
University of California

Los Angeles

Cross-Layer Approaches for Monitoring, Margining

and Mitigation of Circuit Variability

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical Engineering

by

Liangzhen Lai

2015

c© Copyright by

Liangzhen Lai

2015

Abstract of the Dissertation

Cross-Layer Approaches for Monitoring, Margining

and Mitigation of Circuit Variability

by

Liangzhen Lai

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2015

Professor Puneet Gupta, Chair

With technology scaling, circuit performance has become more sensitive to various sources of

variability, including manufacturing variations, ambient fluctuations, and circuit wear-out.

These increased variations have created new challenges for conventional hardware guard-

banding, as the additional design margin diminishes the benefits of technology scaling. This

dissertation aims at reducing total system design margin with cross-layer approaches on

monitoring, margining and mitigation of circuit variability.

Since hardware and software adaptation can be used to reduce design margin with the

exposed hardware variability provided by hardware monitors, we start by proposing two

different types of performance monitors that can achieve better monitoring accuracy and

smaller monitoring overhead. We also demonstrate the use of these performance monitors

in system adaptation with our end-to-end implementation of software testbeds.

We also study the dynamic variations and reliability margining problem in presence of

monitor-and-actuate adaptation and emerging system contexts. In a system with monitor-

and-actuate adaptation, dynamic variations require extra margin for monitor and actuate

latencies. We analyze and study the margining problem considering different choices of the

monitor and actuator types. System reliability margining strategies are also proposed for

circuits in the “dark silicon” era, where the low-level design margin should consider the

ii

contexts of high-level power/thermal constraints.

Last, we propose a clock gating methodology to mitigate the aging induced clock skew,

which is difficult to monitor and resolve through adaptation. For certain phenomena and

variation sources, for example, soft error rates at different location/altitude, we also pro-

pose system/cloud-based monitors. An emulation platform is built to study the impacts of

dynamic power management schemes on system reliability.

iii

The dissertation of Liangzhen Lai is approved.

Milos Ercegovac

Sudhakar Pamarti

Mani Srivastava

Puneet Gupta, Committee Chair

University of California, Los Angeles

2015

iv

To mine.

v

Table of Contents

1 Introduction . 1

1.1 Proposed Margin Reduction Approaches . 2

1.1.1 Accurate and Inexpensive Monitoring for Variability-Aware System . 3

1.1.2 Margining for Emerging Systems . 4

1.1.3 Reliability Mitigation . 5

1.2 Thesis Outline . 6

2 DDRO Replica Monitor . 7

2.1 DDRO Motivation and Overview . 7

2.2 Path Sensitivity Extraction and Clustering 8

2.3 DDRO Synthesis . 9

2.3.1 Gate Module . 9

2.3.2 ILP-based Synthesis . 11

2.4 Delay Estimation . 11

2.4.1 Path-based Estimation . 11

2.4.2 Cluster-based Estimation . 12

2.5 Simulation and Silicon Result Highlights . 12

2.6 RedCooper: A Testbed for Variability-aware System 14

2.6.1 Variability-Aware Software Duty-Cycling 14

2.6.2 Testbed Implementation and System Demonstration 15

3 SlackProbe In Situ Monitoring Methodology 21

vi

3.1 SlackProbe Introduction . 21

3.2 SlackProbe Overview . 23

3.2.1 Monitor Working Principle . 23

3.2.2 Monitor Insertion Flow . 24

3.2.3 Possible Applications of the Monitors 25

3.3 Path Selection and Graph Reduction . 26

3.3.1 Path Selection Criteria . 26

3.3.2 Circuit Graph Reduction . 28

3.4 Monitor Location Selection . 28

3.4.1 Monitor Coverage and Delay Margin 29

3.4.2 Problem Formulation . 31

3.4.3 Problem Conversion . 32

3.4.4 Problem Solution . 34

3.5 Monitor Cost Metrics and Comparison Analysis 35

3.5.1 Monitor Power Cost . 35

3.5.2 Layout Interference Cost . 35

3.5.3 Implementation Flow Comparison . 36

3.5.4 Monitoring Efficiency and Observability 37

3.5.5 Clock Matching . 40

3.5.6 Overall Monitor Insertion Cost Function 40

3.6 Experimental Results . 42

3.6.1 Experiment Setup . 42

3.6.2 Results on Different Processor Benchmarks 42

vii

3.6.3 Impact of Opportunism Window . 43

3.6.4 Results on Different Monitor Delay Margin 43

3.6.5 Extrapolation for Low Voltage Scenarios 45

3.6.6 Monitoring Efficiency and Observability 47

3.6.7 Practical and Implementation Considerations 49

3.7 SlackProbe Conclusions . 53

4 System-level Dynamic Variation Margining in Presence of Monitoring and

Actuation . 55

4.1 Chapter Introduction . 55

4.2 System Margining Strategy . 56

4.2.1 Margin Breakdown . 56

4.2.2 System Margin Analysis . 57

4.3 Case Study Experiments . 59

4.3.1 Dynamic Variation Sources . 59

4.3.2 Case Studies for Temperature Variations 60

4.3.3 System Design Implication . 62

4.4 Chapter Conclusion . 64

5 Hardware Reliability Margining for the Dark Silicon Era 65

5.1 Chapter Introduction . 65

5.2 Chapter Background . 67

5.2.1 EM Modeling . 68

5.2.2 BTI Modeling . 69

5.2.3 Margining for EM and BTI . 69

viii

5.3 Power, Thermal and Accumulation Models 70

5.3.1 Accumulation Model . 70

5.3.2 Power and Thermal Model . 73

5.4 Reliability Margining with Power Constraints 74

5.4.1 Management Policy and Power Constraints 75

5.4.2 Problem Formulation . 75

5.5 Reliability Margining with Thermal Constraints 76

5.5.1 Interpreting the Thermal Constraints 76

5.5.2 Formulation . 77

5.6 Experimental Results and Discussion . 78

5.6.1 Experiment Setup . 78

5.6.2 EM Results . 79

5.6.3 BTI Results . 82

5.6.4 Pessimism in Our Approach . 82

5.7 Chapter Conclusion . 84

6 BTI-Gater Aging Resilient Clock Gating Methodology 85

6.1 BTI-Gater Introduction . 85

6.2 Effects of N/PBTI on Clock Distribution Network 86

6.2.1 N/PBTI Mechanism and Modeling 87

6.2.2 N/PBTI on Clock Path Delay . 88

6.3 N/PBTI-induced Clock Skew under Clock Gating 88

6.3.1 Clock Gating Use Cases . 89

6.3.2 Clock Gating Implementation with ICG Cell 90

ix

6.3.3 Clock Skew Induced by N/PBTI . 91

6.3.4 Clock Uncertainty and Design Margining 93

6.4 N/PBTI-Resilient Clock Gating Methodology 94

6.4.1 Clock Gating Latency . 95

6.4.2 Proposed BTI-Gater Cell of Half Cycle Latency 96

6.4.3 Proposed BTI-Gater Cell of One Cycle Latency 97

6.4.4 Mitigation Methodology . 98

6.4.5 Software Sleep Scheduling Techniques 99

6.5 Experimental Results . 101

6.5.1 Experiment Setup . 103

6.5.2 N/PBTI-Induced Skew Analysis . 103

6.5.3 BTI-Gater Cell Results . 104

6.5.4 Case Study for BTI-Gater Applicability 106

6.5.5 Case Study for Power Saving . 107

6.6 Related Work . 109

6.7 Chapter Conclusions . 110

7 Evaluating and Exploiting Impacts of Dynamic Power Management Schemes

on System Reliability . 112

7.1 Chapter Introduction . 112

7.2 Chapter Background . 114

7.2.1 Radiation-Induced Soft Error . 114

7.2.2 Hardware Support for Power Management 116

7.2.3 Power Management in Linux Kernel 117

x

7.3 Reliability Evaluation of Power Management Schemes 118

7.3.1 Base Platform for Reliability Evaluation 120

7.3.2 Hardware Configuration and Modeling 121

7.3.3 Platform System Customization . 123

7.3.4 Results of Reliability Evaluation . 124

7.4 Exploiting Power Management Schemes for Reliability 130

7.4.1 SER Estimation Mechanism . 131

7.4.2 Forbidden-State Based Policy . 132

7.4.3 Dynamic State Enabling/Disabling Policy 132

7.4.4 Experimental Evaluation of Reliability Management Policies 133

7.4.5 Policy Effectiveness Evaluation . 138

7.5 Chapter Conclusion . 141

8 Conclusion . 143

References . 145

xi

List of Figures

1.1 Power and performance variability increase with technology [itr09] 2

2.1 Every dot represents delay sensitivities of a critical path in a design. In this

example, we cluster the paths into 3 different clusters indicated by different

colors. The results are based on SPICE simulation using commercial 45nm

process technology. Critical paths are extracted from AES [ope]. 8

2.2 Overview of DDRO design methodology. 9

2.3 Illustration of a gate module in a DDRO. 10

2.4 Simulation results show that the sensitivities under different input slews {5ps,

50ps} and output loads {FO1, FO5} combinations converge as the number of

stages in a gate module increases. 10

2.5 Simulation results of DDRO on Cortex-M0 with global variation only (left)

and both global and local variations (right). 13

2.6 Testchip die photo and layout illustration . 13

2.7 Mean delay estimation error obtained from DDROs and inverter-based ROs.

Estimation errors are calculated by taking the absolute difference between

normalized estimation and normalized chip delay. RVT and HVT are the two

Vt options for the inverters. 14

2.8 Designing a software stack for variability-aware duty cycling [Wan13a] 16

2.9 RedCooper Testbed. 17

2.10 Software Adaptation Illustration. 18

2.11 A snapshot of the demo hardware. 19

xii

3.1 SlackProbe working principle. As shown in the timing diagram, compared

to inserting monitors at destination registers, the monitor inserted at A can

monitor the path delay even when the transition does not propagate to the

destination register (i.e., T1 at C). But the monitor inserted at node A cannot

capture transitions that do not pass through A (i.e., T2 at B). 24

3.2 Monitor insertion flow . 25

3.3 Opportunism window is the margin saving comparing to worst-case design.

Monitor delay margin is the delay margin of the delay matching chain which

will be discussed in detail in Section 3.4.1. 27

3.4 Example of path-monitor pairs . 30

3.5 Example of treating the nets in In4 := {n2, n4} as a node. Cyclic flow as in (b)

is impossible because margin at n2 must be larger than margin at n5. In (b),

n2 ∈ In4 implies n5 ∈ In4 . 34

3.6 Monitor cost breakdown examples for a sample circuit node. 41

3.7 Monitor count and cost for processor A with different opportunism window size 45

3.8 Monitor count comparison between SlackProbe and baseline. The y-axis is

plotted in log scale. 46

3.9 Monitor count and cost vs. delay margin for processor A 47

3.10 Delay of a circuit path at slow corner. All path delay numbers are normalized

to the corresponding delay at typical corner. The variation has larger impact

at lower supply voltage. 48

3.11 Example application: the monitors give a one bit flag to the voltage regula-

tor, the regulator reset the monitors after a corresponding voltage adaptation

operation . 51

3.12 Implemented monitor structure: the flag is sticky with an external reset . . . 51

xiii

3.13 Monitor cell count distribution: most monitors are inserted very close to the

path endpoints, thus do not need extra cells other than the minimum required

6 cells. 52

3.14 Final layout of processor A with the inserted monitors placed and routed . . 54

4.1 Illustrate of the threshold-triggering policy 58

5.1 Margining Methodology Overview. 67

5.2 Example of two workload cases. Both cases are alternating their power states

between I and II while keeping the temperature under the thermal limit. . . 77

5.3 EM results with power constraints for local power distribution network. . . 80

5.4 EM results with power constraints for signal wires. 80

5.5 EM results with thermal constraints for local power network. 81

5.6 EM results with thermal constraints for signal wires. 81

5.7 BTI results of Vth degradation with power constraints and thermal con-

straints. 83

6.1 Effects of NBTI and PBTI on clock paths . 89

6.2 Conventional ICG cell and its usage in circuits. The timing behavior of the ICG

cell is similar to an edge-triggered element. 92

6.3 Imbalanced signal duty ratio (D) for gated clock branch and regular clock branch 93

6.4 Sample illustration of N/PBTI-induced clock skew and clock uncertainty. 94

6.5 Illustration of the clock gating latency issue . 95

6.6 BTI-Gater cell with half cycle clock gating latency 96

6.7 BTI-Gater cell with one cycle clock gating latency 98

6.8 N/PBTI-induced clock skew mitigation methodology 100

xiv

6.9 Clock delay under different supply voltages. The clock jitter introduced by BTI-

Gater is very small. 105

6.10 Layout for processor B with clock distribution networks highlighted (ungated part

in yellow, Case IV in purple and Case V in red) 106

6.11 Clock skew with conventional ICG cell for Case I 108

6.12 Leakage power saving by Vt-assignment with different clock reduction for Case I . 108

6.13 The ICG cell proposed in [Cha09a]. 110

7.1 An example of state retention Flip-Flop [Kea07]. The retention part is pow-

ered by a different supply rail than the main master/slave latches. 117

7.2 State transition diagram example based on CPU utilization µ for CPUFreq

governors. Ondemand governor can switch between any two levels while con-

servative governor can only switch between neighboring levels. The switching

threshold values are configurable in Linux kernel, and we use the default values

for ondemand governor. 119

7.3 CPUIdle module flow chart . 120

7.4 Overall block diagram . 124

7.5 Photo of the hardware evaluation platform setup based on BeagleBone Black

development board. 126

7.6 Power/SER Results of different hardware configuration cases with different

software workload intensity at sea level. 100% workload intensity means the

system is fully loaded and has no performance slack. 127

7.7 Power/SER Results of different hardware configuration cases with different

software workload intensity for 28nm technology. 128

7.8 Power/SER Results of different software benchmarks on case I with dynamic

policy. 134

xv

7.9 Power/SER Results of different software benchmarks on case II with dynamic

policy. 135

7.10 Power/SER Results of different software benchmarks on case III with dynamic

policy. 136

7.11 Power/SER Results of different software benchmarks on case IV with dynamic

policy. 137

7.12 An example of web browsing benchmark execution with different altitude and

hardware cases. For case I, P-states are exploited by the policy while C-states

are used for case III. Note some y-axis scale for the figures are different. . . 142

8.1 Estimate of the margin of different variability sources and projected margin

saving from our approaches for 45nm process technology 144

xvi

List of Tables

2.1 System Demonstration Result Highlights . 20

3.1 Implementation information of the processor benchmarks 44

3.2 Experimental results on the processor benchmarks 44

3.3 Monitoring efficiency and observability results 50

3.4 Implementation results on processor A . 52

4.1 List of Actuators . 61

4.2 List of Thermal Monitors . 62

4.3 Case Study on Dynamic and Static Margin 63

5.1 Glossary of Terminology . 71

6.1 Summary of different clock gating cases . 103

6.2 Clock path delay and skew (in ps) under different aging models and activities

using conventional ICG cells . 104

6.3 Clock activity ratio(µ) and signal duty ratio(D) results for different software bench-

marks . 107

7.1 Table of different hardware implementations 121

7.2 Table of different CPUFreq states spec used 125

7.3 Table of different CPUIdle states spec used 125

7.4 Normalized power/core SER/memory SER results of different software bench-

marks with different configuration cases at sea level 129

xvii

7.5 The additional power of running the benchmarks with our policies compared

to the optimal P-state and C-state selection schemes 141

xviii

Vita

2010 Bachelor of Engineering (Honors Research Option), Electronic

Engineering, Hong Kong University of Science and Technology.

2012 Master of Science, Electrical Engineering, UCLA.

Publications

T. B. Chan, P. Gupta, A. Kahng, and L. Lai, “DDRO: A Novel Performance Monitoring

Methodology Based on Design-Dependent Ring Oscillators,” in IEEE International Sympo-

sium on Quality Electronic Design, Mar. 2012.

L. Lai, V. Chandra, R. Aitken, and P. Gupta, “SlackProbe: A low overhead in situ on-

line timing slack monitoring methodology,” in IEEE/ACM Design, Automation and Test in

Europe, Mar. 2013.

L. Wanner, S. Elmalaki, L. Lai, P. Gupta, and M. Srivastava, “VarEMU: An Emula-

tion Testbed for Variability-Aware Software,” in ACM International Conference on Hard-

ware/Software Codesign and System Synthesis, Oct. 2013.

L. Lai and P. Gupta, “Accurate and inexpensive performance monitoring for variability-

aware systems,” in Proc. Asia and South Pacific Design Automation Conference, Jan. 2014.

L. Lai, V. Chandra, P. Gupta “Evaluating and Exploiting Impacts of Dynamic Power Man-

agement Schemes on System Reliability” in International Conference on Compilers, Archi-

xix

tecture and Synthesis for Embedded Systems, Oct. 2015

G. Leung, L. Lai, P. Gupta, and C. O. Chui, “Device- and Circuit-Level Variability Caused

by Line Edge Roughness for Sub-32nm Finfet Technologies,” Electron Devices, IEEE Trans-

actions on, vol.59, no.8, pp.2057,2063, Aug. 2012

T.-B. Chan, P. Gupta, A. B. Kahng, and L. Lai, “Synthesis and Analysis of Design-

Dependent Ring Oscillator (DDRO) Performance Monitors,” Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on, vol.22, no.10, pp.2117,2130, Oct. 2014

L. Lai, V. Chandra, R. Aitken, and P. Gupta, “BTI-Gater: An Aging-Resilient Clock Gating

Methodology,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol.

4, pp. 180-189, Jun. 2014.

L. Lai, V. Chandra, R. Aitken, and P. Gupta, “SlackProbe: A Flexible and Efficient In Situ

Timing Slack Monitoring Methodology,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 33, pp. 1168-1179, Aug. 2014.

L. Wanner, L. Lai, A. Rahimi, M. Gottscho, P. Mercati, C.-H. Huang, F. Sala, Y. Agarwal,

L. Dolecek, N. Dutt, P. Gupta, R. Gupta, R. Jhala, R. Kumar, S. Lerner, M. Subhasish,

A. Nicolau, T. S. Rosing, M. B. Srivastava, S. Swanson, D. Sylvester, and Y. Zhou, “NSF

Expedition on Variability-Aware Software: Recent Results and Contributions,” De Gruyter

Information Technology (it), vol. 57, pp. 181-198, June 2015.

xx

CHAPTER 1

Introduction

Semiconductor manufacturing process scaling has been the primary driver for innovations

and performance/power improvements in computer systems. With technology scaling to

nano-scale range, hardware variability continues to increase due to increasing amounts of

manufacturing variability, ambient fluctuations and circuit wear-out (e.g., N/PBTI, HCI

etc.) degradations. Considering the power and performance variability as shown in Fig. 1.1,

these increased variations have led to increased margin in designing reliable integrated sys-

tems, which takes up significant amounts of system’s performance/power and diminishes the

potential benefits of scaling.

This dissertation aims at reducing total system design margin, including efforts in devel-

oping methodologies for monitoring, margining and mitigation of circuit variability. These

methodologies are mainly cross-layer approaches that can span multiple layers of system

abstraction. We focus on cross-layer approaches due to the following reasons:

• System adaptation can be made more efficient with cross-layer approaches. By cap-

turing and exposing hardware variability to the software/system level, corresponding

hardware and software adaptation can opportunistically reduce or even eliminate the

design margin [Gup12].

• System design margin is determined by the accuracy and efficiency of the entire

monitor-and-actuate adaptation process. Over-optimizing a single component with-

out considering the full-system may not improve the system margin, as components

from other layers may be the bottleneck.

1

Figure 1.1: Power and performance variability increase with technology [itr09]

• Design margin is usually derived and applied during hardware design time with pes-

simistic assumptions. Certain system/architecture-level information can be used to

reduce the margin by relaxing some of these assumptions.

• System margin may be dominated by the existence of certain pathological scenarios.

These pathological scenarios may be caused by behaviors from different layers of system

abstraction. Cross-layer approaches may be required as single-layer approaches may

be inadequate to avoid these scenarios.

• Some hardware-related phenomena are difficult to monitor by hardware monitors alone.

For example, soft error rate is extremely difficult to monitor due to the rare occurrence

nature and unique ambient (i.e., location/altitude) dependence. Cross-layer approaches

can use system and even cloud-based information for better monitoring.

1.1 Proposed Margin Reduction Approaches

Our efforts in margin reduction can be classified as three parts: monitoring, margining and

mitigation.

2

1.1.1 Accurate and Inexpensive Monitoring for Variability-Aware System

For monitoring, we focus on the circuit performance variability, due to the following reasons:

(i) Circuit delay change is the manifestation of most of the variability effects and many

reliability-related phenomena. Reducing delay margin effectively reduces the design

margin caused by these variability sources and reliability issues.

(ii) Unlike power, which behaves like “sum of variables”, circuit delay is dictated by the

slowest path, i.e., behaving like “maximum of variables”. This creates additional com-

plexity and unique context-dependence for delay-related issues, including its modeling,

monitoring and margining.

(iii) Under many circumstances, delay variation and other types of variations are actually

interchangeable. For example, power variation can be translated into delay variation

through voltage scaling or body-biasing. Therefore, reducing delay margin can reduce

other types of design margin as well.

If hardware variability can be captured and exposed to the software/system level during

runtime, corresponding hardware and software adaptation can opportunistically reduce or

even eliminate the design margin [Gup12]. The quality of these adaptation schemes depends

on the quality of the monitors. Therefore, part of the proposed research focuses on improving

the quality (i.e., accuracy and overhead) of these delay monitors.

There are mainly two classes of delay monitors that aim at monitoring circuit performance

(i.e., measuring circuit critical path delay). They are replica monitors and in situ monitors.

Replica monitors, also known as canary circuits, [Dra07,Bhu06,Liu10,Cha12b] are stand-

alone circuits which are designed to mimic the timing behavior of the original circuits.

By measuring the replica circuit delay, one can estimate the delay of the original circuits.

Typically, the replicas are simple circuits, e.g., simple paths or ring oscillators. Therefore,

replicas are usually non-intrusive and with low overhead, but may be inadequate to cover

3

the heterogeneity within the original circuits. Furthermore, replica monitors may fail to

capture the variation that is local to real circuits such as random manufacturing variations

and circuit aging.

In situ monitors measure the delay directly from the circuit paths [Fic10,Kim13,Bow09].

They can accurately capture the real path delay, but with significant overhead, especially

when a large number of registers are timing critical.

We propose two circuit performance methodologies. Design-dependent ring oscillator

(DDRO) [Cha13b] designs and leverages multiple replicas to accurately monitor circuit per-

formance. SlackProbe [Lai13] inserts in situ monitors at both path intermediate nets and

path endpoints, which can greatly reduce the overhead of in situ monitoring.

1.1.2 Margining for Emerging Systems

For system with adaptation, the margin derivation should consider the entire monitor-and-

actuate process. Over or under optimizing any single component can result in wasting

resources or bottlenecking the performance. We classify the dynamic variation margin and

analyze different parts with the choices of monitor/actuator types.

Even though design margin is usually determined at hardware design time without full

knowledge of the higher layers of the system stack, certain architecture-level behavior in-

formation can be utilized to better estimate the necessary hardware design margin. For

example, voltage boosting is a popular architecture-level technique for high-end processors,

which use higher supply voltage to achieve temporary performance gain when permitted

by the thermal conditions. This makes the boosted supply voltage and maximum oper-

ating temperature the worst-case aging conditions for design margining. However, typical

power consumption under voltage boosting exceeds the chip’s thermal design power (TDP).

This makes it impossible to retain the worst-case aging conditions for long time. Therefore,

if the architecture-level power/thermal models and management policies are available, the

hardware may use a better-than-worst-case operating condition for deriving the necessary

4

margin.

1.1.3 Reliability Mitigation

Some types of delay variation are difficult to resolve through adaptation. For example,

high-level adaptations have limited effects on clock skew due to aging in clock distribution

network, because the adaptation effect will be applied on all clock paths and thus will cancel

each other out.

The clock distribution network usually has balanced structure and invariant signal pat-

tern, which makes it very robust against N/PBTI-induced delay degradation. However, this

may not hold for clock distribution networks with clock gating features [Liu12]. The im-

balanced clock signal pattern due to clock gating can result in imbalanced degradation on

different clock paths, causing N/PBTI-induced clock skew.

We propose BTI-Gater, which consists of cross-layer solutions to mitigate N/PBTI-

induced clock skew. Two Integrated Clock Gating (ICG) cell circuits are proposed to balance

the clock signal pattern. A methodology is also proposed to select the appropriate ICG cell,

based on the micro-architecture and architecture context. An example of software sleep

scheduling is described in conjunction with BTI-Gater to avoid certain pathological aging

scenarios.

For certain reliability phenomena, such as soft error rates, it is extremely difficult to

make an estimate using hardware monitors. So we have proposed system/cloud-based virtual

sensing to capture varying ambient conditions for soft error rates. We also develop a hardware

evaluation platform based on an embedded/mobile development board and standard Linux

kernel. We demonstrate the use of our platform to evaluate the system’s power and radiation-

induced soft error rate in presence of system power management schemes, with different

application workloads and various hardware design configurations.

5

1.2 Thesis Outline

The objective of this dissertation is to reduce the system design margin with cross-layer

approaches. The key contributions of this work can be summarized as follows:

• DDRO replica delay monitoring methodology is proposed in Chapter 2. DDRO designs

and leverages multiple replica monitors to accurately monitor circuit performance.

• SlackProbe in situ delay monitoring methodology is proposed in Chapter 3. SlackProbe

inserts in situ delay monitors at both path intermediate nets and path endpoints, which

can greatly reduce the overhead of in situ monitoring.

• Dynamic variation margining, in presence of monitor-and-actuate adaptation, is de-

scribed in Chapter 4. We classify and analyze different parts of the system margin for

monitoring and actuation.

• Hardware reliability margining for circuits in the “dark silicon” era is presented in

Chapter 5. We propose methodologies for deriving the reliability margin considering

the high-level power/thermal constraints.

• BTI-Gater clock gating methodology is proposed in Chapter 6. BTI-Gater consists of

cross-layer solutions to eliminate N/PBTI-induced clock skew.

• Our study on evaluating and exploiting impacts of dynamic power management schemes

on system reliability is presented in Chapter 7. We propose system/cloud-based soft

error rate monitors and simple forbidden-state based policies for monitoring and adap-

tation.

6

CHAPTER 2

DDRO Replica Monitor

2.1 DDRO Motivation and Overview

In order to accurately estimate the circuit delay, replica monitors should be designed to

follow the timing behavior of original circuits under variations. We know that the circuit’s

performance is determined by delay of the slowest path, i.e., critical path. Therefore, the

replica should be designed to follow the timing behavior of the critical path.

Due to variations, there may be a number of potential critical paths and they may

behave differently under variations, which makes a single replica monitor inadequate. The

motivation of DDRO is shown in Fig. 2.1, in which each dot represents the delta delay of

one critical path under variations of PMOS threshold voltage V thp (y-axis) and NMOS

threshold voltage V thn (x-axis). The critical path delay sensitivities form natural clusters,

which implies that multiple replica monitors can be designed to cover these clusters.

An overview of DDRO monitoring strategy is shown in Fig. 2.2. First, we extract critical

paths of a design and characterize their delay sensitivities to variation sources. Second,

we cluster the critical paths based on the sensitivities, and synthesize DDROs to match

delay sensitivity of the clusters. By matching DDRO and cluster delay sensitivities, we

ensure that the synthesized DDROs have good correlation with the critical paths. Since

we use only standard cells (gates) to synthesize the DDROs, the design and placement of

DDROs can be easily integrated with conventional implementation flows. Based on DDRO

frequencies, we can estimate chip delay during manufacturing or runtime.

7

Figure 2.1: Every dot represents delay sensitivities of a critical path in a design. In this

example, we cluster the paths into 3 different clusters indicated by different colors. The

results are based on SPICE simulation using commercial 45nm process technology. Critical

paths are extracted from AES [ope].

2.2 Path Sensitivity Extraction and Clustering

Delay sensitivity of path i (V path
i) can be obtained using finite differences, i.e., taking the

∆delay by perturbing each variation source by 1σ. After characterizing all path delay sensi-

tivities, we can cluster the critical paths. The objective function of the clustering is defined

as

minimize
N∑

i=1

(wi × |Vpath
i −Vro

k |) (2.1)

where the summation is taken over paths i in cluster k, and wi is the probability of a critical

path delay exceeding the clock period of the design. The weight factor wi is added so that we

can impose a higher penalty for having mismatched delay sensitivities on a path with higher

probability to fail (less timing slack). Detailed derivation of wi can be found in [Cha13b].

8

Design netlist Process information

Characterize critical paths’
delay sensitivities

Cluster critical paths

Synthesize a DDRO
per cluster

Design phase

Measure on‐chip
DDRO delays

Design phase

At manufacturing
and/or runtime

DDRO delays

Chip delay estimation

Figure 2.2: Overview of DDRO design methodology.

2.3 DDRO Synthesis

2.3.1 Gate Module

For the ease of synthesizing DDRO, we use gate module as basic building block. A gate

module is constructed as several identical gates connected in series as illustrated in Fig. 2.3.

This repeated pattern can help decouple the load and slew interaction between gates.

Simulation results in Fig. 2.4 show that the sensitivity difference due to different input slew

and output load is reduced from 0.15% to 0.03%, as the number of stages in a gate module

increases from 1 to 15. In this work, we use 5-stage gate modules as a trade-off between

stability of sensitivity and total area of a gate module. For a gate with multiple input pins,

gate delays through different input pins will have different delay sensitivities. Thus, each

gate module type is defined with respect to a specific input pin. Extra input pins of a multi-

9

Vdd
enable

node1 node2 node3 node4

Gate module

Connect to
other modules

Gate module

Figure 2.3: Illustration of a gate module in a DDRO.

input gate are assigned to high or low to make a gate module inverting or buffering (see

Fig. 2.3).

0.03%0.08%

0.15%

Figure 2.4: Simulation results show that the sensitivities under different input slews {5ps,

50ps} and output loads {FO1, FO5} combinations converge as the number of stages in a

gate module increases.

Since the interconnect also affects path delay sensitivity, we use different wirelength in

building our gate modules. Gate modules with different wirelength are considered as different

instance types even if they have the same gate type.

10

2.3.2 ILP-based Synthesis

Given a delay sensitivity target (Vro) obtained from path clustering, we want to choose

the number of each gate module in a DDRO, so that the delay sensitivities of the DDRO

match the targeted delay sensitivities. Because of its unique structure, gate module delay

variation is less sensitive to input slew and output load. Since each gate module type is

instantiated a discrete number of times, we can formulate DDRO synthesis as an integer

linear programming (ILP) problem, where the integer variable is the number of certain

gate modules in the synthesized DDRO. Appropriate constraints are applied to limit the

maximum RO length. Detailed description of gate module and ILP formulation can be

found in [Cha13b].

2.4 Delay Estimation

2.4.1 Path-based Estimation

As shown in Fig. 2.2, at manufacturing and/or runtime, DDRO delay is measured and used

to estimate chip delay.

Each critical path delay can be estimated by DDROs. Given M DDROs, we can represent

delay sensitivity of each path (Vpath
i) as a linear combination of DDRO delay sensitivity(Vro

k

(k = 1, ...,M)) as in Equation (2.2).

Vpath
i =

M∑
k=1

bik ·Vro
k + Vres path

i (2.2)

where bik is a [1×M] matrix containing constant coefficients and Vres path
i is a [1×Q] matrix

that represents the decomposition residue.

11

Using bik, we can estimate the path delay by:

dpath
i = dnom path

i (1 +
M∑

k=1

measurable︷ ︸︸ ︷
(bikV

ro
k · g) + ui︸︷︷︸

uncertainty

)

where ui = lpath
i + Vres path

i · g

(2.3)

where g is global variation vector, lpath
i is the local variation of the path. Equation (2.3)

shows that dpath
i consists of a measurable term and an uncertainty term. While the value

of the measurable term can be determined from the delays of DDROs, the value of the

uncertainty term cannot be measured directly.

2.4.2 Cluster-based Estimation

The path-based estimation method requires one estimation for each critical path, which can

cause significant computation and storage overhead. To reduce the overhead, we propose

to utilize the clustering nature of critical paths and to have one estimation for each path

cluster. We calculate the maximum delay of paths in each cluster using the method in [Vis06],

assuming that the means of path delays correspond to their nominal values. The outcome

of this step gives us the expected maximum delay. But more importantly, it also extracts

the sensitivity of the maximum delay to variation sources (Vmax). Similar to the path-based

approach, we treat the cluster as a pseudo path with delay sensitivity Vmax. Simulation

results show that the estimation error of this approximation approach compared to the

reference method is very small.

2.5 Simulation and Silicon Result Highlights

To validate DDRO performance monitoring methodology, we synthesized, placed and routed

processor benchmark circuits using a commercial 45nm SOI technology. Some simulation

results of DDRO on Cortex-M0 [Corb] are highlighted in Fig. 2.5. For global variation only

case, using more DDROs can dramatically decrease mean overestimation (i.e., required delay

12

margin). But this benefit becomes less in presence of local variation. The results show that

the estimation error of cluster-based approximation, compared to the path-based approach,

is very small.

A testchip was taped out with DDRO-based performance monitoring using a 45nm IBM

SOI technology with dual-Vth (RVT and HVT) libraries. The testchip has an ARM Cortex-

M3 microprocessor [Corc] with five DDROs. For comparison, we also implemented several

inverter-based ROs in the testchip. The silicon measurement results are shown in Fig. 2.7.

The measurement results show that by using five DDROs, we can reduce the mean delay

estimation error by 35% (from 2.3% to 1.5%) compared to generic inverter-based ROs.

Figure 2.5: Simulation results of DDRO on Cortex-M0 with global variation only (left) and

both global and local variations (right).

Figure 2.6: Testchip die photo and layout illustration

13

Figure 2.7: Mean delay estimation error obtained from DDROs and inverter-based ROs.

Estimation errors are calculated by taking the absolute difference between normalized esti-

mation and normalized chip delay. RVT and HVT are the two Vt options for the inverters.

2.6 RedCooper: A Testbed for Variability-aware System

In this section, we will present our implementation of a complete end-to-end system [Aga]

that demonstrates the use of hardware monitors with both hardware and software adaptation.

We first describe the software adaptation concept of variability-aware software duty-cycling.

Then we present our testbed implementation and variability-aware system demonstration.

2.6.1 Variability-Aware Software Duty-Cycling

For battery-powered embedded sensing system, the total lifetime energy is usually con-

strained. In order to meet the lifetime requirements, one particularly common power man-

agement techniques is duty cycling, where the system is at default in a sleep state and woken

up periodically to attend to pending tasks and events. A system with higher duty cycle may,

for example, sample sensors for longer intervals or at higher rates, increasing data quality. A

14

typical application-level goal is to maximize quality of data through higher duty cycles, while

meeting a lifetime goal. Conventional approach determines duty cycles by either worst-case

power specifications or datasheet power values, which may be heavily guardbanded. If the

system’s power consumption can be measured and exposed to the software, the application

may be able to adapt its duty cycle rate and increase its QoS opportunistically according to

the hardware power consumption status [Wan13a].

For example, for a fixed lifetime energy budget E and specified targeting lifetime con-

straints L, the software duty cycle rate DC can be calculated through the following equa-

tion [Wan13a]:

PA ·DC+PS · (1−DC) =
E

L

DC =
E − L · PS

L · (PA − PS)

(2.4)

where PA and PS are the active and sleep power consumption respectively. By determining

PA and PS on a per-instance basis, the duty cycle may be tailored to maximize active time

for each individual sensor under a given deployment scenario (temperature profile, lifetime

requirement, battery capacity).

There are several different ways that such an opportunistic stack may be organized as

shown in Fig. 2.8. The scenarios differ in how the sense-and-adapt functionality is split

between applications and the operating system. In this work, we use the last scenario, where

variability is largely offloaded to the operating system.

2.6.2 Testbed Implementation and System Demonstration

The testbed is built upon DDRO testchip (Fig. 2.6). On the testchip, there are on-chip per-

formance monitors (DDRO) and leakage sensors. For the purpose of demonstrating software

duty-cycling, we also implement on-board power sensors to measure the power consumption

of the testchip. the power of the Cortex-M3 processor and the (on-chip) SRAM memory are

measured separately. A picture of the testbed board is shown in Fig. 2.11. Because DDRO

15

Figure 2.8: Designing a software stack for variability-aware duty cycling [Wan13a]

and the processor are implemented as separate blocks when taping-out the testchip, we use

on-board MCUs [mbe] to sample the monitor readings and feed into the on-chip SRAM.

The software running on the M3 core is shown in Fig. 2.10. The operating system (OS)

is based on CoOS [CoO]. Three tasks are implemented within the OS:

• Task I sends the sensing request by writing to a pre-specified memory location. Upon

seeing the request, the on-board MCUs will start reading the sensor values and write

the sensor readings directly to certain memory locations.

• Task II acts as the central adaptation center, which reads the sensor readings, includ-

ing DDRO frequencies, current drawn by the M3 core, current drawn by the on-chip

16

Figure 2.9: RedCooper Testbed.

SRAM, and the on-chip leakage sensor. DDRO frequencies are used to calculate the

performance slack and determine the adjusted voltage. The current and leakage sensor

values are used to calculate the feasible duty cycle using Equation (2.4). The duty

cycle rate is further translate to the number of iterations for Task III.

• Task III is the main application running in the OS, which calculates the value of π

with its best effort under the constrained duty cycle.

In this demo, all three OS tasks are fired every 10 seconds. We set the processor to run at a

fixed 600 MHz clock frequency. The active power includes both the core and SRAM power

consumption. The sleep power includes the SRAM power and the projected leakage power

of the core.

A snapshot of the entire hardware is shown in Fig. 2.11. We have two copies of RedCooper

running side-by-side. Each testbed is equipped with an LCD reporting the system status.

17

Figure 2.10: Software Adaptation Illustration.

Some results are highlighted in Table 2.1.1 At room temperature, Instance B system has

smaller sleep power than Instance A, which implies the potential of achieving high duty

cycle rate. Therefore, the adaptive software set the number of iterations (DC) at 49 for

Instance B and the calculation error is smaller. After heating up Instance A from room

temperature to about 45◦C, the system shows its capability for both runtime software and

hardware adaptation (see last column in Table 2.1). The voltage is boosted to compensate

the performance loss. Software duty-cycle is reduced to compensate the increased power

consumption. If the system is without hardware sensors and designed for the worst-case

scenario (including process variations and temperature fluctuations), the number of iterations

1The complete demo video can be found at http://nanocad.ee.ucla.edu/Main/Codesign

18

Figure 2.11: A snapshot of the demo hardware.

(DC), as in this demo, will be at most 18 (the case for Instance A after heat-up) with 1.865%

calculation error. With the hardware sensors and adaptations, we are able to achieve 49

iterations and calculation error as small as 0.668%.

19

Table 2.1: System Demonstration Result Highlights

Instance A Instance B Instance A

(room temperature) (room temperature) (after heat-up)

Supply Voltage 0.93 V 0.96 V 0.96 V

Active power 23.81 mW 24.29 mW 26.50 mW

Sleep power 4.74 mW 1.63 mW 7.58 mW

DC 27 49 18

Calculated π 3.1028 3.1206 3.2002

Calculation error 1.235% 0.668% 1.865%

20

CHAPTER 3

SlackProbe In Situ Monitoring Methodology

With DDRO methodology, replica monitors can predict global variation near perfectly. But

the accuracy is still limited and constrained by local variation. In situ monitors can capture

the actual path delay, including local variation, but usually incur significant overhead. We

observe that most of existing work focuses on monitoring destination registers. In this

chapter, we introduce a novel and flexible in situ monitoring methodology, SlackProbe, which

inserts monitors at both path endpoints and path intermediate nets.

3.1 SlackProbe Introduction

With increasing amounts of manufacturing variability, ambient fluctuation and circuit wear-

out (e.g., NBTI, HCI etc.), it is necessary to identify chip delay either statically (e.g., speed

binning) or dynamically with both hardware and software adaptive schemes [Gup12]. There

are various classes of monitors that are targeted at measuring circuit path delay.

Canary or replica circuits [Dra07,Cha12a] are stand-alone circuits which are intended to

mimic the timing behavior of the original circuits. The delay of the real circuit can be esti-

mated through measuring delay of the replicas. Tunable [Tsc09] and design-dependent [Cha12a]

replica circuits can reduce the mismatch of the real circuit and replica. Replica monitors are

usually non-intrusive, but may fail to capture the variations that are local to real circuits

such as random manufacturing variations and circuit aging.

In situ monitors measure the delay directly from the circuit paths. Fick et al. [Fic10] use

21

a Time-to-Digital Converter (TDC) to measure the critical path delay. Wang et al. [Wan08]

measure delay by reconstructing the critical path as Ring-Oscillators (ROs). Another ap-

proach to measure circuit path delay is to measure the timing slack. Since critical paths typ-

ically end at registers, special flip-flops can be used as slack monitors. Razor [Ern03,Das09]

uses customized flip-flops to detect timing failures due to setup time violation and correct

them through a pipeline flush or architectural replay. Similar approaches that reduce timing

margin, but not to the point of failure, include delaying data signals [Fuk09], advancing clock

signals [Reb10] or using different flip-flop structures [Eir07,Kur10,Aga07,Das10,Sat07].

In situ monitors can accurately capture the real path delay, but with significant over-

head, especially when large number of registers are timing critical. Some methods can be

used to reduce the overhead (e.g., [Hir12]), but with a loss in accuracy. Better monitor de-

signs, e.g., [Kim13], can also reduce the overhead, but are still fundamentally limited by the

large number of monitors requited. We observe that existing methods focus exclusively on

monitoring path endpoints (i.e., destination registers). In this work, we propose SlackProbe,

a low overhead, in situ, on-line timing slack monitoring methodology. SlackProbe monitors

in situ timing slack of selected circuit nets, including intermediate nets along circuit paths,

which is more power and area efficient. This work is an extension of [Lai13]. The key

contributions of our work include the following:

(i) We propose a novel slack monitoring methodology allowing placing monitors at inter-

mediate nets along circuit paths

(ii) We develop a metric named “opportunism window”, which allows us to flexibly select

the set of critical paths to be monitored.

(iii) We formulate and convert the path-based monitor insertion formulation into a edge-

based Linear Programming (LP) problem and solve it near its theoretical lower bound

(iv) We perform a thorough analysis of the potential benefits and caveats of such a monitor-

ing methodology, including monitoring cost, monitoring efficiency and observability,

timing margin and design perturbation.

22

The rest of the chapter is organized as follows: Section 3.2 gives an overview of the pro-

posed monitoring methodology. Section 3.3 describes the critical path selection and circuit

graph reduction process. Section 3.4 presents the monitor insertion problem formulation and

solution. Section 3.5 discusses the monitor cost metrics and comparison between SlackProbe

and conventional approaches. Section 3.6 presents the experimental results. Section 3.7

concludes this chapter.

3.2 SlackProbe Overview

3.2.1 Monitor Working Principle

The monitor working principle is shown through an example in Fig. 3.1. If a monitor is

inserted at an intermediate node A, a “probe”, which consists of delay matching gates and a

transition detector, is connected to A through a minimum size inverter. Signal transitions at

node A are transferred through the delay chain to the transition detector and compared with

the incoming clock edge. If the transition is close to its Required Arrival Time (RAT), i.e.,

within the margin window as in Fig. 3.1, a corresponding signal transition will arrive at node

E after the clock edge. This triggers the transition detector and flags a signal indicating an

impending delay failure.

The monitor inserted at node A is capable of monitor the delay of all critical paths

passing through A. As shown in Fig. 3.1, instead of monitoring all four destination registers,

SlackProbe can use only two monitors while achieving the same path coverage.

Different transition detector designs as in [Reb10,Bow09]. can be applied here. Slack-

Probe also allows monitors to be inserted at path endpoints where monitors as in [Ern03,

Das09, Fuk09, Eir07] can be used as well. Since the additional margin makes the monitor

detect an impending timing failure rather than an actual one, there is no datapath metasta-

bility issue as raised and discussed in [Bow09]. The metastability issue of the monitor signal

either results in a more pessimistic detection or is guardbanded by the monitor delay margin.

23

Figure 3.1: SlackProbe working principle. As shown in the timing diagram, compared to

inserting monitors at destination registers, the monitor inserted at A can monitor the path

delay even when the transition does not propagate to the destination register (i.e., T1 at C).

But the monitor inserted at node A cannot capture transitions that do not pass through A

(i.e., T2 at B).

3.2.2 Monitor Insertion Flow

With the proposed monitoring strategy, the problem now becomes when, where and how to

insert these monitors. In this work, we propose the monitor insertion flow as in Fig. 3.2.

Different alternatives will also be discussed and compared against conventional approaches.

24

Monitor insertion starts with a placed and routed design, as the timing information is

more accurate at this stage. Since we only care about timing-critical paths, a path selection

process is applied to extract timing-critical paths and to construct the critical path graph.

Then, monitor locations are picked from the graph using our proposed method. For each of

the monitor locations, a delay cell path is synthesized. The final insertion flow is similar to

Engineering Change Order (ECO) where the monitors are incrementally placed and routed.

ECO metrics like those in [Lee12] are applied when picking monitor locations to minimize

the perturbation to the original design.

Figure 3.2: Monitor insertion flow

3.2.3 Possible Applications of the Monitors

Since different applications will have different requirements for the monitor, we discuss pos-

sible monitor applications here as examples before introducing the detailed implementation

flow.

One possible application is to use the monitors as timing-failure event predictors and

combine them with some of the existing error resilience mechanisms like in [Das09,Cho14,

Foj13]. In this case, the monitors have to capture all signal transition events that may result

in timing errors.

25

Another possible application is to use the monitors as speed sensors which indicate

whether current operation condition is close to possible timing failure or not. This can be

used by systems with adaptation capabilities like Adaptive Voltage Scaling (AVS), Adap-

tive Body Bias (ABB) or Dynamic Voltage and Frequency Scaling (DVFS) to account for

manufacturing variations, ambient conditions as well as circuit aging effects such as Negative

Bias Temperature Instability (NBTI), Positive Bias Temperature Instability (PBTI) and

Hot-Carrier Injection (HCI). Since variations are either static or changing slowly, the mon-

itor requirements can be relaxed to capture only the delay changes instead of all transition

events.

3.3 Path Selection and Graph Reduction

3.3.1 Path Selection Criteria

As shown in Fig. 3.2, given a placed and routed design, the first step is to identify the part

of the design that may be timing critical. Depending on the application, different criticality

criteria may be applied for the selection process.

In this work, we propose a flexible path selection method by introducing user-defined

opportunism window. As illustrated in Fig. 3.3, opportunism window and monitor margin

(discussed in detail in Section 3.4.1) will dictate the potential monitoring benefits. Typical

worst-case design sets its delay margin for the worst-case scenario, i.e., all chips will run at

a frequency slow enough for the worst-case chip delay regardless of what the actual delay

is. In the presence of monitors, we may reduce the design margin and decrease the default

operating clock period. The paths whose worst-case delay exceeds the default operating clock

period should be selected and monitored. The amount of design margin reduction is called

opportunism window, within which the circuit will operate opportunistically at its best effort.

The size of opportunism window determines the total number of circuit paths to be monitored,

thus affecting the monitoring overhead. There is a natural trade-off between monitoring

26

benefits and monitoring overhead when deciding the opportunism window and monitor delay

margin. We will discuss and explore this trade-off in later sections and experiments.

This path selection method does not require any knowledge of correlation in the variations

between the delay of different paths. Therefore, it can be used to select paths for applications

like aging sensors, where exact delay degradations are context dependent with little pre-

assumed correlation.

Another possible path selection method is based on the process corners as described

in [Lai13], where paths are selected based on their timing slacks at particular process cor-

ners. Other path selection methods such as statistical methods [Xie10] can also be used in

SlackProbe depending on the specific applications.

Figure 3.3: Opportunism window is the margin saving comparing to worst-case design.

Monitor delay margin is the delay margin of the delay matching chain which will be discussed

in detail in Section 3.4.1.

27

3.3.2 Circuit Graph Reduction

Although opportunism window is a path-based criteria, we can utilize the block-based prop-

erty of Static Timing Analysis (STA) and construct a circuit graph which contains all the

selected critical paths.

If a path is selected as timing critical as illustrated in Fig. 3.3, the path’s worst-case delay

falls into the opportunism window. Equivalently, if we run STA using the worst-case corner

library, it will also imply that the path’s timing slack at the worst-case corner is smaller than

the size of opportunism window. Based on the following two key properties of STA:

(i) The slacks of all pins along a path are equal or smaller than slack of the path

(ii) The slack of a path equals to the largest slack of all pins along that path

We can obtain a reduced circuit graph by removing the pins with slacks larger than the size

of opportunism window and then removing the unconnected gates/nets. The critical paths

in the original circuit graph are still preserved in the reduced graph because of property 1.

All paths in the reduced graph are timing critical because of property 2. Therefore, we can

work on the reduced graph instead of the original circuit graph when analyzing the monitor

insertion. Unless otherwise specified, circuit graph discussed in the rest of the chapter refers

to the reduced graph.

3.4 Monitor Location Selection

In this section, we describe our proposed monitor location selection method. We first discuss

how monitors interact with different paths. Then we formulate the monitor location selection

problem and describe our proposed solution.

28

3.4.1 Monitor Coverage and Delay Margin

After selecting the critical paths and obtaining the reduced circuit graph, SlackProbe will

determine the set of candidate locations for monitor insertion. Before analyzing the location

selection problem, we first discuss how paths are monitored by the inserted slack monitors.

3.4.1.1 Delay Margin for Paths

If the monitor is placed at some intermediate net, the path delay before the monitor can be

captured by the monitor. But some extra delay margin will be required for the remaining

part of the path. As shown in Fig. 3.4, there are three types of relations between monitor

and a path:

(i) The path passes through the net, for example path A in Fig. 3.4. Since the delay up

to G4 can be captured by the monitor, the delay path should account for the delay

uncertainty of G6.

(ii) The path branches out at some net before the monitor, for example path B in Fig. 3.4.

Depending on the application and gate type of G4, the monitor may be treated as being

inserted between G3 and G5 with G4 as part of the delay matching. If the application

is speed sensing, path B can be considered as being monitored with delay uncertainty

of G4, G5 and G8. If the application is event detection, only G4 with gate types that

are transparent to signal transitions (e.g., inverter, buffer) are allowed.

(iii) None of the path instances fall in the fan-in cone of the monitor net. In this case, we

consider that the path is not monitored.

3.4.1.2 Delay Margin for Monitors

Although different paths may require different delay margin, each monitor will have only one

margin matching chain. The monitor margin should account for worst delay uncertainty after

29

Figure 3.4: Example of path-monitor pairs

monitor insertion point and guarantee that the delay chain is always slower than margined

part of monitored circuit paths.

In the example in Fig. 3.4, the delay margin should account for the mismatch between

original path (i.e., from n4 to D2) and delay matching chain (i.e., from n4 to the monitor).

Theoretically, the best case delay of the delay matching chain should match the worst case

delay of the original path. But this may be too pessimistic since the delay is likely to be

correlated. Similar to on-chip variation modeling, in this work the delay chain is designed

so that its delay at typical process corner matches the worst case delay of the original path.

In Fig. 3.4, the equivalent delay margin in this case equals the delay of G6 at slow process

corner (i.e., delay of the delay matching chain at typical process corner) minus the delay of

G6 at typical process corner. This margin is considered as the delay uncertainty of G6.

The required delay margin for each circuit nets can be calculated based on conventional

STA tool flow. We first perform timing analysis using typical process corner libraries and

obtain the arrival time dtt
i and timing slack stt

i for each net. Then we perform timing analysis

using slow process corner libraries and obtain the arrival time dss
i and timing slack sss

i as

well. The required delay margin can be derived by:

Margini = (stt − sss)− (dss − dss) (3.1)

30

Methods as in [Cha12a] or [Tsc09] can also be applied to synthesize a replica-like path

to reduce the margin for delay mismatch due to global variation.

3.4.1.3 Overall Margin

Because the final delay margin for the entire circuit will be dominated by the monitor with

the largest margin, we define the delay margin cost as the maximum monitor delay margin

constraint ε on each monitor. The delay margin ε is used to determine the set of feasible

monitor candidate locations and the corresponding circuit nets that can be monitored.

For example, for a given ε, we can analyze the implication of inserting a monitor at a

net ni. If the margin required by ni is smaller than ε, all paths passing through ni will be

monitored. Depending on the application, we may also want to consider another net nj in

the fan-in cone of ni (like n3 in Fig. 3.4). If the margin required by paths branching out at

nj is also smaller than ε (like path B in Fig. 3.4), nj can also be monitored by the monitor

at ni. All paths passing through nj will be monitored. Therefore, we can define a set Ini
as

the nets that can be included as being monitored by the monitor at ni.

If we represent a path as the set of nets it passes through, the timing margin constraint

can be stated as: with a given monitor delay margin constraint ε, for any critical path Pk,

there exists a monitor at net ni, such that Pk ∩ Ini
6= ∅. For different candidate locations,

monitor insertion may have different cost in terms of power, design perturbation etc. Here

we use ci as the cost associated with net ni. The detailed derivation of ci will be discussed

in Section 3.5.

3.4.2 Problem Formulation

For a given circuit, a graph can be constructed by making the nets as nodes N = [n1n2...]
T

and interconnect as directed edges. We denote x = [x1x2...]
T as the decision vector where

31

xi = 1 when a monitor is inserted at ni and 0 otherwise.

Since inserting a monitor at nj implies that all nodes in Inj
are monitored, we define set

Oni
:= {nj|ni ∈ Inj

}. A vector y = [y1y2...]
T can be derived as:

yi =
∑

nj∈Oni

xj (3.2)

So yi ≥ 1 implies that ni is monitored because there exists some xj = 1 and ni ∈ Inj
.

Equation (3.2) can be represented as matrix representation y = Qx.

A critical path matrix can be generated from the circuit graph as:

P =

p1,1 p1,2 · · ·

p2,1 p2,2 · · ·
...

...
. . .

 where pk,i =

 1 if ni ∈ Pk

0 otherwise
(3.3)

Assuming that the cost vector is c = [c1c2...]
T and 1 is a row vector of 1’s, the monitor

insertion problem is formulated as follows:

minimize: cT · x

subject to: P ·Q · x ≥ 1

xi ∈ {0, 1}

(3.4)

3.4.3 Problem Conversion

Solving (3.4) directly is computationally intractable for any reasonable size of circuit because

of the large number of paths. We will convert the problem into a solvable edge-based

problem.

Since all entries in P and Q are either 0 or 1, entries in P ·Q are non-negative integers

and some entries may be larger than 1. This is not necessary for P ·Q · x ≥ 1 given that

xi ∈ {0, 1}. We can derive a new matrix A with ak,i equals 1 if corresponding entry in P ·Q

is non-zero, and 0 otherwise. The new constraint A ·x ≥ 1 is equivalent to P ·Q ·x ≥ 1 for

32

the optimization problem in (3.4). Therefore, we can replace P ·Q · x ≥ 1 with A · x ≥ 1

for (3.4).

Then we relax the constraint on xi as xi ≥ 0. 1 This gives us an LP problem with its

dual as:

maximize: 1T · f

subject to: AT · f ≤ c

f ≥ 0

(3.5)

If we add two dummy nodes ns and nt as the beginning and ending nodes for all

paths, (3.5) becomes similar to but not exactly the same as a maximum flow problem

with f being the dedicated flow along each path.

Converting (3.4) into the LP problem (3.5) still does not reduce the problem size. To make

the problem solvable, we will convert (3.5) into a formulation with edge-based variables and

constraints. We denote e = [... ei,j ...]T as the total network flow on the edges. ei,j equals the

sum of all path flow that goes from ni to nj and satisfies the flow conservation constraint.

Since all path flow starts from the source node ns, the objective in (3.5) is equivalent to

maximizing the total flow out from ns.

If we look at the i-th row of the constraint AT · f ≤ c in (3.5), on the left-hand side

is the sum of all path flows that pass through nodes in Ini
. The key enabling observation

is that Ini
is defined with respect to the delay margin, which is monotonic in topological

order. Therefore, all nodes in Ini
are connected (see example in Fig. 3.5(a)). If we group

Ini
as one single pseudo node in the graph, there will be no cyclic flow paths that exit Ini

and enter again (see example in Fig. 3.5(b)). All paths that pass through nodes in Ini
will

pass through one and only one of the edges that goes into Ini
. In the example in Fig. 3.5(a),

the path flows that pass through In4 are {n1, n4}, {n2, n4} and {n2, n5}, of which the sum

equals all the edge flow that goes into In4 , i.e., e1,4 + es,2. Therefore, we can replace the left

part of the constraint with the sum of all incoming edge flow of pseudo node Ini
.

1constraint xi ≤ 1 is not necessary in this case because monitor cost c > 0 and ak,i ∈ {0, 1}

33

(a) Treat In4 as a node (b) Example of cyclic flow

Figure 3.5: Example of treating the nets in In4 := {n2, n4} as a node. Cyclic flow as in (b) is

impossible because margin at n2 must be larger than margin at n5. In (b), n2 ∈ In4 implies

n5 ∈ In4 .

The converted edge-based formulation becomes:

maximize:
∑
∀i

es,i

subject to: ∀ni,
∑
∀j

ej,i =
∑
∀k

ei,k

∀ni,
∑

nj /∈Ini ,nk∈Ini

ej,k ≤ cni

e ≥ 0

(3.6)

In this edge-based LP formulation, the number of variables equals mE and the number

of constraints equals mE + 2mN , where mE is the total number of edges and mN is the total

number of nodes. For all our benchmarks, solving (3.6) takes less than a minute.

3.4.4 Problem Solution

Because of the relaxation on xi, the result of (3.6) will be a lower bound of that in (3.4).

To derive an exact solution of the monitor locations, we take the solution of (3.6) and

extract out the set of all nets ni with the edge flow into Ini
equals ci. This set will be a valid

solution which satisfies constraints in (3.4). Then we identify the highest cost net that is

34

unnecessary to maintain the constraint and delete it. This process is repeated until no more

nets can be deleted. Our experiments show that in most of the cases, we can get the result

that is close to its lower bound.

3.5 Monitor Cost Metrics and Comparison Analysis

In this section, we discuss monitor cost metrics and perform a thorough comparison between

SlackProbe and conventional approaches of monitoring at path endpoints only.

3.5.1 Monitor Power Cost

Since the monitors are inserted as ECO, there is no direct area overhead added to the original

design, but the monitors will introduce additional power overhead. Different monitoring

locations have different power overheads because circuit nets have different signal switching

probabilities. The length of the matching delay chain will also affect the power consumption.

Therefore, power overhead can be modeled as:

po + (λip + l)di (3.7)

where λi is the signal switching probability of net ni, p is the estimated dynamic power

overhead per unit matched delay, l is the estimated leakage power overhead per unit matched

delay, di is the delay of the path that is going to be synthesized for the monitor at ni, and

po is the static power overhead of the transition detector, which includes additional clock

power and leakage power. The derivation of λi will be discussed later in Section 3.5.4.

3.5.2 Layout Interference Cost

The monitor insertion is considered as ECO. ECO cost such as layout disturbance and

timing disturbance should be considered. Layout disturbance can be evaluated by taking

local layout congestion. To minimize the timing disturbance, the monitor uses a minimum

35

size inverter to “probe” at the monitoring nets. The estimated timing slack after the inverter

insertion can be used for timing disturbance evaluation. Similar to [Lee12], we use a linear

model to evaluate the design perturbation cost of inserting a monitor at net ni as:

at · exp(−1× sni
) + ar · rni

(3.8)

where sni
is the estimated timing slack after inserting the inverter, rni

is the layout congestion

around ni, at and ar are weighting parameters for different cost considerations.

3.5.3 Implementation Flow Comparison

The proposed implementation flow of SlackProbe was described in Section 3.2.2 and Fig. 3.2,

of which the starting point is a placed and routed design and the monitors are inserted

as additional circuit through ECO, while conventional endpoint monitoring approaches,

(e.g., [Foj13, Reb10]), decide the monitor locations at an earlier design phase and insert

monitors by replacing the endpoint flip-flop cells.

Typically, conventional approaches determine the timing-critical flip-flops after synthesis

and replace them with the monitor flip-flops. During later place and route, different sets

of timing constraints are applied separately to regular flip-flops and the monitor flip-flops.

The timing constraints are set to make sure that only paths ending at the monitor flip-

flops can be timing critical under variations. This approach has relatively simpler physical

implementation, but may unnecessarily speed up unmonitored paths and result in a sub-

optimal design. While the approach as in Fig. 3.2 preserves the optimized design, but

incurs more complicated physical implementation and design perturbation. Although both

approaches can be applied to SlackProbe, the analysis and solution in this work is based on

the approach as in Fig. 3.2.

36

3.5.4 Monitoring Efficiency and Observability

Other than the implementation flow, the monitoring efficiency and observability is another

important difference between SlackProbe and conventional approaches. In situ monitor

relies on timing-critical signal transitions along critical paths to monitor delay changes.

Depending on the circuit structure and logic function, monitors inserted at different locations

will encounter different sets of signal transitions and different number of timing-critical signal

transitions.

As shown in Fig. 3.1, all signal transitions at the inserted net will trigger the monitor.

But only timing-critical signal transitions can be used to detect impending timing failures.

So the monitoring efficiency is determined by the proportion of signal transitions that are

timing critical. Compared to conventional approaches, SlackProbe identifies and inserts

monitors at more timing-critical parts of the circuit. It is expected to have a larger fraction

of timing-critical transitions and thus have higher monitoring efficiency.

The other difference between SlackProbe and conventional approaches is the monitoring

observability. Due to logic masking, signal transitions passing through intermediate nets

may be masked by side inputs of the logic gates and cannot propagate to the path endpoint.

In this case, the monitor inserted at intermediate net will detect the signal transition and

use it to detect potential timing failure due to any instances along that path, while the

monitor inserted at endpoint will not see the transition. For instance, in the example shown

in Fig. 3.1, the signal at node A switches from logic low to logic high during the second

clock cycle. This signal transition can be detected by the monitor inserted at node A. Due

to logic masking, however, this signal transition cannot propagate to path endpoint at node

C (shown as T1 in Fig. 3.1). Therefore, a monitor inserted at path endpoint node C will

miss this event and cannot use it to detect impending delay failures. Since all transitions at

the path endpoints imply transitions at the intermediate nets but not vice versa, SlackProbe

can detect more signal transitions, thus is expected to have higher monitoring coverage than

conventional approaches. In this work, we define the monitoring observability as the average

37

number of monitored nets per cycle.

In situ monitor relies on timing-critical signal transitions to monitor the critical path

delay. For system that uses in situ monitor as speed sensors, this may limit the capability

of monitoring dynamic variations as non-deterministic lag exists between the time when

dynamic variation happens and the time when variation is captured (as opposed to some

replica monitors [B11, D13] which are used to monitor fast-varying variation). Therefore,

higher monitoring observability means higher monitoring confidence and allows the system

to monitor more fast-varying variation and achieve faster actuation response. For example,

in the case of adaptive system, higher monitor confidence implies faster adaptation response

(e.g., voltage/frequency adaptation) and less design margin for the reaction time. One

exception is a razor-like system with recovery mechanisms as in [Foj13, Ern03] where the

purpose of monitoring is to capture real timing failures. Higher observability means more

recovery events even though there may not be real timing errors (i.e., false positive). In this

case, the unnecessary recovery may increase the overhead.

Since different circuit nets will have different probabilities of seeing timing-critical tran-

sitions, monitor location selection will affect the monitoring efficiency and observability. In

order to evaluate the monitoring observability, other than the signal switching probability

λi, we need to extract the signal critical switching probability γi for each node ni.

Timing-aware verilog simulation can be used to extract γi, but is much slower than a pure

functional simulation. In this work, we make an approximation based on the properties of

the reduced graph as described in Section 3.3.2. by assuming that a critical path/subpath is

activated if there is an ordered sequence of switches for all nets along the path/subpath. To

extract γi, we first run functional verilog simulation on the gate-level netlist and obtain the

Value Change Dump (VCD) file. Then we apply our proposed algorithm (see Algorithm 14)

for each simulated cycle and identify the sets of nodes in the reduced graph with regular

switches and with timing-critical switches.

To obtain the switching probability λi and critical switching probability γi, we keep two

38

Algorithm 1 γi derivation

Input: VCD output for current simulation cycle

Output: A[mN] switching flags

B[mN] critical switching flags

for all ni do

unset A[i] and B[i]

end for

for each ni in VCD that belongs to the reduced graph do

set A[i]

if ni has no fan-in then

set B[i]

else if B[j] is set for any ni’s fan-in node nj then

set B[i]

end if

end for

39

counters for each node to record the total number of regular switches and timing-critical

switches. For each simulated cycle, we increment the counters if corresponding flag is set.

The corresponding switching probabilities will be the counter output divided by the total

number of simulated cycles.

3.5.5 Clock Matching

Another difference brought by inserting monitors at intermediate nets is monitored flip-flop

clock matching. Since SlackProbe can insert monitors at intermediate nets, monitors may be

used to monitor multiple flip-flops. Depending on their relative locations in the clock tree,

these flip-flops may have different potential clock skew variations, which should be accounted

for by monitor delay margin in SlackProbe. Conventional approaches that use one monitor

per flip-flops do not have the same issue.

For SlackProbe, the monitors sharing same monitor should have small distance on the

logic path graph. We expect their distance on the clock tree to be small as well. To evaluate

and verify this, we include clock matching checking feature in SlackProbe implementation.

For each of the monitors, we traverse downwards on the circuit graph and record the set of

all downstream flip-flops and their common ancestor on the clock tree. In all experiments

we ran, the maximum clock delay from the flip-flops’ common ancestor to the flip-flops is at

most 5% of the corresponding clock period. Therefore we expect clock matching to have

little impact on SlackProbe delay margin.

3.5.6 Overall Monitor Insertion Cost Function

In [Lai13], a cost function ci for each net ni is defined, and combines the monitor power cost

and design perturbation cost as:

ci = po + (λip + l)di + at · exp(−1× si) + ar · rni
(3.9)

where parameters are chosen for correct normalization. In this work, we derive a new cost

40

function with monitor efficiency and observability awareness by normalizing the dynamic

power cost with the critical switching probabilities γi as:

ci = po + (
λi

γi

p + l)di + at · exp(−1× si) + ar · rni
(3.10)

where same parameter normalization is applied. In this cost function, power cost is calcu-

lated based on the power consumption per monitoring event, which represents the actual

monitoring cost.

Figure 3.6: Monitor cost breakdown examples for a sample circuit node.

Monitor cost breakdown plots for a sample circuit node are shown in Fig. 3.6. The

circuit node considered in Fig. 3.6 has λi ≈ 0.7, γi ≈ 0.07, di ≈ 0.1 ns for both rising and

falling transitions, si ≈ 0.05 ns for both rising and falling transitions, neighborhood cell area

utilization of about 0.8 and neighborhood routing utilization of 0.8. As discussed earlier,

most but not all applications prefer higher monitoring observability. In the experiments, we

will use the cost function in Equation (3.9) as our default cost function. The cost function

in Equation (3.10) will be applied to show the improvement of SlackProbe’s monitoring

efficiency and observability over conventional approaches.

41

3.6 Experimental Results

3.6.1 Experiment Setup

To evaluate the effectiveness of our monitoring methodology and problem solution, we use

three commercial processor benchmarks and implement them using a commercial sub-32nm

process technology and libraries. The timing libraries are all at 0.81 V. The implemen-

tation is done using Cadence toolchain [Cad]. The implementation information is listed in

Table 3.1. Gate-level Verilog simulation and Algorithm 14 is used to obtain the net switch

probabilities and the critical switching probabilities. In this work, we use Dhrystone [Wei84]

benchmarks for all three processors. For the input/benchmark dependence, relevant analysis

and discussion can be found in [LRK09].

Since different applications will have different requirements for the monitors, we have

implemented three different monitor insertion methods:

• Baseline: This is the referenced baseline method which inserts a monitor at every

critical path endpoint.

• SlackProbe Event Detection: This method aims at event detection. It allows the mon-

itors to be placed at path intermediate nets. To ensure the detection of all switching

events, it allows including additional nets in Ini
only when they are connected to the

monitor through inverter or buffer.

• SlackProbe Speed Sensing: This method aims at speed sensing. It allows the monitors

to be placed at path intermediate nets and allows including nets in the fan-in cone

regardless of the gate type.

3.6.2 Results on Different Processor Benchmarks

For this experiment, the path selection is done through the opportunism window approach.

We define the typical operating clock period as the clock period reported by timing analysis

42

with typical process corner libraries. For example, in the case of Processor A as shown in

Table 3.1, the opportunism window size is the clock period difference between typical corner

and slow corner, i.e., 0.22 ns. Delay margin ε is set to be 5% of the typical operating clock

period. Table 3.2 summarizes the experimental results for the methods on different processor

benchmarks. The total monitor cost are normalized with respect to the lower bound cost

of SlackProbe Speed Sensing. In all three benchmarks, by allowing inserting monitors at

path intermediate node and extra delay margin, the total number of monitors is reduced by

almost an order of magnitude.

3.6.3 Impact of Opportunism Window

In order to evaluate the monitoring benefit/overhead trade-off, we pick processor A and

apply different path selection criteria (i.e., different opportunism window sizes) to it.

Fig. 3.7 presents the results of different path selection criteria. For each case, the timing

margin ε is kept at 5%. The paths are selected as critical if their delay at slow process

corner falls into the corresponding opportunism window. The monitor count comparison of

SlackProbe and baseline is shown in the log-scale plot in Fig. 3.8. Compared to the baseline

method, our methods show on average 12X reduction in the number of monitors for event

detection and 16X for speed sensing over all cases.

3.6.4 Results on Different Monitor Delay Margin

To show the trade-off between delay margin and monitor count, we also sweep the delay

margin ε for processor A and plot the corresponding monitor count and monitor cost in

Fig. 3.9. The path selection criteria are the same as that in Table 3.2 (i.e., defining the

opportunism window with typical operating clock period obtained from typical process corner

libraries). By allowing more timing margin, the number of monitors decreases for both

2The path endpoints include the circuit primary outputs as well. Some flip-flops use both D and scan-in
pins multiplexers to select different data inputs. They are treated as different endpoints here.

43

Table 3.1: Implementation information of the processor benchmarks

Processor A B C

Gate count 10434 30296 58815

Register count 1191 3344 9516

Clock period at typical corner 1.01 ns 1.22 ns 1.43 ns

Clock period at slow corner 1.23 ns 1.48 ns 1.72 ns

Critical gate count 7246 21385 21630

Critical register count 852 2116 4195

Critical path endpoint count 2 1256 2637 4993

Table 3.2: Experimental results on the processor benchmarks

Processor A B C

Baseline

Monitor count 1256 2637 4993

Normalized cost 12.16 8.95 14.05

SlackProbe

Event Detection

Monitor count 148 480 510

Normalized cost 1.34 1.69 1.57

Normalized cost lower bound 1.34 1.59 1.53

SlackProbe

Speed Sensing

Monitor count 113 311 374

Normalized cost 1 1.07 1.08

Normalized cost lower bound 1 1 1

methods. We also tried different weighting parameters of the monitor insertion cost (i.e., at,

ar etc.). Since monitor location selection depends more on the circuit topology, weighting

parameters do not significantly change the total number of monitors. However, they do

affect the monitor locations locally, especially for the speed sensing case, where different

monitor location candidates can have similar critical path coverage but different monitor

insertion cost.

In all experiments, our proposed solution achieves results equal or very close to the

44

(a) Monitor count

(b) Monitor cost

Figure 3.7: Monitor count and cost for processor A with different opportunism window size

theoretical lower bound.

3.6.5 Extrapolation for Low Voltage Scenarios

In the experiments, timing libraries at 0.81 V is used. A lower supply voltage can potentially

increase the total amount of variation. A sample circuit path delay at slow corner with

45

Figure 3.8: Monitor count comparison between SlackProbe and baseline. The y-axis is plotted

in log scale.

different supply voltages is shown in Fig. 3.10. When the supply voltage decreases from

0.8V to 0.7V, the delay difference between typical corner and slow corner increases by about

2X (approximately from 25% to 50% when normalized with the delay at typical corner).

The magnified variation will scale up the worst-case design margin (see Fig. 3.3) by a

similar amount. This has two impacts for SlackProbe under the same design setup. First,

for the same set of monitored paths, the equivalent opportunism window size will increase

with magnified variation, which will increase the potential monitoring benefit and makes the

monitoring scheme more viable. Second, the same monitor candidate location will require

more delay margin. Therefore, with the same amount of delay margin (ε), the set of monitor

candidate locations will be less, which results in similar effect as reducing ε as discussed

in Section 3.6.4 and in Fig. 3.9. This will increase the number of monitors and reduce the

corresponding advantage of SlackProbe over conventional endpoint monitoring schemes.

46

(a) Monitor count

(b) Monitor cost

Figure 3.9: Monitor count and cost vs. delay margin for processor A

3.6.6 Monitoring Efficiency and Observability

In order to evaluate and compare the monitoring efficiency and observability of SlackProbe

and conventional approaches, we pick processor A and simulate it with Dhrystone [Wei84]

47

Figure 3.10: Delay of a circuit path at slow corner. All path delay numbers are normalized

to the corresponding delay at typical corner. The variation has larger impact at lower supply

voltage.

benchmarks. For each simulated cycle, we use the proposed method as in Algorithm 14

to identify the set of nets with signal transitions and the set of nets with timing-critical

transitions. λi and γi are updated accordingly in order to evaluate the monitoring efficiency

and to evaluate the results of different cost functions. A counter is used to record the number

of nets whose delay is monitored in the current cycle (i.e., a timing-critical transition

passes through this net and hits a monitor), which can be used to evaluate the monitoring

observability.

Monitoring efficiency and observability results are listed in Table 3.3. The monitor types

marked with “(opt)” are the ones using the new cost functions as in Equation (3.10).

Compared to baseline, SlackProbe using default cost function in Equation (3.9) selectively

inserts monitors at nets that have lower λi (thus with lower power overhead). Over all cases,

SlackProbe has up to 1.5X higher criticality ratio (i.e., γi

λi
) than baseline. SlackProbe using

new cost function in (3.10) favors inserting monitors at nets that have both lower λi and

48

higher γi (thus with higher monitoring efficiency), which further boosts the criticality ratio

to up to 1.9X higher than baseline. A larger delay margin (ε) will give more flexibility in

selecting monitor location, which results in higher criticality ratio.

Because monitors inserted at intermediate nets cannot monitor the nets after the inserted

location, SlackProbe without observability awareness can only monitor similar or less number

of nets compared to baseline. However, with the new cost function, SlackProbe is able to

monitor up to 32% more nets than baseline. Larger delay margin (ε) allows monitors to be

inserted further away from path endpoints, which results in less monitored nets (thus lower

monitoring observability). Event detection can detect more signal transitions than speed

sensing, which makes it achieve higher monitoring observability.

3.6.7 Practical and Implementation Considerations

One major concern with in situ monitoring is the implementation feasibility and potential

overhead and disturbance due to the additional instances and wiring. To explore the imple-

mentation overhead and find out possible implementation issues of the monitor insertion, we

pick processor A and implement the complete monitor insertion on it.

The target application model is shown in Fig. 3.11. The system will start with a

safe supply voltage (V0) and always wait for certain time (ta) before making the voltage

adjustment of ∆V if no monitor flag is generated. In such system, the value of ta and ∆V

will depend on the monitoring observability and delay margin (ε). The monitors are designed

to give a one bit sticky flag which can be reset externally. For implementation simplicity, we

pick the monitor structure that consists of only standard cells as shown in Fig. 3.12.4

Monitor flag signals are connected through an OR tree and gives the one bit flag signal

as processor primary output. Therefore, for each monitor, there are at least six gates in it

3If monitor is inserted at path endpoint, no extra delay margin is required for delay matching.
4This monitor is used only for evaluation purpose. It may not work for signal transitions with small

glitches. A proper monitor design (e.g., TDTB [Bow09]) can avoid the glitch issues.

49

T
ab

le
3.

3:
M

on
it

or
in

g
effi

ci
en

cy
an

d
ob

se
rv

ab
il
it
y

re
su

lt
s

M
on

it
or

ty
p
e

D
el

ay
m

ar
gi

n
(ε

)
M

on
it

or
co

u
n
t

A
ve

ra
ge

λ
i

A
ve

ra
ge

γ
i

C
ri

ti
ca

li
ty

ra
ti

o
γ

i

λ
i

A
ve

ra
ge

m
on

it
or

ed

n
et

s
p
er

cy
cl

e

B
as

el
in

e
N

.A
.3

12
56

0.
74

6
0.

06
8

9.
11

%
31

7.
4

S
p
ee

d
se

n
si

n
g

5%
11

3
0.

31
1

0.
04

2
13

.6
1%

29
5.

7

S
p
ee

d
se

n
si

n
g(

op
t)

5%
14

7
0.

44
3

0.
08

9
20

.2
0%

42
0.

8

E
ve

n
t

d
et

ec
ti

on
5%

14
8

0.
30

3
0.

04
8

15
.8

8%
31

4.
1

E
ve

n
t

d
et

ec
ti

on
(o

p
t)

5%
21

6
0.

38
3

0.
07

3
19

.0
2%

37
6.

5

S
p
ee

d
se

n
si

n
g

8%
48

0.
32

9
0.

07
6

22
.9

9%
28

4.
4

S
p
ee

d
se

n
si

n
g(

op
t)

8%
45

0.
56

8
0.

15
1

26
.5

2%
35

7.
1

E
ve

n
t

d
et

ec
ti

on
8%

10
0

0.
45

9
0.

08
9

19
.2

8%
31

7.
6

E
ve

n
t

d
et

ec
ti

on
(o

p
t)

8%
10

0
0.

55
8

0.
12

4
22

.2
1%

36
0.

2

50

Figure 3.11: Example application: the monitors give a one bit flag to the voltage regulator,

the regulator reset the monitors after a corresponding voltage adaptation operation

Figure 3.12: Implemented monitor structure: the flag is sticky with an external reset

including the first minimum size inverter, four cells as in Fig. 3.12 and one OR gate in the

OR tree.

In this experiment, we implement two versions of the monitor insertion. The implemen-

tation results are summarized in Table 3.4. The final layout of implementation II is shown

in Fig. 3.14. The overhead may be further reduced by using simpler or customized monitors

as in [Das10,Bow09,Kim13].

During monitor insertion, because of the additional load from the monitors and other

ECO timing disturbance, the original design is slowed down by about 5%. However, this only

happens around the selected nets, which can be recovered through simple optimization like

51

Table 3.4: Implementation results on processor A

Implementation I Implementation II

Target delay margin 5% 8%

Number of monitors 113 48

Additional instances 711 327

Instances per monitor 6.3 6.8

Additional power overhead 13.65% 6.38%

Figure 3.13: Monitor cell count distribution: most monitors are inserted very close to the

path endpoints, thus do not need extra cells other than the minimum required 6 cells.

incremental sizing and threshold voltage assignment. In the experiments, we incrementally

optimize the design after the monitor insertion so that it still meets the same delay target.

The ECO also affects the clock network. We perform detailed analysis on the clock

network before and after ECO for Implementation II. After ECO, the total number of clock

sinks increases by 48, which is the number of monitor inserted. The number of clock tree

levels remains at 3, but the number of clock buffers increases from 25 to 29. Maximum local

52

clock skew slightly increases from 11.9 ps to 14.9 ps.

The other side effect of the ECO timing disturbance is that some new nets become timing

critical. This may introduce unmonitored critical paths, which will require additional delay

margin, pessimism in path selection or further timing optimization. The slow-down due

to additional load from the monitors will only affect the nets that are monitored already.

However, other timing changes such as ECO routing and clock skew changes may introduce

unmonitored critical paths. In this implementation, we found two unmonitored critical paths

due to the clock skew changes. A more careful monitor selection and less intrusive insertion

can help prevent it.

3.7 SlackProbe Conclusions

In this chapter, we have proposed SlackProbe, a novel timing slack monitoring methodology

of inserting monitors at both path ending nets and path intermediate nets. Experimental

results on commercial processors show that with 5% additional timing margin, SlackProbe

can reduce the number of monitors by 12-16X as compared to the number of monitors

inserted at path ending pins. SlackProbe can also improve the monitoring efficiency by up

to 1.9X and improve the monitoring observability by up to 32%, as compared to approaches

that monitor path endpoints only.

53

(a) Layout with monitor instances highlighted (b) Layout with both monitor instances and wires

highlighted

Figure 3.14: Final layout of processor A with the inserted monitors placed and routed

54

CHAPTER 4

System-level Dynamic Variation Margining in

Presence of Monitoring and Actuation

4.1 Chapter Introduction

Dynamic variations affect the circuit performance and threaten the system resilience. Voltage

fluctuations, temperature variations and circuit aging are typical dynamic variation sources

that can degrade the circuit performance and cause timing errors. To guarantee correct

functionality, increasing amount of margin is applied to account for dynamic variations.

Monitor-and-actuate has been widely adopted as an approach to dynamically mitigate

circuit variability and reliability issues [Gup12,R09,B11,Aga,L14a,L13]. Most such systems

consist of three components, i.e., monitor, actuator and controller. The variation signa-

tures, including voltage/temperature fluctuations and wear-out aging, are captured by the

monitor at runtime. A controller with certain type of management policy uses the monitor

readings and makes the adaptation decision. Actuator, which is the mechanism for achiev-

ing adaptation, adjusts the operating conditions as the system’s reaction to the measured

variations.

Previous work has been proposed to improve the quality of the monitors or the actuators.

For example, various types of circuit-level monitors are proposed [C14, L14a, L14b, Tsc09,

Dra07] with different levels of accuracy, overhead, and measurement latency. Different ac-

tuation mechanisms, e.g., clock gating [B11], dynamic frequency scaling (DVFS) [D13,L13],

software-driven DVFS [Aga, L14a], task migration [Cue11] are used with different levels of

55

granularity, overhead, and actuation latency. Some of the monitor and actuator design quan-

tifies the margin required for its own inaccuracy [C14, L14a, L14b]. However, for dynamic

variations, both inaccuracy and latency in the entire adaptation process has to be accounted

for. System-level dynamic variation margining in presence of monitoring and actuation is

still understudied and ad-hoc.

In this work, we study the system-level margining problem assuming a simple threshold-

triggering policy. Some sophisticated controller policies can reduce the system reaction

latency with some prediction capabilities, e.g., through signature-based [R09] or model-

based [Cos08] approaches. However, they comes with additional prediction overhead and

more importantly imperfect prediction accuracy. Therefore, they may not be able to reduce

the system margin, which is typically worst-case driven.

The rest of the chapter is organized as follows: Section 4.2 describes the system margining

strategy. Section 4.3 presents the study of system margining for different types of dynamic

variation sources. Section 4.3.3 discusses the design implication of dynamic variation margin-

ing. Section 4.4 concludes the chapter.

4.2 System Margining Strategy

In this section, we study the margining strategy for dynamic variations in presence of adap-

tation systems. The system margin breakdown is described in Section 4.2.1. The exact

amount of margin required is analyzed in Section 4.2.2.

4.2.1 Margin Breakdown

Ideally, no margin is required if the system can adapt to the variations perfectly. Every source

of imperfections during the monitor-and-actuate process, including monitor and actuator

inaccuracy, adaptation latency etc., calls for margin. For dynamic variations, system margin

can be classified as static margin and dynamic margin. Static margin is the additional design

56

guardband required due to limited monitor coverage/accuracy and actuation granularity.

Dynamic margin is the additional design guardband required due to monitor measurement

and actuation latency.

As mentioned in Section 4.1, we assume a threshold-triggering policy as illustrated in

Fig. 4.1. For certain variation metric (e.g., temperature, voltage droop, delay etc.), the

system has a maximum allowed value (marked as the red line in Fig. 4.1) to ensure cor-

rect operations. A threshold-triggering policy has a trigger threshold value (dotted line in

Fig. 4.1) for the monitor reading, above which the controller will activate the actuation pro-

cess. Due to various latencies in the entire monitor and actuation process, by the time when

actuation becomes effective, the variation metric may have gone worse from what was mon-

itored (blue dotted line in Fig. 4.1). This calls for dynamic margin, which will be a function

of the system response latency and variation changing rate. Other than dynamic margin

for response latency, certain static margin is required for monitor and actuator inaccuracy.

As shown in Fig. 4.1, the total system margin, including both static margin and dynamic

margin, is dictated by the difference between the maximum allowed value and the trigger

threshold.

4.2.2 System Margin Analysis

As discussed earlier, the system margin can be classified as static margin and dynamic mar-

gin. Static margin is always required, regardless of variation types. Improvement on either

monitor accuracy or actuator quality can reduce the required static margin. For example,

flexible monitor design methodologies [C14,L14a,L14b] can trade-off its own accuracy with

overhead. The static margin Ms can be calculated as:

Ms = Errm + Erra

where Errm and Erra are the monitor and actuator errors.

The amount of dynamic margin, however, will depend on the temporal profile of the

57

Figure 4.1: Illustrate of the threshold-triggering policy

specific variation type (i.e., how fast the variation changes) and both the monitor and actu-

ator latencies. For example, process variation or circuit aging (e.g., BTI, HCI etc.) requires

little dynamic margin because they are either static or slow changing. But temperature and

supply voltage fluctuations will need certain amount of dynamic margin, as the temperature

increase or voltage droop can be worsening before the system can monitor and effectively

react to them. So based on the variation type, the margin required can be represented as

a function V (t) of the latency t. The derivation of this function will be discussed later in

Section 4.3. So the dynamic margin Md can be calculated as

Md = V (lm + lt)

where lm and ld are the latencies for monitor and actuator.

58

So the total system margin M can be calculated as:

M = Ms + Md = Errm + Erra + V (lm + lt)

4.3 Case Study Experiments

In this section, we studies the system margining problem for various types of dynamic varia-

tion sources. The types of dynamic variation sources will be described in Section 4.3.1. Case

studies for temperature variations are presented in Section 4.3.2.

4.3.1 Dynamic Variation Sources

In this work, we consider mainly three types of dynamic variation sources, i.e., voltage

droops, wear-out aging and temperature variations. Out of these three variation sources,

voltage droops is the fastest varying one, and wear-out aging is the slowest. So we expect

the dynamic margin to be the largest for voltage droop and smallest for aging.

The behavior of voltage droop depends on both the workload behavior and power delivery

network. Some power-management mechanisms like power gating can introduce a sudden

step in current and exacerbate the voltage droops. Previous work reports that the step-on

current can results in a peak voltage drop resonating at about 100MHz [G07]. In order to

make the adaptation system effective, the entire monitor-and-actuate system should operate

much faster than 100MHz. Even if we consider clock-gating as the fastest actuator for

voltage droop, it is extremely difficult to design the adaption system with short enough

latency. Clock gating is a synchronous operation, so the latency for gating the clock can

be up to 1 clock cycle. Considering the growing complexity of clock network and massive

number of clock sinks, the clock distribution latency from clock source to the end clock

pins can be up to a few clock cycles [Res04,Res01]. Therefore, we expect little benefit from

dynamic adaptation for voltage droops.

59

Most of wear-out aging mechanisms, unlike voltage droop, varies slowly along the entire

hardware lifetime. Given the typical hardware lifetime of a few years, the monitor and

actuator latencies are negligible. The system margin for wear-out aging will be dominated

by the static margin. Therefore, in this work, we focus on the case of temperature variations.

4.3.2 Case Studies for Temperature Variations

We demonstrate our strategy with some case study of thermal monitors and corresponding

actuators. We assume the threshold-trigger policy in the experiments. For the system to

function correctly, a bound is defined for the variation, i.e., maximum allowed temperature.

The system will keep reading from the monitor and activate the actuator if the monitor

reading is beyond certain threshold. Due to the imperfection of the monitor and actuator,

the threshold has to be conservative and tighter than the variation bound. The margin

is represented as the difference between the threshold and the bound. For temperature

monitoring, there can be two sources of inaccuracy. The monitor itself can be inaccurate

and deviate from the actual junction temperature. Meanwhile, the thermal hotspot may not

be at the same exact location as the thermal monitor, causing spatial inaccuracy. Therefore,

the static margin can be classified as monitor inaccuracy margin and spatial inaccuracy

margin.

The problem of margining for temperature fluctuation is illustrated in Figure 4.1. For

the experiments, we set the temperature limit as 100 ◦C. By using thermal simulator,

HotSpot [Hua06], we can simulate the temperature profile of a given power trace. In this

work, we consider a chip with 16X16 homogeneous cores. The baseline power, i.e., Thermal

Design Power (TDP), is set so that the highest on-chip temperature reaches the temperature

limit 100 ◦C. Different thermal monitors and actuators are summarized in Table 4.2 and

Table 4.1, respectively. To be able to cross-compare different type of temperature monitors,

the area budget for monitor placement is fixed at 0.4 mm2. The monitor inaccuracy due to

60

Table 4.1: List of Actuators

Actuator Latency

A1: Clock gating 10 ns

A2: DFS(with PLL relock) 100 us

A3: DVFS 10 ms

A4: Task migration 50 ms

limited number of thermal monitors are calculated using the equation [Mem08]:

Spatial Error = 25− 4log2N

, where N is the number of monitors.

The dynamic margin is derived based on the maximum power consumption Pmax. If

Pmax = TDP , the problem is not interesting, as the maximum temperature will never be

higher than the temperature limit. Some case study results are highlighted in Table 4.3. A

few interesting observations can be made from the results:

• Dynamic margin is comparable to or even larger than static margin, depending on

Pmax/TDP ratio.

• The amount of dynamic margin increases dramatically with increased Pmax/TDP ratio.

As we enter the dark silicon era, where power density increases much faster than the

packaging technology.

• Within the static margin, spatial error margin is considerably higher than the inac-

curacy margin. This can be different if we allocate more resources and increase the

number of thermal monitors.

Comparing some cases with the same types of actuator, e.g., Case I and Case IV the

same monitor area with different monitor types can result in dramatically different amount

of static margin and dynamic margin. Inappropriate combination of monitor and actuator

61

Table 4.2: List of Thermal Monitors

Monitor samples/s Accuracy Normalized Area (mm2) at 65nm

M1 [Chu11] 10000 4 ◦C 0.01

M2 [Woo09] 5000 2 ◦C 0.04

M3 [Che05] 1000 1 ◦C 0.01

M4 [Ait09] 10 0.1 ◦C 0.04

types, e.g., unmatched latencies, can results in up to 2.8X increase in system margin from

7.71◦C of Case I to 21.33◦C of Case VI.

4.3.3 System Design Implication

When designing adaptation systems, both monitors and actuators need to be matched to

maximize the benefit. However, some parts of the system, especially the actuators, may also

be used for other purposes like power management. The choices of them can be affected by

many different considerations.

This work aims at giving some guidelines for selecting and designing the adaptation

system, especially for the monitors which usually are dedicated for this purpose and have

larger design flexibility. A few design guidelines can be made based on our observations from

the case studies for temperature variations:

• Monitor inaccuracy, which is the main metric for monitor design, only constitute a

fraction of the entire system margin. Over-optimizing the monitoring accuracy at the

cost of excessive area and latency can sometimes result in larger system margin.

• Monitor latency, which may be overlooked during monitor design, can affects the dy-

namic margin. This makes the design of faster monitor as important as design accurate

ones.

• For spatially distributed phenomena like temperature variations, optimizing for smaller

62

T
ab

le
4.

3:
C

as
e

S
tu

d
y

on
D

y
n
am

ic
an

d
S
ta

ti
c

M
ar

gi
n

C
as

e
M

on
it

or
A

ct
ua

to
r

T
ot

al

la
te

nc
y

St
at

ic
M

ar
gi

n

(m
on

i-

to
r+

sp
at

ia
l)

D
yn

am
ic

M
ar

gi
n

(P
=

1.
25
∗T

D
P

)

D
yn

am
ic

M
ar

gi
n

(P
=

1.
5
∗

T
D

P
)

D
yn

am
ic

M
ar

gi
n

(P
=

1.
75
∗T

D
P

)

C
as

e
I

M
1

A
1

10
0

us
4
◦ C

+
3.

71
◦ C

0
◦ C

0
◦ C

0
◦ C

C
as

e
II

M
2

A
2

0.
6

m
s

2
◦ C

+
11

.7
◦ C

0
◦ C

0.
02

◦ C
0.

05
◦ C

C
as

e
II

I
M

3
A

3
11

m
s

1
◦ C

+
3.

71
◦ C

0.
11

◦ C
0.

41
◦ C

0.
90

◦ C

C
as

e
IV

M
4

A
4

15
0

m
s

0.
1
◦ C

+
11

.7
◦ C

1.
28

◦ C
7.

07
◦ C

22
.5

◦ C

C
as

e
V

M
1

A
4

50
m

s
4
◦ C

+
3.

71
◦ C

0.
48

◦ C
1.

86
◦ C

4.
13

◦ C

C
as

e
V

I
M

4
A

1
10

0
m

s
0.

1
◦ C

+
11

.7
◦ C

1.
01

◦ C
4.

16
◦ C

9.
53

◦ C

63

monitor area/overhead is also important from the system design perspective. In some

cases, trading-off individual monitor accuracy for more efficient monitor design can

result in smaller spatial margin and thus better system margin.

We understand that in real design, the choices of adaptation system can be affected by

many different considerations. The final decision can be made by trading-off all metrics, e.g.,

final design margin, design overhead, and design complexity etc.

4.4 Chapter Conclusion

In this work, we first study the system margining problem and analyze different types of mar-

gin for monitor-and-actuate systems. Margining strategies are studied for different types of

dynamic variation sources. Case studies are performed for temperature variations margining.

The experiment results show that incorrect design and selection of monitor and actuator can

result in less adaptation benefit. Design guidelines are given for optimizing system margin

of monitor-and-actuate adaptations.

64

CHAPTER 5

Hardware Reliability Margining for the Dark Silicon

Era

5.1 Chapter Introduction

With ending of perfect Dennard scaling, integrated circuits have entered the “dark silicon”

era [Esm11], where chips are fundamentally power- and thermal-constrained. Multi-core

design has been widely adopted as the approach to both improve energy efficiency and

reduce power density by operating at lower power state and exploiting the workload paral-

lelism [Isc06,Kum03]. Meanwhile, single-thread performance is still desired by the workload

that is not parallelizable. Techniques such as “turbo boost” [Cha09b] are used to temporar-

ily operate one or several processor cores at higher voltage and frequency but still under

certain power and thermal constraints. This creates a large dynamic range in performance

and power that the hardware is designed to run at but maybe only for part of the circuits or

only for a short amount of time. For example, Intel i7-920XM [int,wik] has a base frequency

of 2 GHz. It can be boosted to operate at maximum 2.26 GHz with four active cores and to

3.2 GHz with only one core active.

Conventionally, hardware reliability margin is derived from the worst-case aging scenario

with possibly pessimistic or pathological assumptions. Although sense-and-adapt approach

can be used to reduce parametric (e.g., voltage, delay) margin at runtime [Gup12], physical

(e.g., wire width or spacing) margin must be determined during hardware design time. Since

most circuit wear-out mechanisms (e.g., Negative- and Positive-Bias Temperature Instabil-

65

ity (N/PBTI), Hot-Carrier-Injection (HCI), Electromigration (EM) etc.) degrade faster at

higher voltage and temperature, the margin is typically derived when the circuits are oper-

ating at peak performance state with the highest operating voltage, power and temperature.

The dark silicon contexts impose constraints on power and temperature, so that it is

impossible for all circuits to operate at peak performance state throughout the entire life-

time. Therefore, the reliability margin derived by the conventional approach can be overly

pessimistic and is expected to be larger with technology scaling and increasing silicon “dark-

ness”. Different terms have been used to describe this “darkness”, such as dark silicon

fraction [Esm11] and transistor utilization wall [Ven10]. In this work, we define a term d

called “dark ratio”. The definition of d for power-constrained scenario is described in Equa-

tion 5.1, where d = 0 means all circuits can be fully powered up. The definition of d for

thermal-constrained scenario will be described later in Equation 5.9

d = 1− maximum allowed power

maximum possible power
(5.1)

The over-pessimism can potentially be reduced by correctly accounting for the dark

silicon contexts. The main challenge is how to transform the high-level power/thermal (i.e.,

spatial) constraints into hardware aging (i.e., temporal) profile, especially with mixture of

complicated reliability models and system power/thermal management schemes. In this

work, we propose a hardware reliability margining methodology (see Fig. 5.1). It uses an

accumulation model to represent the aging degradation dependence on different circuit power

states. An optimization problem is formulated to search in the space of possible system

workload (i.e., power states of each processor cores) patterns that will stress the circuits under

the power/thermal constraints. By exploiting the properties of workload and management

policy, this spatial distribution workload can be transformed into temporal aging profile,

which in conjunction with the accumulation model can be used by the optimization to

determine the worst-case aging degradation under the power/thermal constraints. The

contribution of our work are:

66

• To the best of our knowledge, this is the first work on reliability margining considering

the high-level power/ thermal constraints imposed by the dark silicon contexts.

• We formulate and solve the margining problem for both power- and thermal-constrained

cases. Experimental results show that at 60% dark ratio, conventional margining ap-

proach can results in 3-7X and 18% overestimate of aging degradation due to EM and

BTI respectively. Our margining method is able to eliminate these over-pessimism and

results in about 20% delay margin and 40%-60% metal width margin reduction.

The rest of the chapter is organized as follows: Section 5.2 introduces some background of

EM and BTI modeling and margining. Section 5.3 describes how to derive the required data

and model for our methodology. Section 5.4 and Section 5.5 present the problem formula-

tion for reliability margining under power constraints and thermal constraints, respectively.

Experimental results and some discussions are presented in Section 5.6, and Section 5.7

concludes the chapter.

Figure 5.1: Margining Methodology Overview.

5.2 Chapter Background

Various reliability-related phenomena can result in circuit performance degradation or fail-

ure. They may require different types of design margin. In this work, we will focus on two

67

reliability phenomena, EM and BTI. The basic modeling for EM and BTI are described in

Section 5.2.1 and 5.2.2. Design margining for EM and BTI is introduced in Section 5.2.3.

5.2.1 EM Modeling

Electromigration [Hun97,Ban01] is a wear-out mechanism on interconnects. Void are created

on metal wires due to momentum transfer from the electrons moving in the wires. The Mean

Time to Failure (MTTF) of EM can be modeled by the famous Black’s equation [Bla69]:

MTTF = A0J
−2eEm/kT (5.2)

where A0 is a constant, J is the current density, Em is the activation energy for the EM

mechanism, k is Boltzmann’s constant, and T is the temperature.

For non-DC current, Hunter [Hun97] derived an “average” current density model for arbi-

trary unipolar current. This model is useful for interconnects with unipolar current, such as

power distribution networks. An effective current density can be derived with Equation 5.3.

Jeff =
1

T

∫ T

0

J(t)dt (5.3)

where Jeff is the effective current density for EM purpose, T is the period, and J(t) is the

current density at time t.

Banerjee etc. [Ban01] derived the model with a recovery factor R for symmetric bipolar

(AC) current. So the effective current density Jeff is R times the absolute current density.

This model is useful for evaluating EM on signal wires, because in digital circuits, signal

wires are used to charging up or charging down the same loading capacitance. So the

average current density will be proportional to the supply voltage, loading capacitance and

switching frequency. This dependence can be derived as Equation 5.4:

Jeff = R ·
∫
|J(t)|dt

T
= R · µCloadV f

w · h
(5.4)

where µ is the signal switching probability, Cload is the loading capacitance, V is the supply

voltage, f is the operating frequency, w is the metal width, and h is the metal height.

68

5.2.2 BTI Modeling

Bias Temperature Instability is a wear-out mechanism related to the transistor. Depending

on the transistor type, BTI effects include NBTI for PMOS and PBTI for NMOS. Due to

BTI, the device threshold voltage increases when the transistor is turned on (i.e., positively

or negatively stressed). When the stress voltage is removed, part of the degradation can be

recovered.

The exact BTI mechanism and model is still under debate within the reliability commu-

nity. There are two major BTI models, reaction-diffusion (RD) model [Bha06,Wan07] and

trapping/detrapping (TD) model [Vel12]. However, most existing analytical BTI models are

derived for static operating conditions and may not be directly used for dynamic operating

conditions introduced by typical system-level power management mechanisms such as DVFS

and power gating. BTI simulators [Cha11] have been used to simulate the degradation under

arbitrary stress profile.

5.2.3 Margining for EM and BTI

Unlike typical design optimization, hardware margining must be pessimistic to account for

all possible or even pathological worst-case scenarios. In many cases, pessimistic assumptions

are unavoidable and necessary. In this work, our approach will strictly follow this rule. The

pessimism in the assumptions and approaches will be summarized in Section 5.6.4.

As suggested by Black’s equation (see Equation 5.2), EM margining can be done by

increasing the interconnect width in order to reduce the current density. Typically, certain

design guidelines are given by the foundry as part of the reliability design rules. For example,

in a commercial 45nm design manual, the reliability design rules are given as the current-

dependent minimum width requirement for each metal layer. The amount of EM margin

can also affect other design metrics such as performance, power and area [Kah13].

In a circuit design, there are different types of interconnect that can be affected by

69

EM. In this work, we consider the EM effects on both local power distribution network

for one processor core and the signal wires inside the processor core. We omit the global

power distribution network because the margining can be directly derived from the power

constraints (i.e., dark ratio and total power).

BTI-induced threshold degradation can affect both logic and memory and result in re-

duced read/write margin [Kum06] and increased logic delay. Since SRAM operating condi-

tions are usually more stable, in this work, we focus on the BTI-induced delay degradation

for logic.

There can be two approaches to margin for BTI-induced delay degradation. One way is

to estimate the end-of-lifetime delay degradation for the entire circuit and directly applying

it as additional delay margin (i.e., reducing the operating frequency) or voltage margin (i.e.,

increasing the supply voltage). The other way is to estimate the process corners for the aged

devices and performing timing sign-off accordingly (i.e., increase the design efforts such as

larger cells). In this work, we will use the former approach to evaluate the BTI margin.

5.3 Power, Thermal and Accumulation Models

An overview of our proposed approach is shown in Fig. 5.1. The shaded blocks are assumed

to be known at hardware design time. In this section, we will focus on the modeling of

power, thermal and reliability that is required by the workload optimization step. Unless

otherwise defined, all notations used in Section 5.3, 5.4 and 5.5 are listed in Table 5.1. Matrix

transpose is represented with a prime symbol, i.e., transpose of x is represented as x′.

In this section, our accumulation model approach will be described in Section 5.3.1. The

power and thermal model used in this work is presented in Section 5.3.2.

5.3.1 Accumulation Model

Typical reliability models are derived for static scenarios. However, a dynamic reliability

70

Table 5.1: Glossary of Terminology

Term Description

N Total number of processor cores

n Index for processor cores

M Total number of power states

m Index for power state

Pmax Maximum allowed power

Tmax Maximum allowed temperature

T amb Ambient temperature

d Dark ratio

x
M × 1 vector where xm is the number of cores at

power state m

P
M × 1 vector where Pm is the power consumption

of a processor core at power state m

F
M × 1 vector where Fm is the operating frequency

of a processor core at power state m

V
M × 1 vector where Fm is the supply voltage

of a processor core at power state m

T
N × 1 vector where Tn is the temperature of

processor core n

Tbak
N × 1 vector where T bak

n is the background

temperature of processor core n

A
N ×N matrix where A(n1, n2) is the temperature

increase of core n1 due to power consumed by core n2

S
N ×M matrix where S(n, m) is the proportion of

time that core n spends in power state m

f(x)
The accumulation model for a processor core

spending xm/M lifetime at each power state m

71

model is required to derive the worst-case aging scenarios, which can be a mixture of different

power states. For example, with the same power budget, the circuits can be operating at

0.8V constantly or alternating between 0.7V and 0.9V. We need to be able to compare these

different workload patterns in order to determine the worst case.

Most reliability-related phenomena are temperature-dependent. Intuitively, lower power

states are usually associated with lower temperature. So we may be able to use lower

temperature for calculating the degradation. But this is not necessarily true considering

the following scenario that the processor core has already been heated up by other heavy

workload before entering a lower power state. This history dependence makes it difficult to

make any assumption about the temperature that is guaranteed to be pessimistic. Therefore,

in this work, we always assume the degradation happens under the maximum temperature.

In our proposed methodology, reliability model is used to characterize an accumulation

model (see Fig. 5.1). This helps isolate the model-dependence and makes our methodology

more general for different wear-out mechanisms. The accumulation model is a function

to calculate the pessimistic estimation of end-of-life degradation under a given workload

pattern. The input to the accumulation model is the fraction of circuit lifetime spent in

different power states (i.e., x). The accumulation model is represented as the functionf(x).

Some reliability models themselves suggest the corresponding accumulation model. For

example, the current density for local power distribution network is proportional to the power

consumption. Therefore the EM accumulation model can be derived based on Equation 5.3

as:

f(x) ∝ x′ ·P (5.5)

The EM accumulation model for signal wires can be derived based on Equation 5.4 as:

f(x) ∝ x′ · (F ◦V) (5.6)

where ◦ represents Hadamard product (i.e., element-wise multiplication).

For other reliability phenomena like BTI, the analytical models may not be directly ap-

72

plied for dynamic cases. Using the model incorrectly can lead to misleading results [Cha11].

In this work, we will derive the accumulation model with a physics-based RD simula-

tor [Cha11].

We use two steps to derive the accumulation model. The first step is to identify the

ordering of different power states that will result in the worst degradation. Based on the

simulator, the worst BTI degradation happens when power states are applied in increasing

order of stress voltages. Therefore, for a given power state distribution (x), there is only

one degradation value and it is pessimistic.

The second step is obtaining the accumulation function through interpolation or fitting.

In this work, we first pick a set of power state distribution samples x. These samples are

generated with fraction of lifetime spent in each power state being multiple of 0.1. To avoid

the low activity region where the BTI model shows high non-linearity, we limit the total

fraction of idle time to be less than 0.3. Therefore, we will only report the results with

d < 0.7.

Assuming g(x) is the accumulation function by the simulator, our accumulation function

is fitted with a linear function, i.e., f(x) = c′ ·x+d with c and d being the fitting coefficients,

as the results of the following optimization:

minimize: b

subject to: ∀x 0 ≤ f(x)− g(x) ≤ b
(5.7)

We validate this accumulation function against the results from the simulator. The maximum

overestimation is less than 0.5mV for about 10mV threshold voltage degradation.

5.3.2 Power and Thermal Model

For chips in the dark silicon era, there can be two types of constraints, i.e., limit on the

instantaneous power consumed by the circuits and limit on the highest temperature on-chip.

For example, Intel Sandy Bridge [Rot12] has total package power control and responsiveness

73

via dynamic turbo. The former one controls the entire package’s total power consumption,

while the latter one allows the total power consumption to be temporarily higher (e.g.,

1.2-1.3X [Rot12]) than the thermal design power (TDP).

Since the margin is determined at hardware design time, detailed power models may not

be available. But the hardware designer should have estimated power for each hardware

power states. In this work, we assume that the power consumption at each power state is

available for reliability margining purpose. The model should include the power consumption

for all possible power states, including different voltage states (i.e., P-state) and idle states

(i.e., C-state). These power consumption estimate should be optimistic (i.e., with smaller

values) so that the margin will be pessimistic.

The thermal model should give the static state temperature under a given power profile for

a fixed floorplan and package. In this work, we will use a thermal simulator, HotSpot [Ska03,

Hua06], which takes the floorplan and power profile trace and can calculate both static

state and transient temperature. By using the simulator, we can obtain the static state

temperature increase of one processor core due to power consumed by the other cores (i.e,

A). Based on the thermal-electrical duality, the superposition principle can be applied

here. Therefore, the temperature can be computed with the values in A without invoking

the simulation in the optimization. We have also validated this superposition principle and

the thermal model using the simulator.

5.4 Reliability Margining with Power Constraints

In this section, we describe the problem formulation for system with power constraints. The

interpretation of management policy and power constraints are presented in Section 5.4.1.

The optimization formulation is described in Section 5.4.2.

74

5.4.1 Management Policy and Power Constraints

For circuits in the dark silicon era, certain management mechanisms and policies are essential

to enforce the power/thermal constraints. These policies can affect the system behavior and

thus the reliability margin. In some case, a bad policy can result in the same degradation as

what conventional reliability approach indicates. For example, a policy with a fixed priority

in scheduling workload can overload the first core, resulting in spending entire lifetime at

the highest power state.

In this work, we assume a fair round-robin policy that iterates the scheduling priority

between all processor cores. The priority iterating frequency can range from once per hour

to once per week. We argue that this is a reasonable, effective, and possibly pessimistic

policy. This policy is an open-loop policy that does not rely on any sensing or monitoring

capabilities, and thus is easy to implement. Given a typical hardware life time of multiple

years, the number of iteration is sufficient to redress the workload imbalance between different

cores. More sophisticated policies, e.g., close-loop sense-and-adapt policies or more advanced

management policies [Kar09, Cal09, Sri05], may improve the degradation. This makes our

assumed policy pessimistic, which is acceptable for margining purposes.

With such management policy, the workload and the corresponding power states will be

iterated among all processor cores. So the power states of all processor cores at a given time

will be iterated through each processor core through its lifetime. Therefore, the temporal

distribution of power states for one processor core is equivalent to the spatial distribution of

power states among all cores. This property will be exploited in our problem formulation.

5.4.2 Problem Formulation

The power constraint limits the total power of all processor cores. In the power model,

processor power is represented as its power state. So the total power consumption can be

calculated from the number of cores in each power state (i.e., x should be integer variables).

75

As discussed earlier, this spatial distribution can be converted into the temporal distribution

of power states along the lifetime of one processor core. So the optimization should maxi-

mize the resulting degradation with power state distribution of x. Therefore, the problem

with power constraints can be formulated as the integer optimization problem described in

Equation 5.8.

maximize: f(x)

subject to: xm ≥ 0

x′ · 1 ≤ N

P′ · x ≤ Pmax

(5.8)

5.5 Reliability Margining with Thermal Constraints

In this section, we describe the problem formulation for system with thermal constraints.

The interpretation of thermal constraints is presented in Section 5.5.1. The optimization

formulation is described in Section 5.5.2.

5.5.1 Interpreting the Thermal Constraints

Unlike power constraints, thermal constraints do not directly impact the system instanta-

neous behavior. Circuits can temporarily operate at high power state if the temperature

is below the limit. Intuitively, there can be two possible pathological scenarios that may

maximize the degradation. The first one stresses the circuits in a two-phase manner which

cools down the circuits with lower power state and then heats up with high power state. The

second one stresses the circuits in a constant manner so that the temperature is maintained

or has small fluctuations right below the temperature limit.

We argue that the second scenario will always result in worse degradation through an

76

example shown in Fig. 5.2. Both cases have the same alternating power states (i.e., power

state I and II), but with different alternating frequencies. Since the average temperature of

the second case is higher than the first case, by the thermal model, the heat dissipated from

the second case will be more than the first case. Therefore, the second case can spend more

time in higher power state and thus results in more wear-out degradation.

Figure 5.2: Example of two workload cases. Both cases are alternating their power states

between I and II while keeping the temperature under the thermal limit.

So with the thermal constraints, a “constant” stress will result in more degradation. We

also define the dark ratio d for this thermal-constrained scenario in Equation 5.9. The term

Tmax−T amb is the maximum temperature increase allowed for a given ambient temperature.

The term max(A ·1 ·max(P)) is the temperature increase when all processor cores are fully

powered up.

d = 1− Tmax − T amb

max(A · 1 ·max(P))
(5.9)

5.5.2 Formulation

As discussed earlier, the thermal constraints can be represented as the limit on the average

power, which can be represented as the fraction of time spent in each power states for all

77

processor cores (i.e., continuous variables S). The static temperature is calculated based on

this average power consumption and the pre-characterized temperature-sensitivity matrix

A. The problem with thermal constraints can be formulated as an optimization problem

described in Equation 5.10.

maximize: f(S′ · 1)

subject to: ∀m, n S(m, n) ≥ 0

S · 1 ≤ 1

A · S · 1 ≤ Tmax × 1−Tbak

(5.10)

5.6 Experimental Results and Discussion

We will demonstrate our proposed architecture-assisted reliability margining methodology

for both power- and thermal-constrained scenarios. The experiment setup is described in

Section 5.6.1. The results for EM margining and BTI margining are presented in Section 5.6.2

and 5.6.3 respectively. Some of the results and the pessimism in our approaches are discussed

in Section 5.6.4.

5.6.1 Experiment Setup

The power model is based on a commercial processor benchmark and a commercial sub-32nm

process technology and libraries. The processor benchmark has 32KB L1 instruction cache,

32KB L1 data cache and 256KB L2 cache. The power values are derived from the synthesized,

placed and routed results of the processor benchmark. Libraries are characterized at different

supply voltages to calculate the operating frequency and power. Five different voltage states

are used with supply voltage ranging from 0.6V to 0.9V. So the total number of available

states is six including the state when the core is shut down or power gated. The SRAM

78

power is derived from the memory compiler results.

The thermal model (i.e., the values in A) is pre-characterized using HotSpot [Ska03,

Hua06]. The chip floorplan size is configured as 15mm x 15mm. The ambient temperature is

set as 300 K. Other parameters are set the same as default HotSpot settings. Accumulation

model is derived using the BTI simulator [Cha11]. The BTI simulator results are scaled

to match the built-in NBTI and PBTI models in the process library. We report the BTI

degradation (i.e., ∆V th) as the sum of NBTI and PBTI degradation (i.e., ∆V thn+∆V thp).

In the experiments, we will compare against conventional margining approaches, which

derives the margin assuming the core is operating at its highest power state along the entire

lifetime (i.e., equivalent to the cases when d = 0). In order to test the applicability and

scalability of our proposed approaches, we consider the case of 4, 16, 64 and 256 cores which

are placed in 2x2, 4x4, 8x8 and 16x16 arrays respectively. The power/thermal constraints

are determined by the dark ratio d defined in Equation 5.1 and 5.9.

5.6.2 EM Results

As mentioned earlier in Section 5.2.1, we will apply our margining methodology for both local

power distribution network and signal wires. The accumulation function for unipolar and

bipolar current is applied as discussed in Section 5.3.1. For both the power-constrained and

thermal-constrained scenarios, we obtain the value of Pmax and Tmax by varying the value of

dark ratio d. The optimization results of Equation 5.8 and 5.10 are reported and normalized

with respect to the conventional margining approaches (i.e., the case when d = 0).

The results of local power distribution network under power constraints are plotted in

Fig. 5.3. Compared to our margining approach, conventional approach gives about 3X

underestimate of the MTTF at 60% dark ratio, which is equivalent to about unnecessary

40% metal width margin. The results of signal wires under power constraints are plotted in

Fig. 5.4. The MTTF underestimate by conventional margining approach is about 7X, which

is equivalent to 60% redundant metal width margin.

79

We also record the worst-case power state results generated by our methodology. For

local power distribution network, the worst-case happens when some of the cores are at

the highest power state and other cores are idle. For signal wires, the worst-case happens

when all cores are active and at some intermediate power states. This also suggests different

preferences in power management schemes for EM purposes.

(a) MTTF (b) Metal Width

Figure 5.3: EM results with power constraints for local power distribution network.

(a) MTTF (b) Metal Width

Figure 5.4: EM results with power constraints for signal wires.
The results of same scenarios under thermal constraints are plotted in Fig. 5.5 and

Fig. 5.6. Compared to the results under power constraints, the curves are smoother. This is

80

because the power-constrained problem is an integer problem, while the thermal-constrained

problem is continuous. The over-pessimism of conventional margining approach is similar

to the cases with power constraints. At 60% dark ratio, our approaches can results in 3-6X

less MTTF overestimation and 40%-60% metal width margin reduction.

(a) MTTF (b) Metal Width

Figure 5.5: EM results with thermal constraints for local power network.

(a) MTTF (b) Metal Width

Figure 5.6: EM results with thermal constraints for signal wires.

81

5.6.3 BTI Results

We also apply our methodology for BTI margining. A linear accumulation function is fitted

by using the RD simulator as described in Section 5.3.1. The results for Vth degradation are

plotted in Fig. 5.7. At 60% dark ratio, conventional margining approaches result in about

3mV overestimate of the threshold voltage degradation, which is about 18% of the total

degradation. We also apply this degradation difference on a buffer chain and use SPICE

to study the delay impacts. The around 16 mV threshold degradation requires up to 14%

margin on the total delay at the lowest supply voltage (i.e., 0.6V). At 60% dark ratio, our

margining approach is able to reduce these delay margin values by about 20%, i.e., about

3% total delay margin reduction. The margin reduction can imply even more saving in the

final design if we consider the interaction between aging margin and design flow [Cha13c].

Among all the results, the number of processor cores does not significantly affect the

results. The only exception is the power-constrained cases with high dark ratio values. This

is caused by the discrete power states and integer variables in power-constrained problem.

5.6.4 Pessimism in Our Approach

Due to the nature of design margining, the approach has to guarantee its pessimism against

all possible pathological cases. Throughout our margining methodology, possible pessimism

is introduced. We summarize and discuss some of them here.

• As discussed in Section 5.3.1, due to the history effects of temperature, we assume the

worst-case temperature for all power states.

• As discussed in Section 5.3.1, the accumulation model, if derived from the simulator,

can results in pessimism. For example, the BTI accumulation model always assumes

the worst-case ordering of power states.

• As discussed in Section 5.3.2, the power and thermal models used in this approach

82

(a) Power-Constrained

(b) Thermal-Constrained

Figure 5.7: BTI results of Vth degradation with power constraints and thermal constraints.

are pessimistic, e.g., the use of best-case power values under process, temperature and

workload variations. This will result in optimistic estimation of the number of active

cores and therefore result in pessimistic estimation of the margin.

83

5.7 Chapter Conclusion

In this work, we propose an architecture-assisted hardware reliability margining methodology

for chips in the dark silicon era. By exploiting the properties of workload and system manage-

ment policies, we formulate the margining as an optimization problem. Experimental results

show that at 60% dark ratio, our method can reduce the over-pessimism in conventional

margining approach for EM and BTI by 3-7X and 18% respectively, which is equivalent to

40%-60% reduction in metal width margin and 20% reduction in delay margin. Our ongoing

work is looking at the margining problem for heterogeneous multi-core systems.

84

CHAPTER 6

BTI-Gater Aging Resilient Clock Gating Methodology

6.1 BTI-Gater Introduction

Negative- and Positive-Biased Temperature Instability (N/PBTI) have become a major re-

liability concern for modern semiconductor technology [Sch03,Hic08]. NBTI manifests itself

as an increase in PMOS threshold voltage Vth when PMOS is negatively biased, while PBTI

manifests as an increase in NMOS Vth if NMOS is positively biased. When the bias volt-

ages are removed, the devices enter a recovery phase, where part of the degradation can be

recovered.

Due to this stress-recovery behavior, N/PBTI-induced degradation depends heavily on

the workload. Mintarno et. al. [Min13] report that N/PBTI-induced timing degradation

on data path varies from 2% to 11%, depending on the workload. Compared to data path,

clock distribution network usually has balanced structure and invariant signal pattern, which

makes it more robust against N/PBTI-induced degradation. But this may not hold for clock

distribution networks with clock gating features [Liu12]. Conventionally, clock signal on

the gated branch is frozen at one state (i.e., logic low or logic high), which will introduce

imbalanced degradation and cause additional clock skew.

Previous work [Cha13a,Hua13,Che13,Cha09a] has attempted to address this issue. How-

ever, most of existing work did not consider the clock gating control signal generation and the

synchronous nature of the clock gating operations, which may lead to incorrect assumptions

and circuit malfunctions. We will review each of them in Chapter 6.6.

85

In this work, we first analyze the effects of N/PBTI on clock distribution network and

N/PBTI-induced clock skew under different clock gating use cases. Then cross-layer solutions

are proposed to address this issue of N/PBTI-induced clock skew. Since the clock skew is

mainly due to the imbalanced clock signal duty ratio (D), two ICG cell circuits are proposed

to alternate clock idle state between logic high and logic low for each clock gating operation,

so that the clock signal duty ratio (D) can be balanced to close to 50%. A skew mitigation

methodology is also proposed to apply the appropriate ICG cells for different design, based

on the architecture and micro-architecture context. To avoid certain pathological aging

scenarios, an example of sleep scheduling is also described as a simple software-level technique

that can be used in conjunction with BTI-Gater.

The rest of this chapter is organized as follows: Chapter 6.2 introduces some background

information and discusses the effects of N/PBTI on clock distribution network. Chapter 6.3

analyzes the N/PBTI-induced clock skew for clock distribution network with clock gating.

Chapter 6.4 presents our cross-layer solutions, including two BTI-Gater cells and a skew

mitigation methodology and an example of software sleep scheduling. Experimental results

are described in Chapter 6.5. Related work is reviewed in Chapter 6.6, and Chapter 6.7

concludes this chapter.

6.2 Effects of N/PBTI on Clock Distribution Network

In this section, we present background information and discuss how N/PBTI affects clock

distribution network. We first introduce the N/PBTI mechanism and modeling of the device

in Chapter 6.2.1. Then we analyze the effect of NBTI and PBTI on clock path delay in

Chapter 6.2.2.

86

6.2.1 N/PBTI Mechanism and Modeling

The exact mechanisms of N/PBTI are still under debate within the reliability community.

There are two major NBTI aging models: the reaction-diffusion (RD) model [Bha06,Wan07]

and the trapping/detrapping (TD) model [Vel12].

Regardless of the argument of N/PBTI mechanisms and models, it is widely-accepted

and well-understood that stress duty ratio is a strong determining factor for the degradation

due to its stress-recovery behavior. This work aims at reducing N/PBTI-induced clock skew

by balancing the stress-recovery ratio between different clock branches. The purpose of this

work is not comparing different aging models. In this work, we will evaluate our methodology

using different aging models.

We use the RD model in [Bha06, Wan07]. The time dependence of Vth degradation in

this model follows a power-law model as:

∆Vth(t) = Ktn + M (6.1)

where the time exponent n∼0.16.

We use the TD model in [Vel12]. The time dependence of Vth degradation in this model

follows a logarithm timing dependence as:

∆Vth(t) = L · [A + B · log(1 + Ct)] (6.2)

To get the realistic amount of N/PBTI degradation,in the experiments, we use a commer-

cial sub-32nm process technology. A calibrated industry aging model (including both NBTI

and PBTI, without recovery effect) is used as baseline. The RD model as in Equation (6.1)

and the TD model as in Equation (6.2) are fitted and scaled to match the degradation un-

der close to DC aging (D = 99%). Based on the simulation results, the amount of PBTI

degradation is significant and cannot be ignored, comparing to NBTI.

87

6.2.2 N/PBTI on Clock Path Delay

A clock path example is shown in Fig. 6.1. Here we assume that the design uses Flip-Flops

(FF) that are triggered by clock rising-edge. So clock skew depends only on the clock path

delay associated to this signal transition pattern, i.e., transition from logic state A to logic

state B as in Fig. 6.1.

As shown in the table in Fig. 6.1, at logic state A, device P1 and N2 are stressed while

N1 and P2 are relaxed. This degradation pattern will result in weaker (i.e., with larger Vth)

P1 and N2, and stronger (i.e., with smaller Vth) P2 and N1, all of which will help the signal

transition (i.e., reduce the delay) from logic state A to logic state B. The degradation pattern

at logic state B is reversed, i.e., stronger P1, N2 and weaker P2 and N1, all of which will

slow down the signal transition from logic state A to logic state B.

Therefore, we have two conclusions here:

(i) Both NBTI and PBTI will result in the same type of clock path delay change. In this

work, we will consider both effects of NBTI and PBTI.

(ii) The amount of N/PBTI-induced delay change on the clock path depends on the time

it spends on each logic state. In this work, we define the clock signal duty ratio (D)

as the probability of clock path staying at logic state B as in Fig. 6.1.

6.3 N/PBTI-induced Clock Skew under Clock Gating

We have discussed the effects of N/PBTI on clock path delay. In this section, we will

explain why N/PBTI-induced delay degradation can result in clock skew if clock gating

is implemented on the clock distribution network. We first discuss different clock gating

use cases in Chapter 6.3.1. Then we describe the implementation of clock gating using

conventional ICG cells in Chapter 6.3.2. We present the analysis of N/PBTI-induced skew

and the vulnerability of different clock gating use cases in Chapter 6.3.3. Finally, we discuss

88

Logic State N1 status P1 status N2 status P2 status

A relaxed stressed stressed relaxed

B stressed relaxed relaxed stressed

Figure 6.1: Effects of NBTI and PBTI on clock paths

the impacts of N/PBTI-induced clock skew and clock uncertainty on design timing margining

in Chapter 6.3.4.

6.3.1 Clock Gating Use Cases

Clock gating is one of the most popular power management techniques, due to its low

reaction latency and small implementation overhead. It can be implemented at various

levels of granularity, depending on the context and use cases. Based on the implementation

granularity and software visibility, different clock gating use cases can be classified as follows:

• Architecture-level clock gating: The clock signal of the entire processor core or specific

module (e.g., co-processor, hardware accelerators etc.) is gated upon the request of the

software. This is typically used when turning the processor/module into sleep mode or

89

Wait-For-Interrupt (WFI) mode. The clock gating probability has strong dependency

on the actual software workload. An example of architecture-level clock gating is C

states in ACPI [acp].

• Microarchitecture-level clock gating: Many operations in a processor, especially super-

scalar processor, may be mutually exclusive and utilize different parts of the circuit.

Computer architect can identify the idle modules and corresponding clock gating condi-

tions during RTL design phase. Examples include dynamic high level clock gating [cora]

and deterministic clock gating [Li03].

• Circuit-level clock gating: During the circuit design phase, data dependency infor-

mation can be derived from the RTL. Based on the data dependency information,

clock gating can be inserted automatically [Con10,Tel95,Ben96] without affecting the

architectural behavior. This feature is also supported by some commercial tools.

6.3.2 Clock Gating Implementation with ICG Cell

Clock is one of the most important and critical signals in VLSI circuit. Any imperfection in

the clock signal may cause circuit malfunction or timing violations. For example, a glitch in

clock signal may cause the FF to sample incorrect signal and corrupt the architectural state.

Clock skew between launching FF and destination FF can cause timing violations.

Since clock signal integrity is crucial for correct functionality, clock gating is usually

implemented using a special ICG cell, which is carefully designed to avoid introducing any

suspicious timing behavior or glitches. An example of clock gating implementation using a

conventional ICG cell [Kea07] is shown in Fig. 6.2. The ICG cell consists of one latch and one

AND gate. An enable signal (EN) is used to specify whether the output clock (CKOUT) is

enabled. If the ICG cell samples the EN signal as logic low, it will gate the output clock and

omit the immediate clock pulse (the dotted pulse in Fig. 6.2) with no clock gating latency.

Although the ICG cell in Fig. 6.2 uses a latch, its timing behavior is similar to a regular

90

FF, i.e., the signal EN should be and only need to be ready around the incoming clock rising

edge with corresponding setup and hold time constraints. This is extremely important for

the general applicability of the ICG cell as it specifies the timing requirements of the enable

signal EN. In a typical clock gating implementation, the EN signal is generated in the same

way as other regular data signals, i.e., driven by the same set of FFs and share the same

combinational logic. Therefore, the FF-like timing behavior makes the implementation flow

and timing verification consistent with the rest of the design.

Depending on the clock gating granularity, multiple or even thousands of clock sinks can

share the same clock gating control. For example, for the architecture-level clock gating use

cases, all FFs in the processor core can be gated or ungated together, depending on its sleep

state. Usually, only one or a few number of ICG cells will be used at the clock distribution

network root. The reasons for this are: 1) this can reduce the number of ICG cells and thus

reduce the implementation overhead; 2) this can help saving the clock power dissipation

along the clock path. A potential pitfall of this type of implementation is the large clock

skew between the ICG cell and its sink FFs(see Fig. 6.2). For large design, the clock path

delay can be comparable or even larger than one clock cycle [Res01, Res04]. In this case,

even though the ICG cell can cut off the root clock signal with zero cycle latency, it can

still take one or more clock cycles to stop the clock signals at the leaf sinks. Special pipeline

arrangement should be used to handle this extra latency, e.g., Power Control Register [cora].

6.3.3 Clock Skew Induced by N/PBTI

In a clock distribution network without clock gating, clock signal duty ratio (D), i.e., the

probabilities of staying at logic state B, is balanced at 50% between different clock path.

This results in balanced delay degradation and no additional clock skew. However, if clock

gating is implemented, the signal duty ratio D will be imbalanced between the regular clock

branch and gated clock branch, as shown in Fig. 6.3. In this work, we define the clock

91

Figure 6.2: Conventional ICG cell and its usage in circuits. The timing behavior of the ICG cell

is similar to an edge-triggered element.

activity ratio µ as:

µ = 1− total clock gated cycles

total cycles
(6.3)

So if conventional ICG cell is used, we have D = µ/2.

As shown in earlier analysis in Chapter 6.2.2, lower D, or equivalently staying more at

logic state A, will result in less degradation, i.e., faster clock paths. Therefore, the gated clock

path is expected to become faster than regular clock path after aging if conventional ICG cell

is used. Both NBTI and PBTI will result in the same type of clock skew, thus aggravating

this effect. The clock skew will be mostly determined by the clock path delay after the

ICG cell because the clock signal duty ratio D is different only for this part. Therefore, we

92

expect architecture-level and microarchitecture-level clock gating to be more vulnerable to

N/PBTI-induced clock skew. We will focus on these two types of clock gating use cases in

this work. As shown in Table 6.2 in Chapter 6.5.2, the clock skew becomes significant only

when the number of gated clock sinks is large enough.

Figure 6.3: Imbalanced signal duty ratio (D) for gated clock branch and regular clock branch

6.3.4 Clock Uncertainty and Design Margining

The exact amount of N/PBTI-induced clock skew depends on the degradation contexts, e.g.,

lifetime, clock gating activities etc., which are unknown during design time. So it should be

considered as additional clock uncertainty on top of other existing static clock skew. This

clock uncertainty can either increase or decrease the clock skew and affect the setup-time

or hold-time margin, depending on the relative location of FFs. For example, as shown in

Fig. 6.4, skew1 will increase the hold-time margin of stage 1 and the setup-time margin of

stage 2, while skew2 will increase the setup-time margin of stage 1 and the hold-time margin

of stage 2. Therefore, as long as the total clock uncertainty, i.e., skew1 + skew2, keeps the

same, the total design margin can not be reduced.

Unless we can reduce the total delay uncertainty of gated clock path, it is difficult to

reduce the design margin by using static design methods. For example, even though we know

that the gated clock path is likely to become faster comparing to regular clock path, a static

delay shift for gated clock path at t = 0, i.e., shifting the shaded part upwards, can only

93

change the split between skew1 and skew2 rather than reducing the total clock uncertainty.

Figure 6.4: Sample illustration of N/PBTI-induced clock skew and clock uncertainty.

So clock gating can change the clock signal duty ratio D of the gated clock path, resulting

in additional clock skew and thus design margin. If the ICG cell can alternate clock idle

state between logic state A and logic state B, the clock signal ratio D can be balanced to

close to 50%, which can eliminate the clock skew introduced by N/PBTI. This motivates

our proposed clock gating methodology.

6.4 N/PBTI-Resilient Clock Gating Methodology

In this section, we first discuss the challenges and issues in designing ICG cells with con-

trollable idle state in Chapter 6.4.1. Then we describe BTI-Gater cells with half cycle and

94

one cycle clock gating latency in Chapter 6.4.2 and 6.4.3. A skew mitigation methodol-

ogy is presented in Chapter 6.4.4. Finally, software scheduling techniques are described in

Chapter 6.4.5 to avoid certain pathological scenarios.

6.4.1 Clock Gating Latency

Theoretically, it is impossible to implement an idle high ICG cell with zero cycle latency.

As shown in the example in Fig. 6.5, at the time when correct clock gating control signal

arrives at ICG cell, the output clock is already at logic low state (see the end of cycle 1 as in

Fig. 6.5). This makes the AND-type gate, i.e., with logic low idle state, the only option for

an ICG cell. If we use an OR-type gate, i.e., making the idle state at logic high, the output

clock will inevitably generate an undesired clock rising edge (the red rising edge at the end

of cycle 1 as in Fig 6.5), which can corrupt the architecture states. The same issue happens

when enabling the clock, where an additional clock falling edge (the red falling edge at the

end of cycle 2) is needed.

Figure 6.5: Illustration of the clock gating latency issue

The same argument holds if we apply the ICG cell to an inverted clock stage in an

inverter-based clock distribution network. The clock control signal, in this case, is coming

at the clock falling edge, which makes the OR-type gate the only possible ICG cell with idle

state being logic high. Note that at the inverted clock stage, logic high state is equivalent

to the logic low state at non-inverted stage. If we use an AND-type gate, the output clock

95

will generate an undesired clock falling edge, which corresponds to a clock rising edge at the

FFs.

Therefore, it is impossible to use both AND-type and OR-type gates in ICG cell without

changing the clock gating latency. The minimum clock gating latency for an ICG cell with

controllable idle state is half clock cycle, i.e., the enable signal arrives before the clock falling

edge.

6.4.2 Proposed BTI-Gater Cell of Half Cycle Latency

Figure 6.6: BTI-Gater cell with half cycle clock gating latency

For an ICG cell with half cycle latency, the enable signal is sampled at clock falling

edge. Our proposed ICG cell generates two copies of the gated clock signal with different

idle states and alternatively select the appropriate one.

The complete design of BTI-Gater cell with half cycle latency is shown in Fig. 6.6. The

96

signal CK1 is the clock signal with logic high idle state. The signal CK2 is the clock signal

with logic low idle state. An internally generated signal S is used to select between the two

clock signals CK1 and CK2. The value of S is supposed to change each time the circuit

enters clock gating state. This BTI-Gater cell requires the EN signal to be ready at clock

falling edge, which leaves about half clock cycle to generate the control signal.

There are several key implementation points here:

• First, we use one master-slave FF to generate both of signal Q1 and signal Q2. This

saves the area and reduces the power overhead.

• S is flipped on Q2’s rising edge. Since the rising edge of Q2 is synchronous to CK and

happens when both CK1 and CK2 are logic low, this implementation makes sure that

no additional glitch is introduced when alternating the state.

• The delays in generating CK1 and CK2 are matched to have exactly one NAND gate

and one inverter. This can reduce the clock skew mismatch between the idle high and

idle low clock output under variations.

6.4.3 Proposed BTI-Gater Cell of One Cycle Latency

As discussed earlier in Chapter 6.3.2, there are cases where clock gating action can not finish

within one clock cycle. Special pipeline arrangement is used to handle this additional latency,

e.g., Power Control Register [cora]. For this case, an ICG cell with one cycle latency can be

accepted and even preferred, because its timing verification is consistent with the rest of the

circuits.

We propose BTI-Gater cell with one cycle latency as shown in Fig. 6.7. The design is

similar to BTI-Gater cell with half cycle latency. One more latch is inserted to buffer the

enable signal. The same key implementation consideration is applied as well. As shown in

the timing diagram in Fig. 6.7, BTI-Gater cell will block the second rising edge, i.e., with

one cycle latency, after detecting the enable signal.

97

Figure 6.7: BTI-Gater cell with one cycle clock gating latency

6.4.4 Mitigation Methodology

Depending on the architectural context and latency requirements, different ICG cells may be

used. For example, some microarchitecture-level clock gating cases may specifically require

sub-cycle latency. So only BTI-Gater cell of half cycle latency can be used. If sub-cycle

latency is not required, BTI-Gater cell of one cycle latency may be preferred because of its

simpler and more consistent delay constraints (with respect to the clock rising edge only).

Based on the properties of the two BTI-Gater cells, we propose a skew mitigation

methodology to select the appropriate ICG cell, depending on the architectural context and

clock gating latency requirements. The methodology is described in Fig. 6.8. First, the

clock gating use cases and corresponding latency requirements are identified. Corresponding

candidate BTI-Gater cells are selected. For clock gating cases with sub-cycle latency and

more than half cycle control signal generation time, design guardbanding is the only option.

98

For other cases, the cost efficiency can be calculated and used to determine if it is beneficial

to use BTI-Gater cells. The power benefit of using BTI-Gater cells can be modeled by a

sample cost function as Equation (6.4):

∆P = ∆tskew(α · ps + β · ph)− Pcell (6.4)

where ∆tskew is the skew saving of using BTI-Gater cells, ps is the power cost to margin

for per unit setup time uncertainty, ph is the power cost to margin for per unit hold time

uncertainty, Pcell is the additional power cost of using BTI-Gater cells over conventional

ICG cells, α is the percentage of circuits being setup time constrained, β is the percentage of

circuits being hold time constrained. In practice, the value of Pcell can be pre-characterized.

∆tskew can be derived through circuit simulation on the clock path using typical and aged

libraries. Direct derivation of ps, ph, α, and β is difficult. But the entire term ∆tskew(α·ps+β ·

ph) can be estimated through design optimization tools by adding/removing ∆tskew to/from

the total clock uncertainty1. Design intuition based on the same or similar design/technology

can also be utilized to estimate the cost of additional setup and hold margin (i.e., ps and

ph). ∆tskew · α and ∆tskew · β can be derived using Total Negative Slack (TNS), which is

supported by most design tools.

6.4.5 Software Sleep Scheduling Techniques

N/PBTI degradation on datapath will result in slower path delay and lead to setup-time vio-

lations. System adaptation schemes [Min11] can be applied to reduce the design guardband.

However, N/PBTI degradation on clock path can result in hold-time violations, which are

difficult to resolve through system adaptation schemes. Therefore, from hardware’s point of

view, design margin can not be reduced as long as there are certain pathological scenarios

that can lead to imbalanced degradation, especially for architecture-level clock gating, where

the software can have very regular behavior.

1In this work, we apply Vt-assignment using commercial tools to estimate the power saving (see Chap-
ter 6.5.5 and Fig. 6.12).

99

Figure 6.8: N/PBTI-induced clock skew mitigation methodology

For all typical software workload experiments we ran (see Table 6.3 in Chapter 6.5),

BTI-Gater can balance the clock signal duty ratio (D) to close to 50%. But one may still be

able to construct certain pathological cases that can result in highly imbalanced degradation

even with BTI-Gater. For example, software may have two program phases where the first

phase always results in a very short period of clock gating time while the second one always

results in a very long period of clock gating time.

To avoid these pathological scenarios, software sleep scheduling techniques in conjunction

100

with BTI-Gater can be applied for architecture-level clock gating cases to balance the clock

degradation. A software wrapper can be implemented on the sleep function. A sample

software wrapper pseudo code is shown in Algorithm 2. A software bit idle state is set to

keep track of the previous clock gating status. Even status and odd status correspond to the

idle state low and idle state high cases of BTI-Gater cells. Based on idle state, the wrapper

uses a software counter counter to keep track of the difference between the sleep time spent

in even and odd clock gating operations. Upon receiving the sleep request, the wrapper will

first determine the desired sleep state based on the value of counter and idle state. The

sleep operation is broken into two parts (time/3 and time ∗ 2/3) and scheduled accordingly

to achieve a total of time/3 spent in the desired sleep state. This makes sure that the

absolute value of counter is bounded by one third of the maximum value of time, if this

sleep function is the only mechanism for clock gating. This is tiny and negligible compared

to typical hardware lifetime of several years.

If clock-gating is invoked when the processor receiving a WFI request, slightly modified

software scheduling techniques can be applied. Instead of breaking the sleep time into two

parts, the wrapper can enforce a short period of sleep before turning into WFI state in

order to balance the value of counter. In this case, the absolute value of counter is bounded

by the maximum sleep time. If the system expected sleep time can be large and non-

negligible compared to its lifetime, a periodic wake-up mechanism can also be used to limit

the maximum time of a single sleep operation.

6.5 Experimental Results

In this section, we first describe our experiment setup in Chapter 6.5.1. The clock skew anal-

ysis results are presented in Chapter 6.5.2, which verify our earlier analysis in Chapter 6.3.3.

Chapter6.5.3 reports the results on BTI-Gater cells, including functionality verification, area

and power overhead, and clock jitter evaluation. Two different case studies using BTI-Gater

101

Algorithm 2 Software wrapper for sleep scheduling
Require: idle state is previous clock gating status. counter is the software counters to record the difference

between the sleep time spent in even and odd clock gating operations.

function mySleep(time)

if counter > 0 then

//More time spent in even clock gating status

if idle state == even then

Sleep(time*2/3)

Sleep(time/3)

counter −= time/3

idle state = even

else

//Force the clock idle state

Sleep(time/3)

Sleep(time*2/3)

counter −= time/3

idle state = odd

end if

else

//More time spent in odd clock gating status

if idle state == odd then

Sleep(time*2/3)

Sleep(time/3)

counter += time/3

idle state = odd

else

//Force the clock idle state

Sleep(time/3)

Sleep(time*2/3)

counter += time/3

idle state = even

end if

end if

end function
102

Case Benchmark Gated Module Clock sinks Clock levels

I Processor A Entire core pipeline ∼ 30k 9

II Processor A Part of core pipeline ∼ 10k 8

III Processor B Entire core pipeline ∼ 1k 4

IV Processor B Part of peripherals ∼ 100 2

V Processor B Part of core pipeline ∼ 350 2

Table 6.1: Summary of different clock gating cases

cells are performed in Chapter 6.5.4 and Chapter 6.5.5.

6.5.1 Experiment Setup

In this work, we perform clock gating case study on two commercial processors. Both

processors have built-in micro-architecture-level clock gating options. Processor B has built-

in architecture-level clock gating to gate part of its peripheral when idle. We also consider

the architecture-level clock gating cases when the entire processor core pipeline is clock gated

when receiving a sleep request. The different clock gating cases are summarized in Table. 6.1.

To analyze N/PBTI-induced clock skew, we use a commercial sub-32nm process technol-

ogy and libraries. An industry calibrated aging model (including both NBTI and PBTI,

without recovery effect) is used as the baseline. To include the recovery effect, both RD and

TD models are fitted and scaled to match the technology node, desired operating conditions

and lifetime requirements. We see about 10% lifetime delay degradation for clock buffer

chain under 100% stress duty ratio.

6.5.2 N/PBTI-Induced Skew Analysis

In this analysis, we evaluate the amount of N/PBTI-induced clock skew for each of the

clock gating cases, assuming only conventional ICG cells are used. For each of the clock

gating cases, we first extract the corresponding clock path after the ICG cells. Then we

103

Fresh (at t=0)
µ = 100% (i.e., ungated) µ = 2% Skew when µ = 2%

RD TD Industry RD TD Industry RD TD Industry

Case I 311.4 328.9 328.9 342.7 320.7 312.1 311.2 8.1 16.8 31.5

Case II 229.1 240.8 239.6 250.7 234.8 228.7 228.0 6.0 10.9 22.7

Case III 90.1 93.7 93.4 96.6 91.9 90.2 90.0 1.8 3.2 6.6

Case IV 47.2 47.2 47.2 50.6 47.2 47.2 47.2 0.0 0.0 3.4

Case V 41.5 41.5 41.5 44.2 41.4 41.4 41.5 0.1 0.1 2.7

Table 6.2: Clock path delay and skew (in ps) under different aging models and activities

using conventional ICG cells

perform circuit simulation on these paths with degradation based on different aging models

and different clock activity ratios (µ). The results are highlighted in Table 6.2. The 100%

clock activity ratio represents the scenario that the clock path is never gated. The heavily

gated scenario, i.e., with smaller A, has relatively smaller clock path delay, which matches

our earlier analysis in Chapter 6.3.3.

The N/PBTI-induced clock skew equals the delta between ungated cases (A = 100%) and

corresponding entries in Table 6.2. The skew when A = 2% is also listed in Table 6.2. The

amount of N/PBTI-induced skew depends heavily on the clock path delay. For the longest

path, i.e., Case I, the maximum N/PBTI-induced skew can be as much as 17ps based on TD

model. While for short paths, e.g., Case III, IV and V, the N/PBTI-induced skew is very

small.

6.5.3 BTI-Gater Cell Results

To validate BTI-Gater cell design, we implement both cells using the same sub-32nm tech-

nology and libraries. Their functionality is verified by SPICE simulation and is consistent

with the timing diagrams in Fig. 6.6 and Fig. 6.7. The area of half cycle latency BTI-Gater

cell is equivalent to about 25 standard size inverters or 4 standard size FF. The area of one

104

cycle latency BTI-Gater cell is equivalent to about 31 standard size inverters or 5 standard

size FF. The area of conventional ICG cell is equivalent to about 5 standard size inverters.

The power consumption of our proposed ICG cells is about 4X larger than conventional

ICG cell. However, in all studied cases, the processor requires at most four ICG cells to

implement the clock gating functions. Compared to the size of the entire design and its

clock distribution network (see Table 6.1) , the power and area overhead of using BTI-Gater

is almost negligible. For cases with small clock network, e.g., Case IV and V, the proposed

methodology as shown in Fig. 6.8 can be applied to decide whether it is beneficial to use

BTI-Gater cells.

SPICE simulations are also used to evaluate the potential clock jitter introduced by BTI-

Gater cell (see Fig. 6.9). The jitter is within 1ps across supply voltage ranging from 0.8V to

1V, which is small compared to the clock uncertainty introduced by local process variations.

Figure 6.9: Clock delay under different supply voltages. The clock jitter introduced by BTI-Gater

is very small.

105

6.5.4 Case Study for BTI-Gater Applicability

To verify and demonstrate the applicability of BTI-Gater, we apply BTI-Gater methodology

for Case V. Since Case V specifically requires sub-cycle clock gating latency, BTI-Gater cell

of half cycle latency is considered. The processor is synthesized, placed and routed with

the clock gating implemented using conventional ICG cell. After verifying the clock gating

control signal generation time, we replace it with BTI-Gater cell of half cycle latency through

Engineering Change Order (ECO). The design is verified again after the ECO to make sure

that the clock gating control signal meets the timing constraints with respect to the clock

falling edge. The layout with clock distribution networks highlighted is shown in Fig. 6.10.

Figure 6.10: Layout for processor B with clock distribution networks highlighted (ungated part in

yellow, Case IV in purple and Case V in red)

We also perform functional simulation of processor A by running Dhrystone [Wei84]

benchmark. The clock activity ratio µ in Case V is less than 9%, which implies a clock

106

Benchmark Clock activity ratio (µ)
Clock signal duty ratio (D)

Conventional BTI-Gater

mp3 2.14% 1.07% 49.98%

Dhrystone 39.26% 19.63% 56.53%

3D rendering 23.25% 11.62% 46.73%

Web browsing 6.78% 3.39% 52.66%

Table 6.3: Clock activity ratio(µ) and signal duty ratio(D) results for different software benchmarks

signal duty ratio (D) of less than 5% for the gated clock path if conventional ICG cell is

used. Our BTI-Gater cell is able to generate a clock signal with D = 52.68%, which is very

close to standard clock signal duty ratio of 50%.

6.5.5 Case Study for Power Saving

To evaluate the benefit and potential power saving of our skew mitigation methodology, we

apply BTI-Gater methodology on Case I. Since Case I is architecture-level clock gating, BTI-

Gater cell of one cycle latency is used. The corresponding clock skew with conventional ICG

cell under different clock activity ratio (µ) is shown in Fig 6.11. The maximum skew is about

17 ps with TD model and about 10 ps for other aging models. We also expect the clock

gating probability to be a strong function of the software workload. We perform simulation of

various software benchmarks and generate the active-sleep patterns. The benchmark active-

sleep patterns are used to simulate the clock signal duty ratio D for both conventional

ICG cell and BTI-Gater cells. As shown in Table 6.3, BTI-Gater cells can balance the

clock signal duty ratio D to the range between 46.73% and 56.53%, which will reduce the

corresponding clock skew to less than 1ps. This improvement is expected to be larger if more

software iterations are running on one processor or the software scheduling techniques as in

Chapter 6.4.5 is used.

To evaluate the power saving of the clock skew reduction, we make the following assump-

107

Figure 6.11: Clock skew with conventional ICG cell for Case I

Figure 6.12: Leakage power saving by Vt-assignment with different clock reduction for Case I

tions: 1) the designer will guardband for the worst-case P/NBTI-induced skew if conventional

ICG cell is used; 2) BTI-Gater cell can balance the clock signal duty ratio D to around

50%. In the experiment, this processor design is first synthesized, placed, routed, and

signed-off with the maximum N/PBTI-induced skew (i.e., 17ps) as additional clock un-

certainty margin. Then we apply BTI-Gater methodology and remove the corresponding

108

amount of clock uncertainty. The additional timing slack is reclaimed by Vt-assignment

using commercial tools. The leakage power results for different amounts of skew reduction

are plotted in Fig. 6.12. The results show that our method can save up to 19.7% leakage

power from the 17ps relaxation in clock uncertainty. Since Vt-assignment will only swap

cells with the same gate size but different Vt options, the dynamic power remains the same.

6.6 Related Work

There is several related work aiming at reducing N/PBTI-induced clock skew issue by dif-

ferent approaches.

Chakraborty et. al. [Cha13a] proposed a scheme to statically select AND-type or OR-

type cells as the output stage of the ICG cell. There are three potential drawbacks in this

method. First, the method relies on knowing the clock gating probability at design time.

With incorrectly assumed clock gating probability, the method may aggravate rather than

reduce N/PBTI-induced skew. Second, the method did not consider the generation of clock

control signal, which leads to the inappropriate assumption that both AND-type and OR-

type ICG cells can be used at the same time. As discussed in Chapter 6.4.1, it is non-trivial

to implement both AND-type and OR-type ICG cells. Last, the method works only if clock

gating is implemented at multiple locations in the clock distribution network, which limits

its applicability.

Huang et. al. [Hua13] proposed a scheme to identify critical PMOS in the clock dis-

tribution network and selectively use AND-type or NAND-type ICG cells. This method

focuses on reducing the aging effect within the ICG cell rather than the clock buffers after

it. Therefore, this method can only offer limited benefit in reducing N/PBTI-induced clock

skew for clock gating with coarse granularity, which is more vulnerable to N/PBTI-induced

clock skew.

Chen et. al. [Che13] proposed a scheme to selectively replace cells on clock path with

109

higher Vt cells to compensate both aging and process variation. This method applies Vt-

assignment on the clock distribution network so that the clock path with larger degradation

has smaller initial delay at t=0. However, as discussed in Chapter 6.3.4, this method may

not reduce the clock uncertainty due to N/PBTI-induced skew, thus may not reduce the

design margin.

Figure 6.13: The ICG cell proposed in [Cha09a].

Chakraborty et. al. [Cha09a] proposed an ICG cell design (see Fig. 6.13) that can al-

ternate the clock state based on an external signal AUX. This is the most closely related

work. However, this method does not consider the synchronization of the control and state

alternating signals. This leads to the same assumption that AND-type and OR-type gating

cells can be used at the same time, which is non-trivial to implement.

6.7 Chapter Conclusions

In this chapter, we first analyzed the effect of N/PBTI on clock distribution network with

clock gating features. Then we proposed two BTI-Gater cells that can be used to balance

delay degradation on gated clock branch and regular clock branch. Last we proposed an

N/PBTI-induced skew mitigation methodology. Software sleep scheduling techniques are

described in conjunction with BTI-Gater to avoid certain pathological aging scenarios.

110

Experimental results show that BTI-Gater cells can be used to reduce N/PBTI-induced

clock skew by up to 17ps. By using our skew mitigation methodology, we can save up

to 19.7% leakage power compared to pure design guardbanding. Our future work includes

a silicon prototype of the proposed approach and its validation under accelerated aging

scenarios.

111

CHAPTER 7

Evaluating and Exploiting Impacts of Dynamic Power

Management Schemes on System Reliability

7.1 Chapter Introduction

Hardware reliability has been a major concern for nano-scale computing systems. Different

design-time hardware implementation choices and run-time software management schemes,

though may not be specifically designed for reliability purposes, can significantly affect the

system’s resilience. Therefore, it is necessary to analyze their effects under different appli-

cation workloads and even exploit them to retain system resilience.

There can be two possible ways to implement system power management schemes to use

system performance slack. Run-fast-then-stop (RFTS) completes the workload with nominal

performance and then goes to certain sleep states for the remaining slack to reduce power.

Just-in-time (JIT) tries to adjust the peak performance to elongate the runtime with lower

power consumption. Both of them can be used to achieve power saving but can have different

impacts on reliability.

There are two main questions to be answered:

• How are reliability-related phenomena affected by different power management mech-

anisms and hardware implementation choices?

• Can the system exploit different power management mechanisms to achieve its relia-

bility target under varying ambient conditions and runtime workload?

112

In this work, we try to address the two issues in the context of radiation-induced soft

error, as the hardware design choices and system power management schemes can jointly

affect soft error rate (SER). For example, power gating, as one of RFTS schemes, can be

implemented with or without state retention flip-flops (FFs) [Kea07]. Power gating without

retention FFs will dump its state into memory, which helps eliminate logic SER during

gating. However, power gating with retention FFs will increase SER as FFs in retention

mode are more vulnerable to soft errors.

Radiation-induced soft error also poses challenges of how to estimate SER, especially for

mobile devices. It is difficult to monitor by hardware itself due to the unique ambient (i.e.,

location/altitude) dependence [Gor04] and rare occurrence nature. The same type of device

can be used by users living at different geographic locations. Even the same mobile device can

be used at different locations over time. We observe that most mobile devices are typically

equipped with various hardware sensors (barometers, GPS etc.) and Internet connection

capabilities. Therefore, system-level or even cloud-based SER monitors can be implemented

to capture the device location information and to assist the reliability management.

The key contributions of our work are the following:

• We implement a hardware evaluation platform based on BeagleBone Black develop-

ment board and standard Linux kernel. We demonstrate the use of our platform for

studying the system power and SER under different hardware design choices, applica-

tion workloads and software management schemes.

• We propose a system/cloud-based virtual sensing approach to capture the varying

location/altitude for SER estimate. This enables the reliability adaptation and man-

agement.

• We propose new reliability management policies to exploit the flexibility in existing

Linux power management schemes. We show that our forbidden-state based approaches

are effective in achieving system reliability target with minimal power overhead com-

113

pared to the optimal schemes characterized offline.

Previous work addressed either the hardware reliability modeling challenges [Ale11,Ebr14]

or proposed new sophisticated power management algorithms [Pop07,Zhu06,RMD07]. They

focused on a specific hardware model and did not consider the power and reliability im-

pacts of wide varieties of hardware support for power management. Our evaluation platform

focuses on studying the interactions between different hardware design choices and repre-

sentative power management schemes in generic system software (i.e., Linux kernel). Our

evaluation platform will be using the reliability models in some of the existing work. Our

reliability management policies are proposed to exploit flexibility in different existing power

management schemes rather than proposing new power management algorithms. Previous

work [Mer14,Kar06,RMD07] addressed the reliability management problem in the context of

other reliability-related issues, including Negative-/Positive-biased Temperature Instability

(N/PBTI), Electromigration (EM), etc. Our framework can be extended to consider these

reliability issues as well.

The rest of the chapter is organized as follows: Section 7.2 introduces some background

information about radiation-induced soft error, hardware support for power management

and power management schemes in Linux kernel. Section 7.3 describes the development of

our evaluation platform and some results of using the platform to assess the system power

and SER. Section 7.4 presents our approaches and results of power state management policies

for retaining system reliability targets. Section 7.5 concludes the chapter.

7.2 Chapter Background

7.2.1 Radiation-Induced Soft Error

Radiation-induced soft error is caused by alpha particles or neutrons hitting silicon and

flipping circuit logic states. The actual failure rate or failure-in-time (FIT) rate depends

114

on the technology [Shi02,Mah10], circuit structure (e.g., logic gate structure, size) [Ebr14],

operating points (e.g., supply voltage) [CA08] and ambient conditions (e.g., altitude) [Gor04].

A model for calculating altitude-dependent SER is proposed in [Gor04] as:

SER =

∫
σ(E) · (dφ

dE
)dE (7.1)

where σ(E) is the bit fail cross section for particle energy E, dφ/dE is the fluence rate

per unit energy, or differential flux. The main altitude dependence of dφ/dE is exponential

attenuation based on the atmospheric depth d. This dependence can be represented as a

factor Falt(d):

Falt(d) = exp(
dSL − d

Ln

) (7.2)

where dSL is the atmospheric depth at sea level, and Ln is the effective attenuation length.

This altitude-dependence model is reported with less than 5% error compared to measured

data across different geographic locations [Gor04]. In this work, we will use pre-characterized

FIT rate data as baseline and apply the altitude dependence in Equation 7.2.

Various techniques have been proposed to detect and correct soft errors [Wan06,Mit07,

RKS14,RCK15]. Different architecture components can have different vulnerability to soft

error [Muk03], and the error propagation can become very complicated [Cho13]. It is difficult

to combine the SER of different components into one system failure rate. In this work, we

assume that the system has two separate SER targets for the processor core and memory,

since the factors we studied, such as supply voltage and location, affect the SER of either or

both components. For core SER, only FF soft errors are considered, as combinational soft

errors contribute a relatively small fraction [Ebr14]. The FFs include both architectural

visible and non-visible (i.e., pipeline FFs, control FFs etc.) ones. For memory SER, we

consider only soft errors in SRAM without ECC, as SRAM can be well-protected with ECC

and physical interleaving.

115

7.2.2 Hardware Support for Power Management

Most power management mechanisms are supported by some special hardware design tech-

niques or configurations. Different design choices can result in different management effi-

ciency (e.g., power saving and switching latency) as well as hardware reliability.

One example is the design of on-chip power delivery network in support for voltage scaling.

In a typical design, memory other than L1 cache is designed to operate at a constant voltage

and thus on a separate memory power rail. There are two possible ways to connect the

power supply of L1 cache. One common way is to connect it to the same power rail as the

processor core. This design can avoid the voltage level converter between the processor core

and L1, but will also limit the lowest supply voltage which is usually determined by the

SRAM Vmin. The other way is to connect L1 to the separate power rail. This allows more

aggressive voltage scaling but requires level converter and results in longer delay and higher

design overhead.

Another example is the implementation of state retention for power gating. As mentioned

earlier, the state retention can be realized by either retention FFs or dumping architecture

states into memory. An example of retention FF is plotted in Fig. 7.1 [Kea07]. The retention

part is usually implemented by smaller transistors and powered by lower supply voltage than

the master/slave latches on the main path. This makes the FF under retention mode more

vulnerable to soft errors.

There can be a lot of different consideration for making these hardware design choices.

The purpose of our work is studying the interactions between these design choices and

system-level power management schemes rather than comparing them from reliability or

power perspective. Therefore, we will make our implementation flexible for targeting these

different hardware configurations.

116

Figure 7.1: An example of state retention Flip-Flop [Kea07]. The retention part is powered

by a different supply rail than the main master/slave latches.

7.2.3 Power Management in Linux Kernel

Different power management schemes can have substantially different impacts on SER. Previ-

ous work has proposed sophisticated scheduling and voltage scaling algorithms in the context

of soft error for real-time systems [Pop07,Zhu06,QZA11,FHL15,SM10]. However, most ex-

isting work does not consider the interactions between software management schemes and

hardware implementation choices.

For evaluating hardware design choices, it is important to correctly account for the generic

software system and workload behavior. In this work, we build our platform based on Linux

kernel of version 3.12. The two power management schemes, JIT and RFTS, are implemented

in Linux kernel as CPUFreq and CPUIdle modules respectively.

CPUFreq [cpua] (see left top of Fig. 7.4) is the module inside Linux kernel for CPU

frequency scaling. Depending on the hardware driver and implementation, the supply voltage

may or may not scale with the frequency, as voltage scaling does not need to be visible to

117

the software. The CPUFreq policy is a data structure used to record information, such as

current governor, operating frequency etc. The module is scheduled to run at a fixed period.

At the beginning of each period, CPUFreq governor retrieves system utilization information

from the kernel. Based on CPUFreq policy data and the frequency table, the governor will

set a frequency target or range. An example state diagram of CPUFreq governor is shown

in Fig. 7.2. The utilization threshold for state switching is configurable in Linux kernel. In

this work, we use the default values of ondemand governor. Driver, which is the actual code

talking to the hardware, will try to scale the frequency/voltage (i.e., P-states) to match the

target specified by the governor. 1 The actual change done by the driver will be updated to

CPUFreq policy and broadcasted through a system notifier.

CPUIdle [cpub] (see Fig. 7.3) is the module to support multiple CPU idle levels inside

Linux kernel. Different available idle states (i.e., C-states) are pre-characterized with their

corresponding power consumption and exit latency. The idle state selection is based on

target residency, which is the minimum idle time to achieve a net energy saving compared

to a lighter idle state. At runtime, CPUIdle module is called when the system completes the

tasks and enters the idle loop. The module generates an estimate of the expected residency

(i.e., sleep time) based on next scheduled event and other history information like past

interrupts. The governor will select the idle state whose target residency is the largest but is

still not larger than the expected residency. Corresponding driver function is used to prepare

and enter the selected idle state. Upon wake up, the module will recover the system state

and record the actual residency time.

7.3 Reliability Evaluation of Power Management Schemes

An evaluation platform is essential for studying system reliability under system-level power

management with various hardware configurations and software applications. Some key

1Latest version of the kernel deprecates this and requires the driver to set to the exact target frequency
as specified.

118

Figure 7.2: State transition diagram example based on CPU utilization µ for CPUFreq gov-

ernors. Ondemand governor can switch between any two levels while conservative governor

can only switch between neighboring levels. The switching threshold values are configurable

in Linux kernel, and we use the default values for ondemand governor.

questions can be answered by experiments using such an evaluation platform, e.g., how will

software management schemes in conjunction with hardware design choices affect system

reliability, what is the worst-case workload for system reliability. In this section, we describe

the implementation of the evaluation platform. The base platform is introduced in Sec-

tion 7.3.1. The targeting hardware configurations and corresponding power and SER models

are explained in Section 7.3.2. The platform customization is described in Section 7.3.3.

Some experimental results on system reliability evaluation are presented in Section 7.3.4.

119

Figure 7.3: CPUIdle module flow chart

7.3.1 Base Platform for Reliability Evaluation

The hardware evaluation platform has to be general enough for targeting different hardware

configurations as well as fast enough for running system software. Therefore, implementing

actual hardware for each of the configuration is impractical and simulation-based approaches

are not feasible. Emulation-based tools [Wan13b] can meet both the speed and flexibility

requirements, but lack accurate time accounting for frequency scaling and entering/leaving

idle states.

In this work, we build the platform based on BeagleBone Black [BBB] board, on which

the kernel and software are running. Power, reliability and different power management

latencies are emulated online with a customized kernel module or by inserting dummy busy

loops. The power and reliability models are pre-characterized and treated as input for the

kernel module.

BeagleBone Black board is based on AM335x ARM Cortex-A8 processor [am3a] with

45nm process technology. The processor has separate L1 32KB data cache and 32KB in-

120

Table 7.1: Table of different hardware implementations

Retention FF L1 Rail L1 ECC

Case I No Same as core No

Case II No Separate No

Case III Yes Same as core No

Case IV No Same as core Yes

struction cache. L2 cache is of 256KB. The software stack is based on TI SDK7 [AM3b].

Linux kernel is of version 3.12 with support for both CPUIdle and CPUFreq modules. Soft-

ware benchmarks are used to represent different workloads, including web browsing, MPEG

4 decoding, FFPlay [ffm] and 3D image rendering. We also implement a synthetic benchmark

in order to study the system behaviors under different workload intensity.

7.3.2 Hardware Configuration and Modeling

As discussed in Section 7.2.2, different hardware configurations can have different impacts

on reliability. The hardware evaluation platform will be used to emulate systems with these

configurations. The design configurations to be explored include the use of retention FFs

for power gating, whether L1 cache is under the same power rail as the processor core, and

whether L1 cache is protected with ECC. The hardware design configuration cases studied

in this work are listed in Table 7.1.

Power and SER models for these configurations are essential for our evaluation platform.

In this work, we derive the power and SER models based on a 45nm technology. We also use

projected power and SER model for 28nm technology to study the impacts of technology

scaling in Section 7.3.4.

BeagleBone Black is based on Cortex-A8 processor. Since we do not have the detailed

design information, building the power and delay models at different supply voltages and

121

idle states for the exact processor is not possible. In this work, the power and delay model

is derived based on the synthesis, placement and routing results of a similar processor using

commercial tools [enc] with commercial 45nm process technology and libraries. The power

and delay models should reflect the voltage-dependence of this process technology and li-

braries for mobile-class processors. As will be discussed later, the SER model is based on

the FIT rate of individual elements (i.e., FFs and SRAM cells), which is independent of the

processor model after normalization.

The power values are calculated using the same commercial tools [enc] with the libraries.

To model the power difference under voltage scaling, we also re-characterize the libraries at

the supply voltages for all P-states in Table 7.2. The libraries include the retention FF cells,

which are used to model the power when retention FFs are used. The power saving for clock

gating (i.e., C2 state in Table 7.3) is derived by stripping off clock power. The memory power

model is based on the memory compiler results for the same process technology. The memory

compiler is configurable with options to include memory ECC and/or retention modes. The

power difference is taken into account with respect to the corresponding targeting design

configuration cases in Table 7.1. The power model projection for 28nm is done by repeat the

same process with commercial 28nm technology and libraries, including memory compiler

results.

As mentioned earlier in Section 7.2.1, it is difficult to model or compute the system

failure rate based on SER of each individual component. So the processor core SER and

memory SER are considered separately. In fact, even for individual component like processor

core, the failure rate is extremely difficult to model due to masking effects at various levels,

different visibility and vulnerability. However, the factors we are considering in this work,

i.e., voltage and altitude, have similar effects on FFs or SRAM cells. Moreover, none of these

factors will change the error propagation or behaviors other than increasing or decreasing

the probability of getting bit-flips. In this work, we model SER of processor core or memory

by the FIT rates of FFs or SRAM cells.

122

Sea-level processor core SER values are based on FIT rates in [Ebr14] for 45nm technology

and only sequential elements (i.e., FFs) are considered. The core soft error rate is calculated

based on the total number of FFs in the synthesized processor netlist. The SRAM SER values

are also derived based on the results in [Ebr14, Ale11] and voltage dependence in [CA08].

The 28nm SER values are scaled based on the model in [CA08]. Altitude dependence of SER

is modeled by Equation 7.1 based on the work in [Gor04]. The parameters in Equation 7.1

are derived based on the design manual of the same 45nm technology.

7.3.3 Platform System Customization

The platform supports both CPUFreq and CPUIdle modules with five frequency levels and

two idle states, Wait-For-Interrupt (WFI) and clock gating. To be able to evaluate more

variety of power management schemes, two more idle states, including core power gating with

and without memory retention mode, are added. Extra latency are emulated by inserting

additional dummy busy loops. In this work, we use the ondemand CPUFreq governor.

A customized power/reliability bookkeeping module is developed for taking the system

trace and keeping track of the system power and SER at runtime. The module structure is

illustrated on the left bottom of Fig. 7.4. The module reads in the pre-characterized power

and nominal SER model values for the processor core and cache. Based on these values and

device location information, the module updates the system’s current power consumption

and SER for normal running and each C-state. Any frequency change notifier or location

update will trigger the module and recalculate the power/SER values. A logging thread is

running at a fixed period to calculate and record the accumulated power and SER, based on

the corresponding time spent in normal running and each C-state.

The information for supported P-states and C-states are summarized in Table 7.2 and

Table 7.3. The frequency switching delay shown in the driver is 0.3ms, which makes the

CPUFreq module run every 300ms. But our actual measurement shows much longer latency

for frequency level switching, which is mainly caused by the low bandwidth I2C communi-

123

Figure 7.4: Overall block diagram

cation between the processor and the off-chip regulator. Since only frequency change need

to be visible to software stack, we also implement a customized version of the driver that

bypasses the voltage changes and only does the frequency scaling. This gives our platform

the capabilities to emulate systems with fast frequency switching latencies.

7.3.4 Results of Reliability Evaluation

The experiments are done with the hardware evaluation platform based on BeagleBone

Black board (see Fig. 7.5). The device is assumed to be operated at sea level. The reliability

bookkeeping thread is configured to generate a log entry every 100ms to limit the interference

and have enough resolution for tracking the states.

124

Table 7.2: Table of different CPUFreq states spec used

Frequency Voltage Latency

1000 MHz 0.90V 2.1ms

800 MHz 0.82V 2.1ms

720 MHz 0.80V 2.2ms

600 MHz 0.76V 2.2ms

300 MHz 0.72V 3.2ms

Table 7.3: Table of different CPUIdle states spec used

State Description Exit Latency

Target

Resi-

dency

C1 WFI 68us 150us

C2 clock gating 130us 200us

C3
core power gat-

ing
530us/1060us2

800us/

1450us

C4

core power gat-

ing with SRAM

retention

650us/1180us2
1000us/

1550us

125

Figure 7.5: Photo of the hardware evaluation platform setup based on BeagleBone Black

development board.

The results of different hardware configuration cases with our synthetic workload are

plotted in Fig. 7.6. The synthetic workload is implemented as a busy-loop that is scheduled

every 20ms. The busy-loop is configurable with a tunable number of iterations to load the

system with different workload intensity. 100% workload intensity means the number of

iterations in the busy-loop is configured to fully load the system with no performance slack.

40% workload intensity means the number of iterations in the busy-loop is 40% of that for

the 100% workload intensity case. For the ease of cross-comparison, all results in this

section are normalized with respect to the maximum power/SER values from Case I study,

which is about or equivalent to 0.26W power, 200 FF FIT and 500 SRAM FIT for per mega

cells.

2Exit latency and target residency for system with/without retention FFs

126

Figure 7.6: Power/SER Results of different hardware configuration cases with different soft-

ware workload intensity at sea level. 100% workload intensity means the system is fully

loaded and has no performance slack.

In all cases, the power increases with increased workload intensity. This is expected as

higher workload intensity imposes higher performance demand on the system, which results

in higher voltage state and less idle time. For systems without L1 memory ECC, i.e., case I,

II and III, memory SER decreases with increased workload intensity, due to less time spent

in retention mode and lowered supply voltage levels.

An interesting observation is that for systems without retention FFs, i.e., case I, II and

IV, core SER is non-monotonic with respect to the workload intensity. Peak core SER

occurs at medium (around 40% - 50%) workload intensity, where system is operating at low

voltage level and with little slack for going into deep idle states. This suggests the potential

127

Figure 7.7: Power/SER Results of different hardware configuration cases with different soft-

ware workload intensity for 28nm technology.

of preferring an RFTS power management approach to reduce SER. This motivates the

reliability management policies proposed in Section 7.4. For system with retention FF,

i.e., case III, core SER is significantly higher than other cases and peaks at low workload

intensity regions, as the FFs in retention mode are more vulnerable to soft errors. A potential

software solution to this can be implementing a virtual idle state with all or part of CPU

states dumped to RAM even in presence of retention FFs. This idle state can be used for

low workload intensity scenarios, where sleep/wake-up latency requirements may be relaxed

but core SER is the highest.

To study the impact of technology, the experiments with synthetic workload is repeated

with the projected 28nm power and SER models. The results are plotted in Fig. 7.7. The

128

Table 7.4: Normalized power/core SER/memory SER results of different software bench-

marks with different configuration cases at sea level

Web browsing MPEG 4 decoding FFPlay 3D image rendering

Case I 0.35/0.57/1.05 0.58/0.83/0.77 0.36/0.80/0.51 0.54/0.85/1.01

Case II 0.39/0.59/0.65 0.57/0.77/0.45 0.37/0.80/0.39 0.58/0.85/0.62

Case III 0.34/2.30/1.04 0.61/1.93/0.70 0.35/1.57/0.52 0.52/2.42/1.01

Case IV 0.34/0.55/0 0.55/0.86/0 0.33/0.76/0 0.52/0.83/0

trend of power and SER changes is very similar to the results in Fig. 7.6. Similar to

the results reported in [Shi02], we observe reduced SER of sequential elements at smaller

technology. This reduced SER is primarily due to the smaller FIT rate for each individual

sequential element, as a result of shrinked diffusion area and increased driving strength per

diffusion area. In reality, this result may be different considering that the design at smaller

technology is likely to have more logic gates and larger memory capacity.

We also demonstrate the use of our platform for evaluating power/SER with real life

benchmarks. Four software benchmarks are used, including web browsing, MPEG 4 decod-

ing, FFPlay and 3D image rendering. We launch one benchmark at a time on the platform

and record the average power and SER over a fixed period. The period starts 3 seconds

before the beginning of the benchmark and lasts long enough for the benchmark to finish.

This matches the running environments of typical embedded/mobile devices and includes

the warm-up and cool-down period of the system, which is important for modeling the

system-level power management schemes.

The power and SER results of running different software benchmarks are highlighted in

Table 7.4. The numbers are in line with the results in Fig. 7.6. MPEG 4 decoding is the

most demanding workload, therefore have the highest power consumption and lowest memory

SER. The core SER is highest for 3D image rendering, which has slightly smaller workload

129

intensity than MPEG 4 decoding. Comparing the results of web browsing and FFPlay, they

have very similar power results. However, both core SER and memory SER are very different

for these two benchmarks. Average core SER is much higher for FFPlay, and memory SER

is much higher for web browsing. This is because the two benchmark have very different

workload patterns. Workload for FFPlay is more steady, while web browsing behaves more

like bursts of workload. As the results of these workload patterns, the power management

behaves more like RFTS for web browsing and JIT for FFPlay. This further motivate our

proposed reliability management policies, which will be described in Section 7.4.

7.4 Exploiting Power Management Schemes for Reliability

Since different power management schemes can all achieve power saving but have different

impacts on system reliability, they can potentially be used to retain the system reliability

target if ambient condition (e.g., location) changes. As prerequisite of such adaptation, a

system/cloud-based virtual SER sensing is proposed in Section 7.4.1.

As mentioned earlier in Section 7.3.2, we consider the processor core SER and memory

SER separately. In this work, we assume the system has specific SER target for the processor

core and memory in order to retain its mean-time-between-failure (MTBF). For a real system,

error injection studies can be performed to derive the relationship between soft errors (i.e.,

bit flips) and system failures. Based on the desired system MTBF, the SER target can be

calculated.

The SER target can be a static constraint, i.e., specification sheet target, which means

that the instantaneous SER at any time should be kept smaller than it. We propose a

forbidden-state based policy for such static constraints in Section 7.4.2. Since typical soft

error MTBF can be of days to months, restricting the instantaneous SER may be too pes-

simistic and unnecessary. We also consider the case when the constraint is dynamic, i.e.,

the system’s overall SER within certain period should be kept smaller than the SER target.

130

This period should be much shorter than the soft error MTBF (in days to months) but still

significant longer than the power management operation time (in milliseconds). We propose

a dynamic state enabling/disabling policy for such dynamic constraints in Section 7.4.3. Ex-

periment results are described in Section 7.4.4. The effectiveness of our dynamic policy is

evaluated in Section 7.4.5.

7.4.1 SER Estimation Mechanism

Soft error itself can result in different software/hardware symptoms and be detected by cor-

responding mechanism [Wan06]. SER, however, is extremely difficult to measure or estimate

due to soft error’s rare occurrence nature and unique ambient dependence. Direct measure-

ment of the error occurrence such as measuring memory ECC [Zha14] errors or checkpoint

recovery events may be possible. But it will require huge memory size or extremely long

measurement time, as the soft error rate are typically less than one per mega devices per

month.

Our proposed mechanism is motivated by the fact that most modern mobile devices

are equipped with various types of sensors (e.g., GPS, barometer) and network connection

capabilities. A system-level virtual altitude/location sensor can be implemented based on

these sensors. SER estimation of current location can be made with altitude-dependence

model [Gor04] or a locally-stored look-up table. A cloud-based service can also be used to

answer incoming queries of the measured flux rate data, solar activities and SER estimate

from mobile devices with given location information.

In this work, we assume the system is equipped with the virtual altitude sensor. Whenever

the virtual altitude sensor updates the altitude value, our reliability bookkeeping module (see

Fig. 7.4) will update the SER estimate for both core SER and memory SER based on the

altitude-dependence model. The SER estimate is based on a pre-characterized reference

SER value at sea level and scales with an exponential function of altitude dependence from

Equation 7.2. The overhead of SER calculation is negligible. Alternatively, a local look-up

131

table can be used to store the pre-characterized SER values at different altitudes.

7.4.2 Forbidden-State Based Policy

Different approaches can be used to affect the system power management choices and account

for ambient condition changes. A good approach should be both effective and non-intrusive so

that the impacts on the system behavior and performance is minimal and mostly predictable.

Based on these considerations, we decide to preserve existing Linux power management

modules and perform the reliability management by manipulating the available power states.

In this way, our reliability management policy is isolated and independent from the power

management schemes. This also improves the compatibility of our approaches with arbitrary

power management governors.

Considering the structure of kernel power management schemes (see Fig. 7.4), we pro-

pose a forbidden-state based policy for enabling/disabling certain P-states and C-states,

depending on system’s current SER. The policy is implemented as a stand-alone module

(see Fig. 7.4). For P-states, the module will change the frequency table directly so that the

driver that decides the final frequency level will select only the available states. For C-states,

a C-state table is maintained for CPUIdle governor to enter only the available idle states.

A static policy can be used for the case of static SER target. Whenever the reliability

bookkeeping module updates the system SER, the state management module compares the

SER values to the target SER and disables all states whose SER values are higher. This

guarantees that the instantaneous SER at any possible power state can meet the reliability

target.

7.4.3 Dynamic State Enabling/Disabling Policy

For dynamic SER target, the static policy may be too conservative and unnecessary. There-

fore, we propose a policy which limits the average SER, SERavg, within a given period of T

132

through dynamically enabling/disabling the available P-states and C-states.

The policy is built based on our reliability bookkeeping module described in Section 7.3.3.

The module keeps track of the accumulated SER at any time t as SERacc(t). So at the

beginning of each period tstart, the accumulated SER target for the end of this period,

SERend, can calculated as:

SERend = SERacc(tstart) + SERavg · T (7.3)

At any time t, the remaining SER budget, SERbudget, until the end of this period tend can

be calculated as:

SERbudget =
SERend − SERacc(t)

tend − t
(7.4)

The policy will use SERbudget instead of the actual SER target to determine which states

should be enabled or disabled.

The overall structure of the state management module is kept the same with this dynamic

policy. Only an update request mechanism is added to calculate SERbudget on demand.

Whenever the CPUFreq or CPUIdle module access the state table, a request is initiated to

update current power management states. The state management module can also initiate

a request for reliability bookkeeping module to update the SER values. Though we are

working on a single-core platform, the module and policies are compatible for multi-core

systems. For multi-core system, scheduling can also be a strong knob with techniques like

workload aggregation or distribution in trading-off JIT vs. RFTS.

7.4.4 Experimental Evaluation of Reliability Management Policies

All experiments are run with the hardware evaluation platform described in Section 7.3.

The dynamic policy is configured to account for overall SER over a period of one second,

i.e., T = 1s for Equation 7.3. The altitude values are fed to the system through a script.

Corresponding SER values for processor core and memory are calculated based on the model

in [Gor04]. The reliability target is calculated based on each hardware configuration’s worst

133

Figure 7.8: Power/SER Results of different software benchmarks on case I with dynamic

policy.

SER states at an altitude of 2000m. In this section, if not otherwise mentioned, we report

the maximum accumulative SER value over the period of one second and normalize it with

respect to the SER targets, i.e., an SER value 1 means we are right at the SER target.

The implementation of the policies is verified by the reliability bookkeeping module. Both

the static policy and dynamic policies can effectively control the SER with increasing altitude

value. Some of the results with dynamic policies are plotted in Fig. 7.8, 7.9, 7.10, 7.11. For

all benchmarks, our dynamic policy is able to retain both core SER and memory SER under

the targets. In Fig. 7.8, the core SER reaches the target at around 2000m altitude, while

134

Figure 7.9: Power/SER Results of different software benchmarks on case II with dynamic

policy.

the memory reach the target at 2500m altitude. The reason is that the worst-case workload

patterns for core SER and memory SER are different (as suggested in Fig. 7.6). In Fig. 7.10,

the core SER and memory SER are in the same pace because their dependence on workload

is similar (see Fig. 7.6).

For all cases, the power overhead is small except for some large altitude cases. This is

because extensive use of higher voltage states and shallower idle states are required once

the gap between reference SER values and SER targets becomes large. This can also be

135

Figure 7.10: Power/SER Results of different software benchmarks on case III with dynamic

policy.

explained with the limited dynamic range of SER in all possible power states. The study on

the effectiveness of our dynamic policy against optimal power state selection schemes will be

described in Section 7.4.5.

The other way to study the policy behavior is to analyze how different power states

are enabled/disabled. An example of web browsing benchmark is shown in Fig. 7.12. A

free-running trace at sea level (see Fig. 7.12(a)) is used as a baseline for comparison. For

case I at 2500m altitude (see Fig. 7.12(b)), where memory SER dominates, the policy retain

SER target by disabling low voltage states, resulting in entering higher frequency states at

136

Figure 7.11: Power/SER Results of different software benchmarks on case IV with dynamic

policy.

around t = 5s in Fig. 7.12(b). For case III at 2500 altitude (see Fig. 7.12(c)), where core

SER dominates, the policy retain SER target by disabling deep sleep state so that the FFs

spend less time in retention mode. This results in static frequency but varying SER (due

to enabling/disabling the deepest idle state) at around t = 5s in Fig. 7.12(c).

The system performance is also evaluated through quality metrics such as runtime and

frame miss rate. Since our policies only disable lower frequency levels or long exit latency

idle states, system performance with our policies is always the same or better. The overhead

of our reliability bookkeeping module and state management module is negligible compared

137

to the latency involved in changing power states.

The small power overhead seen in the results is partly due to the fact that voltage scaling

is not a strong knob for this technology. We also observe this from the generated libraries

at different supply voltages. For other high sub-threshold swing devices like FinFET, the

circuits may scale better with voltage and thus have different results.

7.4.5 Policy Effectiveness Evaluation

Our dynamic policy adopts a pessimistic approach by disabling all possible power states that

will violate the reliability target if the states last for the entire remaining time, i.e., tend−t in

Equation 7.4. This can result in left-over SER budget and unnecessary power overhead. To

study the effectiveness of our policies, we also implement a trace-recording module, which

can be enabled to store the all power state switching information. With these traces, we can

characterize the optimal power state selection scheme offline and compare with our policies.

Since our purpose is evaluating the effectiveness of our policies rather than evaluating the

built-in Linux governors, we will use the power states suggested by the Linux governors as

baseline. Only the same or higher power states, i.e., higher voltage states or shallower idle

states are considered so that we won’t have any performance impacts.

Considering the fact that P-state selection will change the idle time length and corre-

sponding C-state selection contexts, we will implement two separate schemes for P-state and

C-state selection.

To find the optimal C-state selection, we formulate the problem as an integer linear

138

programming (ILP) problem as in Equation 7.5:

minimize:
N∑

n=1

(Tn ×Pn
t · Sn)

subject to: ∀ n : Sn
t · 1 ≥ 1

N∑
n=1

(Tn ×Rn
t · Sn) ≤ K

∀ n : Sn
t · Ln ≤ 0

∀ n : Sn ≥ 0

(7.5)

The optimization objective is to minimize the energy overhead, where n is the index

for each C-state selection, N is the total number of C-state selections. Tn is the actual

resident time for the C-state selection. Since we have four idle states here, Pn is a 4x1

vector corresponding to the power of each C-state. The power can be different for different

n because the corresponding P-state can be different. Sn is selection vector, i.e., 4x1 integer

vector for each C-state selection. The i-th entry in Cn equals 1 means the i-th C-state is

selected. The first constraint ensures that one state is selected3. K is the SER budget

for these idle time selection. The second constraint is to make sure that SER budget will

not be exceeded. Rn is a 4x1 vector corresponding to the SER of each C-state. This SER

can also be different for different n because of the corresponding P-state. Ln is a 4x1 vector

representing the selection of built-in Linux governor. If the i-th C-state is selected by Linux

governor, all entries including and after the i-th entry are 1 and 0 otherwise. So the third

and fourth constraints are used to limit the available state selection.

For P-state selection, we will first calculate the total active time until next P-state switch-

ing time according to the operating frequency, then scale the idle time spent in each C-state

accordingly. This actually is likely to be optimistic because the optimal scheme will prefer a

3An upper bound here is unnecessary due to the minimization and the fact that Pn and Tn are non-
negative

139

lower voltage state compared to our policies, which can result in less active time within the

scheduling ticks and thus entering more into the shallower idle states.

For each P-state, we can first compute the new active time and idle time of each C-state.

The we can characterize the energy and SER impacts for all P-states. To find the optimal P-

state selection, we can also formulate the problem as an Integer Linear Programming (ILP)

problem in Equation 7.6.

minimize:
M∑

m=1

(Em
t · Sm)

subject to: ∀ m : Sm
t · 1 ≥ 1

M∑
m=1

(Rm
t · Sm) ≤ K

∀ m : Sm
t · Lm ≤ 0

∀ m : Sm ≥ 0

(7.6)

where m is the index for each P-state selection, M is the total number of P-state selections.

Since we have five P-states, Em and Rm are 5x1 vectors and corresponding to the pre-

characterized energy and SER difference. Similar to C-state formulation, Sm is the 5x1

selection vector for P-states. K is the SER budget.

The formulated ILP problems are solved by LP solve [lp]. The comparison results for

software benchmarks running at altitude of 3000m are summarized in Table 7.5. Over all

cases, our dynamic policy is within 1.5% with the optimal P-state selection scheme and

within 3% with the optimal C-state selection scheme. The difference is smaller for P-state

because the overhead of selecting higher voltage state can be compensated by spending more

time in idle state, i.e., JIT vs. RFTS. But selecting shallower idle state will not change the

utilization and thus the P-state selection. This also supports our claim that different power

management schemes (i.e., JIT and RFTS) can be exploited for achieving system reliability

targets.

140

Table 7.5: The additional power of running the benchmarks with our policies compared to

the optimal P-state and C-state selection schemes

Benchmark
P-state optimal C-state optimal

Mean Max Mean Max

Web browsing 0.08% 0.42% 0.72% 2.18%

MPEG 4 decoding 0.14% 0.73% 0.63% 2.47%

FFPlay 0.18% 1.31% 0.58% 2.51%

3D Image rendering 0.14% 1.17% 0.53% 1.89%

7.5 Chapter Conclusion

In this chapter, we developed a hardware evaluation platform to assess system reliability

under different system power management schemes. We also propose a system/cloud-based

virtual sensing for reliability evaluation. We propose two reliability management policies

based on the already existing power management schemes. Experimental results with real

life benchmarks show that our policy is effective and achieves system reliability target with

minimal power overhead, compared to the optimal schemes characterized offline. Future

work will try to include more reliability issues. The kernel module code is available for

download at https://github.com/nanocad-lab/JIT-RFTS.

141

(a) sea level

(b) 2500m altitude Case I

(c) 2500m altitude Case III

Figure 7.12: An example of web browsing benchmark execution with different altitude and

hardware cases. For case I, P-states are exploited by the policy while C-states are used for

case III. Note some y-axis scale for the figures are different.

142

CHAPTER 8

Conclusion

In this dissertation, we have proposed cross-layer methodologies aiming at reducing the sys-

tem design margin. The studied approaches include monitoring, margining and mitigation of

circuit variability. Two circuit performance monitors are proposed. A complete monitor-and-

actuate system for soft error is presented. Margining methodologies for dynamic variation

and the “dark silicon” era are described. A clock-gating methodology is proposed to mitigate

aging-induced clock skew.

The proposed methodologies reduce the design margin required for different sources of

variability. Estimates of the performance margin and the reduction from our approaches

based on 45nm process technology are shown in Fig. 8.1. The margin and reduction numbers

are derived based on the following assumptions:

• Wear-out Aging: Wear-out aging is mainly considering the delay degradation due to

BTI on the logic datapath. The amount of wear-out aging (i.e., 10%) is derived based

on the BTI model from the design manual of a commercial 45nm process technology.

The reduced margin is derived assuming the use of SlackProbe with 5% delay margin.

The dark silicon margining work can reduce the margin by another 20% at 60% dark

ratio.

• Ambient Fluctuations: Ambient fluctuations is mainly considering the IR drop in

power distribution network. The amount of ambient fluctuations (i.e., 10%) is derived

based on the typical sign-off voltage corners from 45nm commercial libraries. The

reduced margin is derived assuming the use of SlackProbe with 5% delay margin. The

143

dark silicon margining work can help reduce 40-60% of the metal width margin, but it

is not included in the reduction of delay margin.

• Process Variation: The amount of process variation (i.e., 15%) is derived based on

the measurement of our 45nm testchips. We assumed the use of DDRO, which can

reduce the mean delay overestimation to 3% based on the simulation results.

• Clock Uncertainty: The clock uncertainty is mainly considering the local variation

and BTI-induced clock skew in the clock distribution networks. The amount of clock

uncertainty (i.e., 5%) is based on the amount of local variation of clock buffer and the

amount of BTI-induced clock skew from BTI-Gater. The margin is reduced to 3% if

BTI-Gater is used to mitigate the aging-induced clock skew.

Figure 8.1: Estimate of the margin of different variability sources and projected margin

saving from our approaches for 45nm process technology

144

References

[acp] “Advanced Configuration and Power Interface Specification.”
http://acpi.info/spec.htm.

[Aga] Yuvraj Agarwal et al. “RedCooper: Hardware Sensor Enabled Variability Soft-
ware Testbed for Lifetime Energy Constrained Application.” Technical report.
http://escholarship.org/uc/item/1c21g217.

[Aga07] M. Agarwal et al. “Circuit Failure Prediction and Its Application to Transistor
Aging.” In IEEE VLSI Test Symposium, may 2007.

[Ait09] André Luiz Aita et al. “A CMOS smart temperature sensor with a batch-
calibrated inaccuracy of±0.25 C (3σ) from- 70 C to 130 C.” In Solid-State Circuits
Conference-Digest of Technical Papers, 2009. ISSCC 2009. IEEE International,
pp. 342–343. IEEE, 2009.

[Ale11] Dan Alexandrescu. “A comprehensive soft error analysis methodology for
SoCs/ASICs memory instances.” In On-Line Testing Symposium (IOLTS), 2011
IEEE 17th International, pp. 175–176. IEEE, 2011.

[am3a] “am335x.” http://www.ti.com/product/am3358.

[AM3b] “AM335xSDK.” http://softwaredl.ti.com/sitara linux/esd/AM335xSDK/-
latest/index FDSḣtml.

[B11] Keith A Bowman, , et al. “All-digital circuit-level dynamic variation monitor
for silicon debug and adaptive clock control.” Circuits and Systems I: Regular
Papers, IEEE Transactions on, 58(9):2017–2025, 2011.

[Ban01] Kaustav Banerjee et al. “Coupled analysis of electromigration reliability and
performance in ULSI signal nets.” In Proceedings of the 2001 IEEE/ACM inter-
national conference on Computer-aided design, pp. 158–164. IEEE Press, 2001.

[BBB] “BeagleBone Black.” http://beagleboard.org/Products/BeagleBone+Black.

[Ben96] L. Benini et al. “Automatic synthesis of low-power gated-clock finite-state ma-
chines.” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 15(6):630–643, 1996.

[Bha06] S. Bhardwaj et al. “Predictive modeling of the NBTI effect for reliable design.”
In IEEE Custom Integrated Circuits Conference, pp. 189–192. IEEE, 2006.

[Bhu06] M. Bhushan et al. “Ring oscillators for CMOS process tuning and variability con-
trol.” IEEE Transactions on Semiconductor Manufacturing, 19(1):10–18, 2006.

145

[Bla69] James R Black. “ElectromigrationA brief survey and some recent results.” Elec-
tron Devices, IEEE Transactions on, 16(4):338–347, 1969.

[Bow09] K.A. Bowman et al. “Energy-Efficient and Metastability-Immune Resilient Cir-
cuits for Dynamic Variation Tolerance.” IEEE Journal of Solid State Circuits,
jan. 2009.

[C14] Tuck-Boon Chan, , et al. “Synthesis and Analysis of Design-Dependent Ring
Oscillator (DDRO) Performance Monitors.” Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 22(10):2117–2130, Oct 2014.

[CA08] Vikas Chandra and Robert Aitken. “Impact of technology and voltage scaling on
the soft error susceptibility in nanoscale CMOS.” In Defect and Fault Tolerance
of VLSI Systems, 2008. DFTVS’08. IEEE International Symposium on, pp. 114–
122. IEEE, 2008.

[Cad]

[Cal09] Andrea Calimera et al. “NBTI-aware power gating for concurrent leakage and
aging optimization.” In Proceedings of the 14th ACM/IEEE international sympo-
sium on Low power electronics and design, pp. 127–132. ACM, 2009.

[Cha09a] A. Chakraborty et al. “Analysis and optimization of NBTI induced clock skew in
gated clock trees.” In IEEE/ACM Design, Automation and Test in Europe, pp.
296–299, 2009.

[Cha09b] James Charles et al. “Evaluation of the Intel Core i7 Turbo Boost feature.” In
Workload Characterization, 2009. IISWC 2009. IEEE International Symposium
on, pp. 188–197. IEEE, 2009.

[Cha11] Tuck-Boon Chan et al. “On the efficacy of NBTI mitigation techniques.” In
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2011,
pp. 1–6. IEEE, 2011.

[Cha12a] T. Chan et al. “DDRO: A novel performance monitoring methodology based on
design-dependent ring oscillators.” In IEEE International Symposium on Quality
Electronic Design, march 2012.

[Cha12b] T. Chan et al. “Tunable sensors for process-aware voltage scaling.” In Proc.
IEEE/ACM International Conference on Computer-Aided Design, pp. 7–14.
ACM, 2012.

[Cha13a] A. Chakraborty et al. “Skew management of NBTI impacted gated clock trees.”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
32(6):918–927, 2013.

146

[Cha13b] T. Chan et al. “Synthesis and Analysis of Design-Dependent Ring Oscillator
(DDRO) Performance Monitors.” IEEE Transactions on Very Large Scale Inte-
gration Systems, 2013. Accpted for publication.

[Cha13c] Tuck-Boon Chan et al. “Impact of adaptive voltage scaling on aging-aware sig-
noff.” In Design, Automation & Test in Europe Conference & Exhibition (DATE),
2013, pp. 1683–1688. IEEE, 2013.

[Che05] Poki Chen et al. “A time-to-digital-converter-based CMOS smart temperature
sensor.” Solid-State Circuits, IEEE Journal of, 40(8):1642–1648, 2005.

[Che13] J. Chen et al. “A novel flow for reducing clock skew considering NBTI effect
and process variations.” In IEEE International Symposium on Quality Electronic
Design, pp. 327–334, 2013.

[Cho13] Hyungmin Cho et al. “Quantitative evaluation of soft error injection techniques
for robust system design.” In Design Automation Conference (DAC), 2013 50th
ACM/EDAC/IEEE, pp. 1–10. IEEE, 2013.

[Cho14] M. Choudhury et al. “Time-Borrowing Circuit Designs and Hardware Prototyping
for Timing Error Resilience.” Computers, IEEE Transactions on, 63(2):497–509,
2014.

[Chu11] Ching-Che Chung et al. “An autocalibrated all-digital temperature sensor for
on-chip thermal monitoring.” Circuits and Systems II: Express Briefs, IEEE
Transactions on, 58(2):105–109, 2011.

[Con10] J. Cong et al. “Behavior-level observability analysis for operation gating in low-
power behavioral synthesis.” ACM Transactions on Design Automation of Elec-
tronic Systems, 16(1):4, 2010.

[CoO]

[cora] “ARM Cortex-A9 Technical Reference Manual.”
http://www.arm.com/products/processors/cortex-a/cortex-a9.php.

[Corb] “Cortex-M0.” http://www.arm.com/products/processors/
cortex-m/cortex-m0.php.

[Corc] “Cortex-M3.” http://www.arm.com/products/processors/
cortex-m/cortex-m3.php.

[Cos08] Ayse Kivilcim Coskun et al. “Proactive temperature balancing for low cost ther-
mal management in MPSoCs.” In Computer-Aided Design, 2008. ICCAD 2008.
IEEE/ACM International Conference on, pp. 250–257. IEEE, 2008.

[cpua] “cpufreq.” https://www.kernel.org/doc/Documentation/cpu-freq/.

147

[cpub] “cpuidle.” https://www.kernel.org/doc/Documentation/cpuidle/.

[Cue11] David Cuesta et al. “Adaptive task migration policies for thermal control in
mpsocs.” In VLSI 2010 Annual Symposium, pp. 83–115. Springer, 2011.

[D13] Alan J Drake, , et al. “Single-cycle, pulse-shaped critical path monitor in the
POWER7+ microprocessor.” In Low Power Electronics and Design (ISLPED),
2013 IEEE International Symposium on, pp. 193–198. IEEE, 2013.

[Das09] S. Das et al. “RazorII: In Situ Error Detection and Correction for PVT and SER
Tolerance.” IEEE Journal of Solid State Circuits, jan. 2009.

[Das10] B.P. Das et al. “Warning Prediction Sequential for Transient Error Prevention.”
In IEEE International Symposium on Defect and Fault Tolerance in VLSI Sys-
tems, oct. 2010.

[Dra07] A. Drake et al. “A Distributed Critical-Path Timing Monitor for a 65nm High-
Performance Microprocessor.” In Proc. IEEE International Solid State Circuits
Conference, feb. 2007.

[Ebr14] Mojtaba Ebrahimi et al. “Comprehensive analysis of alpha and neutron particle-
induced soft errors in an embedded processor at nanoscales.” In Design, Automa-
tion and Test in Europe Conference and Exhibition (DATE), 2014, pp. 1–6. IEEE,
2014.

[Eir07] M. Eireiner et al. “In-Situ Delay Characterization and Local Supply Voltage
Adjustment for Compensation of Local Parametric Variations.” IEEE Journal of
Solid State Circuits, july 2007.

[enc] “Cadence Encounter Digital Implementation System.”
http://www.cadence.com/products/di/edi system/pages /default.aspx.

[Ern03] D. Ernst et al. “Razor: a low-power pipeline based on circuit-level timing specu-
lation.” In IEEE/ACM International Symposium on Microarchitecture, dec. 2003.

[Esm11] Hadi Esmaeilzadeh et al. “Dark silicon and the end of multicore scaling.” In
Computer Architecture (ISCA), 2011 38th Annual International Symposium on,
pp. 365–376. IEEE, 2011.

[ffm] “ffmpeg.” https://www.ffmpeg.org/.

[FHL15] Ming Fan, Qiushi Han, Shuo Liu, and Gang Quan. “On-line reliability-aware
dynamic power management for real-time systems.” In Quality Electronic Design
(ISQED), 2015 16th International Symposium on, pp. 361–365. IEEE, 2015.

148

[Fic10] D. Fick et al. “In situ delay-slack monitor for high-performance processors using
an all-digital self-calibrating 5ps resolution time-to-digital converter.” In Proc.
IEEE International Solid State Circuits Conference, feb. 2010.

[Foj13] M. Fojtik et al. “Bubble Razor: Eliminating Timing Margins in an ARM Cortex-
M3 Processor in 45 nm CMOS Using Architecturally Independent Error Detection
and Correction.” Solid-State Circuits, IEEE Journal of, 48(1):66–81, 2013.

[Fuk09] H. Fuketa et al. “Adaptive performance compensation with in-situ timing error
prediction for subthreshold circuits.” In IEEE Custom Integrated Circuits Con-
ference, sept. 2009.

[G07] Meeta S Gupta, , et al. “Understanding voltage variations in chip multiprocessors
using a distributed power-delivery network.” In Design, Automation & Test in
Europe Conference & Exhibition, 2007. DATE’07, pp. 1–6. IEEE, 2007.

[Gor04] MS Gordon et al. “Measurement of the flux and energy spectrum of cosmic-
ray induced neutrons on the ground.” Nuclear Science, IEEE Transactions on,
51(6):3427–3434, 2004.

[Gup12] P. Gupta et al. “Underdesigned and opportunistic computing in presence of hard-
ware variability.” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2012. Keynote Paper.

[Hic08] J. Hicks et al. “45nm transistor reliability.” Intel Technology Journal, 12(2):131–
144, 2008.

[Hir12] K. Hirairi et al. “13% Power reduction in 16b integer unit in 40nm CMOS by
adaptive power supply voltage control with parity-based error prediction and de-
tection (PEPD) and fully integrated digital LDO.” In Proc. IEEE International
Solid State Circuits Conference, feb. 2012.

[Hua06] Wei Huang et al. “HotSpot: A compact thermal modeling methodology for early-
stage VLSI design.” Very Large Scale Integration (VLSI) Systems, IEEE Trans-
actions on, 14(5):501–513, 2006.

[Hua13] S. Huang et al. “Low-power anti-aging zero skew clock gating.” ACM Transac-
tions on Design Automation of Electronic Systems, 18(2):27, 2013.

[Hun97] William R Hunter. “Self-consistent solutions for allowed interconnect current den-
sity. II. Application to design guidelines.” Electron Devices, IEEE Transactions
on, 44(2):310–316, 1997.

[int] “Intel Core i7-920XM Processor Extreme Edition.”
http://ark.intel.com/products/43126.

149

[Isc06] Canturk Isci et al. “An analysis of efficient multi-core global power management
policies: Maximizing performance for a given power budget.” In Proceedings of
the 39th annual IEEE/ACM international symposium on microarchitecture, pp.
347–358. IEEE Computer Society, 2006.

[itr09] “International Technology Roadmap for Semiconductors(ITRS).”
http://www.itrs.net/, 2009.

[Kah13] Andrew B Kahng et al. “On potential design impacts of electromigration aware-
ness.” In Design Automation Conference (ASP-DAC), 2013 18th Asia and South
Pacific, pp. 527–532. IEEE, 2013.

[Kar06] Eric Karl et al. “Reliability modeling and management in dynamic
microprocessor-based systems.” In Proceedings of the 43rd annual Design Au-
tomation Conference, pp. 1057–1060. ACM, 2006.

[Kar09] Ulya R Karpuzcu et al. “The BubbleWrap many-core: popping cores for se-
quential acceleration.” In Microarchitecture, 2009. MICRO-42. 42nd Annual
IEEE/ACM International Symposium on, pp. 447–458. IEEE, 2009.

[Kea07] M. Keating et al. Low Power Methodology Manual: For System on Chip Design.
Springer, 2007.

[Kim13] S. Kim et al. “Razor-lite: A side-channel error-detection register for timing-
margin recovery in 45nm SOI CMOS.” In Solid-State Circuits Conference Digest
of Technical Papers (ISSCC), 2013 IEEE International, pp. 264–265. IEEE, 2013.

[Kum03] Rakesh Kumar et al. “Single-ISA heterogeneous multi-core architectures: The
potential for processor power reduction.” In Microarchitecture, 2003. MICRO-36.
Proceedings. 36th Annual IEEE/ACM International Symposium on, pp. 81–92.
IEEE, 2003.

[Kum06] Sanjay V Kumar et al. “Impact of NBTI on SRAM read stability and design
for reliability.” In Quality Electronic Design, 2006. ISQED’06. 7th International
Symposium on, pp. 6–pp. IEEE, 2006.

[Kur10] M. Kurimoto et al. “Phase-adjustable error detection flip-flops with 2-stage hold-
driven optimization, slack-based grouping scheme and slack distribution control
for dynamic voltage scaling.” ACM Trans. Des. Autom. Electron. Syst., 2010.

[L13] Charles R Lefurgy, , et al. “Active guardband management in power7+ to save
energy and maintain reliability.” Micro, IEEE, 33(4):35–45, 2013.

[L14a] Liangzhen Lai, , et al. “Accurate and inexpensive performance monitoring for
variability-aware systems.” In Design Automation Conference (ASP-DAC), 2014
19th Asia and South Pacific, pp. 467–473, Jan 2014.

150

[L14b] Liangzhen Lai, , et al. “SlackProbe: A Flexible and Efficient In Situ Timing
Slack Monitoring Methodology.” Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 33(8):1168–1179, Aug 2014.

[Lai13] L. Lai et al. “SlackProbe: A low overhead in situ on-line timing slack monitoring
methodology.” In Proceedings of the Conference on Design, Automation and Test
in Europe, pp. 282–287, 2013.

[Lee12] J. Lee et al. “ECO cost measurement and incremental gate sizing for late pro-
cess changes.” ACM Transactions on Design Automation of Electronic Systems,
18(1):16, 2012.

[Li03] H. Li et al. “Deterministic clock gating for microprocessor power reduction.” In
High-Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings. The
Ninth International Symposium on, pp. 113–122. IEEE, 2003.

[Liu10] Q. Liu et al. “Capturing post-silicon variations using a representative critical
path.” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 29(2):211–222, 2010.

[Liu12] W. Liu et al. “NBTI effects on tree-like clock distribution networks.” In Proceed-
ings of the great lakes symposium on VLSI, pp. 279–282. ACM, 2012.

[lp] “lp solve.” http://lpsolve.sourceforge.net/.

[LRK09] Man-Lap Li, Pradeep Ramachandran, Ulya R Karpuzcu, Siva Hari, and Sarita V
Adve. “Accurate microarchitecture-level fault modeling for studying hardware
faults.” In High Performance Computer Architecture. IEEE International Sym-
posium on, pp. 105–116. IEEE, 2009.

[Mah10] NN Mahatme et al. “Analysis of soft error rates in combinational and sequen-
tial logic and implications of hardening for advanced technologies.” In Reliabil-
ity Physics Symposium (IRPS), 2010 IEEE International, pp. 1031–1035. IEEE,
2010.

[mbe]

[Mem08] Seda Ogrenci Memik et al. “Optimizing thermal sensor allocation for micro-
processors.” Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 27(3):516–527, 2008.

[Mer14] Pietro Mercati et al. “A Linux-governor based Dynamic Reliability Manager for
android mobile devices.” In Design, Automation and Test in Europe Conference
and Exhibition (DATE), 2014, pp. 1–4. IEEE, 2014.

151

[Min11] E. Mintarno et al. “Self-tuning for maximized lifetime energy-efficiency in the
presence of circuit aging.” Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 30(5):760–773, 2011.

[Min13] E. Mintarno et al. “Workload dependent NBTI and PBTI analysis for a sub-45nm
commercial microprocessor.” In IEEE InternationalReliability Physics Sympo-
sium (IRPS), pp. 3A.1.1–3A.1.6, 2013.

[Mit07] S. Mitra et al. “Built-In Soft Error Resilience for Robust System Design.” In
Integrated Circuit Design and Technology, 2007. ICICDT ’07. IEEE International
Conference on, pp. 1–6, May 2007.

[Muk03] Shubhendu S Mukherjee et al. “A systematic methodology to compute the archi-
tectural vulnerability factors for a high-performance microprocessor.” In Proceed-
ings of the 36th annual IEEE/ACM International Symposium on Microarchitec-
ture, p. 29. IEEE Computer Society, 2003.

[ope] “opencores.” http://opencores.org.

[Pop07] Paul Pop et al. “Scheduling and voltage scaling for energy/reliability trade-offs
in fault-tolerant time-triggered embedded systems.” In Proceedings of the 5th
IEEE/ACM international conference on Hardware/software codesign and system
synthesis, pp. 233–238. ACM, 2007.

[QZA11] Xuan Qi, Dakai Zhu, and Hakan Aydin. “Global scheduling based reliability-aware
power management for multiprocessor real-time systems.” Real-Time Systems,
47(2):109–142, 2011.

[R09] Vijay Janapa Reddi, , et al. “Voltage emergency prediction: Using signatures to
reduce operating margins.” In High Performance Computer Architecture, 2009.
HPCA 2009. IEEE 15th International Symposium on, pp. 18–29. IEEE, 2009.

[RCK15] S. Rehman, Kuan-Hsun Chen, F. Kriebel, A. Toma, M. Shafique, Jian-Jia Chen,
and J. Henkel. “Cross-Layer Software Dependability on Unreliable Hardware.”
Computers, IEEE Transactions on, PP(99):1–1, 2015.

[Reb10] B. Rebaud et al. “Digital timing slack monitors and their specific insertion flow
for adaptive compensation of variabilities.” In International Conference on In-
tegrated Circuit and System Design: Power and Timing Modeling, Optimization
and Simulation, PATMOS’09, 2010.

[Res01] P. J Restle et al. “A clock distribution network for microprocessors.” IEEE
Journal of Solid State Circuits, 36(5):792–799, 2001.

[Res04] P. Restle et al. “Timing uncertainty measurements on the Power5 microproces-
sor.” In Proc. IEEE International Solid State Circuits Conference, pp. 354–355.
IEEE, 2004.

152

[RKS14] Semeen Rehman, Florian Kriebel, Duo Sun, Muhammad Shafique, and Jörg
Henkel. “dTune: Leveraging reliable code generation for adaptive dependabil-
ity tuning under process variation and aging-induced effects.” In Proceedings of
the 51st Annual Design Automation Conference, pp. 1–6. ACM, 2014.

[RMD07] Tajana Simunic Rosing, Kresimir Mihic, and Giovanni De Micheli. “Power and
reliability management of SoCs.” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, 15(4):391–403, 2007.

[Rot12] Efraim Rotem et al. “Power-management architecture of the intel microarchitec-
ture code-named sandy bridge.” IEEE Micro, (2):20–27, 2012.

[Sat07] T. Sato et al. “A Simple Flip-Flop Circuit for Typical-Case Designs for DFM.”
In IEEE International Symposium on Quality Electronic Design, march 2007.

[Sch03] D. K Schroder et al. “Negative bias temperature instability: Road to cross in deep
submicron silicon semiconductor manufacturing.” Journal of Applied Physics,
94(1):1–18, 2003.

[Shi02] Premkishore Shivakumar et al. “Modeling the effect of technology trends on the
soft error rate of combinational logic.” In Dependable Systems and Networks,
2002. DSN 2002. Proceedings. International Conference on, pp. 389–398. IEEE,
2002.

[Ska03] Kevin Skadron et al. “Temperature-aware microarchitecture.” In ACM
SIGARCH Computer Architecture News, volume 31, pp. 2–13. ACM, 2003.

[SM10] Ranjani Sridharan and Rabi Mahapatra. “Reliability aware power management
for dual-processor real-time embedded systems.” In Proceedings of the 47th Design
Automation Conference, pp. 819–824. ACM, 2010.

[Sri05] Jayanth Srinivasan et al. “Lifetime reliability: Toward an architectural solution.”
Micro, IEEE, 25(3):70–80, 2005.

[Tel95] G. E Téllez et al. “Activity-driven clock design for low power circuits.” In
Proc. IEEE/ACM International Conference on Computer-Aided Design, pp. 62–
65. IEEE Computer Society, 1995.

[Tsc09] J. Tschanz et al. “Tunable replica circuits and adaptive voltage-frequency tech-
niques for dynamic voltage, temperature, and aging variation tolerance.” In VLSI
Circuits, Symposium on, june 2009.

[Vel12] J.B. Velamala et al. “Statistical aging under dynamic voltage scaling: A logarith-
mic model approach.” In IEEE Custom Integrated Circuits Conference, pp. 1–4,
2012.

153

[Ven10] Ganesh Venkatesh et al. “Conservation cores: reducing the energy of mature
computations.” In ACM SIGARCH Computer Architecture News, volume 38, pp.
205–218. ACM, 2010.

[Vis06] C. Visweswariah et al. “First-order incremental block-based statistical timing
analysis.” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 25(10):2170–2180, 2006.

[Wan06] Nicholas J Wang et al. “ReStore: Symptom-based soft error detection in micro-
processors.” Dependable and Secure Computing, IEEE Transactions on, 3(3):188–
201, 2006.

[Wan07] W. Wang et al. “An integrated modeling paradigm of circuit reliability for 65nm
CMOS technology.” In IEEE Custom Integrated Circuits Conference, pp. 511–514.
IEEE, 2007.

[Wan08] X. Wang et al. “Path-RO: a novel on-chip critical path delay measurement under
process variations.” In Proc. IEEE/ACM International Conference on Computer-
Aided Design, 2008.

[Wan13a] L. Wanner et al. “Hardware Variability-Aware Duty Cycling for Embedded Sen-
sors.” IEEE Transactions on Very Large Scale Integration Systems, 21(6):1000–
1012, 2013.

[Wan13b] Lucas Wanner et al. “VarEMU: an emulation testbed for variability-aware soft-
ware.” In Proceedings of the Ninth IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis, p. 27. IEEE Press, 2013.

[Wei84] R. P. Weicker. “Dhrystone: a synthetic systems programming benchmark.” Com-
mun. ACM, October 1984.

[wik] “Intel Turbo Boost.” http://en.wikipedia.org/wiki/Intel Turbo Boost.

[Woo09] Kyoungho Woo et al. “Dual-DLL-based CMOS all-digital temperature sensor for
microprocessor thermal monitoring.” In Solid-State Circuits Conference-Digest of
Technical Papers, 2009. ISSCC 2009. IEEE International, pp. 68–69. IEEE, 2009.

[Xie10] L. Xie et al. “Representative path selection for post-silicon timing prediction
under variability.” In Proc. ACM/IEEE Design Automation Conference, june
2010.

[Zha14] Hongyan Zhang et al. “GUARD: Guaranteed reliability in dynamically reconfig-
urable systems.” In Proceedings of the 51st Annual Design Automation Conference
on Design Automation Conference, pp. 1–6. ACM, 2014.

154

[Zhu06] Dakai Zhu. “Reliability-aware dynamic energy management in dependable embed-
ded real-time systems.” In Real-Time and Embedded Technology and Applications
Symposium, 2006. Proceedings of the 12th IEEE, pp. 397–407. IEEE, 2006.

155

