FHD distribution of voltage stressed SSUs on 99 chips overlaid with an

ideal Binomial distribution curve with success probability P=0.5.
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4.3.2.9 Statistical Analysis of the PUF Responses

In this section we provide a statistical analysis for the data of the fabricated SSUs after

voltage stressed oxide breakdown as presented in Section 4.3.2. We evaluate the statistical

dependence between pairs of bits using various statistical distance measures. We consider

pairs as we have only 99 bits per location, and so going beyond the pairwise probability mass

function can lead to more noisy and less reliable evaluation. We are interested in the level

of independence because the more independent the bits are, the more secure the PUF is.

Essentially, we use that data to evaluate the pairwise probability mass functions of bits

under the following two restrictions: The pairwise probability mass function of bits that have

the same antenna ratio; the pairwise probability mass function of bits that are located next

to each other. This in turn enables us to evaluate the statistical dependence of element that

are more likely to be statistically dependent, that is, statistical dependence due to similar

design rules as well statistical dependence between PUFs that are close together.

We calculate the distance between the evaluated probability mass function (i.e., PX,Y (x, y))

and an independent one with the same marginal probability mass functions (i.e., PX (x) ·

PY (y)) by assigning them to various statistical distance measures. This enables us to demon-

strate the level of independence between pairs of bits. The results are presented in Table 4.5

for the following statistical distance measures: The Kullback-Leibler (KL) divergence [99];

total variation distance (TVD) [100]; and guesswork (GW) [44].

Table 4.5 shows that the average statistical distance between PX,Y (x, y) and PX (x) ·

PY (y) is very small across measures, which indicates that this PUF response is very close to

being statistically independent.

4.3.3 Gate Oxide Breakdown PUF Implementations

4.3.3.1 Plasma Induced Breakdown PUF

Our measurement results show that the probability of plasma induced breakdown due to

antenna rule violation is much lower than the ideal 50%, which means that most responses
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Table 4.5: Statistical distances based on the collected data. In each entry the left side

represents the statistical distance of bits that are located next to each other, whereas the

right side represents the distance of bits that have the same antenna ratio.

Statistical Distance Max Min Mean

KL 0.11/0.057 0.0002/0.0001 0.022/0.015

TVD 0.19/0.13 0.009/0.007 0.07/0.05

GW 0.06/0.029 0.0001/0.00009 0.011/0.008

are zeroes. To reduce the bias, we propose to use OR gates at the output of SSUs as a more

area-efficient approach than using even larger antenna segments, which shows limited impact

on increasing the breakdown probability. Fig. 4.12 (a) shows an exemplary implementation

of plasma induced breakdown PUF. The 10MΩ precision resistor is shared between two SSUs,

where only one of EVA1 and EVA2 will be asserted. Please note that a precision resistor

can be shared by more than two SSUs but only one of the SSUs is asserted at a time. The

outputs of buffer gates are determined by the breakdown of the SSU.

Take Test3 as an example. When 11 Test3 SSUs are ORed together, the probability of

generating a zero is (1 − 5.1%)11 = 56%, and the area is 880µm2, which is still more area-

efficient than a practical SRAM PUF implementation where (511,19,119)-BCH is suggested

to correct 15% error probability at different corners [46]. For such SRAM PUF to generate

19 information bits, the estimated BCH implementation is 12000 XOR gates [54] or an area

of 54000µm2 for the 65nm technology we used. To generate the same number of 19 bits of

response with Test3, the estimated area is about 16720µm2. The comparison shows that the

SRAM PUF is more than 3X of size of the plasma induced breakdown PUF. In addition, the

ECC execution latency is eliminated for the plasma induced breakdown PUF.

4.3.3.2 Voltage Stressed Breakdown PUF

The probability of voltage stressed breakdown is much higher than the plasma induced break-

down, therefore no OR gates are needed to reduce the response bias, but a stress path for
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each SSU is required. Fig. 4.12 (b) shows an exemplary implementation of voltage stressed

breakdown PUF. A precision resistor is shared by 3 SSUs. Before response generation, the

PUF is stressed through the stress path and outputs of SSUs are connected to GND with all

EVA signals set to zero. Once SSUs are stressed, a normal voltage is applied to the stress

path and one of the EVAs is asserted at a time for evaluation. To generate a bit, approx-

imately 1 inverter and 4 transistors are needed, which translates to an area of only 4µm2

for 65nm technology. The PUF can be stressed on chip, for example with a charge pump

with an area overhead of 12200µm2 [101]. Therefore, to generate 19 bits of response, the

total area is approximately 12276µm2, which is about 30% smaller than the plasma induced

breakdown PUF. As the number of bits increases, the area reduction becomes more evident

since the charge pump is shared among multiple bits. The PUF can also be stressed from

outside of the chip to save even more area, but an antifuse cell may be needed at the stress

path. To stress the PUF, the antifuse cell has to be permanently programmed to closed

state. Therefore, if the antifuse cell is already in closed state before stress, it means that the

PUF has been contaminated and should be discarded. Please note that if the PUF is stressed

from outside of the chip, an attacker may destroy the PUF or introduce more breakdowns

by further stressing the PUF, but the PUF is not programmable or clonable because the

breakdown of each transistor cannot be controlled.

Figure 4.12: (a) Plasma induced breakdown PUF implementation. (b) Voltage stressed

breakdown PUF implementation.
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4.4 Conclusion

In this chapter we propose the first stability-guaranteed PUF that requires no stability en-

hancement techniques, where the source of randomness is extracted from (1) locally enhanced

DSA process and (2) gate oxide breakdown. Detailed constructions of two DSA LEDPUFs:

the weak DSA LEDPUF and the strong DSA LEDPUF, are presented. Inter-distance mea-

surements on the LEDPUFs show that both weak and strong LEDPUFs are ideally unique.

The area and latency of the weak LEDPUF is much smaller than existing weak PUFs be-

cause no error correcting schemes are needed. The strong LEDPUF provides large CRP

space because of its cryptographic hash based structure. The weak LEDPUF used in the

strong LEDPUF construction cannot be replaced by existing weak PUFs because an ab-

solute 0% intra-distance is required for the weak PUF to avoid the avalanche effect of the

strong LEDPUF. Furthermore, we quantify the level of security provided by weak LEDPUF

by calculating the expected guesswork resulting from weak LEDPUFs empirical probability

function; the loss compared to a fair coin toss is negligible.

We also implement highly stable PUFs exploiting uncontrollable plasma induced and

voltage stressed gate oxide damage. The proposed SSUs are fabricated and measured from

99 testchips. Measurement results show that the SSUs are highly stable, therefore significant

area reduction can be achieved by eliminating ECC implementation. We show that the

responses are unbiased and unique, and we analyze the data of our testchips using various

statistical distance measures to show that these bits are independent.
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CHAPTER 5

PUF Security Evaluation through Guesswork Analysis

1 In this chapter we develop a new unified framework for evaluating the security of PUFs,

based on password security, by using information theoretic tools of guesswork. The guesswork

model allows us to quantitatively compare, with a single unified metric, PUFs with varying

levels of stability, bias and available side information. In addition, it generalizes other

measures to evaluate the security level, such as min-entropy and mutual information. We

evaluate guesswork based security of some measured Static Random Access Memory (SRAM)

and Ring Oscillator PUFs as an example and compare them with LEDPUFs to show that

stability has a more severe impact on the PUF security than biased responses. Furthermore,

we find the guesswork of two new problems: guesswork under probability of attack failure,

and the guesswork of strong PUFs that are used for authentication.

5.1 Introduction

In order to impersonate the hardware, the PUF attacker needs to respond to a challenge

with a correct response (i.e., guess a secret). 2 Comprehensive security models for PUFs are

described in [102], including a precise identification of required PUF properties, such as in-

distinguishability and tamper-resilience. Though this specifies the security requirements, as

a ”checklist”, we believe that a more quantitative assessment of PUF security can be valuable

for both PUF designers and PUF users. In this chapter we do not study ”machine learning”

1This work is done in collaboration with Prof. Suhas Diggavi and Dr. Yair Yona and their contribution
is much appreciated.

2In this attacker model the adversary does not have access to the PUF, but rather is trying to impersonate
it.
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attacks, in which the attacker has access to the PUF and is challenging the PUF to learn

the underlying randomness. Inter- and intra- fractional Hamming Distance (FHD) [31], and

other statistical tests for randomness [103], have been used for quantifying PUF security.

Though it is reasonable that having larger inter-FHD is more secure, it does not tell the

PUF designer how much more secure it is. For example, is it worth raising the inter-FHD

from 40% to 49% at a cost of extra hardware? In this work we present a more principled

way to analyze PUF security by connecting it to how one could evaluate password secu-

rity, through a guesswork framework. We derive a theoretical framework for PUF security

evaluation that brings together two important properties of existing PUFs: predictability

and reproduceability [3]. This framework enables a unified security quantification of several

effects including bias, noise, and side-channels on PUFs, as well as the security over multiple

challenge-response pairs, providing design guidance by quantifying the security level of a

PUF.

In the context of the question raised in the previous chapter, we show that in terms of

guesswork the effect of noise is far worse than the effect of bias. Therefore, the tools presented

in this chapter to evaluate PUFs security can be used by a PUF designer to determine how

to maximize the security level at minimum cost in terms of resources. The actual answer to

this question depends on the trade-off between the security level in terms of guesswork, and

the actual cost in resources on the designer end, required to achieve this.

One can think of PUF signatures like passwords, and their breakability should be eval-

uated by how strong they are, for example, how many attempts (on average) does it take

to compromise them. This guessing framework has been studied in the information theory

literature and has recently been adopted by NIST as a measure of password security [104].

We bring this framework to evaluating the security of PUFs.
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5.2 Guesswork as A Unified Framework for Evaluating The secu-

rity level

5.2.1 Why Consider Guesswork?

Consider the following game: Bob draws a sample x from a random variable X, and an

attacker Alice who does not know x but knows the probability mass function PX (·), tries

to guess it. An oracle tells Alice whether her guess is right or wrong. This is the situation

where an attacker tries different passwords to access an account.

If Alice has only one guess, then the optimal strategy that maximizes her chance of

guessing x successfully is choosing the most probable x. In this case the chance of guessing

x is maxx′∈X PX
(
x
′)

and the predictability of X is given by its min-entropy [74]:

H∞ (PX) = − log2

(
max
x′∈X

PX

(
x
′
))

. (5.1)

If Alice is allowed to make as many guesses as required until she finds x, then the optimal

strategy is guessing elements in X based on their probabilities in ascending order [75]. It has

been shown that the average number of guesses it takes Alice to find x (denoted by G (X) and

termed guesswork) is not given by the traditional Shannon entropy [75]. For example, when

drawing a random vector of length m, X, which is independent and identically distributed

(i.i.d.) with distribution P = [p1, . . . , pL], the exponential growth rate of the guesswork

scales according to the Renyi entropy Hα (X) with parameter α = 1/2 [75]:

lim
m→∞

1

m
log2 (E (G (X))) = H1/2 (P ) = 2 · log2

(∑
i

p
1/2
i

)
(5.2)

where H 1
2

(P ) ≥ H (P ) with equality only for the uniform probability mass function (in the

context of Figure 4.5 m is the length of the PUF response and L = 2m).

The security of a PUF is predicated by the inherent random signature in the hardware.

An attacker wants to either impersonate a hardware by guessing its random signature, or

to learn it by eavesdropping.3 In order to impersonate the hardware, the attacker needs to

3In this attacker model the adversary does not have access to the PUF, but rather is trying to impersonate
it.
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respond to a challenge with a correct response. In order to evaluate the security of a PUF

we connect to the framework for password security [104]. For a dictionary attack, a guessing

framework quantifies security through the number of guesses the impersonator has to make

in order to identify the password (or inherent randomness) and therefore respond correctly

to all possible challenges. Therefore, we quantify the security level of a PUF through the

number of guesses required to break it.

In subsection 5.2.3 we show that guesswork can serve as a unified framework for evaluating

and quantifying the security of PUFs. Essentially, other measures of evaluating the security

level such as min-entropy and mutual information are special cases of guesswork (as shown

in Subsection 5.2.3 min-entropy is the probability of correctly guessing the PUF response in

a single guess, that is, the probability that the guesswork is equal to 1, and so it does not

capture the entire probability mass function of the number of guesses; in terms of guessing,

guesswork is a more general security criterion than min-entropy). Furthermore, guesswork

allows to quantify the security level under more elaborate scenarios such as the security

level when key stretching mechanism is used [105] as well as when allowing an attack failure

probability (this problem is presented in Subsection 5.2.3).

Characterizing the security of a PUF through guesswork reveals an interesting interplay

between the bias of a PUF response, and the noise (due to instability) which is incorporated

in each sample. Guesswork is very sensitive to the presence of instability, but yet is not very

susceptible to bias. These properties are discussed in subsection 5.2.5. Therefore, guesswork

highlights the advantage of stable PUFs over unstable PUFs, when evaluated through the

number of guesses required to break a PUF.

Moreover, we present a formal evaluation methodology for PUFs security, while identi-

fying the impact of bias, noise and side-channels.

Note that the interplay between noise and bias, as well as the advantage of stable PUFs

have been reported in the literature. For example, [106] discusses the advantage of stable

PUFs, and [107] considers the interplay between noise and the PUF response in terms of

efficient post-processing methods. However, our results provide methods to analytically
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evaluate the security level of PUFs, based on their fundamental properties (i.e., noise level

and bias).

5.2.2 Background

The guesswork G (X) is a random variable that represents the number of guesses required

to guess a random variable x. Therefore, the probability of having G (x) guesses is PX (x).

The ρth moment of guesswork is

E (G (X)ρ) =
∑
x

G (x)ρ · pX (x) . (5.3)

The definition of guesswork can be extended to the case where the attacker has a

side information Y available. In this case the average guesswork for Y = y is defined as

G (X|Y = y), and the ρth moment of G (X|Y ) is

E (G (X|Y )ρ) =
∑
y

E (G (X|Y = y)ρ) · pY (y) . (5.4)

Massey [76] noted that a dictionary attack minimizes the expected number of guesses

(i.e., guessing the values in the decreasing order of PX (x)). Arikan [75] has bounded the ρth

moment of the optimal guesswork, G∗ (X|Y ), by

(1 + ln (M))−ρ
∑
y

(∑
x

PX,Y (x, y)
1

1+ρ

)1+ρ

≤

E (G∗ (X|Y )ρ) ≤
∑
y

(∑
x

PX,Y (x, y)
1

1+ρ

)1+ρ

(5.5)

where M = |X| is the cardinality of X. Furthermore, in [75] it has been shown that when

X and Y are strings of length m, where the pairs (Xi, Yi) are drawn i.i.d.and 1 ≤ i ≤ m, the

exponential growth rate of the optimal guesswork is

lim
m→∞

1

m
log2 (E (G∗ (X|Y )ρ)) = ρ ·H 1

1+ρ
(PX,Y (x, y)) (5.6)

where m is the size of X and Y , and

H 1
1+ρ

(PX,Y (x, y)) =
1

ρ
log2

∑
y

(∑
x

P (x, y)
1

1+ρ

)1+ρ
 (5.7)
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Table 5.1: The average guesswork as a function of m when p = 1/2.

ρ = 1, p = 1/2 m=64 m=128 m=256 m=1024

Lower bound 1.4 · 258 1.4 · 2121 1.4 · 2248 1.4 · 21014

Upper bound 264 2128 2256 21024

is Renyi’s conditional entropy of order 1
1+ρ

[75].

Two remarks are in order regarding why considering the growth rate is meaningful.

Remark 1 (The non-asymptotic behavior is also dictated by growth rate). Note that al-

though (5.6) is an asymptotic result, it converges very quickly. This is because in [75] it was

shown that the guesswork of any moment is lower bounded by (1 +m · ln (2))−ρ ·2m·ρ·H1/(1+ρ)(p)

and upper bounded by 2m·ρ·H1/(1+ρ)(p), when X is of size m and is drawn i.i.d. Bernoulli(p).

Table 5.1 presents the lower and upper bounds for various values of m.

Remark 2 (the operational meaning of growth rate). Based on the bounds presented in

Table 5.1 it can be shown that even for finite values of m, a decrease in growth rate can

have a tremendous impact on the security level. For example, when p = 0.0015, which leads

to H1/2 (0.0015) = 0.1, the average guesswork for m = 256 is lower bounded by 1.4 × 217.6

and upper bounded by 225.6 which is far smaller than 2256 (or a lower bound of 1.4× 2248 as

presented in Table 5.1) in the case when p = 1/2.

Furthermore, growth and decrease rates are commonly used when evaluating the security

level. For instance the min-entropy is a measure of the decrease-rate of the probability of

guessing a password.

Another extension of guesswork [108] considers a game in which it is sufficient to guess

x up to a certain level of distortion D, according to some distance metric d (x, x̂ (i)) =∑m
i=1 d (xi, x̂ (i)). Essentially, whenG (x) = i, the word x̂ (i) is guessed such that d (x, x̂ (i)) ≤

m ·D, that is, when the attacker guesses a word which is within a Hamming distance m ·D of

x the game is over. The authors in [108] have solved this problem for the general case; more
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specifically, for a binary source which is drawn i.i.d. Bernoulli(p) and Hamming distortion

d (xj, x̂j) =

 1 xj = x̂j

0 xj 6= x̂j
(5.8)

where 1 ≤ j ≤ m, they have shown that the exponential growth rate of the guesswork equals

lim
m→∞

1

m
log2 (E (G∗ (X,D)ρ)) = ρ · E (D, p) =

max
(
ρH 1

1+ρ
(p)− ρ ·H (D) , 0

)
(5.9)

where H (D) = −D log2 (D)− (1−D) log2 (1−D) is the binary Shannon entropy [99].

Guesswork has been analyzed in many other scenarios such as guessing under source

uncertainty with and without side information [109], [110], using guesswork to lower bound

the complexity of sequential decoding [75], guesswork for Markov chains [111], and guesswork

for multi-user systems [112].

5.2.3 Extending Guesswork

In this subsection we extend the definition of guesswork and show that it can serve as a

unified framework for evaluating the security level of PUFs by incorporating noise and bias.

In addition, we relate guesswork to other measures such as mutual information and min-

entropy.

We begin by finding the moments of the guesswork of a noisy weak PUF.

Theorem 1. When the response of a weak PUF is noisy such that the noise is additive and

drawn i.i.d. Bernoulli(D), and the original response is i.i.d. Bernoulli(p) , the ρth moment

of the guesswork increases at rate ρ · E (D, p) as defined in (5.9).

Proof. The idea behind the proof is that guessing within Hamming distance m · D of the

original response, enables the attacker to find the original response by using the helper-data.

Essentially there are two options. The first possibility is to construct a code to guess

the original response up to Hamming distance m · D as is done in [108], and then use the

helper-data in order to find the original response, in which case the rate of the ρth moment
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is ρ ·E (D, p). The second possibility is to use the helper data (e.g., the coset of an ECC) to

guess over a subset. In this case, since the helper-data breaks up the space into subspaces

of size 2(1−H(D))·m [99], guessing through the subspace can only bring the rate of the ρth

moment down to ρ · E (D, p). Therefore, the minimal rate is ρ · E (D, ρ).

Remark 3. ρ · E (D, p) is the maximum rate at which the ρth moment of the guesswork

of a noisy PUF can increase. This can be achieved by employing an ECC that operates

very close to the channel capacity under the statistical profile of the noise [99]. However,

the hardware size required to implement this ECC may be large, and so PUF designers may

resort to other ECCs that can be implemented more efficiently in terms of their hardware size

but yet cannot achieve the channel capacity. In this case, the decrease in rate is expressed

in the amount of information revealed by the helper data, W , whose entropy is larger than

the noise entropy, that is, H (W ) ≥ H (D). This in turn brings the guesswork down to

max
(
ρH 1

1+ρ
(p)− ρ ·H (W ) , 0

)
≥ ρ · E (D, p).

Remark 4. A meaningful way to compare the efficiency of PUFs is by fixing their security

level as well as the probability of error of the ECC to certain values and then compare the

hardware size required to achieve these by different PUFs, as presented in [106]. In [106]

the security level is evaluated through the Shannon entropy. However, Guesswork can also

be used in the method presented in [106] to evaluate the security level. This in turn provides

a measure that has a wider operational meaning in terms of security than the Shannon

entropy. For example, the average guesswork is directly related to the average number of

guesses required to guess the PUF response (this is highlighted in Theorem 2 and Remark 8).

Remark 5. In [107] and [113] the noise of a PUF is not distributed Bernoulli(D), but rather

is asymmetric and affected by the bias level such that the conditional transition probability is

different when the PUF response is equal to 1 and 0, and the combined transition probability

is D (see subsection 5.2.5 for more details). In this asymmetric case the rate at which the

ρth moment of the maximum guesswork increases is lower bounded by ρ ·E (D, p) due to the

convexity of of E (D, p) in the noise distribution.

Before we present a new game that extends the traditional definition of guesswork, let
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us define the type of a vector.

Definition 1. Consider a binary vector x of size m and assume that N (x|1) is the number

of elements of this vector that are equal to 1. In this case when N (x|1) /m = q the vector x

is of type q.

We now define a new guessing game that captures different measures for evaluating the

security level.

Definition 2 (Guesswork under attack failure constraint). Consider the following game:

Bob draws a vector x of size m i.i.d. Bernoulli(p). The attacker Alice has to guess x up

to Hamming distance m · D as defined in subsection 5.2.2, under the constraint that the

probability of attack failure is smaller than or equal to 2−α·m where α ≥ 0, that is, Alice may

decrease the number of guesses by guessing only a subset of all possible words, which leads in

turn to a certain probability of attack failure. We define the optimal guesswork for this game

as G∗ (X;D,α). Furthermore, we define the guesswork in the case where the probability of

attack failure is zero as G∗ (X;D,∞) = G∗ (X;D).

Remark 6. The relation between G∗ (X;D,α) and previous works is as follows:

• Pr (G∗ (X; 0,∞) = 1) = 2−m·H∞(p), that is, the min-entropy.

• limm→∞
1
m

log (E (G∗ (X;D,∞)ρ)) = ρ · E (D, p) as defined in (5.9).

The following theorem characterizes a lower bound for G∗ (X;D,α) for any moment ρ > 0

in the case where the attacker is allowed not to guess certain types.

Theorem 2.

limm→∞
1

m
log (E (G∗ (X;D,α = D (s||p))ρ))

≤

 ρ ·
(
H 1

1+ρ
(p)−H (D)

)
s∗ ≤ s ≤ 1

ρ · (H (s)−H (D))−D (s||p) p < s ≤ s∗

0 ≤ D ≤ p ≤ 1/2, and

limm→∞
1

m
log (E (G∗ (X;D,∞)ρ))

= ρ ·
(
H 1

1+ρ
(p)−H (D)

)
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where s∗ = p(1+ρ)
−1

p(1+ρ)
−1

+(1−p)(1+ρ)
−1 , the probability of attack failure decreases like 2−m·α,

D (s||p) = s · log2 (s/p) + (1− s) · log2 ((1− s) / (1− p))

is the Kullback-Leibler divergence [99], and Alice chooses a set A = {q1, . . . , qL} of types

whose vectors are not guessed, such that the probability that N (x|1) /m ∈ A is smaller than

or equal to 2−α·m, that is, Alice guesses words in AC.

Note that ρ ·H (s∗)−D (s∗||p) = ρ ·H 1
1+ρ

(p)

The next three remarks point out a few properties of G∗ (X;D,α).

Remark 7. When an attacker attempts to break a very large number of independent PUF

responses (or passwords), where the probability of attack failure is 2−m·α, he is very likely to

break a fraction of 1 − 2−m·α of the PUF responses (passwords), and this in turn leads

to ρth moment of guesswork across PUF responses (passwords) that increases at a rate

limm→∞
1
m

log (E (G∗ (X;D,α)ρ)) ≤ ρ ·
(
H 1

1+ρ
(p)−H (D)

)
= ρ · E (D, p), when D ≤ p,

that is, the moments of guesswork decrease as the probability of attack failure increases.

Remark 8. When s = p + ε the average guesswork is approximately H (p) −H (D), which

is the rate distortion function of Hamming distortion [99].

Remark 9. Note that when p = 1/2 also s∗ = 1/2 and the upper bound of Theorem 2 is

equal to limm→∞
1
m

log (E (G∗ (X;D,∞)ρ)), that is, when guessing according to the method

presented in Theorem 2 Alice does not gain anything from having a failure probability larger

than zero.

We now derive an expression for the min-entropy when the attacker has to guess a word

that is within Hamming distance m ·D of the password. In this case the min-entropy of a

binary i.i.d. source subject to Hamming distortion D is equivalent to choosing a word which

is in a ball of radius m · D around the most likely word (i.e., the probability of guessing a

word which is in the most likely ball). The asymptotic value of the min-entropy subject to

distortion D is given by the following lemma.
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Lemma 1. Consider a binary word of length m for which each element is drawn i.i.d. from

Bernoulli(p). The min-entropy subject to Hamming distortion D converges to

− lim
m→∞

1

m
log2

(
P ball
X

)
=

 D (D||p) 0 ≤ D ≤ p

0 p < D ≤ 1
(5.10)

where p ≤ 1/2, P ball
X =

∑m·D
i=0

(
m
i

)
pi (1− p)m−i.

Remark 10. Note that the result of Lemma 1 can also be interpreted as Pr
(
G∗ (X; 0,∞) ≤ 2m·H(D)

)
when a password of length m is drawn i.i.d. Bernoulli(p), where 0 ≤ D ≤ 1/2.

5.2.4 Examples for Quantifying the Security of PUFs

In this subsection we present a few examples that illustrate how to use guesswork in order

to quantify the security level of PUFs. We address evaluations for unstable PUFs as well

as for stable PUFs. We incorporate into the expressions noise, bias, and side information

coming from other PUFs or from side channel/model attacks.

The first step in calculating the guesswork of a PUF is evaluating the probability function

according to which it is drawn, as well as the noise level. In this subsection we assume that

the bits are i.i.d. for which case the first step is evaluating the bias of the stable bits and

then estimating the noise level of the unstable bits; evaluating the bias of the stable bits

enables us to state that the PUF response is drawn i.i.d. from the probability function

P0 = p P1 = 1− p (5.11)

whereas the probability of transition of a bit when re-sampling a PUF is q, such that

x(2) = x(1) ⊕ e (5.12)

where x(1), x(2) are the first and second samples of the unstable (noisy) PUF, and Pr (ej = 1) =

q, 1 ≤ j ≤ m.

For stable PUFs such as the LEDPUF, it is sufficient to calculate the bias and assign

the probability function to ρ ·H 1
1+ρ

(P ) in equation (5.6), in order to get the ρth moment of
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guesswork. For example, when the stable PUF is drawn i.i.d. according to Bernoulli(0.47)

the average guesswork of a PUF of large enough size (m = 256, say) is proportional to

2H1/2(0.47)·m = 20.9987·m (5.13)

whereas the largest guesswork that we can expect for is achieved by an unbiased PUF for

which each bit is drawn i.i.d. Bernoulli(0.5), and is proportional to

2H1/2(0.5)·m = 2m. (5.14)

For unstable PUFs, re-sampling the PUF yields a noisy version of the original response

as presented in equation (5.12). When the probability of transition is q, Theorem 1 shows

us that it is sufficient to guess the original response x(1) up to Hamming distance m · q. The

intra distance can be used to evaluate the noise level. For example, when considering an

unbiased unstable PUF with a transition probability q = 0.1, we get that the guesswork is

proportional to

2m·(1−H(0.1)) = 20.531·m (5.15)

which means that noise decreases the average number of guesses significantly.

The conditional guesswork (5.4) enables us to quantify the effect of side information on

the security level of both stable and unstable PUFs. In order to evaluate the conditional

guesswork we first need to characterize the conditional probability. The conditional proba-

bility depends on the type of attack which is being carried; in some cases characterizing its

effect on the randomness of the response requires some effort. A simple example for a side

information attack is one in which an attacker has another PUF which is correlated with

the original one. For example, consider an unbiased stable PUF x for which each element is

drawn i.i.d. Bernoulli(0.5), and assume that an attacker has another unbiased stable PUF,

y, which is correlated with x such that

P (y|x) = P (e) (5.16)

where e is drawn i.i.d. Bernoulli(0.2). In this case the unconditional guesswork G (X) is

proportional to

2H1/2(1/2)·m = 2m (5.17)
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whereas the conditional guesswork G (X|Y ) is proportional to

2H1/2(0.2)m = 20.848·m (5.18)

because of the fact that in this case x given y is also drawn i.i.d. Bernoulli(0.2). In general,

the correlation between PUFs can be evaluated through the inter distance.

Conditional guesswork subject to distortion enables to evaluate the guesswork of an

unstable PUF when side information is available. The method of evaluating the guesswork

is similar to the previously mentioned methods for evaluating conditional guesswork and

guesswork subject to distortion.

5.2.5 The Effect of Noise Vs. The Effect of a Bias

In this subsection we analyze the expressions for guesswork as well as min-entropy subject

to distortion, and quantify the impact that noise and bias have on PUFs. Furthermore, we

show that the effect of noise is far worse than the effect of bias in terms of average guesswork.

First, let us focus on the effect of noise and bias on the expected value of the guesswork

(i.e., the case where ρ = 1), when the noise is Bernoulli(D). From Theorem 1 we get that

when the transition probability is D, the asymptotic growth rate of the expected value of

the guesswork is

H1/2 (PX)−H (D) . (5.19)

On the other hand the asymptotic growth rate of the expected value of the guesswork of a

stable PUF whose bits are drawn i.i.d. from Bernoulli(p) is

H1/2 (p) = 2 · log2

(√
p+

√
1− p

)
. (5.20)

The first derivative of equation (5.19) equals

log2 (D)− log2 (1−D) (5.21)

which diverges as D approaches 0. Therefore, even when the noise level (and D) is very

small, it decreases the expected value significantly. On the other hand the first derivative of
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Figure 5.1: The solid line presents the average guesswork of an unstable unbiased PUF

1−H (D), whereas the dotted line is the average guesswork of a stable biased PUF H1/2 (p).

(5.20) is equal to zero at p = 1/2 (i.e., when there is no bias). The first derivative around

p = 1/2 is very small and therefore bias does not affect the guesswork as much as noise.

Figure 5.1 presents the guesswork of an unstable unbiased PUF and the guesswork of a stable

biased PUF.

For example, the asymptotic exponential growth rate of the guesswork of an unbiased

(p = 1/2) unstable PUF with transition probability D = 0.1 (i.e., a 10% noise) is equal to

0.53 which is the guesswork of a stable biased PUF with p = 0.05 (i.e., a 95% bias).

In terms of min-entropy as presented in Lemma 1, the divergence D (D||p) = −H (D)−

D log2 (p) − (1−D) log2 (1− p) and therefore its first derivative also diverge as D goes to

zero. Therefore, min-entropy is also very sensitive to the presence of noise. On the other

hand, the min-entropy of a stable PUF is equal to

−m log2 (1− p) . (5.22)

The first derivative of (5.22) equals m
1−p when 0 ≤ p ≤ 1/2 and therefore it does not diverge.

Hence, the effect of bias on the min-entropy is also less significant than the effect of noise.

For example, the asymptotic min-entropy of an unbiased (p = 1/2) unstable PUF with
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Table 5.2: The average guesswork when the transition probability of the noise has states

versus the case when the noise is Bernouli(D) (in parentheses)

p/D D = 0.1 D = 0.2

p = 0.49 0.53 (0.53) 0.2781 (0.2779)

p = 0.4 0.5197 (0.516) 0.2707 (0.2634)

transition probability D = 0.1 is equal to 1 −H (0.1) = 0.53 which is the min-entropy of a

stable biased PUF with p = 0.31 (i.e., a bias level of 69%).

Note that in general the first derivative of the min-entropy does not equal to zero at

p = 1/2, and therefore bias has a stronger effect on min-entropy than on average guesswork.

Figure 5.2 presents the behavior of the min-entropy as a function of p. It shows that it

is more sensitive to bias than H1/2 (p).

So far we have discussed the case where the noise is Bernoulli(D). However in [107]

and [113] it was shown that the conditional probability of the noise can be as follows

P (e = 1|X = 0) =
D

2 · (1− p)

and

P (e = 1|X = 1) =
D

2p

which satisfies both P (e = 1) = D and P (X = 1) = p. In this case as stated in Remark 5

ρ ·E (D, p) is a lower bound on the rate at which the ρth moment of the guesswork increases,

due to the concavity of the Shannon entropy. However, the actual rate at which the ρth

moment increases can be related to the amount of information revealed by the helper data,

that is, H (D|X) such that the rate at which the average guesswork increases is equal to

H1/2 (P )−H (D|X) ≥ H1/2 (P )−H (D). Table 5.2 presents H1/2 (P )−H (D|X) for various

values of p and D versus H1/2 (P ) − H (D); these results show that the behavior in both

cases is very similar and that the lower bound is very tight.
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Figure 5.2: The min-entropy as a function of p. Note that the first derivative is always larger

than zero.

5.3 Evaluating the Security Level of Weak PUFs Through Guess-

work

5.3.1 Evaluation of Weak LEDPUF

We evaluate the probability mass function of a bit generated by a weak LEDPUF based on

simulation results for the formation of connections

pX (1) = 0.4626 pX (0) = 0.5374. (5.23)

The uniqueness is evaluated by calculating the fractional inter-distance [31] of 1000 weak

LEDPUFs, each producing 512 bits of response. The distribution is with mean=0.503 and

standard deviation=0.02. Since the variance value is proportional to the inverse of the length

of the response, as the length of the response increases the variance value goes to zero while

the mean value goes to 0.505.
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Table 5.3: Noisy PUF measurements. All numbers are percentages.

intra-FHD inter-FHD Stability
Bias Level

One Zero

SRAM PUF 2.26 48.33 93.42 49.13 50.87

RO PUF 2.48 47.13 91.19 51.38 48.62

5.3.2 Measurements of Noisy Weak PUFs

Two noisy silicon PUFs: SRAM PUF and RO PUF, are measured at 20°C in our experiments.

For the SRAM PUF, responses from 10 commercial 45nm SOI test chips with 176k byte of

SRAM cells each are obtained. Every SRAM PUF is measured 10 times. The RO PUF is

implemented on 15 Altera DE2-115 FPGA boards. To avoid correlated CRPs, 90 CRPs are

generated from the 91 ROs in each RO PUF. Each RO PUF is measured 10 times. No error

correcting techniques are applied on these PUFs.

The measurement results of noisy PUFs are summarized in Table 5.3. The intra-FHD

and inter-FHD are given in the second and third columns, respectively. Both PUFs show

good results of small intra-FHD and close to 50% inter-FHD. The stability shown in the

forth column gives the percentage of stable bits through all 10 measurements, where a stable

bit is a bit that remains the same during all measurements. A 93% stability for the SRAM

PUF, for example, means that 7% of the bits flip at least once during the 10 measurements.

For LEDPUF, the intra-FHD is 0% and the stability is 100%. The bias level (percentages

of ones and zeros) are given in the last two columns.

For the RO PUF, in addition to the intra-FHD at 20°C, we also compare the intra-FHD

between 20°C and 60°C, which is the reliability of the PUF if it is enrolled at 20°C but verified

at 60°C. The results are presented in Figure 5.3. We can see that for most PUFs, the averaged

intra-FHD at the extreme temperature is about 12%, which implies that conventional ECC

margin with error reduction techniques for the PUF would be required.

For noisy SRAM PUF and RO PUF, the expected growth rate is calculated by plugging

the intra-FHD to equation (5.19). The expected growth rate of weak LEDPUF is obtained by
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Figure 5.3: Intra-FHD at extreme temperature variation for 15 RO PUFs.

Table 5.4: Growth rate of the expected value of the guesswork. When the key size of the

PUF is 32, the average guesswork of the SRAM PUF is proportional to 232×0.8442, and the

average guesswork of the LEDPUF is proportional to 232×0.9980.

PUF Type SRAM RO at 20°C RO at 60°C LEDPUF

Growth rate 0.8442 0.8323 0.4706 0.9980

applying the bit probabilities given in (5.23) to equation (5.20). The results are summarized

in Table 5.4. We can see that even though the weak LEDPUF is more biased than the noisy

PUFs, its guesswork growth rate is still higher than noisy PUFs. For RO PUF at 60°C, the

guesswork growth rate becomes much worse compared with RO PUF at 20°C, which implies

quantitatively how insecure a PUF can become under environmental variations.

To give an estimated area comparison if error correcting techniques are applied, for a

SRAM PUF to generate a secure 128-bit response with Equal Error Rate (EER) < 10−9, the

area required is about 1630µm2 using 65nm technology [106]. Using the same technology, for

the weak LEDPUF to generate a bit, the area of a SSU as shown in Figure 4.4 is 3.24µm2.

From Table 5.4 we know that for weak LEDPUF to generate a secure 128-bit response, we

need 128
0.998

bits (SSUs), which roughly translates to an area of 415µm2. This shows that the

area of the SRAM PUF with EER < 10−9 is more than 3X larger than the area of a weak

LEDPUF. For the SRAM PUF with ERR < 10−6, the area to generate 128 bits is about

604µm2, which is still about 1.4X larger than the area of a weak LEDPUF.
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5.4 Evaluating the Security Level of Strong PUFs Through Guess-

work

5.4.1 The Guesswork of any Strong PUF

In this subsection we quantify the security of strong PUFs in terms of the number of guesses

required to break them. Our results quantify the number of secure authentications for which

any strong PUF is good for. Furthermore, we compare the guesswork of our proposed

strong LEDPUF to the guesswork of other strong PUFs that have been introduced in the

literature. Finally, to demonstrate the importance of stability of a strong PUF, we show

that the guesswork of a stable XOR arbiter PUF is larger than the guesswork of noisy ones,

for the same number of observed CRPs.

We begin by defining the following game.

Definition 3. Consider a strong PUF, which is used by an authentication scheme to authen-

ticate n unique challenges through observing their responses. The authentication problem is

defined as follows:

1. For each challenge the attacker has to guess with a single response.

2. When the attacker does not guess correctly, it can mask itself to receive a new challenge.

3. Once the attacker makes a correct guess it is authenticated.

Remark 11. Note that when authenticating a strong PUF through CRPs each challenge

can be used only once. Furthermore, the problem defined above captures a strict security

requirement that the system is compromised once the attacker manages to deceive the verifier.

Remark 12. When the attacker fails to guess any response correctly the attack fails. When

the number of challenges is large we show that this event decays exponentially fast.

We now find the average guesswork of the game presented in Definition 3 as well the

probability that the number of guesses is smaller than or equal to a certain number.
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Theorem 3. The average guesswork of the authentication problem presented in Definition

3 is

E (G) = 2−H∞(1) +
n∑
i=2

i · 2−H∞(i) ·
i−1∏
k=1

(
1− 2−H∞(k)

)
(5.24)

where 2−H∞(k) is the most probable response to the kth challenge either given that the guesses

for challenges 1, . . . , k−1 were incorrect or given the previous k−1 CRPs (these two scenarios

can lead to different min-entropy). Furthermore, the probability that the number of guesses

is smaller than or equal to l is

Pr (G ∈ {1, . . . , l}) =

2−H∞(1) +
l∑

i=2

2−H∞(i)

i−1∏
j=1

(
1− 2−H∞(j)

)
Finally, the probability of attack failure is

∏n
i=1

(
1− 2−H∞(i)

)
.

Proof. Each response has a certain statistical profile based on the previous CRPs. When the

attacker knows this profile the optimal strategy to minimize the number of guesses is to guess

the most probable one. This in turn leads to 2−H∞(i) where H∞ (i) is the min-entropy given

that either the previous i− 1 guesses were not correct or that the previous i− 1 CRPs were

revealed to the attacker. The results of the theorem follow directly from this argument.

Corollary 1. When the statistical profile does not change across challenges we get that

E (G) = 2H∞ −
(
1− 2−H∞

)n · (n+ 2H∞
)

(5.25)

and

Pr (G ∈ {1, . . . , l}) = 1−
(
1− 2−H∞

)l
. (5.26)

Remark 13. Note that the average guesswork (5.25) is equal to

E (G) = 2H∞ − ε (5.27)

when n� 1, where ε� 1 decays exponentially fast.

Remark 14. When the attacker does not know the statistical profile of the response (for

instance when the structure is too complex for him to infer it), all he can do is to guess a

response uniformly, which leads in turn to H∞ = 1.
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Furthermore, in some cases the attacker can infer the statistical profile based on the

structure of a strong PUF and a set of CRPs that have been revealed to him (see [1,114] for

attacks on arbiter PUFs, XOR arbiter PUFs, etc.).

5.4.2 Quantifying the Security of Specific Strong PUFs

In this subsection we quantify the security level of various strong PUFs in terms of their

guesswork.

The result in (5.27) also applies to the case when an attacker can observe multiple CRPs.

For example model attacks over strong PUFs [1, 114] enable attackers to accurately guess

responses based on previously observed CRPs. In terms of guesswork it means that once an

attacker observes a certain set of CRPs, conditioned on the CRPs that have been revealed

so far, the most likely conditional probability can be very high.

The average guesswork in (5.27) allows us to quantify how secure strong LEDPUF is

compared to other strong PUFs from the literature that are susceptible to model building

attacks.

Strong LEDPUFs are based on HMAC, and so idealy an attacker can not infer anything

from observing CRPs in this case. Therefore, when the number of bits at the output of a

strong LEDPUF is m, the average guesswork converges to 2m after observing any amount

of CRPs. Even when the key is biased such that each bit is drawn Bernoulli(0.53) [44],

the average guesswork when HMAC is a strongly universal set of hash functions [115], is

2− log2(0.53)·m = 20.91·m based on (5.27).

On the other hand, in [1] it has been shown for various noise-free PUF simulations such

as arbiter PUFs, XOR arbiter PUFs and Feed-Forward Arbiter PUFs that the prediction

rate varies between 97% and 99%, after observing a few hundreds of thousands of CRPs and

implementing a model building attack. Essentially, this type of attacks achieve a prediction

rate, which is an estimation of the probability mass function of the next response, conditioned

on a certain set of CRPs. In [1] it leads to conditional probability of at least 2log2(0.97)·m =

2−0.04·m when the prediction rate is 97%, and so the average guesswork under this model
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building attack is achieved by assigning this probability to the average guesswork in (5.27)

in which case we get 20.04·m. Note that when the prediction rate is 99% the average guesswork

is 2− log2(0.99)·m = 20.014·m; therefore, when m = 256 we get that at 97% the PUF is 20.026×256 =

100 times more secure than at 99%.

Therefore, guesswork provides a unified framework for comparing the security level of

different PUFs under model building attacks. It can also be used as a means of understanding

what is the desired prediction rate for a model based attack, and as a result how many

challenge response pairs should be observed.

Next, we compare the security of stable and noisy XOR arbiter PUFs [1] under model

based attacks in terms of the number of guesses for which the probability of guessing the

correct response is 99%. We use equation (5.26) to derive the results of this subsection.

The expression in (5.26) depends on the min-entropy, and so for noisy PUFs we need to

incorporate the effect of the noise into the min-entropy. For this we use Lemma 1 in which

the min-entropy is extended to the noisy case. In Table 5.5 we use guesswork to compare the

security of stable XOR arbiter PUFs to the one of noisy XOR arbiter PUFs with the same

number of XORs, under model based attacks. We assign the prediction rates and noise levels

reported in [1] to (5.26), and find the number of guesses under model based attacks in which

the verifier has to take into account the noise as the PUF owner observes noisy responses.

The table shows how much more secure stable XOR arbiter PUFs are when compared to

the noisy versions under model based attacks. Essentially, it shows how susceptible such

arbiter-based strong PUF is after observing a certain number of CRPs. In fact, when the

noise level is over 5%, the probability of guessing the correct response up to the noise level

is very close to one (about 1 − 10−10), which means that this PUF is completely broken.

This is because the prediction rate of each bit as reported in [1] is 97.34%, whereas the noise

level is 5% and so the chance that the guessed response is not within the noise level of the

original response is extremely small for reasonable values of m. Therefore, guesswork enables

us to incorporate the effect of noise and model based attacks into one framework that allows

comparison between different PUFs and various scenarios.
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Table 5.5: The number of guesses for which the probability of guessing the correct response

is lager than 99% when m = 1024, for a stable XOR arbiter PUF (D = 0%), and noisy ones,

under model based attacks for which 200 thousand and 500 thousand CRPs are observed.

The values are based on the noise levels and prediction rates reported in [1]. The second

row presents 4-XORs, whereas the third row presents 5-XORs.

CRPs (×103) D=0% D=2% D=5% D=10%

200 41 10 1 1

500 22 10 1 1

5.5 Conclusion

In this chapter we develop a unified guesswork-based analyses for PUFs. We show through

guesswork analysis that stability has a more severe impact on the PUF security than biased

responses. In addition, we analyze guesswork for two new problems: Guesswork under

probability of attack failure, and the guesswork of strong PUFs.
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CHAPTER 6

SLATE: A Secure Lightweight Entity Authentication

Hardware Primitive

Several stable weak PUFs have been proposed as key storage primitives in recent years. In

this chapter, we exploit these stable weak PUFs and propose a novel Secure Lightweight

Entity Authentication hardware primitive called SLATE, where its secret key can be stored

in a form of a weak PUF or any secure key storage. Even though the authentication of

SLATE is done through Challenge Response Pair (CRP) verification similar to strong PUFs,

SLATE itself is a pure digital structure without exploiting any process variation, therefore

SLATE has no reliability concerns. Another main advantage of SLATE over most existing

strong PUFs being an entity authentication primitive is that SLATE is resistant to known

attacks to strong PUFs or logic obfuscations, such as model building attacks and Boolean

Satisfiability (SAT) attacks. Furthermore, we show that the implementation cost of SLATE

with a 176-bit key and 244 CRPs is only 663 Gate Equivalents (GE). Compared to lightweight

ciphers and existing secure strong PUFs, which is 44% to 7.1× larger than SLATE, we show

that SLATE is a practical security primitive for resource constrained systems. In addition, it

is shown that SLATE is information theoretically secure when valid CRPs are communicated

through insecure channels. Finally, to ensure the unpredictability and the unclonability of

SLATE when used with a weak PUF, we propose a novel tamper evident one-time-read

method that guarantees the confidentially and the integrity of the extracted secrets from a

stable weak PUF.
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6.1 Introduction

Physical Unclonable Functions (PUFs) have been considered as promising security primi-

tives that enables lightweight hardware implementations of identification [27], authentica-

tion [116], or secret key generation and storage [29]. The randomness of a PUF is extracted

from random uncontrollable process variations, and its behavior, or Challenge Response Pair

(CRP), is uniquely defined and is hard to predict or replicate. Recently, many PUFs designs

focusing on the enhancement of stability have been proposed, including both weak PUFs

and strong PUFs [98]. These stability-guaranteed techniques allow PUFs to be exploited

in more practical applications. However, the advantages of stability-guaranteed PUFs have

not yet been fully explored. A stable PUF can provide much more than just the hardware

area/cost savings from Error Correction Code [54] or other stability enhancement techniques.

In particular, in this chapter we demonstrate another use of stable PUFs by designing a Se-

cure Lightweight Entity Authentication (SLATE) primitive, which is a pure digital structure

without exploiting any process variation, therefore SLATE itself has no reliability concerns.

SLATE can be constructed from a stable weak PUF or any other secure key storage based

on the concept of a model-based PUF [29], where the behavior of a strong PUF can be

calculated from a compact model, therefore no CRP storage is needed. Most importantly,

SLATE is more secure and hardware efficient (3.1× to 7.1× smaller) than existing strong

PUFs from both empirical and theoretical perspectives. SLATE is also much more hardware

efficient (more than 40% smaller) than existing lightweight ciphers, which can also be used

as entity authentication primitives.

6.1.1 PUF-Based Authentication Protocols

Many PUF-based authentication protocols have been proposed since the PUF was introduced

[9]. The simple authentication scheme proposed in [2] employs the CRP mechanism of

strong PUFs, but the protocol is not practical because the PUF itself suffers from modeling

attacks [1]. Recently, several secure strong PUFs are proposed and shown to be resistant to

model building attacks [117,118]. It has been shown that the use of XOR gates can effectively
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increase the difficulty of model building attacks. However, due to the number of XOR gates or

parallel structures required, the hardware implementation costs of these secure strong PUFs

are even higher than existing lightweight block ciphers, which can also be used as entity

authentication primitives. Using an Optical PUF as stated in [3] is believed to be resistant

to modeling attacks, however it may not adhere to the low-cost design principle of a PUF

application. Most of the existing PUF-based authentication protocols aim to compensate

the vulnerability to modeling attacks. Unfortunately, these approaches often undermine

the benefits provided by the PUF technology, such as the lightweight implementation or

the replacement of costly secure data storage, making most existing PUF-based protocols

impractical [119].

6.1.2 Stability-Guaranteed PUF

One of the major research directions of PUF is the enhancement of its stability, and extensive

effort has been devoted to the area (see [120–122] and references therein). It has been shown

that stable PUFs can provide practical solutions including logic obfuscation [56, 123] and

hardware metering [124]. Despite of the attractive benefits of a stable PUF, however, many

applications require a guaranteed one-time secret key extraction, but to the best of our

knowledge, the detailed physical mechanism of such key extraction has not been explained.

A common one-time-read approach is to read the secret through eFuse and burn out the

connections after reading out the values [56]. The approach assumes that the PUF is in a

secure environment before reaching to the verifier, but this assumption may not be true.

For example. the attacker can read out the secret without destroying the eFuse access to the

secret at any point after the fabrication, and no one would know that the PUF has already

been compromised. Another approach is to use asymmetric cipher framework, which comes

with high design and implementation cost. Therefore there is a need to develop a secure and

efficient mechanism to extract the key for the stable weak PUF.
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6.1.3 Model-based PUF

The concept of model-based PUF has been discussed in [29]. The advantages of a model-

based PUF is that the verifier in an authentication protocol only stores a model of the PUF

instead of storing a large CRP database. In [125], the delay signature of delay cells are

extracted, so the verifier can emulate the response given the challenge. However, in addition

to the complex delay characterization circuitry, the details of the one-time secret extraction

mechanism is missing. In [126] the authors suggest that a strong PUF can be constructed

from a weak PUF, however, the hardware cost of a digital Random Number Generator (RNG)

or a stream cipher is commensurate to a cryptographic hash function [127, 128]. Similarly

in [44], a strong Locally Enhanced Defectivity (LED)PUF is proposed by using a stable

weak PUF as a key to a Hash-based Message Authentication Code (HMAC). However,

the implementation cost of the strong LEDPUF is even higher than a block cipher due

to the cryptographic hash function implementation. Therefore, a lightweight and secure

authentication primitive is still yet to be discovered even when a stable weak PUF can be

used as the source of the secret key.

6.1.4 Main Contributions

The contributions of this chapter include:

• A pure digital secure lightweight entity authentication primitive (SLATE) is proposed.

We show that SLATE is 44% to 7.1× more hardware efficient than existing lightweight

block/stream ciphers and secure strong PUFs.

• We show that SLATE is resistant to attacks that are effective to existing PUFs and

digital logic obfuscations. Results of model building attacks show that the prediction

rate is similar to random guessing, and the run time of Boolean Satisfiability (SAT)

attack grows exponentially with the hardware size.

• From information theoretical perspective we show that SLATE is secure when the

CRPs are communicated through an insecure channel.

104



• A physical tamper evident one-time-read secret extraction method is presented.

6.2 The Proposed Cascaded Architecture

In this section we first present the proposed cascaded architecture as the core design of

the SLATE, and then we show that the cascaded architecture itself is resistant to model

building attacks that are effective to existing strong PUFs. Following the model building

attack results, we show that the cascaded structure is nevertheless not resistant to linear

equation solving attack and single unit querying attack. To overcome these vulnerabilities,

we present the complete secure SLATE structure in Section 6.3.1.

6.2.1 Cascaded Unit Structure

The schematic of the Unit in the cascaded structure is given in Figure 6.1. All inputs and

outputs of the Unit are 2-bit values. If k is equal to b1 or b2, then k is a match. The output

of the Compare module in the Unit is defined as:

Compare output =


k, if k is a match

r, otherwise

(6.1)

Figure 6.1: Schematic of a Unit in the cascaded structure.

The proposed model building attack resistant structure is composed of cascaded Units
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as shown in Figure 6.2. bi1, bi2 and ri of the ith Unit are secret values provided by a stable

weak PUF or any secret key, and ki is the input challenge of the ith Unit. For the first Unit,

the output is simply the output of the Compare module; for all other Units, the output is

k ⊕ p, where p is from the previous Unit.

Figure 6.2: Schematic of a secure cascaded structure.

For the cascaded structure, the entity authentication is done through CRP validation

similar to a strong PUF where the weak PUF values are obtained by the verifier during

enrollment. The difference is that for the cascaded structure, a challenge is valid only when

ki is a match for all Units. During authentication, only valid CRPs that have valid challenges

are deployed. If any one of the Unit is not a match, the output of the Unit becomes r ⊕ p,

which is a value that will not be used in any valid response. The only way to create a valid

response for the attacker is to match every single Unit. For a cascaded structure with s Units

and the length of b1 and b2 being 2-bit long, the probability of hitting a meaningful CRP

is approximately 1
2s

. Therefore, most CRPs collected by the attacker from the cascaded

structure are not valid, making model building attacks ineffective. Different from [129],

which is unstable and can be predicted with 80% accuracy, our proposed cascaded structure

is pure digital without any parametric variations.

6.2.2 Machine Learning Attack

Many strong PUFs with cascaded structure, such as Arbiter PUF [10], Feed Forward PUF

[20], Lightweight secure PUF [130], or XOR-Arbiter PUF [10, 29], have been proven to be
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Table 6.1: Prediction rate of each of the output bit of a 22-stage cascaded Unit structure

using LR and SVM attacks. A value close to 50% indicates that the prediction rate is

similar to random guessing. Increasing the number of training CRPs does not improve the

rate. These values show that these attacks are as effective as random guessing only.

Training CRPs 200 500 2,000 10,000 100,000

(LR) First Bit 50.0% 48.4% 49.1% 47.6% 49.4%

(LR) Second Bit 50.7% 50.0% 48.0% 49.9% 49.2%

(SVM) First Bit 48.3% 50.9% 50.3% 49.6% 51.1%

(SVM) Second Bit 48.2% 49.2% 46.8% 49.5% 50.5%

vulnerable to machine learning attacks [1,131]. In [114], the authors even successfully break

a commercial XOR PUF. In our model building attack model, we assume that the attacker

has physical access to the cascaded structure and can collect as many CRPs as possible

for training. We first try using Logistic Regression (LR) with sigmoid function [1] and

Support Vector Machine (SVM) with Radial Basis kernel function to predict 1,000 unseen

responses of a simulated 22-stage cascaded structure, assuming that the key bits from the

weak PUF are random. The input features of the attacks are ki for all 22 stages (44 bits) and

the training CRPs are generated randomly. Table 6.1 shows results of the prediction rate,

which is defined as the probability of a correct prediction. We can see that the values are

close to 50% for both attacks, which means that the prediction is ineffective and is similar

to random guessing only, and there is no correlation between the prediction rate and the

number of training CRPs.

Next, we try to predict 1,000 unseen responses of the cascaded structure with a Multilayer

Perceptron Neural Network (NN) using TensorFlow [132], which is another effective attack

to existing PUFs [131]. Various numbers of hidden layers and units are tested, and the

results are similar as shown in Figure 6.3, which is with 3 hidden layers, each has 128 units.

For all training sizes (1,000 CRPs, 5,000 CRPs, and 100,000 CRPs) shown in the figure, the

prediction rates of each of the response bit fall between 51% and 49% for all 10 attack trials
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(attempts), which means that the attack is not better than random guessing. Also, using a

larger training set does not improve the prediction rate.

Figure 6.3: NN attack results of 10 trials with different numbers of training CRPs. Prediction

rates of both output bits are close to 50%, indicating that the attack is ineffective.

These results show that the proposed cascaded structure is resistant to machine learning

attacks because it is difficult for the attacker to obtain valid or meaningful CRPs for the

learning procedure. A valid challenge must match either b1 or b2 for all Units in order to

generate a valid response; otherwise, the response is not a valid response and therefore does

not provide useful information to predict the response of an unseen valid challenge.

6.2.3 Linear Equation Solving Attack

In this section we show that the cascaded structure is vulnerable to linear equation solving

attack if the attacker can observe many valid CRPs and has no physical access to the cascaded

structure. Let s be the number of stages in the cascaded structure. Define l be the number

of valid CRPs observed by the attacker. By comparing two valid challenges, the attacker

knows whether the match of each Unit is changed or not. For example, when comparing

2 valid challenges 110101 and 110001 of a 3-stage cascaded structure, the attacker knows

that the match of the second Unit is changed from 01 to 00, say from b21 to b22. Let the

match of the first challenge of the ith Unit be bi1 for all i, and the responses of the first
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and second challenges be y1 and y2, respectively. The attacker can now construct a matrix

multiplication formula Kvalid ·X = Yvalid from the two CRPs observed as:

1 0 1 0 1 0

1 0 0 1 1 0

 ·



b11

b12

b21

b22

b31

b32


=

y1
y2



, where Kvalid is a l × 2s matrix representing the selection of matches, X is a 2s × 2

matrix representing bi1 and bi2 of all Units, and Yvalid is a l× 2 matrix representing the 2-bit

responses. The addition operation in the matrix multiplication is a GF(2) operation, which

is essentially the XOR operation denoted as ⊕.

Whenever the attacker observes a new valid CRP, the number of rows in Kvalid and Yvalid

can be incremented by 1 following the same strategy. If adding the new row to Kvalid does not

increase the rank of Kvalid, it means that the new CRP is a linear combination of observed

CRPs, which indicates that the new response can be predicted. If adding the new row to

Kvalid increases its rank, the new CRP cannot be predicted. However, since Kvalid has only

2s columns, the rank of it cannot exceed 2s, therefore the number of CRPs that cannot be

predicted is at most 2s. In other words, during the life time of the cascaded structure, the

number of secure valid CRP is at most 2s, which is only linear to the number of stages.

6.2.4 Single Unit Querying Attack

In this section we show that the cascaded structure is vulnerable to single unit query-

ing attack if (1) the attacker can only observe limited valid CRPs and (2) has physical

access to the cascaded structure. Assume that the attacker observes a valid challenge

K = (k1, k2, · · · , ki, · · · , ks) and the response Y . For any ith Unit, it is now known to

the attacker that ki is equal to either bi1 or bi2. The attacker can then do the following steps:
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1. Assume that ki is equal to bi1 for all Units, the response can be represented as Y =

b11 ⊕ b21 ⊕ · · · ⊕ bi1 ⊕ · · · ⊕ bs1.

2. For the ith Unit, since ki is a 2-bit value, the attacker can query all other 3 possible

input values ki1, ki2, and ki3 to observe the 3 responses Y1, Y2, and Y3.

3. At least 2 of the responses Y1, Y2, and Y3 will be the same because 2 of the ki1, ki2,

and ki3 correspond to non-match inputs, where the output of the module is ri.

4. Let Y1 and Y2 be the same responses, a non-valid response Y1 = Y2 = b11 ⊕ b21 ⊕ · · · ⊕

ri⊕· · ·⊕bs1 is obtained, and an unseen valid response Y3 = b11⊕b21⊕· · ·⊕bi2⊕· · ·⊕bs1

with challenge (k1, k2, · · · , ki3, · · · , ks) corresponds to the matched bi2 is obtained.

In fact, the attacker can further obtain bi1 ⊕ bi2 for the ith Unit by performing Y ⊕ Y3. The

information can be further exploited to calculate more unseen valid CRPs.

To prevent the linear equation solving attack, the matrix Kvalid must be hidden to the

attacker. In other words, when any 2 valid challenges are observed by the attacker, the

selection of the matched b1 or b2 of any Unit should not be revealed, therefore the attacker

cannot construct the matrix Kvalid. To prevent the single unit querying attack, the cascaded

structure needs to cause confusion to the attacker when different ki1, ki2, and ki3 are applied

to the ith Unit. The attacker should not be able to figure out which one is a real match

from the responses. We propose SLATE architecture in the following section as a cascaded

structure that is resistant to all aforementioned attacks.

6.3 The Proposed SLATE Architecture

6.3.1 Secure SLATE Structure

The secure SLATE is composed of cascaded S-Units as shown in Figure 6.4. The Compare

module is the same as defined in Section 6.2.1. However for a S-Unit, g = k⊕ a is the input

to the Compare module.
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Figure 6.4: Schematic of the S-Unit for SLATE.

The complete SLATE structure with s S-Units is given in Figure 6.5. Define A =

(a1, a2, · · · , as) and R = (r1, r2, · · · , rs) the outputs of the two Linear Feedback Shift Reg-

isters (LFSRs). G = (g1, g2, · · · , gs) is calculated from K ⊕ A. The initial state of the first

LFSR is determined by (N ,W1), and the initial state of the second LFSR is determined by

(K,W2), where W1 and W2 are secret bits of length N obtained directly from the secrete

bits. After the initial bits are loaded, the LFSRs are ”warmed-up” by running a fixed F

cycles to randomize the outputs of LFSRs sufficiently and to make sure that the outputs are

depending on both C and the weak PUF. A and R, which depend on (N ,W1) and (K,W2),

respectively, are the inputs to the cascaded S-Units. For each of the ith S-Unit, ki is XORed

with ai to get gi. If gi is a match, then gi ⊕ pi is propagated to the next S-Unit; otherwise,

ri ⊕ pi, which will not exists in any valid challenge, is propagated to the next S-Unit. The

input, or challenge, to the SLATE is C = (K,N), and the response of the SLATE is the

output of the last S-Unit.

6.3.2 Authentication Protocol

The operation of the SLATE is similar to a model-based strong PUF except for that the

model of the SLATE is extracted from the associated weak PUF or the secret key. The

enrollment and authentication phases are described as follows:

Enrollment phase: The verifier obtains the secret key or extracts the key from the

weak PUF using the one-time-read method presented in Section 6.5. No CRP collection is
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Figure 6.5: Structure of the proposed cascaded SLATE.

required.

Authentication phase:

1. The verifier generates a valid challenge C = (K,N), which is a challenge that matches

either b1 or b2 for all S-Units of the SLATE module.

2. The first LFSR and second LFSR take (N ,W1) and (K,W2) as initial seeds, respectively.

Both LFSRs run a ”warm-up” phase for a fixed number F of clock cycles to generate

inputs of the S-Unit.

3. The final response generated from the cascaded S-Units is sent to the verifier.

4. The verifier calculates the corresponding response of C and examines the response from

the SLATE. If the response is correct, the entity is authenticated; otherwise, the entity

is not authenticated.

A valid challenge can be calculated easily by the verifier because the verifier knows W1,

W2, b1 and b2 of all S-Units. Once a N is decided, the verifier calculates the states of the

LFSRs after F cycles and find K that matches all S-Units. Since every N is used only once

to prevent the linear equation solving attack, the number of valid CRPs is 2N .
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The SLATE structure used in the proposed authentication protocol is resistant to model

building attack because its underlying cascaded structure is secure. Also, it is resistant

to linear equation solving attack because when comparing 2 valid challenges, the attacker

cannot figure out which one of the b1 and b2 is the match as the output of the first LFSR

changes for every valid challenge. Therefore the attacker cannot construct Kvalid given that

a new N is used for every new valid challenge. It is resistant to single S-Unit querying attack

because even if the attacker can fix N and try different K, the r of each S-Unit also changes

because of the second LFSR, therefore the attacker will not be able to distinguish the r from

a match.

6.3.3 Boolean Satisfiability (SAT) Attack

In this section we show that the SLATE is resistant to SAT attack proposed in [133], which

has been shown to be an effective attack to retrieve the correct key of many logic obfusca-

tion schemes. The SAT attack algorithm allows an attacker to decipher an obfuscated circuit

using a small number of carefully selected input patterns and their corresponding outputs

(distinguishing input/output pairs or DIPs) which can be observed from an activated func-

tional chip. The algorithm finds such DIPs (X d/Y d) iteratively and formalizes them as a

sequence of SAT formulas which can be solved by SAT solver. Each DIP rules out a subset

of wrong key combinations and the algorithm terminates when all wrong keys have been

removed. The SAT attack algorithm guarantees to find the equivalent class of the correct

key upon the termination [134].

The objective of an attacker is to obtain the correct key of the obfuscated circuit. In the

case of SLATE, the attacker wishes to find the value of B = (b11, b12, b21, b22, ..., bs1, bs2), and

W= (W1,W2). We hereby note these key values as WB. The attack model assumes that

the attacker has access to the following two components:

1. The gate-level netlist of the SLATE, which can be represented as Y = f(X, WB),

where X = (N,K) is the primary input and Y is the primary output of the circuit.

The SAT formula of the netlist in conjunction normal form (CNF) is represented as
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C(X, WB, Y ).

2. The physical victim SLATE module, which is used to observe the correct output given

an input Y = eval(X ).

Algorithm 1 SAT Attack Algorithm [133]

Input: CNF and eval

Output: WBC

1: i = 1;

2: Gi = True;

3: Fi = C(X,WB1,Y1) ∧ C(X,WB2,Y2) ∧ (Y1 6= Y2);

4: while sat[Fi] do

5: Xd
i = sat assignmentX [Fi];

6: Yd
i = eval(Xd

i );

7: Gi+1 = Gi ∧ C(Xd
i ,WB,Yd

i );

8: Fi+1 = Fi ∧ C(Xd
i ,WB1,Y

d
i ) ∧ C(Xd

i ,WB2,Y
d
i );

9: i = i+ 1;

10: end while

11: WBC = sat assignmentWB(Gi);

When modeling SLATE into CNF form, we first expand both LFSRs in Figure 6.5

into XOR networks. The goal of the attacker is to infer the fixed secret key of B =

(b11, b12, b21, b22, ..., bs1, bs2) and W= (W1,W2) using the SAT attack algorithm shown in

Algorithm 1 to attack SLATE.

We apply SAT attack on SLATE with different number of stages with scaled key size to

evaluate the effectiveness of the SAT attack. The execution time required to solve the correct

key is presented in Table 6.2. We use the SAT Solver developed in [135] and implement the

attack in C++. The attack is run on a Quad Intel Xeon 2.8GHz CPU server, and the run

time limit for the attack is set to 10 hours. The results show that the execution time of SAT

attack algorithm grows exponentially with the number of SLATE stages. For SLATE with
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Table 6.2: SAT attack on SLATE with different number of S-Units. The required time grows

exponentially with the number of S-Units.

S-Units 6 8 10 12 14 22

Time (s) 36 228 1,125 27,237 N/A N/A

Table 6.3: Bit specifications of a variety of SLATE implementations. Last column shows the

number of valid CRPs.

N(K) W1(W2) LFSR Key CRP

176-bit key SLATE 44 44 44 176 244

128-bit key SLATE 32 32 32 128 232

104-bit key SLATE 26 26 26 104 226

14 or more S-Units, the SAT attack fails to find the correct key within the 10-hour time

limit. These results indicate that SLATE is resistant to the SAT attack.

6.3.4 Hardware Implementation

The hardware implementation of SLATE shown in Fig. 6.5 is not unique but rather depend-

ing on the choice of trade-off between area and the number of CRPs. The main deciding

factor is the selection of LFSRs. A maximum-length N -bit LFSR along with W1 provides 2N

different A’s to mask input K, therefore the number of valid CRPs is 2N . Since the length

of b1 and b2 are 2-bit each, a N -bit LFSR after each warm-up can support N
2

units, which

determines the probability of a CRP being valid. Since each units requires 2×2-bit keys and

the length of W1 and W2 are both N , the total length of the key is 4N . Table 6.3 shows

three version of possible SLATE implementations.

In this section we present the detailed hardware implementation cost of the 176-bit key

SLATE with 44-bit LFSR and 22-stages, where the probability of a CRP being valid is 1
222

for the number of stages. The Finite State Machine (FSM) controller module takes N , K,

W1, and W2 to initialize the LFSRs. Since the values of the weak PUF or secret key are not
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directly accessed but one-time padded before the real matching, the attacker learns nothing

about the secret as proven in Section 6.4. In addition, SLATE itself is completely stable.

The SLATE design is implemented in Verilog and synthesized using a commercial 65nm

CMOS technology using Cadence Genus. We use Gate Equivalents (GE) for area evaluation,

where one GE is equivalent to the area of a NAND2 gate with the lowest driving strength of

the corresponding technology. The SLATE implementation with minimized area is presented

in Figure 6.6. Instead of implementing all 22 S-Units, a 2-bit register is added to the S-Unit

and the cascaded structure is implemented as a sequential loop. The FSM controller reads

K, N , and sends the address to the key storage to request the key one bit per clock cycle. A

counter in the FSM controller is used to start the initialization (warm-up) of LFSRs. After

the initialization, b1 and b2 are requested by the FSM controller and the evaluation of the

S-Unit starts.

Figure 6.6: Compact SLATE implementation.

The LFSR implemented is a 44-bit maximum-length internal LFSR with primitive poly-

nomial x44 + x6 + x5 + x2 + 1 [136] as shown in Figure 6.7. The initial bits of the LFSR is

loaded one bit per clock cycle from the feedback XOR loop. Once all bits are loaded, the

LFSR runs 4× 44 = 176 cycles in the warm-up phase before evaluating the S-Unit.

The implementation cost of the S-Unit including the 2-bit register is 33.75 GE. It takes

205.5 GE to implement the 44-bit LFSR using pules-latch structure [137]. The FSM con-

troller would require 218.25 GE. Therefore the total GE required to implement the 176-bit
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Figure 6.7: 44-bit LFSR with polynomial x44 + x6 + x5 + x2 + 1

Table 6.4: GE comparisons between 176-bit SLATE and secure strong PUFs with 244 CRPs.

PUF GE Ratio to SLATE

60-Stage Secure XOR PUF [117] 3,369 3.10

Strong LEDPUF [44] 3,517 3.23

44 x 44 LRR-DPUF [118] 7,744 7.11

SLATE + OTR weak LEDPUF 1,088 1.00

key SLATE is 33.75 + 205.5 × 2 + 218.25 = 663 GE, which is about 955 µm2 for 65nm

technology. If a 176-bit weak LEDPUF [44] is used as the key storage for SLATE, the cost

of the PUF and the one-time-read (OTR) implementation in Section 6.5 is about 425 GE,

including an AntiFuse (AF), a current comparator, an address decoder at the weak PUF

output and an eFuse cell connected to the output of the decoder.

Table 6.4 shows the comparisons between stable and secure strong PUFs and SLATE with

a OTR 176-bit weak LEDPUF. In [117] the authors suggest that a XOR PUF is secure when

no less than 10 delay-based strong PUFs are XORed in parallel. However, only 0.0028%

of the CRPs are stable after more than 10 XORs, therefore, to provide 244 CRPs, 60-stage

delay-based PUFs are required, and its area is about 3.1× of the SLATE. In [44] the authors

proposed to use a cryptographic hash function with a weak PUF to construct a strong PUF.

However, the combined area of a lightweight SHA-3 [138] and the weak PUF decoder is more

than 3.2× of the SLATE. Another secure strong LRR-DPUF uses XOR network to generate

secure CRPs [118]. To provide 244 CRPs, a 44 x 44 LRR-DPUF is required, and the area

is 7.1× of the SLATE. For a LRR-DPUF with similar GE as SLATE, the number of CRPs

is approximately 217, which is too small and can be broken by simply collecting all possible

CRPs.
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Table 6.5: Area (GE) comparisons between SLATE and lightweight ciphers with 128-bit key.

The areas shown do not include the key storage.

Cipher GE GE Ratio to 176 / 128 / 108 SLATE

* PRESENT [139] 1,570 2.37 / 2.85 / 3.18

SIMON [140] 958 1.44 / 1.74 / 1.94

SPECK [140] 996 1.50 / 1.81 / 2.02

PICOLLO [141] 1,362 2.05 / 2.48 / 2.76

Grain [128] 1,857 2.80 / 3.38 / 3.76

* Trivium [128] 2,599 3.92 / 4.73 / 5.26

176-bit key SLATE 663 1.00 / 1.21 / 1.34

128-bit key SLATE 550 0.83 / 1.00 / 1.11

104-bit key SLATE 494 0.75 / 0.90 / 1.00

* 80-bit key cipher

Since entity authentication can also be accomplished by ciphers, in Table 6.5 we compare

the implementation costs of three versions of SLATE to existing lightweight block ciphers

and stream ciphers excluding the key storage. From the table we can see that the hardware

cost in GE of existing ciphers are 44% to 5.26× larger than SLATE. These results show that

for the purpose of entity authentication, SLATE is a much more compact primitive than

existing solutions.

6.4 Theoretical Guarantees

In this section we show that under idealized assumption SLATE is secure from informa-

tion theoretical perspective [115] when the attacker can observe valid CRPs. We begin by

describing a random matrix multiplication problem, we then show that it is information

theoretically secure, and then connect it to the scheme of SLATE.

First let us define the following problem of random matrix multiplication.
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Definition 4. Consider the following set of equations

Y = G ·X (6.2)

where Y consists of l rows and two columns, G is a l × s matrix, and X has s rows and

two columns. Furthermore, each entry of G as well as the entries of X are independent

and identically distributed (i.i.d.) Bernoulli(1/2). Finally, B represents the set of invertible

matrices with s rows and two columns.

The following lemma shows that the mutual information [99] between X and Y is equal

to zero as long as X is invertible, and also shows that the probability that X is not full rank

decreases exponentially with s.

Lemma 2. When X ∈ B the mutual information between X and Y is equal to zero, that is,

I (X;Y |X ∈ B) = 0. (6.3)

Furthermore, P (X /∈ B) ≤ 3 · 2−s.

Proof. All entries of G are i.i.d. Bernoulli(1/2). When X is invertible it means that its

columns are different and both are not equal to zero, and so the entries of Y are also

i.i.d. Bernoulli(1/2). Therefore, the entropy of Y and X|Y is the same and so the mutual

information in this case is zero. In the case when X is not full rank, the mutual information

between X and Y is no longer zero, and this happens when either the columns are equal or

one of them is equal to zero. The probability of this event is upper bounded by 3 · 2−s, that

is, P (X /∈ B) ≤ 3 · 2−s.

Theorem 4. Assume that G is one-time-padded such that K = G ⊕ A is observed, where

K corresponds to the partial challenge and A corresponds to the first LFSR output of the

SLATE (i.e., l responses as those are matrices with l rows). The matrix X represents the

secret values of all S-Units, that is, b1 and b2, and Y represents l observed responses of

SLATE. When both K and A are drawn i.i.d. Bernoulli(1/2), the amount of information

which is exposed when observing K along with l responses (Y ), is zero with probability which

is upper bounded by 3 · 2−s, where the number of S-Units is equal to s. Therefore, as s

increases this scheme becomes information theoretically secure.
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Proof. For simplicity let us assume that the possible values in the S-Units are either zero

or two random bits that are drawn i.i.d. Bernoulli(1/2). This simplified assumption also

holds when the challenge chooses between two pairs of random bits. As long as G is XORed

with A, it can be assumed that no information on the matrix G is exposed when observing

K (i.e., the mutual information between G and the K is equal to zero) and so the attacker

does not know the matrix G in equation (6.2). In this case, based on Lemma 2 we get that

the amount of information, which is revealed when observing valid values of K along with l

responses (Y ), is equal to zero as long as X is invertible, and that the probability that this

is not the case is upper bounded by 3 · 2−s. This proves the theorem.

Remark 15. When the number of S-Units in the scheme s = 22 we get that the probability

that the mutual information is not equal to zero is upper bounded by 3 · 2−22.

Remark 16. In practice a challenge is XORed with the output of the first LFSR of the

scheme presented in Section 6.3.1 and not with a “pure” source of randomness.

Remark 17. It is assumed that the attacker observes both Y and K = G ⊕ A, where A is

i.i.d. Bernoulli(1/2). Therefore, one may be interested in I (X;G⊕ A, Y ). However, in our

setting I (X;G⊕ A, Y ) = I (X;Y ). This is because I (X;G⊕ A|Y ) = 0 as Y , X and G are

statistically independent of A, which is drawn i.i.d. Bernoulli(1/2). This is the reason why

in theorem 4 we focus on I (X;Y ).

6.5 Tamper Evident One-Time-Read Method

We propose a tamper evident one-time-read method for the practical use of SLATE but

not limited to it. The method can be applied to any applications where one-time access to

sensitive data is required.

In the method both eFuse and AF cells are used. The implementation of an One-Time-

Programmable (OTP) module is given in Figure 6.8 (a). It is composed of an AF cell and

a common current comparator as mentioned in the AF memory design in [142]. Since the

current difference of AF between default (open) and programmed (close) states are larger
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than 100X, when one (VDD) is applied to the AF, the comparator can effectively distinguish

the two states to generate different outputs as demonstrated in [142] with AF cells fabricated

using 0.18µm technology. When applied with one, the current of a default AF is less than

100pA, and for a programmed AF, the current is larger than 20µA. Therefore, with 2µA

reference current the comparator can distinguish and generate different outputs accordingly.

As shown in Figure 6.8 (b), the output of the OTP is used to activate the weak PUF, such

as the enable signal or the power gating signal to any PUF modules. Once the AF cell

is permanently programmed, the weak PUF, which provides secret values to the proposed

SLATE module, can be evaluated through eFuse connections. The steps of the method is

given in the following:

Tamper Evident One-Time-Read Method:

1. Set1 is set to one (VDD) and the outputs of the eFuse connections are evalu-

ated. If the values of weak PUF can be read, it means that the AF connections

have been programmed to the closed states, which implies that an unexpected

read is detected and the PUF should be discarded. If the output is floating,

continue to step 2.

2. S1 programs the AF cell to the closed state.

3. OTP activates the weak PUF and the secrets are read through eFuse connec-

tions.

4. Set2 programs the eFuse connections to the open states after the reading.

By examining the states of the AF connections in step 1, the PUF user knows the reading

history of the weak PUF and can discard the PUFs that have been read before. Therefore,

the proposed method is tamper evident. The method also guarantees one-time-read because

the eFuse connections are programmed to open states in step 4, where the read channel

is destroyed permanently. The AF cell cannot be replaced by eFuse because otherwise

the default states of eFuse is closed and an attacker does not have to program the eFuse to
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activate the weak PUF. The eFuse connections cannot be replaced by AF cells either because

once the AF cell is programmed, it cannot be reversed. Please note that the SLATE module

in Figure 6.8 (b) can be any applications that reads secret values from a weak PUF.

Figure 6.8: (a) OTP module implementation. An AF cell is connected to a current compara-

tor to generate different outputs. (b) One-time-read secret extraction. The OTP activates

the weak PUF after the AF cell is irreversibly programmed. Once the weak PUF is read,

the eFuse connections is burnt so only the SLATE module has access to the weak PUF.

6.6 Conclusions

In this chapter we propose SLATE as a lightweight and secure entity authentication primitive.

We show that SLATE is resistant to model building attacks and SAT attacks that are known

to be effective to most existing strong PUFs or logic obfuscation. We compare the hardware

implementation area of SLATE to secure strong PUFs and ciphers to show that existing

entity authentication solutions are at least 44% to 7.1× larger than SLATE. Also, we show

that ideally SLATE is information theoretically secure in terms of the amount of information

revealed by observing valid CRPs. Finally, we propose a tamper evident one-time-read

method to ensure the unpredictability and the unclonability of SLATE.
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CHAPTER 7

Reverse Engineering of 2.5D Split Manufactured ICs

Integrated circuit (IC) split manufacturing has been shown to be one of the most effective

protection schemes to prevent reverse engineering from malicious foundries. Among the

existing split manufacturing approaches, the 2.5D split manufacturing using silicon inter-

poser has much less fabrication and testing costs compared to layer splitting approaches. In

this chapter we propose a Boolean Satisfiability(SAT)-based attack to reconstruct the wire

connections of the 2.5D split manufacturing netlists. Unlike previous attacks to split man-

ufacturing that do not guarantee 100% accuracy of the connections, such as the Proximity

attack or the Network-flow attack, our SAT-based attack can fully reconstruct the missing

wires and therefore the functionality of the chip can be completely reverse engineered. In

addition, we show that the runtime of SAT attack is significantly reduced by applying group-

ing hints obtained from a Satisfiability Modulo Theories (SMT)-based grouping algorithm,

which is purely depending on the circuit functionality, so no physical defensive mechanisms

can prevent such attack. In our experiments we show that our grouping algorithm can speed

up the SAT attack runtime by more than 1,000X and can successfully reverse engineer rea-

sonable size benchmarks even when the split nets contains more than one fanouts and the

total cut size is close to 1,000.

7.1 Introduction

The globalization of Integrated circuit (IC) supply chain due to the higher fabrication cost

and increasing complexity of modern designs has led to new security threats including Trojan

insertion [143], IC overproduction [144], intellectual property (IP) piracy [145] and reverse
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engineering [146]. In the cost-effective fabless model, the foundries that the IC/IP owner

outsourced the design to might not be trustworthy. Once the foundry obtains the whole

GDSII of the design, it can overproduce or perform reverse engineering to obtain all design

details, which leads to significant revenue lost. Split manufacturing, as one of the most

promising defensive mechanisms to prevent foundry reverse engineering, has been studied

intensively in recent years.

7.1.1 Layer-based Split Manufacturing

In order to protect IC owners from the malicious foundries or attackers, Layer-based Split

Manufacturing (LSM) has been proposed as a protecting mechanism to minimize the afore-

mentioned risks [147]. LSM divides a design into Front End of Line (FEOL) and Back End

of Line (BEOL) parts, and different parts are fabricated at different foundries. The FEOL

(higher complexity and cost) part is fabricated at an untrusted foundry. Since the complete

connections of the circuit are unknown to the untrusted foundry, the design cannot be fully

reverse engineered. After the FEOL fabrication, the wafer is shipped back to an onshore

trusted foundry for the BEOL fabrication and integration. While LSM may fit well with the

advanced 3D IC fabrication model, however, the yield loss due to wafer transportation, inte-

gration, and the requirement of design rule compatibility of two foundries are still remaining

as the major challenges [148]. Also, the cost of splitting lower metal layers can induce even

higher cost [149], while splitting at higher layers may not provide sufficient security [150].

7.1.2 Module-based Split Manufacturing

Another split manufacturing strategy is the Module-based Split Manufacturing (MSM),

where the design is split into different modules, and all layers including FEOL and BEOL

of a module are fabricated at a same foundry. The modules are then sent back to a trusted

integrator for final integration.

The MSM can be considered as a security-purpose 2.5D integration [151], which has

been a promising IC integration technology that is designed to improve system performance
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by using silicon interposers [152] offering a high density package system with low cost and

performance benefits [153], such as inter-chip bandwidth and power reduction [154]. While

large scale 3D ICs are still being developed, 2.5D products are already commercially available

[155].

Compared to LSM, the advantages of MSM include:

1. Better yield because less transportation and alignment risks, and each module is pack-

aged and tested as normal chip before being sent to the integrator.

2. No design rule compatibility requirements since the connection is done through chip-

to-chip interposers.

In this chapter we focus on reconstructing the missing connections of the MSM strategy from

an adversary’s perspective.

7.1.3 Attacking Model

The adversary who tries to obtain the complete GDSII of the circuit is assumed to have

access to the split manufactured parts of the design and can obtain the complete design

from open market to get correct outputs of arbitrary inputs of the IC. Since the splitting

parts are known to the adversary, the intermediate input/output at the splitting interface

can also be obtained by the adversary. The only thing the adversary does not know is the

connection between the splitting parts.

Figure 7.1 shows an example of a circuit split using the MSM strategy. Partition 1 and

partition 2 can either be fabricated at the same or different foundries but none of them know

the final connections between the two parts as indicated by the circles. The split can have

no-fanout as indicated in Figure 7.1 (a) or include the fanout (3x4) as shown in Figure 7.1

(b). The cut nets of both fanout and no-fanout splits can be the same but the cut sizes are

different. For both splits it is impractical for the adversary to brute-force all connections to

find a correct solution simply because of the size of the solution space.

To address this problem, we propose to use a Boolean Satisfiability (SAT) solver with
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Figure 7.1: MSM example (a) without fanout and (b) with fanout split. Partition 1 and

partition 2 can be fabricated at the same or different foundries but the connections between

them are hidden. The goal of the adversary is to connect outputs of partition 1 to the inputs

of partition 2 correctly.

hints obtained from circuit function analysis. Different from the SAT attack proposed in

[156], we introduce grouping hints that can significantly reduce the runtime of the SAT

attack. The main contributions of this chapter include:

• Two SAT-based attacks are compared. Results show that the grouping hint is much

more effective than the no-fanout hint, which turns out to be even worse than without

applying any hint due to the increase of virtual gate counts.

• Hard grouping algorithm and soft grouping strategies are proposed to significantly

reduce the runtime of SAT attack. The hard grouping algorithm is independent of

physical implementation of the split therefore no physical defensive mechanism, such

as place and route perturbation, can be effective. The use of soft grouping strategies can

further reduce attack runtime using the hints obtained from physical implementations

of the design.
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7.2 The SAT-Based Attack

7.2.1 SAT Attack Modeling

In this section we model the reconstruction of missing connections of split manufacturing

as SAT-based attack proposed in [133], which has been shown to be an effective attack to

retrieve the correct key of many logic obfuscation schemes. The SAT-based attack algorithm

allows the adversary to decrypt an obfuscated netlist using a small amount of input patterns

and their corresponding outputs (distinguishing input/output pairs or DIPs) from a func-

tional circuit. The algorithm iteratively finds such DIPs and formalize them as a sequence

of SAT formulas to be solved by a SAT solver. Each DIP can rule out a subset of wrong

keys and the algorithm is guaranteed to find an equivalent class of the correct key.

To formulate the problem the first step is to model the missing connections with virtual

multiplexer (mux) or demultiplexer (demux) gates with selection keys. As shown in Figure

7.2, there are two possible ways to model the connections with a cut size of 3 MSM. Figure

7.2 (a) shows a connection network using 3 mux gates where each of the mux is configured

by a key ki. The network models that mi can be connected to anyone of the ni wires. Figure

7.2 (b) shows a connection network using 3 demux gates representing a model that each ni

can only connect to one mi, which is the ORed value of all demuxes. One of the demux

outputs will be ni and others will be zero depending on the key ki of the demux. This model

intrinsically constrains the connection to be no-fanout while maintaining the same size of

keys as in Figure 7.2 (a), which is n ∗ log(n) bits for a cut size of n.

Combining the virtual connection network and the split parts we can now apply SAT

attack to the design to solve the keys. The objective is to retrieve the correct values of all

key bits in order to reconstruct the missing connections. The attacking model assumes we

have access to following aspects:

1. The gate-level netlists of both partition 1 and partition 2. Along with the model for

missing wires from partition 1 to partition 2, the conjunction normal form (CNF)

C(X,K, Y ) of whole design can be obtained and the function of the design is rep-
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Figure 7.2: Modeling example of no-fanout MSM with cut size of 3. (a) mux network (b)

demux network.

resented as Y = f(X,K), where X is the primary input of the circuits and K =

(k1, k2, ..., ki) is the selection keys to all mux or demux gates.

2. A fully functional chip obtained from the market, from which an attacker can observe

the correct output of the circuit given an input Y = eval(X)

7.2.2 Runtime Results

In our experiments we use ISCAS85 and Microelectronics Center of North Carolina (MCNC)

benchmarks to evaluate the runtime of two connection networks. In our experiments the

attack terminates either when correct keys are found or the runtime is larger than 24 hours

(TO). Once a correct key is found, the circuit will behave exactly the same as the original

circuit before split. Different sizes of cut nets are tried and the attack tries to find a key that

matches all outputs. Table 7.1 shows the runtime of the mux and demux networks. There

are multiple ways to cut nets for a design while maintaining the balance of size of partitions

but in general the runtime is proportional to the cut size. For some benchmarks if the cut

size is larger than 100 then it becomes difficult to find the correct key. The demux network

models the connection in such a way that every output of partition 1 can only connect to one
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Table 7.1: mux and demux network runtime results in seconds.

circuits Cut size mux demux Cut size mux demux

c3540 52 90 159 115 1,588 TO

c5315 93 690 3,108 120 TO TO

c7552 50 257 604 108 TO TO

seq 70 165 682 165 TO TO

apex4 47 26 25 251 20,666 TO

ex1010 72 2,007 1,060 281 TO TO

des 85 38 219 346 8,339 TO

input of partition 2, which exploits the information to the adversary that the connections

are without fanout for the split shown in Figure 7.1 (a). However, except for some small cut

sizes, most runtimes of demux networks are much larger than the mux network even though

the size of the keys are the same. One possible reason is that there are n OR gates each

with n inputs in the demux network, which increases the number of clauses significantly in

CNF and can slow down the SAT solver [157]. In the rest of the chapter we will focus on

the mux connection work attacks.

7.2.3 Grouping Hints

From Table 7.1 we know that the runtime of solving the key can be effected significantly by

the complexity of the connection network in addition to the cut size. Therefore, one way to

reduce the runtime is to use a simpler connection network that translates to fewer CNFs.

In other words, if the connections can be represented by smaller mux gates the runtime can

be significantly reduced. One approach to reduce the mux network complexity is to apply

a grouping hint to each of the mux, which contains the information of the candidates from

partition 1 to partition 2.

With grouping hints the adversary can model the connection with a smaller mux network

because now the candidate connections of mi are not all ni but can be a sub-group of ni.
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Table 7.2: mux network runtime results in seconds with grouping hints.

circuits Cut size No Hint 50% 33% 20%

c3540 115 1,588 379 143 79

c5315 120 TO 907 128 39

c7552 108 TO TO 10,824 378

seq 165 TO TO 895 244

apex4 251 20,666 4,574 2,791 974

ex1010 281 TO TO 6,568 3,923

des 346 8,339 2,696 1,386 527

For example, the key length for the no-fanout split is not n ∗ log(n) anymore but becomes

n ∗ log(pn) where p is the grouping hint percentage, which means that an input of partition

2 can only be connected to p portion of connections from partition 1. Table 7.2 shows the

results when different p’s are imposed to the mux connection network. We can see that some

testbenches show significant runtime reduction when 50% of p is imposed, and as p keeps

getting smaller, all benchmarks can be solved and most of the runtime are almost hundred

times smaller compared to no hints.

From Table 7.2 we know that grouping can help reduce the runtime significantly. However

a wrong grouping hint can cause the SAT solver a long runtime yet still cannot find the correct

solution, therefore the grouping hints should be carefully computed. To address this issue

we propose an algorithm to find hard grouping hints that are guaranteed to include correct

groupings irrespective to physical constraints and routing heuristics. Details of soft grouping

hints, which do not guarantee to include the correct connections, will be discussed in Section

7.4.
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7.3 Hard Grouping Hints and Results

7.3.1 Hard Grouping Algorithm

In this section we present the algorithm to find hard grouping hints that are irrespective

to physical constraints or routing heuristics. Hard grouping hints guarantee to include

correct connections because they are completely independent of how the circuit is physically

implemented but purely depending on the functionality of the circuit itself. For a cut size

of n, define the n-bit output from partition 1 as Z1=(z11, z12, ...z1n) and input to partition

2 as Z2=(z21, z22, ...z2n). The goal of the hard grouping algorithm is to find the candidate

connections of each z2i from Z1.

The hard grouping algorithm is implemented in Python as a Satisfiability Modulo The-

ories (SMT) problem and solved by an existing SMT solver [158], which is a verification

engine that understands a satisfiability problem at a higher level of abstraction other than

Boolean formulas while still retaining the speed and efficiency of modern SAT engines.

The hard grouping algorithm first assigns Z1 with fixed number of bits being one (or

zero), which we note as hot bits, to SMT solver and it finds a valid input-output pair (X, Y )

of the whole complete design to generate such Z1 for partition 1. Next step is to find all

possible patterns of Z2 with the same number of hot bits which can reproduce the same Y

of the whole complete design. The grouping information can then be found by mapping hot

bits in Z1 to hot bits in each of Z2 .

In our attacking model, the adversary has access to (1) gate-level netlists of both par-

tition 1 and partition 2 such that partitions can be represented as a set of SMT formula,

S(X,Z1, Z2, Y ), and (2) a fully functional chip obtained from the market which can be used

to observe the correct output given an input, Y = eval(X). The algorithm for finding hard

grouping hints for n-bit Z1 using a specified number of hot bits hb, and hot bit type (1 or

0), hb type, is shown in Algorithm 2. It returns a map from each net in Z1 to all possible

candidates in Z2 .

A simple example to illustrate the idea of the algorithm is given in Figure 7.3: a
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Z1=(11000) and its corresponding (X, Y ) is found. Under such constraints, assume Z2=(00110)

is the only solution found to generate the same Y for partition 2. Now we know that z11 and

z12 can only connect to z23 and z24 (all locations with 1’s in Z2 ), and all other connections

of Z1 can only connect to z21, z22, and z25 (all locations with 0’s in Z2 ). If there are

multiple solutions of Z2 for the same Z1 and (X, Y ), the union of the groupings should

be the final grouping found for the Z1. For every Z1 with different solutions we take the

intersection of the groupings found so far to obtain smaller grouping sizes because a correct

connection should always exist no matter what inputs or Z1 s are.

Figure 7.3: Hard grouping example.

To enhance the speed of this algorithm, we introduce the concept of Distinguishing

Z2 (Z2d). For a fixed Z1 , it is only necessary to find Z2 which can reveal new group-

ing information instead of all possible solutions of Z2 . For instance, if Z1 = 01100 and we

have found Z2 = 00110 and 01010, from the perspective of bits of value 1 in Z1 , we know

that possible candidates are z22, z23 and z24. The next Z2 to be found is distinguishing if

and only if it can reveal new candidates, which are z21 and z25. Thus, Z2 = 10100 is a Z2d

as it reveals Z21 as an additional possible candidates while Z2 = 01100 is not distinguishing.

Applying the constraints of finding distinguishing Z2 after a new Z2 is found speeds up the

algorithm significantly.

7.3.2 Number of Hot Bits

In cases of large cut size, constraints in line 3 of Algorithm 2 are usually unsatifiable if

desired number of hot bits hb in Z1 and Z2 is small. For example in DES with no-fanout
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Algorithm 2 SMT Find Grouping Algorithm

1: function find group(eval, hb type, hb)

2: i = 1;

3: F = S(X,Z1, Z2, Y ) ∧ (Y = eval(X))

4: F = F ∧ (number of hb type in Z1 and Z2 = hb)

5: while sat[F ] do

6: Z1i = smt assignmentZ1[F ]

7: Xi = smt assignmentX [F ]

8: F new = F ∧ (Z1 = Z1i) ∧ (X = Xi)

9: j = 1

10: while sat[F new] do

11: Z2j = smt assignmentZ1[F new]

12: for 1’s in Z1i do

13: Groupone = Groupone ∪ (1’s in Z2j)

14: end for

15: for 0’s in Z1i do

16: Groupzero = Groupzero ∪ (0’s in Z2j)

17: end for

18: F new = F new ∧ (Z2 6= Z2dj ) ∧ (Z2 is a Z2d)

19: j = j + 1

20: end while

21: F = F ∧ (Z1 6= Z1i)

22: i = i+ 1;

23: end while

24: for all z1k in Z1 do

25: Group[z1k] = Groupone[z1k] ∩Groupzero[z1k]

26: end forreturn Group

27: end function
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cut size 346, it is unsatifiable to find an input X to generate only one 1 and 345 0’s at the

output of partition 1. Therefore starting with one hot bit may be an inefficient approach.

Figure 7.4 shows the decoupled runtime of different ending hb of DES with 346 cut size

starting from 173 hot bits to the ending hot bits indicated. Note that we start with number

of hot bits being half of the cut size because we try both 1’s and 0’s as hot bit types. We can

see that the smaller the ending hb is, the faster it is for the SAT attack to find the connection

because the size of groups are smaller, however the time spent on the grouping algorithm

also become longer simply because the number of iterations the algorithm is executed. For

some small ending hb the grouping time itself is already longer than the total time. Therefore

from empirical observations we propose to start Algorithm 2 with hb being half of the cut

size and decrease hb by one until more than half of group sizes are smaller than 20% or when

the overall group sizes are not getting smaller. The complete algorithm for finding hard

grouping is shown in Algorithm 3.

Figure 7.4: DES runtime with 346 cut size and different ending hot bits.

7.3.3 Hard Grouping Results without Fanout

In Table 7.3 we show the runtime of the hard grouping algorithm and SAT attack algorithm

after applying hard grouping hints. Compared to original SAT runtime in Table 7.1, the

total runtime with hard hints has been improved by 13X to more than 1,440X.
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Algorithm 3 Complete SMT Grouping Algorithm

Input: SMT formula and eval

Output: Final Group

1: for i =half of cut size do

2: Groupone i = FIND GROUP (eval, 1, i)

3: Groupzero i = FIND GROUP (eval, 0, i)

4: Group = Group ∩Groupone i ∩Groupzero i

5: if Group ≤ 20% then

6: break

7: end if

8: i = i− 1

9: end for

Table 7.3: Runtime (seconds) of hard grouping hints and reduction ratio compared to no

hints. The total runtime compared is the sum of grouping and SAT time.

circuits Cut size Grouping Time SAT Time Reduction Ratio

c3540 115 51 5 28.4

c5315 120 23 37 >1,440.0

c7552 108 15 210 >384.0

seq 165 169 493 >130.5

apex4 251 482 233 28.9

ex1010 281 648 6,173 >12.7

des 346 294 312 13.8
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Figure 7.5 shows the group size distribution of DES with 346 cut size after running

Algorithm 3. Most group size are smaller than 20% of 346 and about 40% of the connections

have group size of one, which means that these connections are already determined during

the grouping procedure.

Figure 7.5: Group size distribution of DES with cut size 346.

7.3.4 Hard Grouping with Fanout

In the case of splitting with fanout where number of bits in Z2 is larger than Z1 as shown

in Figure Figure 7.1 (b), line 4 in Algorithm 2 can be modified to F = F ∧ (number of

hb types in Z1= hb) ∧ (number of 1’s/0’s in Z2<=number of 1’s/0’s in Z1) to solve for the

grouping. The idea is that the number of 1’s/0’s in Z2 should be greater or equal to the

number of 1’s/0’s in Z1 . For example, if Z1 = (100), and there are five bits of Z2 , then

all possible solutions of Z2 containing one to three 1’s need to be found to construct the

grouping from Z1 to Z2 .

Table 7.4 shows the runtime of fanout split with and without hard hints. Compared

to Table 7.2, the runtime of split with fanout on the same nets are much longer than split

without fanout. For most benchmarks the key cannot be resolved in 24 hours without hints,

but with hard grouping hints the runtime can be significantly improved.

136



Table 7.4: Runtime (second) of fanout split with hard grouping hints and reduction ratio

compared to no hints. The total runtime compared is the sum of grouping and SAT time.

circuits Cut size No hint Grouping SAT Reduction Ratio

c3540 115x187 4,706 186 27 22.1

c5315 120x269 TO 157 877 >83.6

c7552 108x188 TO 108 299 >212.3

seq 165x239 TO 226 2,839 >28.2

apex4 251x710 TO 36,501 9,727 >1.9

ex1010 281x677 TO 70,240 5,838 >1.1

des 346x455 TO 1,794 245 >42.4

7.4 Soft Grouping Hints and Results

7.4.1 Soft Grouping Strategy

Besides hard grouping hints, another way to reduce the mux network complexity is to apply

soft hints from physical implementation constraints. Similar to proximity attacks [159],

the adversary knows that a wire of partition 1 is likely to connect to the wires that are

physically close to itself in partition 2 due to the interposer delay. Figure 7.6 shows simulated

results of interconnect delay and transition slew using a commercial 65nm technology. Each

interconnect connecting to the input of an inverter cell is driven by the largest buffer cell

available in the standard cell library. Metal 8 with 5um width is used to emulate the

interposer interconnect wire. We can see that as the wire becomes longer the delay and slew

become larger. This information can be exploited by the adversary to narrow down possible

connections and thus simplify the connection network. For example, a 2GHz design would

require the path delay to be smaller than 500ps. In the 65nm technology we used, a normal

setup time for a D flip-flop is about 100ps, which leaves 400ps margin for the total gate

delay. As shown in Figure 7.6 if the wire is longer than 20mm, the wire delay is already

larger than 400ps, therefore such connection can be pruned out in the connection network
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model. Another information is the transition slew. The library defines that the max slew is

about 385ps, and if a wire is longer than 10mm the slew becomes larger than 385ps, which

tells the adversary that a connection longer than 10mm is not likely to be made.

Figure 7.6: Interconnect delay and transition slew.

Given the modern GPU design specifications [155], which contains billion of gates and

die size as large as about 600mm2, having a cut size of hundreds of thousands between the

two partitions is expected from our empirical observations. Assume the design is split into

two parts, each with the dimension of 10mm by 10mm. With existing interposer technology

of 50um pitch [160], the allowable number of interposers on each partition is about 40,000,

therefore it is possible that most interposer sites will be used after split. The exemplary

analysis of delay and transition constrains present in Figure 7.6 tells the adversary that

connections from the left edge of partition 1 to the right edge of the partition 2 is not likely

to be made as illustrated in Figure 7.7, which shows an unlikely connection marked as ”X”

and possible connections marked as ”O”.

The difference between hard hints and soft hints is that when soft hints are applied, the

correct connections are no longer guaranteed to be included after the grouping, and the keys

of the connection network may not be found. This is because the IC/IP designer can perform

routing or placement perturbation to violate the physical design principles [159].
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Figure 7.7: Interposer soft grouping example. The connection marked as ”X” is not likely

to happen due to interconnect delay and transition constraints

7.4.2 Results

To integrate soft grouping with hard grouping, the adversary can first apply hard grouping to

obtain connections for partial nets and then apply soft hints to the rest of the nets to further

reduce the runtime. Table 7.5 presents the percentages of solved nets (nets with grouping size

one) after hard grouping and runtime results when 50% soft grouping is applied after hard

grouping. We can see that about 11% to 64% of the connections are already solved without

even applying SAT attack, and these connections are guaranteed to be correct because

they are found by hard grouping algorithms, which have the same runtime as in Table 7.4.

For those unsolved nets, the runtime of STA attack is significantly reduced compare to

Table 7.4 because of the soft grouping. However, once soft grouping is applied, there is no

guarantee that the corrcet connections can be found. In this experiment we include the

correct connections for the purpose of demonstrating the runtime improvements.

Table 7.6 shows the results when 50% soft grouping hints are applied before executing

the hard grouping algorithm. The runtime is further reduced compared to hard grouping

only as shown in Table 7.4, but the final groupings are not guaranteed to include the correct

connections. In practical the adversary can apply hard grouping hints first to find solutions

for partial nets that are guaranteed to be correct and then apply soft hints to the rest of the
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Table 7.5: Runtime (seconds) of fanout split of hard grouping first followed by 50% soft

grouping.

circuits Cut size Solved Nets SAT Reduction Ratio

c3540 115x187 30% 15 23.4

c5315 120x269 12% 401 >154.8

c7552 108x188 16% 99 >417.4

seq 165x239 11% 290 >167.4

apex4 251x710 50% 2,591 >2.2

ex1010 281x677 64% 4,409 >1.2

des 346x455 56% 60 >46.6

nets, or apply the soft groupings that are highly likely to be true before the hard grouping to

reduce the runtime. The grouping sequences can be applied in an arbitrary order depending

on the actual implementation of the victim design.

7.5 Defense Strategies

Create floating connections. To defend the hard grouping algorithm, the IC/IP designer

can create redundant floating connections at the output of partition 1 to cause confusion or

even create unsolvable grouping solutions of Algorithm 2. For example, say Z1=(1001) for

a no-fanout split, z14 is the redundant floating net that does not connect to partition 2 and

a corresponding input X of partition 1 is found. The algorithm tries to find Z2 with two 1’s

to generate Y = eval(X), but since z14 is floating, such solution for Z2 may not exist, so

the grouping hints may not be generated. From our experiments we can see that the ability

of SAT attack itself is limited, therefore without the help of hard grouping algorithm the

overall performance of the attack is significantly weakened.

Split the design into more partitions. To model the connection network the ad-

versary needs to know the topological order of the partitions. When there are only two
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Table 7.6: Runtime (seconds) of fanout split of 50% soft grouping first followed by hard

grouping.

circuits Cut size No hint Grouping SAT Reduction Ratio

c3540 115x187 4,706 179 10 24.9

c5315 120x269 TO 140 158 >289.9

c7552 108x188 TO 99 39 >626.1

seq 165x239 TO 224 407 >136.9

apex4 251x710 TO 4,277 8,978 >6.4

ex1010 281x677 TO 37,961 4,061 >2.3

des 346x455 TO 1,723 71 >48.2

partitions the order of the partitions can be easily figured out. If there are more than

two partitions, finding the topological order becomes a more difficult task and there is no

straightforward way to translate our attacking algorithm to solve partitions with unknown

orders. The complexity may be too high for the attack to solve the key in practical runtime.

7.6 Conclusion

In this chapter we present SAT attacks to 2.5D split manufacturing based on the hard group-

ing hints obtained from SMT-based grouping algorithms. We first show that the runtime

of SAT attack can be significantly affected by the complexity of the connection network,

therefore to reduce the runtime a simplified network should be used. Then we propose hard

grouping algorithms to find grouping hints that guarantee to include correct connections

to effectively simplify the connection network and reduce the runtime of SAT attack sig-

nificantly. Our experiments are done on both fanout and no-fanout splits and results show

that the runtime is improved by more than hundred times for some testbenches compared

to SAT attack without hints. Finally we discuss several defense strategies from designer’s

perspective to protect the split manufacturing from our attack. Our future work will focus

on the attacks on multiple-split interfaces and splitting with floating or sequential elements.
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CHAPTER 8

Conclusion and Future Work

This dissertation is devoted to developing new techniques and methodologies to protect

IC/IP designer from attacks of malicious parties. We first address several vulnerabilities

in the modern IC supply chain environment and limitations of existing DFS approaches,

followed by our proposed solutions and experimental results showing the much improved

security. In the second part of this chapter we discuss several future research directions.

The major contributions are summarized as follows:

1. Assessing Viability of Delay-Based PUFs. The uniqueness and stability of SRAM

PUFs, arbiter PUFs, and RO PUFs are measured based on silicon results. We show

that a delay-based PUF are susceptible to silicon side-channel attacks because of sys-

tematic fabrication variations. Furthermore, we model two sources of instabilities of

delay-based PUFs: metastability of the arbiter circuit, and jitter accumulation of RO.

We show that the probability of a unstable CRP being discarded due to metastability

and suggest that longer (but compact in layout extent) delay chains is one possible

way to reduce impact of metastable comparisons. For the impact of random jitter, we

derived the probability of a jitter caused measurement error which shows that increased

measurement time is a viable way to decrease such error probability.

2. UNBIAS PUF: A Physical Implementation Bias Agnostic PUF. The proposed

UNBIAS PUF effectively reduces PUF implementation efforts by mitigating the impact

of biased delay paths and metastability issues. Without complex post-layout analysis

or hand-crafted physical design effort, the proposed measurement can still extract local

device randomness. The inspection bit can be determined efficiently from the intra-

FHD and inter-FHD prediction models. Two UNBIAS PUFs, a weak and a strong
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PUF, are implemented on 11 FPGAs without imposing any physical layout constraints.

The fact that the proposed scheme is immune to physical implementation bias would

allow the UNBIAS PUF to be integrated in a high-level description of the design, such

as during RTL design.

3. LEDPUF: Stability-Guaranteed Physical Unclonable Functions through Lo-

cally Enhanced Defectivity. We propose abd fabricate the first stability-guaranteed

PUFs that requires no stability enhancement techniques, where the source of random-

ness is extracted from (1) locally enhanced DSA process and (2) gate oxide breakdown.

Detailed constructions of the LEDPUFs are presented. Inter-distance measurements on

the LEDPUFs show that both weak and strong LEDPUFs are ideally unique. The area

and latency of the weak LEDPUF is much smaller than existing weak PUFs because

no error correcting schemes are needed.

4. PUF Security Evaluation through Guesswork Analysis. A unified guesswork-

based analyses for PUFs is developed. We show through guesswork analysis that

stability has a more severe impact on the PUF security than biased responses. In

addition, we analyze guesswork for two new problems: Guesswork under probability

of attack failure, and the guesswork of strong PUFs.

5. SLATE: A Secure Lightweight Entity Authentication Hardware Primitive.

SLATE is proposed as a lightweight and secure entity authentication primitive. We

show that SLATE is resistant to model building attacks and SAT attacks that are

known to be effective to most existing strong PUFs or logic obfuscation. We compare

the hardware implementation area of SLATE to secure strong PUFs and ciphers to

show that existing entity authentication solutions are at least 44% to 7.1× larger

than SLATE. Also, we show that ideally SLATE is information theoretically secure

in terms of the amount of information revealed by observing valid CRPs. Finally, we

propose a tamper evident one-time-read method to ensure the unpredictability and the

unclonability of SLATE.

6. Reverse Engineering of 2.5D Split Manufactured ICs. We present SAT attacks
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to 2.5D split manufacturing based on the grouping hints obtained from SMT-based

grouping algorithms. We first show that the runtime of SAT attack can be significantly

affected by the complexity of the connection network, therefore to reduce the runtime

a simplified network should be used. Then we proposed grouping algorithms to find

hard grouping hints that guarantee to include correct connections to effectively simplify

the connection network and reduce the runtime of SAT attack dramatically. Our

experiments are done on both fanout and no-fanout splits and results show that the

runtime is improved by more than 1,000 for some testbenches compared to SAT attack

without hints. Finally we discuss several defense strategies from designer’s perspective

to protect the split manufacturing from our attack.

The ideas and methodologies proposed in this dissertation could be further examined in

the following interesting research directions:

1. ATPG and SAT secure obfuscation. Built upon the proposed stability-guaranteed

LEDPUF and the tamper evident one-time-read mechanism, it is worth studying the

possibility of Automatic Test Pattern Generation (ATPG) and SAT secure obfusca-

tion techniques since the output of a weak stable PUF can be considered as a stuck-

at-one/zero fault. The obfuscation should leverage the concept of sequential ATPG

and relate the key-solving problem of the obfuscation to existing sequential ATPG

problems. The SAT secure obfuscation is another interesting research direction since

existing techniques often suffer from removal attack or approximate attacks.

2. Remote activation and tracking through key exchanging protocol. In the

IC supply chain, the designer must obtain the PUF value to activate or track each

component. However it is a difficult task if no one is trustworthy. Existing solutions

often require asymmetric ciphers or assume that a part of the secret is communicated

through a secure channel. An interesting research direction could be on how to establish

shared secrets between the chip and the designer using the concept of key exchanging,

such as the Diffie-Hellman key exchange protocol. For example, instead of transmitting
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the PUF values in the open, the values are encrypted with a hidden pattern or a

watermarking of the function only known to the designer before being transmitted.

3. Distributed mutual authentication. In the IoT environment, such as smart home,

automotive components, or sensor grids, it could be that there is no central trusted

server or the communication between the server and the nodes can be expensive. In

such case, the cost may be significantly reduced if the connected nodes can authenticate

themselves with distributed mutual authentication protocols, similar to the blockchain

technology or the chained hash functions. The attacker would have to modify more

than 50% of the connected nodes or all the parents of the victim node to avoid being

detected by the network. The construction of a self-authenticating network could be

another interesting topic that deserves future examination.
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