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Abstract of the Dissertation

Computational Methods for Design-Assisted

Mask Flows

by

Abde Ali Kagalwalla

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2014

Professor Puneet Gupta, Chair

The cost per die benefit of semiconductor technology scaling that has driven Moore’s

law is being threatened by increasing manufacturing cost. Masks, which reproduce

circuit patterns on the wafer, are the biggest contributor to this manufacturing

cost. The need to print sub-wavelength patterns on the wafer has significantly

increased the cost and complexity of mask manufacturing, that consists of three

key steps: mask data preparation, mask write and mask inspection. In this thesis,

we propose novel computational approaches to enhance mask data preparation and

mask inspection that can help control mask manufacturing cost.

To reduce the pessimism of geometric approaches to estimate lithographic process

window, we propose electrical process window (EPW), which accounts for electri-

cal specifications of the circuit layout such as delay, power and static noise margin,

thereby reducing pessimism by 1.5 to 8×. To reduce the pessimism in mask inspec-

tion, which can take up as much as 30% of the total mask manufacturing time, we

propose design-aware mask inspection. This is accomplished by first locating non-

functional features in a circuit layout, and using that information along with the

timing information of the design to assign criticality to different layout shapes. This

information can be exploited by mask inspection tools to reduce defect review time

and first pass yield of masks. Our results indicate 39% reduction in the number of

defects reported by the inspection tool and 19%-point improvement in first pass yield
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of a polysilicon mask. Mask fracturing is a key component of mask data preparation

that determines the e-beam shots required to write the mask. Since shot count is

directly proportional to mask write time, reducing shot count is a key objective for

mask fracturing solutions. To evaluate the suboptimality of modern model-based

mask fracturing heuristics, we propose an ILP-based benchmarking method and an

optimal benchmark generation method. Our methods show that even a state-of-the-

art prototype [version of] capability within a commercial EDA tool for e-beam mask

shot decomposition can be suboptimal by as much as 2.3× for real ILT shapes and

by 6× for generated benchmarks.

EUV lithography, a front-runner to replace the incumbent 193nm lithography,

suffers from hard-to-repair defects on mask blanks. To mitigate the problem of

these defects, we first propose a defect avoidance method based on random walk

and gradient descent that can allow mask makers to use masks with even 30 defects

without any significant yield impact. To aid the design of EUV layouts that are

robust to mask defects, we propose a new metric called critical density, which can

quickly evaluate the robustness of EUV layouts.
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CHAPTER 1

Introduction

Over the last decade, semiconductor technology scaling has continued to keep pace

with Moore’s law. The biggest driver for scaling has been cost reduction due to more

chips per wafer. But this cost benefit is eroding rapidly due to the huge increase in

manufacturing cost with each new technology generation. This trend is illustrated

in Figure 1.1.

As can be seen from Figure 1.1, a substantial component of the manufacturing

cost is due to photomasks. The use of aggressive resolution enchancement techniques

such as optical proximity correction (OPC), sub-resolution assist features (SRAFs)

and phase-shiting masks (PSM) have led to extremely complex mask features which

are hard to manufacture [GKS03]. For 45nm commercial digital designs, a complete

mask set can easily cost more than a million dollars. Current projections from ITRS

suggest that this situation is likely to get worse with newer lithography patterning

technologies like double patterning or extreme ultraviolet (EUV) lithography, as

Figure 1.1 shows.

Figure 1.1: Mask cost increase with technology [itr09]
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In this chapter we shall first give a brief overview of optical lithography, an

integral part of semiconductor manufacturing, in Section 1.1. We shall highlight

the important role played by photomasks in lithography. This will be followed by

a brief description of the various steps for manufacturing masks, in Section 1.2.

Finally, we shall look at one particular next generation lithography (NGL) option,

EUV lithography, in Section 1.3 and highlight some key issues facing EUV mask

manufacturing. We will conclude the chapter with an outline of this prospectus in

Section 1.4.

1.1 Optical Lithography

Lithography has been one of the key enablers of the phenomenonal scaling seen by

the semiconductor industry. The process of lithography is similar to film based pho-

tography. In photography, the desired image passes through an optical lens system

and exposes a film, which is later treated to obtain a photo. In lithography, the

desired target pattern is first written on a mask, which is like an optical stencil with

transparent and opaque regions. When a light source shines on this mask, it creates

an image which passes through an optical system and exposes a photochemical re-

sist. This gives rise to various patterns that eventually become transistors or wires

connecting transistors to make a silicon chip. This entire process is done on a wafer

stepper.

A typical wafer stepper, illustrated in Figure 1.2, consists of an illumination

system that comprises a light source and a set of lenses. The light obtained from

the illumination system passes through a photomask which has opaque and clear

regions depending on the circuit layout pattern. The light that passes through the

mask pattern then exposes a chemical resist, which is deposited on the wafer. The

resist is then chemically treated to leave only the unexposed part of the resist1. As

a result, the mask pattern is transferred to the wafer.

1The exposed resist is chemically removed for a positive resist, which is preferred in semicon-
ductor manufacturing. In the case of negative resist, the unexposed resist is actually removed
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Figure 1.2: Conventional 193nm lithography system [Nau11]

This simplistic description of a wafer stepper glosses over several challenges.

The single biggest issue is that the patterns that need to be printed are significantly

smaller than the wavelength of light exposing it, causing diffraction which distorts

the image that actually gets transferred to the wafer. Because diffraction, and

even other optical phenomena like lens aberrations, are systematic phenomena that

can be modeled and compensated for, a class of computational methods to rectify

the distortion have emerged. These computational approaches are often referred

to as resolution enhancement techniques and include OPC, retargeting and SRAF

insertion.

Another critical set of problems that affect wafer steppers, that are more random

in nature, is manufacturing variation. There are several sources of variation inside

the stepper, but the three most important ones are exposure latitude, defocus and

overlay. Exposure latitude, or dose variation, is the fluctuation in the intensity of

the light source. Defocus is the error in wafer position relative to the optical system

exposing it. Overlay is the alignment error between the various mask patterns that

need to be reproduced on the wafer to create the final chip.
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1.2 Mask Manufacturing

As mentioned earlier, a reticle (mask) is basically a stencil that determines what

patterns eventually print on the wafer. The increasing aggressiveness of various

resolution enhancement techniques like optical proximity correction (OPC), phase

shift mask, and sub-resolution assist features (SRAF) along with decreasing feature

sizes has increased the complexity, and therefore the cost, of reticles considerably

[GKS03]. Keeping mask cost in control is extremely critical, especially for low vol-

ume designs. As Figure 1.1 shows, this situation will get worse for double patterning

lithography which would be required at 20nm technology node and potentially even

at 14nm.

The various steps which are performed to convert a circuit layout to a mask that

can be used to expose wafers are listed below:

• Mask Data Preparation: This step involves computational methods to

obtain patterns that must be written on the mask from the layout pattern. As

pointed out earlier, correcting the patterns for diffraction through the use of

resolution enhancement techniques like retargeting, OPC, and SRAF insertion

is a step. After applying these corrections, and other layout optimization

techniques, the patterns are fractured into trapezoids which e-beam mask write

tools can take as input.

• Mask Writing: Once mask patterns are obtained, mask blanks are patterned

using an e-beam mask write tool. The process is very similar to optical lithog-

raphy, but a narrow e-beam light source is used to expose the resist in order

to achieve better accuracy.

• Mask Inspection: The patterned mask must be carefully checked to ensure

it has no defects. This is done through a multi-step mask inspection process,

which is discussed in further detail in Chapter 3. Mask inspection can take a

significant amount of time, up to 30% of the total mask manufacturing time.
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1.3 Replacing 193nm lithogaphy: EUV

Extreme ultraviolet (EUV) lithography is considered one of the most promising

next generation lithography solutions to replace the current deep ultraviolet (DUV)

lithography [itr09]. But the technology still faces several challenges before it can

actually be used for volume production. The fundamental challenge limiting the

adoption of EUV lithography is source power. Without adequate source power, the

throughput of the expensive EUV tool is too low be to commercially viable. Resist

and defect-free mask manufacturing are other significant challenges [Lev09].

High energy ultraviolet light with a wavelength of 13.5nm, used in EUV lithog-

raphy, is absorbed by all materials which prevents the use of refractive optics like

DUV. As a consequence, EUV optics is reflective, as illustrated in Figure 1.3. Creat-

ing reflective masks or mirrors for EUV uses the principle of Bragg reflectors which

rely on constructive interference at the interface of materials with different absorb-

tion rates. EUV mask blanks are constucted by stacking several molybdenum-silicon

bilayer reflectors which can achieve a reflectivity of approximately 70%. The layout

patterns that need to be printed on wafer are then written on the multilayer mask

blank as an absorber layer.

EUV masks suffer from a unique problem we do not see in conventional lithogra-

phy. The substrate on which the silicon-molybdenum bilayer is deposited has small

pits or bumps on the surface. These defects can propogate to the top of the mul-

tilayer stack, as a bump or pit on the surface, causing the path and phase of the

reflected EUV light to change. As a result, even a 3.5nm tall buried phase defect

can easily print on the wafer, causing a massive critical dimension (CD) change of

20nm on the wafer [CN08]. Figure 1.4 illustrates the potential damage that a buried

defect can cause by shorting two parallel lines. These defects are often referred to

as buried defects.

EUV mask manufacturers have recently reported that they can achieve mask

blanks with zero defects of size larger than 100nm [sem14]. However, defects smaller

than 100nm are also capable of causing yield loss. More importantly, mask blank

5



Figure 1.3: Reflective EUV lithography system[Nau11]

inspection tools tend to miss several defects [JH11], because of which the sever-

ity of this problem remains unclear. Because these mask defects are buried under

multilayers, repairing them is very challenging [DL02].

1.4 Thesis Outline

In this thesis, we describe several novel computational approaches to improve the

various stages of semiconductor photomask manufacturing. A key underlying theme

of our work is to reduce the inherent pessimism of several mask manufacturing steps.

The key contributions of this work can be summarized as follows:

• In Chapter 2, we propose a new metric to evaluate the robustness of mask

patterns to the various sources of random variation on the wafer stepper. Our

metric, electrical process window (EPW), reduces the pessimism of the cur-

rent approach, geometric process window (GPW) by measuring variation in

electrical circuit parameters like delay, leakage power and static noise margin

(SNM).
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Figure 1.4: EUV mask along with its aerial image illustrating the impact of buried

defects [CCN10].

• In Chapter 3, we look at methods to reduce the pessimism inherent in mask

inspection steps by making it aware of non-critical and redundant features on

the mask. We show how information about the criticality of mask features can

help mask inspection tools reduce the reported defect count, which leads to an

improvement in turnaround time and first pass yield of masks.

• In Chapter 4, we propose a method to benchmark mask fracturing heuristics.

Mask fracturing determines the e-beam shots that are required to create the

given mask pattern. Reducing the shot count helps reduce mask write time and

consequently mask cost. Benchmarking of mask fracturing heuristics enables a

better understanding of the suboptimality of the heuristics and how they can

be improved.

• In Chapter 5, we propose a novel defect avoidance reticle floorplanning ap-

proach to mitigate the problem of buried defect in EUV masks. We shall show

simulation results for several different scenarios and constraints based on our

global optimization based method.

• In Chapter 6, we propose a metric to evaluate the robustness of EUV layouts

to mask defects.
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CHAPTER 2

Measurement and Optimization of Electrical

Process Window

2.1 Introduction

As mentioned in Chapter 1, resolution enhancement techniques like OPC, SRAFs

and phase shift masks have become a necessity to ensure the printability of sub-

wavelength layout features on the wafer. Since OPC is typically performed at a

nominal lithographic setup, it fails to account for variation in exposure, focus or

overlay. To compensate these variations, process window OPC has been proposed in

[KCG06], whereby OPCs are performed at multiple process corners. This method

is, however, impractical due to long runtime. Another method, image slope OPC

[CG03] optimizes slope of intensity, which is a measure of variation in dose, along

with edge placement error (EPE). Retargeting [YLK09, RBF02] is a rule based

technique to modify the layout before performing OPC to improve process window

and is a popular approach in industry. Although these methods address the problem

of lithographic variation, accurate metrics are required to quantify their benefits.

Process window is the range of process parameters such that designs produced

within this range operate under desired specifications [MJL99]. Typical process win-

dow checks if the critical dimension (CD) of any feature deviates from its nominal

value by more than a predefined tolerance [MJL99, LMH06] and is denoted as ge-

ometric process window (GPW) in this work. Although GPW is easy to compute

or measure, it is not an accurate representation of electrical behavior of the printed

circuit.
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Recently, there has been some interest in reducing the pessimism due to poor

correlation between design geometry and electrical performance. In [BEL08b], elec-

trically driven OPC is developed based on non-rectangular transistor models for Ion

and Ioff . Zhang et. al. in [ZA07a] developed an analytical model to account for

corner rounding in printed transistors and accounted for its impact on saturation

current during OPC. Gupta et. al. in [GKS07a] used timing slack of critical paths

to reduce the complexity of post-OPC mask shapes. These methods achieve smaller

performance variation and reduced mask complexity despite large geometric errors

[RG09]. In [ASH05], the authors propose a design-for-manufacturing methodology

to compare the SNM of 6T SRAM cells printed under different defocus conditions.

The method provides important feedbacks for designers at early design stage, which

helps to reduce design and manufacturing costs.

Inspired by above-mentioned approaches, we propose electrical process window

(EPW), which estimates PW based on delay, SNM and leakage deviation instead

of variation in critical dimension (CD). In this work, we focus on PW analysis for

digital VLSI circuit which has dense geometry pattern and susceptible to lithography

variation 1. To evaluate EPW, we generate post-OPC lithography contours of a given

layout at different exposure, defocus and overlay (E/F/O) process points. Then,

we extract transistor shapes and their electrical performances using the model in

[CG10]. Finally, EPW is defined by process points that yield lithography contours

with acceptable electrical performances.

The key contributions of the work we describe in this chapter are as follow:

• In contrast to the conventional GPW, we propose electrical process window

defined by delay, SNM and leakage power of a design. EPW can reduce the

pessimism in process control requirements as its area is 1.5∼8× larger than

that of GPW.

• We demonstrate that EPW can be optimized by layout transparent methods

like gate length biasing and Vth push during manufacturing.

1We do not evaluate EPW for analog circuit because the layout of analog circuit is usually
guardbanded with high margin to account for lithography variations.
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• We propose several approximations to EPW for cases where design information

is incomplete.

• We present the concept of representative layout extraction which can be used

to reduce EPW evaluation runtime.

2.2 Definition of Process Windows

In this work, we focus on analyzing lithography process window for poly layer be-

cause it usually is the most critical layer in lithography. Moreover, lithography

variation on poly layer has strong correlation to electrical variation as it defines

transistor gate length.

2.2.1 Geometric Process Window

Definition: GPW is defined as the range of process parameters such that deviation

between the CD of printed contour and circuit layout on poly layer (gate length) is

within predefined tolerance, i.e.

(Ei, Fj, Ok)∈GPW ⇐⇒

lower bound of allowed CD deviation ≤ CD ≤ upper bound of allowed CD deviation.

(2.1)

In our experiments, CD deviation is estimated based on edge placement error (EPE)

histogram of all transistor segments. As illustrated in Figure 2.1, EPE is defined

as the displacement between printed contour and layout segments. Since EPE only

measures channel length deviation on one side of transistor channel, the following

scenarios are considered and CD is defined accordingly.

• Maximum EPE occurs at both edges of a transistor segment. CD = nominal

channel length ±2× maximum EPE (worst case).

• Maximum EPE occurs at one edge of a transistor segment. We assume that the

edge opposite to maximum EPE segment is not changed and CD = nominal

10



channel length ± maximum EPE.

Based on the definitions for CD and GPW, we consider a process point (Ei, Fj, Ok) to

be within GPW if more than 99% of EPEs are smaller than predefined CD tolerance.

The 1% allowance is given to avoid pessimistic GPW due to EPE outliers, which

can be fixed by fine tuning mask in OPC. In subsequent sections, we use W-GPW

to denote GPW with CD defined by scenario 1 (worst case) and A-GPW for GPW

with CD defined by scenario 2.

Lmin

Lmax

EPE exceeds

tolerance

Min/max allowed EPE

Layout

Printed contour

EPE

tolerance EPEs of 

transistors

EPE

%

0

40

30

10

20

Figure 2.1: Illustration of EPE histogram.

2.2.2 Electrical Process Window

Definition: A process point (Ei, Fj, Ok) is considered within EPW if electrical

performance of a printed circuit is within desired tolerance, i.e.

(Ei, Fj, Ok)∈EPW ⇐⇒

circuit performance lower bound ≤ circuit performance ≤ circuit performance upper bound.

(2.2)

In this work, we demonstrate the evaluation of delay centric EPW (D-EPW), leakage

power centric EPW (P-EPW) and static noise margin EPW (SNM-EPW) as they

are commonly used electrical performance metrics. In [CGG10a], the impact of

interconnect linewidth variation is found to be much smaller than the impact of
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transistor gate length variation on delay. Therefore, we do not consider interconnect

linewidth variation in calculating EPWs.

2.2.2.1 Delay Centric Electrical Process Window (D-EPW)

Due to sub-wavelength lithography, printed transistor channel is not rectangular

despite the use of aggressive RET techniques. This imposes difficulties in EPW ex-

traction as electrical performance of a non-rectangular gate (NRG) transistor cannot

be determined from pre-characterized library. To model the impact of NRG transis-

tors on critical path delay, we extract Ion of each NRG transistor using the method

proposed in [CG10]. As shown in Figure 2.2, NRG transistor obtained from simu-

lated contour is sliced into narrower transistors to approximate the non-rectangular

channel. Then, the effective channel length, width and Vth of sliced transistors are

extracted so that they can be represented as rectangular transistors2. Finally, the

rectangular transistors are simulated using HSPICE [Hsp] and their Ion and Ioff are

summed up to represent total Ion and Ioff of the NRG transistor. After obtaining

the current, cell delay of NRG transistor is estimated by the following equation,

Cell delay =

∑Ni

j=1 Ion−original−j
∑Ni

j=1 Ion−simulated−j

×original cell delay,

where Ni is the total number of transistors in cell j and original cell delay is the

delay of the cell specified in circuit’s timing report. Subsequently, path delay of

simulated contour (Dpath−simulated) is represented as the sum of delay of every cell

along the path,

Dpath−simulated =
M
∑

i=1

(Cell delayi), (2.3)

where M is the total number of cells along a critical path. Finally, D-EPW is defined

as

(Ei, Fj, Ok)∈D-EPW⇐⇒ max(∆Dpath) ≤ upper bound of allowed delay deviation.

∆Dpath = [
Dpath−simulated

Dpath−original

− 1]× 100%,

(2.4)

2We use SPICE-based method in [CG10] to calibrate parameters for NRG transistor model.
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where Dpath−original is the delay of the critical path obtained from circuit’s timing

report.

Figure 2.2: Non-rectangular gate transistor Ion and Ioff extraction.

2.2.2.2 Leakage Power Centric Electrical Process Window (P-EPW)

As already mentioned, leakage current of NRG transistors at different process points

(Ioff−simulated) are obtained using the method in [CG10]. The method is also used

for calculating leakage current of each transistor in pre-OPC layout (Ioff−original) to

evaluate leakage power deviation of a circuit (∆power).

∆power = [

∑T
j=1 Ioff−simulated−j
∑T

j=1 Ioff−original−j

− 1]× 100%, (2.5)

where T denotes the total number of transistors in a design. Note that Equation

(2.5) does not account for cell topology, i.e. stacked transistor has less leakage power

compared to non-stacked transistors. This leads to an estimation error whenever CD

variations are different for stacked and non-stacked transistors. Since the PEPW

is a function of relative leakage power instead of the absolute value, the estimation

error is only significant when stacked and non-stacked transistors have different CD

variations. In other words, the estimation error is negligible if stack and non-stack

transistors have similar CD distributions. For random digital logic, CD variation is

affected by surrounding pattern which has no direct correlation with cell topology.

Therefore the estimation error due to cell topology is unlikely a major source of

error.
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Since there is no lower bound for leakage power, P-EPW is defined as

(Ei, Fj, Ok)∈P-EPW⇐⇒ ∆power ≤ upper bound of allowed leakage power deviation.

(2.6)

2.2.2.3 Signal Noise Margin Electrical Process Window (SNM-EPW)

To capture the impact of lithography imperfection on a SRAM cell, we replace each

NRG transistor in the cell by an equivalent transistor which has the same Ion as

the NRG transistor. Since there can be many width and length combinations for a

given Ion, we choose the equivalent transistor which has channel width equal to the

average width of the NRG transistor.

After obtaining the equivalent transistors for a SRAM cell, we run SPICE simula-

tion to get the voltage transfer curves of inverter pairs in a SRAM cell. We evaluate

only read noise margin, since it is typically more critical compared to hold or write

noise margin. The SNM of a cell is defined by the diagonal length of maximum

square within butterfly curves as shown in Figure 2.3. Due to the regular layout of

SRAM array, the printed contour of each cell are similar. Therefore, we evaluate

SNM-EPW based on the SNM value of a SRAM cell. SNM-EPW is defined as

(Ei, Fj, Ok)∈SNM-EPW⇐⇒ ∆SNM ≥ lower bound of allowed signal noise margin deviation,

(2.7)

∆SNM = [
SNMsimulated

SNMoriginal

− 1]× 100%.

2.2.2.4 Combined Electrical Process Window (C-EPW)

Whenever there are more than one electrical performance metrics, the combined

electrical PW can be easily computed by finding the intersections of the EPWs,

C-EPW =
⋂Q

i=1
(EPWi), (2.8)

where Q is the total number of electrical performances. In this work, C-EPW is

defined as the intersection between D-EPW and P-EPW.
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Figure 2.3: SNM extraction based on voltage transfer curves of a 6T SRAM bit cell.

Vr and Vl are the internal node voltage of inverter pairs in a bit cell.

2.2.3 Relation Between GPW and EPW Tolerances

Since GPW and EPWs are defined differently, we need to figure out the relation

between the two for fair comparison. To obtain the worst case corners of GPW, we

simulate an inverter with 4 times fanout and a 6T SRAM cell at (nominal length

± (2 × EPE tolerance) )3 using SPICE [Hsp] and transistor model provided by

Nangate Open Cell Library[nan]. The worst case delay, leakage power and SNM

deviations are extracted to represent D-EPW, P-EPW and SNM-EPW tolerances,

respectively. Table 2.1 summarizes the corresponding deviations in delay and leakage

power for different EPE tolerances. E.g. ±5% EPE (2.5nm of 50nm nominal channel

length) corresponds to 11%, 54% and -24% deviations in delay, power and SNM,

respectively. Hence, W-GPW with 2.5% EPE tolerance corresponds to A-GPW with

5% EPE tolerance, D-EPW with 11% delay tolerance, P-EPW with 54% leakage

power tolerance and SNM-EPW with -30% SNM tolerance.

When channel length deviates more than 10%, the SNM of a 6T SRAM cell

reduces to zero. Therefore, the maximum allowed geometrical deviation is 10% for

SRAM. The tolerance for leakage power is very high compared to channel length

and EPE tolerances because leakage power increases exponentially as channel length

decreases. Note that, the tolerances in Table 2.1 are strongly dependent on the

process technology.

3Vdd=1.1V , Temperature = 25 ◦ Celsius
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Table 2.1: Tolerances of GPW and EPW

∆Channel length W-GPW A-GPW D-EPW P-EPW SNM-EPW

(%) ∆ EPE (%) ∆ EPE (%) ∆ delay (%) ∆ power (%) ∆ SNM (%)

5 2.5 5 11 54 -24

10 5.0 10 21 311 -61

15 7.5 15 30 2476 N/A

2.3 Comparison Between GPW and EPW for Digital Logic

2.3.1 Experimental Setup

To show the differences between GPW and EPW for digital logic, five ISCAS-85

[ISCa] and a microprocessor (MIPS) benchmark [ope] circuits were implemented

using 45nm Nangate Open Cell Library (PDK v1.2 v2008) [nan]. After synthesis,

placement and routing, we define the paths within 20% of setup time constraint

as critical paths. The layouts of benchmark circuits were scaled to 65nm for OPC

and lithography simulation due to limitations in our optical models. After that, the

simulated contours are scaled down to 45nm for leakage and drive current extraction.

To emulate variations in lithography system, we simulate image for poly layer with

different exposure and defocus values using Mentor Calibre[cal08]. In this work, we

only analyze the PW for poly layer. During EPW extraction, we use the active

layer patterns in layout, i.e. we evaluate the PW for poly layer when active layer is

printed at its nominal value.

Overlay error is emulated by shifting printed active layer along vertical direction

(Z direction in Figure 2.2) during transistor shape extraction. Process parameters

in our experiments are as follow.

• Exposure (%) ∈ {80, 90 , 100 , 110, 120}

• Defocus (nm) ∈ {0, 40, 80, 160}

• Overlay (nm) ∈ {-20, -10, 0, 10, 20}
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All process points for which any printed transistor is open or short are excluded

from EPWs and GPW. This defines maximum feasible process window. To evaluate

GPW, we generate EPE histogram for each process point by comparing printed

contours to original layout using Mentor Calibre [cal08]. To evaluate EPW, we

translate the extracted channel shapes into an OpenAccess database [oa]. After

that, Ion and Ioff of every transistor are extracted using the method in [CG10] to

obtain deviations in delay and leakage power as mentioned in Section 2. The analysis

of EPW (including NRG transistor current extraction) was implemented in C++

and the experiment was carried out on a 64bit machine running at 2GHz with 16GB

memory.

2.3.2 Results

Results in Table 2.2 show that W-GPW is very pessimistic as it has zero area for all

tolerances. Compared to W-GPW, A-GPW has less constrained CD definition and

larger PW as expected.

Table 2.2: GPWs and EPWs area for ISCAS-85 benchmark circuits.

W-GPW A-GPW D-EPW P-EPW C-EPW (delay,power) Feasible

Tolerance % 2.5 5 7.5 5 10 15 11 21 30 54 311 2476 (11,54) (21,311) (30,2476) Area

c432 0 0 0 0 300 1276 1538 2086 2460 882 1720 2107 0 1086 1846 2760

c499 0 0 0 0 117 1375 1559 2105 2508 921 1718 2076 9 1103 1864 2760

c880 0 0 0 0 196 1278 1390 1956 2332 825 1464 1969 0 890 1770 2565

c1355 0 0 0 0 95 1313 1665 2204 2560 847 1569 2052 35 1052 1891 2760

c1908 0 0 0 0 139 1253 1388 1937 2309 841 1493 1988 1 900 1767 2565

MIPS 0 0 0 0 0 190 921 1209 1426 334 599 823 0 248 690 1590

average 0 0 0 0 141 1114 1410 1916 2266 775 1427 1836 7 880 1638 2500

Figure 2.4 shows the scatter plots of W-GPW, A-GPW, D-EPW, P-EPW and

C-EPW for benchmark circuit c1908. Although the experiments are carried out for

different E/F/O, the overlay axis is excluded in these plots because it is observed

that the PW is insensitive to overlay for the layouts we have. To reduce lithography

simulation runtime, we estimate delay, leakage power and EPE values between sam-

pled data points by interpolation. The experiment results for other circuits are not
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displayed but the area of the PWs are stated in Table 2.2. 4 From Figure 2.4 5, we

can clearly notice the area of A-GPW is smaller than the areas of EPWs with cor-

responding tolerances. This implies, there are process points where printed circuit

can meet electrical tolerances although its CD violates geometric constraints. GPW

is a more pessimistic metric compared to EPW because of the following reasons:

• GPW requires at least 99% EPE to be within tolerable range. In contrast,

EPW only restricts the total power and delay of a circuit which is the average

of deviation of each transistor segment. Therefore, some of the transistor

segments can vary significantly but the entire transistor is still able to meet

EPW tolerance due to the averaging.

• All transistors are not equally important in EPW. For instance, delay con-

straints are applied only for transistors on critical paths instead of all transis-

tors in a design.

• Averaging across multiple transistors in a critical path for delay or all transis-

tors for power.

It is observed that at 100% exposure and 80nm defocus (circled in Figure 2.4),

A-GPW with 15% EPE tolerance is within tolerance (shaded) but P-EPW with

corresponding leakage power tolerance is not. This happens whenever the actual

channel length deviation (combined EPE on both edges) is larger than 7.5nm (15%

of channel length) but none of the EPEs exceeds 7.5nm. As a result, the process

point is considered valid in A-GPW but the actual leakage power is greater than

pre-defined leakage power constraints. This example shows that A-GPW is generally

pessimistic compared to EPW but it does not guarantee the electrical performance of

circuit printed within its PW.

4The result of W-GPW is not included in Figure 2.4 as its has zero area in all cases.
5It is noticed that, the ideal process point at 100% exposure and 0nm defocus lies outside P-

EPW at 54% tolerance. Meanwhile, process points at 90% exposure and 0∼80nm defocus meets
the tightest delay and leakage power tolerance. We believe this is due to imperfect calibration of
our OPC setup.
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PW area maximum feasible region

C−EPW

A−GPW

∆ Delay ≤ 11%

Channel length
tolerance 5%

Channel length
tolerance 15%

Channel length
tolerance 10%

∆ EPE ± 5%

∆ Power ≤ 54%

∆ Delay ≤ 11%

∆ EPE ± 10%

∆ Delay ≤ 21%

∆ Power ≤ 311%

∆ EPE ± 15%

∆ Delay ≤ 30%

∆ Power ≤ 2476%

∆ Power ≤ 54%

∆ Delay ≤ 21%

∆ Power ≤ 311% ∆ Power ≤ 2476%
∆ Delay ≤ 30%

P−EPW

D−EPW

Figure 2.4: Scatter plots of A-GPW, D-EPW, P-EPW, C-EPW for ISCAS-85 bench-

mark circuit c1908.

When both leakage power and delay are considered, C-EPW can be much smaller

than D-EPW or P-EPW as shown in the 4th row in Figure 2.4. C-EPW is valuable

as it clearly defines the acceptable process range, ensuring printed design can meet

both delay and power requirements. In cases where A-GPW and C-EPW have

comparable tolerances as mentioned in Table 2.1, the area of C-EPW is 1.5∼8×
larger than that of A-GPW.

2.4 Optimization of Electrical Process Window

With EPW, the impact of process tuning on PW can be estimated from simulated

contours. This enables fast and extensive exploration of process tuning approaches

for maximizing PW. Since C-EPW is defined as the intersection of D-EPW and
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P-EPW, it is possible to improve C-EPW by increasing D-EPW or P-EPW. But

any change in gate lengths or Vth has opposite effects on D-EPW and P-EPW. E.g.

P-EPW increases along with transistor gate lengths (leakage power reduced) but

vice versa for D-EPW. Therefore, there is always a trade-off between D-EPW and

P-EPW. As long as the sensitivities of P-EPW and D-EPW to the intentional gate

length or Vth perturbation are different, they can be leveraged to improve C-EPW.

In this work, we assume ± 2nm gate length biasing and ± 20mV Vth push are

allowed. To emulate gate length biasing, we adjust gate lengths of transistors during

Ion and Ioff extraction and the adjustment is conformal to gate’s edges. Meanwhile

Vth push is implemented by adjusting the nominal Vth of each transistor during Ion

and Ioff extraction.

Figure 2.5 shows that reducing the gate lengths or lowering Vth enlarges D-EPW

as expected. Meanwhile they reduce the area of P-EPW because total leakage power

is increased when gate length or Vth of transistors are reduced. Since D-EPW only

considers delay deviation on critical paths, reducing gate lengths on critical cells or

all cells has identical impact on D-EPW. For benchmark circuits c880 and MIPS,

however, this is not true because one or more of the reduced gate lengths on non-

critical cells in the circuits are smaller than the minimum acceptable gate length

(30nm). Any transistor smaller than this minimum gate length is considered as

electrically shorted and it is a catastrophic circuit failure. As a result, the process

points which print the shorted transistor are treated as not feasible points which

reduce the D-EPW for circuit c880 and MIPS.

Alternatively, one can improve P-EPW by increasing gate length (non-critical

or all cells) or Vth of transistors. Figure 2.5 shows that the approaches have similar

improvements for P-EPW but the impacts of these approaches on D-EPW vary

significantly. Since increasing gate length or Vth of all transistors also increases

critical path delays, D-EPW of these approaches are smaller compared to D-EPW

of optimization approach which increases gate length of non-critical cell only. There

are cases (c880 and MIPS) where increasing gate lengths of non-critical cells have

comparable impact to that by increasing gate lengths of all cells because the number
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of critical cells is relatively small compared to the number of total cells as indicated

in Table 2.3.

Table 2.3: Ratio of critical cells to total cells in benchmark circuits.

Circuits Critical cells/total cells

c432 50%

c499 24%

c880 16%

c1355 49%

c1908 26%

MIPS 3%

Average 24%

On average, biasing gate lengths selectively improves C-EPW while biasing gate

lengths of all cells reduces the area of C-EPW. Besides, reducing Vth also improves

C-EPW and vice-versa for increasing Vth. Based on this analysis, reducing Vth seems

to be a good approach in absence of any design information, as it improves C-EPW

consistently for all benchmark circuits. Moreover, it can be done without knowing

the locations of critical cells.

2.5 EPW Approximations

In practice, critical paths of the design may not be available to the foundry. Instead

of reverting to GPW, which is very pessimistic as already mentioned, we propose

two methods to estimate EPW using purely geometric means.

2.5.1 Method I: Use EPE Histogram of Entire Design

This method uses the EPE histogram generated during OPC to approximate EPW

without extracting channel shape of each transistor. We assume that average delay

and leakage power deviation induced by EPEs of all transistors are approximately
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the same as that of an artificial equivalent transistor with the EPE histogram of

entire design. As illustrated in Figure 2.6, based on the EPE histogram extracted

for entire design, each non-zero EPE bin is translated into a transistor edge which has

the corresponding EPE. Consequently the channel width of each transistor segment

is proportional to the percentage count 2 of its EPE bins.

Since EPE can happen on both sides of a transistor,

channel length = nominal channel length + 2×EPE (worst case3). (2.9)

After constructing the equivalent transistor, its Ion and Ioff can be estimated by

NRG current extraction method mentioned earlier. Note that, the histogram is

mainly constructed by the EPE of the middle part of transistor channel. These

transistor sections have uniform Vth as they are not affected by narrow width ef-

fects which happens at transistor edges. During NRG current extraction, we assign

each segment in the equivalent transistor to their corresponding uniform Vth value.

Therefore the extracted current is independent of slices ordering 4.

Since delay is inversely proportional to Ion, we estimate delay deviation as the

ratio of the Ion of a reference transistor to the calculated Ion−equivalent−transistor. As

shown in Figure 2.6, the reference transistor has nominal channel length and its

total channel width is same as the one of equivalent transistor. Meanwhile leakage

power deviation is estimated by the ratio of Ioff−equivalent−transistor to the Ioff of the

reference because leakage power is proportional to Ioff . The approximated EPWs

are called histogram-EPWs in the remaining text and their definitions are given as

2If all edge fragments are not of equal width, the histogram can be weighed appropriately.
3Based on our experiment results, defining “channel length=nominal channel length + EPE”

leads to over-optimistic approximations that cover large area out of reference EPWs. Therefore,
we assume worst case EPE condition for this approximate method.

4We ignore the error due to Vth location dependency as it is not a major source of error compared
to the simple approximations in EPW definitions. A better accuracy is possible by using complex
layout extraction to keep track of edge vs. center EPE
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follow,

(Ei, Fj, Ok)∈histogram-D-EPW⇐⇒

[
Ion−reference−transistor

Ion−equivalent−transistor

− 1]×100% ≤ upper bound of allowed delay deviation

(Ei, Fj, Ok)∈histogram P-EPW⇐⇒

[
Ioff−equivalent−transistor

Ioff−reference−transistor

− 1]×100% ≤ upper bound of allowed power deviation

(2.10)

In our experimental setup, EPE histogram included edge displacement of PMOS

and NMOS transistors together. To estimate transistor current correctly for static

CMOS, the width ratio of PMOS and NMOS is taken into account when we calculate

Ion and Ioff ,

I =
K×IPMOS + INMOS

K + 1
,

where K is the ratio of PMOS to NMOS channel width. In our experiments, we use

the average K across different logic cells in Nangate Open Cell library [nan] which

is ≈ 1.7.

2.5.2 Method II: Use Shape of Every Transistor

Given the shape of every transistor, as mentioned in previous sections, we can extract

Ion and Ioff . Thus, we can calculate P-EPW based on the definitions in Equation

(2.6) and no approximation is required. On the other hand, exact D-EPW cannot

be determined as the information of critical cells is not available. Clearly, a strict

D-EPW can be defined by the worst case delay variation of all transistors. But this

definition is pessimistic as it ignores averaging effect along a critical path, which

usually contains more than a single cell. To reduce the pessimism, we approximate

D-EPW by averaging the delay deviation of R number of transistors with the largest

delay deviation. The delay deviation of each transistor is given by

∆Delay = [
Ion−original

Ion−simulated

− 1]× 100%,
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where Ion−original is the Ion of the pre-OPC transistor obtained from layout and

Ion−simulated is the Ion of NRG transistor from simulated contour. The approximated

D-EPW is named as shape-D-EPW and its definition is given as follows:

(Ei, Fj, Ok)∈shape D-EPW⇐⇒
∑R

n=1 ∆Delayn

R
≤ upper bound of allowed delay deviation.

(2.11)

Based on the critical paths of our benchmark circuits, we found that the average

transistor stages along a critical path is about 30. Therefore, we used R=30 in

our experiment for pessimistic approximation. Note that this definition does not

guarantee a strict lower bound as there might be cases where the logic stages along

critical paths are less than R and they contain some of the transistors with the worst

delay deviations.

Alternatively, we assume that the EPE distribution of transistors along critical

path is similar to that of all transistors in a design. In this case, we can estimate

D-EPW by averaging the delay deviation of all transistors, i.e. R= total number of

transistors.

2.5.3 Results

Figure 2.7 shows that histogram D-EPW is similar to the reference D-EPW but the

area of histogram P-EPW is significantly smaller than that of reference P-EPW. As

a result, the approximated histogram C-EPW only covers a small region of reference

C-EPW. The error in histogram P-EPW is mainly due to the definition of channel

length in Equation (2.9), where worst case condition is assumed. To make matters

worse, the error is exaggerated in P-EPW as leakage power grows exponentially

when channel length shrinks.

Meanwhile, Figure 2.7 shows that shape D-EPW and shape C-EPW with R=30

is much smaller than that of reference EPWs. The accuracy of the approximation

improves when R is increased to total number of transistors. Since the evaluation

of shape P-EPW is same as the one for reference P-EPW, there is no difference

between them.
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In Figure 2.8, we can see that all approximation methods cover higher EPW

area compare to A-GPW on average. When both leakage and delay are considered,

shape C-EPW with R=all transistors has the highest area coverage among the

approximated C-EPWs. Although histogram D-EPW shows the highest percentage

coverage compared to shape D-EPWs, the covered EPW region for histogram C-

EPW is low due to the poor coverage of histogram P-EPW. It is observed that the

EPW area covered by shape D-EPW with R=all transistors is slightly less than

histogram D-EPW although both approximation used the average delay deviation

of all transistors to define D-EPW. This discrepancy is due to the difference between

the lumped EPE histogram and actual transistor shape.

It is observed that there are several cases where histogram D-EPW has region

out of D-EPW. This happens because histogram D-EPW is evaluated based on the

EPE histogram of entire design while D-EPW only consider the transistors along

critical paths. In contrast, shape D-EPW with R=all transistors has no area out of

D-EPW.

In summary, EPW extracted based on the shape of each transistor (with R=all

transistors) is the best approximation among these approaches as it has no area out

of EPW and the covered EPW areas are larger than 70% on average.

2.6 Runtime Reduction Through Representative Layout Ex-

traction

The above mentioned process window evaluation methods (GPW and EPW, in-

cluding approximation methods) require lithography simulation of a single design at

multiple process points, which is very slow for large design. The problem worsens

if we want to evaluate PW by considering process points at a finer level of granu-

larity. To reduce this lithography simulation runtime, we propose an efficient PW

analysis flow depicted in Figure 2.9. First, we extract representative layouts (RLs)

which contains relevant shapes for EPW analysis. For D-EPW, all critical cells are

selected while only 5% of the total cells are selected for P-EPW analysis. Second,
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we check the printed image of original layout for all process points to filter out the

process points which have pinching/bridging features. This can be done efficiently

by using a less accurate but fast lithography simulation setup, which is sufficient

to detect pinching/bridging 7. In case the selected cells are too many for efficient

lithography simulation, we can apply an additional clustering procedure to further

reduce total number of cells. Lithography simulation runtime is reduced because

these RLs have a smaller feature count compared to original layout.

2.6.1 Representative Layout Extraction

For constructing representative layouts, the key thing to observe is that for delay

estimation we only need to consider transistors on critical cells because they are

more likely to cause timing violation under process variation instead of the entire

design. We take a 2um × 2um square snippet centered at each transistor’s channel

(of each critical cell) to form basic layout snippets. The size of snippets is chosen to

account for optical proximity effects on the transistor under consideration. These

layout snippets are then tiled in a separate layout, which we shall call the Delay

Representative Layout (DRL) of the design.

For power analysis, there is no obvious selection scheme to extract “critical”

shapes as each transistor contributes to total leakage power. To avoid analyzing

entire layout, we sample 5% cell instances from each cell type. We can adjust the

sampling rate for obtaining better accuracy. 2um × 2um snippets for each transis-

tor of each of the chosen cells are then used to construct a Power Representative

Layout (PRL) in a similar manner to DRL. This approach of sampling cells for PRL

construction reduces runtime while minimizing estimation error because standard

cells with the same cell type are likely to have similar leakage power deviation.

Only DRL and PRL of a design layout then undergo lithography simulation at

different process corners to evaluate EPW. Note that, we use neighboring shapes

of a transistor during RL extraction but we only perform EPW analysis on the

7Note that identifying PW to avoid bad pinching/bridging patterns is not sufficient as there are
patterns which can only tolerate small errors due to timing and they are design dependent.
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transistor in the middle of the snippet for both DRL/PRL. We apply the approxi-

mate EPW methods discussed earlier to the representative layouts because complete

EPW analysis requires detailed information of the critical path. The total lithogra-

phy simulation runtime of these two RLs of a design is still substantially less than

that of the entire design layout as shown in Table 4 8 for one large Mips processor

layout. We can further reduce total transistor shapes that need to undergo lithogra-

phy simulation by clustering the chosen layout snippets using the method outlined

in [GMM09]. The runtime improvement due to clustering is also shown in Table 4

9.

Figure 2.10 shows the accuracy of our DRL+PRL extraction method compared

to evaluation of EPW for the entire design. Both EPE-histogram and shape approx-

imation methods were tried for the RLs. The results show that the PW estimated

using representative layout method is similar to the one which uses entire design.

The shape approximation method is slightly optimistic and overestimated P-EPW.

This is due to the fact that the random sampling misses out some critical patterns

that cause leakage power failure. Note that there is no area out of EPW for the

histogram method. This happens because the error in sampling is compensated for

by the pessimistic estimation of the histogram method as mentioned in Section 5. In

summary, the RL extraction method reduces lithography simulation runtime signif-

icantly at the cost of some loss in EPW accuracy as some EPW critical geometries

are not captured due to sampling/clustering. (i.e., the representative snippets do

not have all the features of the critical geometries.)

Table 2.4: Lithography runtime for representative layouts

Benchmark Total cells Critical cells Lithography Runtime (Hours)

Circuit Full Design Representative Layout Post-clustering

MIPS 11577 382 198 101 93

8The runtime values are the CPU TIME as reported by Mentor Calibre [cal08].
9Clustering runtime is not included, but depending on implementation it can be expensive.
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2.7 EPW Including SRAM

To evaluate the EPW of digital circuits, we need to consider the PW for random logic

as well as memory cells. Since the original benchmark circuits does not have memory

cells, we draw the layout of the SRAM according to the geometrical dimensions in

[BAB05]. After that we optimize the bit cell for Nangate devices by sizing up the

pull down transistors from 80nm to 120nm. This improves the static noise margin

from 163mV to 213mV. The area of the bit cell is 2.9µm2 (0.785µm × 0.370µm).

In our experiment, we duplicate the layout of a 6T SRAM cell to form a memory

array for lithography simulation. During PW analysis, we evaluate the bit cell in

the middle of the array, which is not affected by empty patterns around layout

boundaries.

2.7.1 GPW vs. EPW

Figure 2.11 shows that SNM-EPW is much larger compared to the GPW because

of the following reasons:

• SNM is affected by the relative “drive strength” of transistors instead of abso-

lute critical dimension deviation. E.g. when channel length of all transistors

increase due to lithography variation, the impact of Ion reduction in pull down

transistor is compensated by Ion reduction of access transistor. As a result,

the SNM of a SRAM cell may still within desired specification even though

the printed contour violates geometrical tolerance.

• There is an averaging effect across transistor channel.

To perform a full EPW analysis on benchmark circuits, we define C-EPW as the

intersection of delay, power and SNM-EPW. We use ±10% CD tolerance for SRAM

and ±10% CD tolerance for random logic in our experiments.

Figure 2.12 shows that both GPW and C-EPW do not change after intersecting

the digital logic and SRAM PWs. This implies that the SRAM bit cell is not a
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limiting factor for PW. Also, we notice that A-GPW shows some feasible area which

is not covered by SNM-EPW or P-EPW. This happens when actual channel length

deviation is larger than 10% but none of the EPE exceeds 10%. In other words, these

process points are considered valid if we use the definition of AGPW but the actual

SNM and leakage power violate pre-defined specifications. The results in Table 2.5

show that C-EPW is about 8× larger than GPW on average for digital logic and

SRAM circuits.

Table 2.5: GPW and EPW area with SRAM.

A-GPW C-EPW (delay,power,SNM) Feasible area

c432 300 1086 2760

c499 117 1103 2760

c880 196 890 2565

c1355 95 1052 2760

c1908 139 900 2565

MIPS 0 248 1590

average 109 839 2448

2.7.2 Impact of SRAM on Approximation Methods

We also study the impact of including SNM-EPW to the approximation methods

mentioned in Section 5 and 6. Figure 2.13 shows that the C-EPWs (including

SRAM C-EPW) of approximations methods are greater than the PW of GPW.

Including SNM-EPW in the C-EPW does not change the result of approximation

methods (Section 5) because the SNM-EPW is not the limiting PW in this case.

Similarly, Figure 2.14 shows that including SNM-EPW does not change the result

of our representative layout approaches.
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2.8 Conclusions

In this work, we have proposed electrical process window which is a better measure

of process window than the conventional geometric process window. The area of

EPW is found to be 1.5∼ 8 × larger than the GPW for our benchmark circuits

because it removes the inherent pessimism of GPW by averaging the impact of

geometric variation on electrical parameters. We have also analyzed various layout

transparent methods to enlarge EPW. Based on our experiment results, we found

that gate length biasing and Vth push can improve EPW by about 10%. Calculation

of delay centric EPW requires information of critical cells in design which is often

not available to foundries. Hence, two approximations to EPW, one based on EPE

histogram and another based on transistor shape analysis have been proposed. Our

results show that the EPW estimated using transistor shape covers more than 70%

of the area of reference EPW on average. We also proposed a method to extract

representative layouts which can be used to reduce simulation runtime for process

window extraction. The method was able to reduce process window evaluation

runtime by 49% with limited impact on accuracy. Though we demonstrate the

process window analysis under defocus and exposure variations, other lithography

imperfections such as mask error can be included in lithography simulation.

In this work, we measure the EPW at a process point and a supply voltage.

Though averaging across The reported EPW will be smaller if we consider vth and

Vdd fluctuation. To account for additional process variation and supply voltage fluc-

tuation, we can evaluate EPW at worst case corners, which gives a more pessimistic

estimation. If probability distribution of a process parameters are available, we can

reduce the pessimism by simulating the circuit with the statistical information.
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Figure 2.5: Optimized EPW area normalized to unoptimized EPW area for a)D-

EPW b)P-EPW c)C-EPW. Tolerances for delay and leakage power are 21% and

311% respectively.
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Figure 2.10: Accuracy of clustering approach for benchmark design MIPS.
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CHAPTER 3

Design-Aware Mask Inspection

3.1 Introduction

Reticle inspection is a significant contributor to the mask cost. In fact, mask in-

spection is more challenging (and expensive) than mask writing itself [HK08]. High

resolution reticle inspection tools are required to detect every potential printable

defect in order to prevent yield loss, but inspection tools can report a large number

of defects that do not affect yield. As a result post-inspection review of the yield

impact of defects has become very time consuming. This slow, and often manual

inspection flow has a considerable impact on mask cost and turnaround time (TAT).

Hence there is a strong need to improve the inspection flow.

In this chapter we develop a methodology to assign criticality to different mask

features based on their design impact. Mask inspection tools can use this information

to adapt their resolution locally for different regions without missing any critical

defects, thereby saving inspection time. We now present a brief introduction of

current mask inspection methodology, followed by a survey of some related work

and a summary of our contributions.

3.1.1 Mask Inspection Primer

A comprehensive inspection of the reticle must be done by the mask shop before

sending it to the fabs. The basic steps of inspection are shown in Figure 3.1.

Initially the reticle is passed through an inspection tool such as KLA-Tencor’s

Terascan [DMI08] or NEC’s LM series [MBM08] which takes an image of die on
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Figure 3.1: Key steps of reticle inspection

the mask and compares it to a reference database or another die (die-database or

die-die modes). The difference between the two image intensities is found and if the

difference exceeds a predefined threshold, the difference pattern is labeled a defect.

The inverse of this threshold is referred to as sensitivity. These tools can have a

pixel size as low as 55nm and can detect critical dimention (CD) defects as small as

20nm on the mask at maximum sensitivity (minimum threshold) [DMI08].

Inspection tools can generate a very large number of defects (100+) most of

which do not impact the final design. Defects can be classified as shown in Figure

3.2. A false defect is an incorrect detection reported by the inspection tool due to vi-

bration, misalignment, optical distortion, error in database rendering (die-database

mode), etc. Real defects are caused either due to misalignment or vibration of the

mask writer (CD defects) or contamination of the mask (contamination defects).

Inspection tools typically have different algorithms to detect these two categories of

defects and hence have different sensitivities for these defects. Many real defects do

not print on the wafer. Among printable defects, some lie on non-critical regions of

the design such as dummy fill or redundant vias. Only a small fraction of the defects

reported by the inspection tool really matter. All the non-printable and non-critical

defects are also called nuisance defects. Reducing the number of false+nuisance

defects reported by the inspection tool is essential to reduce inspection cost. Re-

ducing nuisance defects is particularly important to maskshops as it impacts first

pass yield, which is the fraction of total masks manufactured that can be shipped

without repair or detailed review.
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Figure 3.2: Various categories of defects reported by an inspection tool

The next step in mask inspection is defect review where each defect reported by

the inspection tool is checked to find out if it really matters. False, non-printable and

non-critical defects are filtered out during this step. Images of defects reported by

the inspection tool are analyzed using software tools [PLC03, KAC01] or manually.

Often defect images need to be recaptured at a better resolution. For this the

inspection tool could be reused (online review) or an e-beam inspection is employed

[KLZ08]. After pruning out a significant fraction of false/non-printable/non-critical

defects the mask is passed through an aerial imaging tool. Aerial image measurement

system (AIMS) [DZB06] is essentially a hardware emulator of the wafer stepper

that operates at optical settings similar to the stepper and gives a very accurate

estimate of the printability of defects. Although extremely accurate, AIMS is slow

and cumbersome. Hence, minimizing the number of defects that have to pass through

AIMS tools is important in order to ensure reasonable turnaround time. Defects

which are found to be printable by the AIMS tool are then either repaired or if

they are unrepairable the reticle must be replaced. The repaired or replaced reticle

must again go through this inspection cycle. Because of the manual steps and use

of AIMS tool, defect review is typically the slowest part of reticle inspection.
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3.1.2 Related Work

There has been considerable work to improve mask manufacturing by using design

intent though most of it has focused on OPC. For instance, Banerjee et. al. [BEL08a]

use estimates of on/off current of transistors, based on simulated resist contours, to

reduce OPC runtime and mask complexity. Zhang et al. [ZA07b] modeled the im-

pact of corner rounding in printed transistors on saturation current and integrated

their model into an OPC framework. Similarly, [THT08, KNO07] used device per-

formance estimates to tune the aggressiveness of optical correction achieving up to

93% reduction in mask complexity. Gupta et. al. [GKS07b] use electrical and de-

sign metrics to reduce OPC runtime and mask write cost. In chapter 2, we used

estimates of design metrics like delay and power to improve the evaluation of pro-

cess window. These approaches indicate that considerable benefit can be derived by

using design intent to reduce the inherent pessimism in various mask manufacturing

steps, including inspection.

The traditional approach to mask inspection discussed in the previous section

does not use any design information to assess the criticality of defects. Defect dis-

position is done only on the basis of printability which is determined using software

tools like Virtual Stepper [PLC03, KAC01] along with AIMS emulation [DZB06].

It assumes that all printable defects larger than a threshold size (say 10% of mask

CD) are critical. If design information is available to maskshops, they may be able

to avoid the expensive process of repair/replacement of the mask due to printable

but non-critical defects. Design information can also be used to reduce false and

nuisance defects reported by the inspection tool.

Communicating design intent to the inspection tool in the form of additional

control layers has been suggested before [VHR03, HLE08, TTN08]. Mask shops can

use design information to lower the inspection sensitivity of non-critical regions in

order to reduce the number of false+nuisance defects. Hedges et al. [HLE08] have

shown that up to 100× reduction in nuisance defect count is possible just by using

variable sensitivity during reticle inspection. Current inspection tools allow the user
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to define inspection sensitivity on a per pixel basis. But memory requirements to

store this sensitivity information are impractical since a reticle can have up to 1012

pixels. These approaches assume that maskshops know the design criticality of the

layout which is rarely the case. Driessen et al [DGS08] analyze a post-OPC layout

to extract some non-critical features in the absence of any design data. Stoler

et al [SRM07] extract some criticality information as part of Manufacturing rule

check(MRC). Both these approaches focus on extracting assist features from the

layout which are a major source of nuisance defects.

3.1.3 Our Work

The key contributions of the work described in this chapter is as follows:

• We develop a graph based algorithm to locate non-functional features (redun-

dant and dummy features) in a post-OPC layout (flat and 10× more complex

than pre-OPC layout) in the absence of any design information.

• We assign minimum defect size that impacts the design to each feature of

the reticle for both CD and contamination defects. This is inferred using the

timing slack of critical paths and the location of non-functional features found

using the method mentioned above. This analyis is done for polysilicon, active,

contact and all the backend layers.

• Using the minimum defect size of each feature of a reticle, we partition the

layout using a recursive algorithm, where each partition is assigned a different

pixel size and sensitivity to minimize false + nuisance defects. First order

models for false and nuisance defects are developed to do this partitioning.

• We develop a model to estimate first pass yield of masks and show the im-

provement achieved by our design-aware mask inspection.
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3.2 Non-Functional Feature Finding

In this section, the following problem is explored: Given a post-OPC layout identify

non-functional features of the layout. We focus on locating redundant vias and

dummy fill geometrically. Other non-functional features such as non-tree routes and

assist features can also be found using our graph based methodology, but are not

explored in this work. The layout is assumed to have only rectilinear shapes, and

that floating dummy fill in different metal layers are not connected through a via1.

This is consistent with most commercial fill synthesis tools.

In order to identify non-functional features, we first fracture the layout into

rectangles. A scan-line based algorithm is used to construct a neighborhood graph

for these rectangles. The neighborhood graph is then simplified using some edge

contraction operations. This reduced neighborhood graph (RNG) can then help

identify dummy fill and redundant vias. The various steps of our approach are

detailed below.

3.2.1 Algorithm Steps

• Fracturing Polygons: The rectilinear polygons are fractured into rectangles us-

ing a simple horizontal slicing method [GG83]. The rectangles are then stored

in different sets based on their layer. For example, a rectangle corresponding

to a Metal 2 shape is stored in two sets, M2V1 and M2V2. A set MiVj corre-

sponds to all rectangles belonging to same/adjacent metal or via layers, where

a via layer Vj connects metal layer Mj and Mj+1
2.

• Neighborhood Graph Construction: The new layout with fractured polygons is

used to construct an undirected Neighborhood Graph, G(V,E) in which every

rectangle of the fractured layout corresponds to a vertex and edge (u, v) ∈ E
if the two corresponding rectangles are physically in contact with each other

1This constraint can be relaxed, if needed.
2Although storing each rectangle twice leads to redundant computation, we actually found this

method be be faster than storing all the rectangles in a single set due to smaller interval+segment
tree size during scan-line.
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in the layout.

A scan-line based one-pass, optimal algorithm is used to solve the rectangle

intersection problem as described in [SW80]. The problem is reduced to two

subproblems, an interval query and a point query. Interval tree and range

tree are two “semi-dynamic” tree data-structures that are used to solve this

problem [CLR01]. We shall refer to these two sets of trees as scan-line trees. A

separate scan-line is used for each set MiVj but there is a single graph for the

entire layout. Both these trees can perform INTERSECTSEARCH3, INSERT

and DELETE operations in O(log(m)), where m is the number of nodes in the

tree [CLR01].

• Edge Contraction: All neighboring vertices of the Neighborhood Graph that

correspond to rectangles of the same layer are merged. At the end of this

operation each vertex has an edge only to vertices belonging to an adjacent

layer. Hence, a vertex corresponding to Metal 2 in RNG will have edges only

to vertices of Via 1 or Via 2 and so on.

• Graph Analysis: Floating fill is identified by looking for isolated vertices. Cy-

cles in the RNG correspond to redundant vias which can be identified using

depth first search (DFS). Double and even multi-cut vias can be identified by

scanning the reported cycles and identifying the set of vias connected to the

same pair of metal layer vertices in RNG.

3.2.2 Runtime Improvement Techniques

• Routing-Aware Scan-Line: The routing direction of each set of rectangles,

MiVj can be found by taking the larger of the average length and width of

all rectangles in the set. If the routing direction is X (Y) we define y (x)

coordinates of the rectangles as scan-line events so that the average duration

3INTERSECTSEARCH returns all rectangles stored in the scan-line tree that intersect the
input rectangle and constructs edges in the neighborhood graph between the input and all returned
rectangles
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for which a rectangle needs to be stored in the tree reduces, thus improving

INTERSECTSEARCH time.

• Shape Simplification: The complexity of layout features increases tremendously

after OPC. This results in a large number of rectangles after fracturing and

slows down the algorithm presented in Section 3.2.1. Before fracturing the

polygons into rectangles, we perform shape approximation on the post-OPC

polygons to reduce the number of rectangles created after fracturing. We

create two sets of buckets for the coordinates of each polygon. Each point is

included in two buckets, one in x-direction and another in y such that x (or

y) coordinate of each point in a bucket is within a certain threshold distance

of others. All the x (or y) coordinates of a bucket are then changed to the

average x (or y) coordinate of the corresponding bucket. This approach reduces

small deviations along a straight line as shown in Figure 3.3 and hence reduces

rectangle count, while preserving connectivity.

Figure 3.3: Shape simplification for a distored T-shape

Algorithm 1 summarizes the entire algorithm. Figure 3.4 illustrates the complete

algorithm for a sample double via.

We can now analyze the runtime complexity of our approach. If a layout has N

rectangles, then the neighborhood graph construction can be done in O(Nlog(N) +

E) time, where E is the number of intersecting pairs of rectangles [SW80]. The neigh-
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borhood graph has N vertices and E edges. We can sort the vertices in O(Nlog(N)),

and perform edge contraction in O(E). RNG will then have N ′ vertices (N ′ < N)

and E ′ edges (E ′ < E). N ′ and E ′ depend on the particular design layout and the

aggresiveness of OPC. We can then perform DFS on the RNG to identify redun-

dant vias and dummy fill in O(N ′ + E ′) time. Hence, the overall complexity of our

approach is O(Nlog(N) + E).

Figure 3.4: Illustration of various steps of non-functional feature finding

3.3 Criticality Assignment

This section focuses on the following problem: Given the timing of critical paths and

non-functional features identified in the previous section , find the minimum size

reticle defect at each location in the layout which can cause failure.

On the basis of geometry, reticle defects are classified as pindots, pinholes, in-

trusion and extrusion. Intrusion and extrusion defects are considered CD defects.

Pindots and pinholes are usually classified as contamination defects. These two cat-

egories of defects are detected using different approaches and hence we treat them

separately during criticality assignment. Apart from the size, type and location of

defect, CD impact of a defect on the wafer also depends on the type of reticle (bright-

field or dark-field), type of resist (positive or negative) and mask error enhancement

factor (MEEF) at the defect location.

Reticle and resist type depends on the mask layer under consideration. MEEF,

on the other hand, changes within a mask itself. It is a function of neighborhood

mask features and the optical parameters of the lithography system. There are three
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Algorithm 1 Non-functional feature finding

Require: Shapes of all metal and via layers, S.

1: for all Shape s ∈ S do

2: SHAPE-SIMPLIFICATION(s)

3: Set of rectangles, Bs = FRACTURE(s)

4: Store Bs in set MiVj corresponding to shape layer

5: end for

//EVENT DEFINITION

6: Find routing direction R of each rectangle set, MiVj

7: if Routing direction R is X(Y) then

8: Store bottom(left) and top(right) of each rectangle in set as separate events

in Eij.

9: end if

//SCAN-LINE

10: for all Events e ∈ Eij for each set Eij do

11: if e is bottom(left) then

12: INTERSECTSEARCH(Scan-line Tree, e.rect)

13: INSERT(Scan-line Tree, e.rect)

14: else

15: DELETE(Scan-line Tree, e.rect)

16: end if

17: end for

//EDGE CONTRACTION

18: Edge Contract G(V,E) to obtain RNG G(V ′, E ′)

//GRAPH ANALYSIS

19: Mark all isolated vertices as dummy fill

20: Find cycles in G(V ′, E ′) using DFS to detect redundant vias
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potential methods of accounting for MEEF in criticality assignment, which we shall

explore further in Section 6.5:

• Rely on modern inspection tools that support adaptive thresholding, i.e. the

threshold value is dynamically changed by the tool depending on online MEEF

estimation [DMI08]. In this case, we can choose MEEF=1 since the inspection

tool can adjust for it.

• Find the worst case MEEF (across process window) for all fragments for each

mask shape through lithographic simulation and assign a MEEF value to each

mask shape.

• Find the worst case MEEF for the entire mask for each layer type and use that

value for assigning criticality of every shape of that reticle.

Note that our criticality analysis is focused on binary defects only. Phase defects

are not considered since defect data from a commercial maskshop suggests they are

rare4. A square approximation is used to model defect shape (similar to most critical

area analysis methods).

Details of criticality assignment for different reticle layers is detailed in the the

following sub-sections. For the polysilicon layer, we use the timing slack of various

paths to assign the minimum size defect for each polysilicon shape corresponding to

a transistor pair (PMOS+NMOS) on the critical path. Since defects are very small

compared to layout shapes, we assume that their impact on parasitic or coupling

capacitance is negligible for all layers. Minor change in dimensions of back-end layer

shapes do not affect circuit metrics like delay or power, as shown in [CGG10b].

Hence prevention of opens or shorts is the only concern for assigning criticality to

back-end layer reticles. As a result we only utilize location of redundant vias and

dummy fill to assign minimum size defect for via and metal layers, respectively. For

all our analysis, we assume that assigning a tolerable defect size of 20% the minimum

width/space design rule is sufficient to prevent shorts or opens5. We also assume

4In data for over 700 reticles, we did not see any phase defects
5For simplicity and pessimism we use minimum DR values instead of using exact design values.
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that a single layout shape is not affected by more than one defect since

mask defect density is typically very low (order of few tens of defects for

a full reticle). Table 3.1 lists the notation used in this section.

Table 3.1: Glossary of terminology used in this section

Term Definition

a Size of square defect

amin Minimum detectable defect size of the inspection tool

Wmin Width design rule of given layer

Smin Spacing design rule of given layer

DfCD
min Minimum tolerable CD defect

DfCon
min Minimum tolerable contamination defect

3.3.1 Polysilicon Layer

Polysilicon layer printing typically uses bright-field masks with positive photoresist.

The impact of different reticle defect types is illustrated in Figure 3.5 and summa-

rized in Table 3.2.

Table 3.2: Design impact of different defect types in polysilicon layer

Type Gate Length Design Impact

Intrusion Decrease Open/Delay Decrease

Extrusion Increase Short/Delay Increase

Pinhole Decrease Open

Pindot No change None

Since extrusion defects can cause timing failure, we must estimate the minimum

size of an extrusion defect that can cause timing failure. Consider an extrusion

defect as shown in Figure 3.5. In order to estimate the delay change caused by this

defect, the transistor is sliced into three parts (similar to [CGG10b]) to estimate

the effective W
L

as shown in Equation 3.1. Using first order transistor models, we
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Figure 3.5: Illustration of various defect types on polysilicon layer

can then estimate the change in drive current caused by this defect, which is then

used as a pessimistic approximation of change in cell delay as shown in Equation

3.2. Assuming that at most K defects lie on a critical path6, we can evaluate the

minimum defect size that changes the delay of each affected transistor by less than

Tslack/K and hence ensure timing correctness of the path. Here, the timing slack

must be obtained from a timing report that designers need to pass on to mask

shops. The maximum tolerable defect size, acritical can then be estimated as shown

in Equation 3.3, with an additional guardband of αcycle to allow for other sources of

variation.

(

W

L

)

new

=
W1

L
+
W2

L
+

a

L− a (3.1)

△Delay
Delaynom

= −△
W
L

W
L

=
a2

WL
(3.2)

acritical = amin if Tslack < αcycle

=

√

(Tslack − αcycle)/K

Delaynom

WL otherwise (3.3)

To guardband against process variations downstream, we set the minimum defect

size as 20% the width (opens) and spacing (shorts) dimensions. We assume that

pinholes do not have any parametric impact and can only cause an open if they are

6A critical path typically consists of only 20 − 50 transistors and hence the area occupied by
a critical path is very small compared to the area of the chip. We take K = 10 as a pessimistic
value.

48



bigger than the gate length. Hence, we can assign the minimum size of CD defects

and contamination defects for any polysilicon feature as shown in Equation 3.4 and

Equation 3.5, respectively.

DfCD
min =

min(0.2Wmin, 0.2Smin, acritical)

MEEF
(3.4)

DfCon
min =

0.2Wmin

MEEF
(3.5)

3.3.2 Active Layer

The potential impact of any active defect is determined by the location of the defect

relative to an overlapping polysilicon or contact shape as shown in Figure 3.6.

Figure 3.6: Illustration of various defect types on active layer

Active layer is usually patterned using brightfield masks with positive photoresist.

Hence, we can summarize the design impact of any defect on an active layer reticle as

shown as Table 3.3. Note that an intrusion defect on the active layer reticle can cause

change in delay of a transistor if it lies on the overlap area with poly. Although the

exact analysis would require TCAD simulations, we make the pessimistic assumption

that an intrusion defect of size a reduces the transistor width by the same amount.

Hence, we can calculate the maximum defect size that does not cause timing failure

using a similar analysis as that of the polysilicon layer, as shown in Equation 3.6,
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3.7 and 3.8.

(

W

L

)

new

=
W − a
L

(3.6)

△Delay
Delaynom

= W (
1

W − a −
1

W
) (3.7)

acritical = amin if Tslack < αcycle

= W

(

Tslack − αcycle/K

Delaynom

)

otherwise (3.8)

Table 3.3: Design impact of different defect types in active layer

Type Design Impact

Intrusion Delay Increase

Extrusion Active short

Pinhole Contact/Polysilicon Open

Pindot No impact

Pindot defects have no impact but pinhole defects can cause an open contact or a

malfunctioning transistor7. The maximum tolerable pinhole defect size is therefore,

determined by polysilicon/contact design rules since it can cause an open contact

or transistor. Extrusion defects do have not have a significant impact unless they

cause a short with another active shape.

Based on the above analysis, we can assign maximum acceptable defect size

for CD and contamination defects as shown in Equation 3.9 and Equation 3.10,

respectively.

DfCD
min =

min(0.2Wmin, 0.2Smin, acritical)

MEEF
(3.9)

DfCon
min =

min(0.2W poly
min , 0.2W

contact
min )

MEEF
(3.10)

7Modeling the delay change on a transistor due to a pinhole defect on the transistor also requires
more elaborate TCAD based simulation study and is not dealt with in this work.
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3.3.3 Metal Layer

Dark-field masks with positive resist are typically used to make trenches for de-

positing copper (dual damascene process). The impact of various types of defects is

shown in Table 3.4.

Table 3.4: Design impact of different defect types in metal layer

Type Wire Width Design Impact

Intrusion Increase Short

Extrusion Decrease Open

Pinhole No change None

Pindot Decrease Resistance Change

Small changes in back-end layers are known to have little impact on timing

[CGG10b]. Hence, we focus only on opens and shorts for assigning criticality to

metal layer shapes. Dummy fill do not have any design impact and can be assigned

a relaxed defect size tolerance for both CD and contamination defects. Hence for a

non-dummy metal layer feature, minimum defect size for CD defects and contami-

nation defects can be assigned as shown in Equation 3.11 and Equation 3.12.

DfCD
min =

0.2min(Wmin, Smin)

MEEF
(3.11)

DfCon
min =

0.2Smin

MEEF
(3.12)

3.3.4 Contact and Via Layer

Dark-field masks with positive resist are typically used to print via layer. Impact

of various defect types on via layer is summarised in Table 3.5 and shown in Figure

3.7.

Similar to metal layers, we assume that the impact of mask defects on electrical

metrics is negligible and we only consider opens and shorts while assigning criticality.

Note that regions where the non-fill shapes on adjacent metal layers overlap must

be assigned minimum detectable defect size of the inspection tool for contamination
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Table 3.5: Design impact of different defect types in via/contact layer

Type Via Width Design Impact

Intrusion Increase Short

Extrusion Decrease Open/Resistance Increase

Pinhole None Metal Short

Pindot Decrease Resistance Increase

Figure 3.7: Illustration of different defect types on via layer

defects since even the smallest pinhole defect could cause a short. Similar to the

other layers, 20% change in via area is taken as the constraint to assign defect size for

CD and contamination (pindot) defects. Redundant vias will have a larger tolerance

for defects. We can write the minimum size defects for a set of mXn redundant vias

(m = 1, n = 1 for single via) as shown in Equation 3.13 and Equation 3.14.

DfCD
min =

0.2max(m,n)min(Wmin, Smin)

MEEF
(3.13)

DfCont
min =

0.2max(m,n)Wmin

MEEF

= amin for metal intersect regions (3.14)

3.4 Modeling the Inspection Process

In this section, we develop a model for two key inspection tool properties; resolution

and defect count. Defect count of the inspection tool is sub-divided into false defects

and nuisance defects. All these properties are modeled in terms of pixel size and

sensitivity, which are the two key tunable parameters for mask inspection. In addi-
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tion to this, we develop a model to estimate first pass yield, which is a key metric

that determines mask cost.

3.4.1 Resolution

The resolution of any digital imaging system scales linearly with pixel size. Also,

increasing the sensitivity helps in detecting smaller features. Hence, for an inspection

with pixel size, pix and sensitivity S, we shall model resolution as shown in Equation

3.15 for both CD and contamination defects. Current inspection tools are capable

of inspecting a 20nm defect (on the mask) which corresponds to 5nm on the wafer

(MEEF=1) at a pixel size of 55nm and sensitivity of 100 [DMI08]. Hence, we take

Kc ≈ 9 for our experiments8.

Rmin = Kc
pix

S
(3.15)

3.4.2 Defect Models

3.4.2.1 False Defects

Due to the presence of random temporal noise9, the intensity falling on each pixel

of the inspection tool sensor during image capture can be modeled as a Gaussian

random variable as shown in Equation 3.16, where p(I) is the probability of the

intensity value being equal to I, Im is the average intensity at the pixel under

consideration and σ is the temporal noise [Nak05].

p(I) =
1√
2πσ

e−
(I−Im)2

2σ2 (3.16)

Now, suppose die-to-database inspection is done with optimum biasing settings such

that intensity at each pixel of the reference database is equal to mean intensity of

the corresponding mask. Let us assign the threshold for intensity as T , i.e. any pixel

is labeled as a defect if |I − Im| > T . Hence the probability of a particular pixel

8Kc is slightly different for CD and contamination types of defects but we assume a constant
value for simplicity.

9We assume that fixed point noise sources can be compensated for by post-capture image
processing
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being labeled as defective due to the Gaussian noise is given by Equation 3.17.

P (defect) = 1−
∫ Im+T

Im−T

p(I)dI = 2erfc

(

T√
2σ

)

(3.17)

The various components of temporal noise in a typical CCD sensor are reset

noise, shot noise and read noise. Reset noise is typically compensated by correlated

double sampling. The most critical component of noise is shot noise, comprising

dark current and photon shot noise [Nak05]. We assume that the inspection system

is photon noise limited. Photon noise is caused due to the randomness in the number

of photons exposed to each pixel. The number of photons falling on a pixel follows a

Poisson distribution [Nak05]. Hence, we can model the noise σ as shown in Equation

3.18, where Nsig is the number of photons falling on a pixel, K, Kn are constants

and pix is the pixel size of the sensor used in the inspection tool.

σ = Noise = K
√

Nsig = Knpix (3.18)

Apart from changing the pixel size for inspection, mask engineers can also adjust

sensitivity which is related to the threshold for detection of defects. Increasing

sensitivity corresponds to reduction of threshold and greater false defect count. For

simplicity, we assume that sensitivity is inversely proportional to threshold. The

value of threshold also depends on the background intensity that falls on each pixel,

which is proportional to the pixel area. Hence, T = Ktpix
2/S, where S is the

sensitivity used for inspection. Using this, we can estimate number of false defects

as shown in Equation 3.19.

FalseDefects = Ka
A

pix2
erfc

(

Ktpix
2/S√

2Knpix

)

= Ka
A

pix2
erfc

(

Km
pix

S

)

(3.19)

Now since CD and contamination defects are flagged using different algorithms

whose sensitivity can be set independently [DMI08], we calculate false defects re-

ported by the two methods separately to get the overall false defect count of the

inspection tool as shown in Equation 3.20, where KCD, KCon, KCD
m , and KCon

m are

constants that depend on the inspection tool.

FalseDefects =
A

pix2
(KCDerfc

(

KCD
m

pix

SCD

)

+KConerfc

(

KCon
m

pix

SCon

)

) (3.20)
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We used a commercial maskshop’s inspection data from over 800 reticles with in-

spection area ranging from 8000− 15000mm2, pixel size ranging from 72− 250nm,

and sensitivities ranging from 75− 100 to fit these parameters to get KCD = 30.33,

KCon = 34.21, KCD
m = 0.071 and KCon

m = 12.99 if the inspected area is taken in

mm2 and the pixel size in nm.

3.4.2.2 Nuisance Defects

The number of nuisance defects depends on the design and the total number of real

defects, which are the non-nuisance defects. Assuming that the defect distribution

for a reticle follows the same negative binomial distribution as wafer defects10, we can

derive a model for the total number of real defects for a reticle of area A, inspected

with pixel size p and sensitivities SCD and SCon using Equation 3.21.

RealDefects = A×
∑

DefectTypes

∫ ∞

Rmin

K2

Dβ
dD = A×

∑

DefectTypes

K2

β − 1

(

Kc
p

S

)β−1

= A× TCD
( p

SCD

)βCD−1

+ A× TCon
( p

SCon

)βCon−1

(3.21)

The constants were fitted using the same maskshop data used to fit false defects to

obtain TCD = 0.0002555, βCD = 1.3, TCon = 0.00008208 and βCon = 0.88. Note

that this measure of real defects considers both critical and nuisance defects.

3.4.3 First Pass Yield

First-pass yield of masks is defined as the number of masks that can be passed

without any repair/review. This is the most important metric for mask shops as

it strongly dictates the manufacturing cost of masks. In this section, we develop a

simple critical area based methodology to estimate first pass yield.

Let us assume that the defect distribution on the mask is P (r), which corresponds

to the probability of a defect to be of size r. Let the maximum defect size on the

mask be xM . Let us also assume that the spatial distribution of defects on the mask

10Though there is no published study of reticle defect distribution (to the best of our knowledge),
the similarity of mask writing process to wafer patterning suggests a similar defect distrbution.
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is uniform. If a mask area AM was inspected at a single resolution R, then the

probability that a given defect will be detected by the inspection tool is given by

Pdd in Equation 3.22. Assuming P (r) to be inversely proportional to r3 (similar

to wafer defect distribution) [LD97] and xM → ∞, we can calculate Pdd as shown

in Equation 3.23 and Equation 3.24. We can then calculate the expected number

of defects, Nd and consequently the expected number of detected defects, Ndd as

shown in Equation 3.25 and Equation 3.26, respectively, where Davg is the average

number of defects on the reticle. Assuming that the number of potential defect sites

are very large, we can treat the number of detected defects as a Poisson distribution

with expected value Ndd. Hence, the probability of detecting no defects is given by

Equation 3.27.

Pdd =

∫ xM

R

P (r).dr (3.22)

P (r) =
K

r3
(3.23)

Pdd =
K

2

1

R2
(3.24)

Nd = DavgAM (3.25)

Ndd = PddNd (3.26)

PAM

Y = exp−Ndd (3.27)

If the total mask area is partitioned into N regions of area AM1, AM2, ...AMk, each of

which is inspected at a different pixel size and sensitivity (different resolution), then

the first pass yield of the full mask can be expressed as a product of the probabilities

of no defect detection from any partition as shown in Equation 3.28.

First Pass Y ield =
k=N
∏

k=1

PAMk

Y (3.28)

3.5 Partitioning

In this section, we present a method to partition the reticle where each partition is

assigned a pixel size and sensitivity such that the number of false+nuisance defects

reported by the inspection tool are minimized without missing any critical defects.
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We wish to perform inspection of different regions of the reticle at different

pixel size and sensitivities. When we perform inspection for a particular pixel size,

partitions marked for inspection at a different pixel size must be labelled as DNIRs

(Do Not Inspect Regions) during the current pixel size inspection. DNIR rules

specify that a DNIR can be as small as one pixel but there is a forty pixel band in

each direction that is not inspected. For our partitioning problem this essentially

means that a partition must have dimensions of at least 80 pixels (recall that multiple

pixel sizes are implemented as multiple scans with DNIRs). For simplicity we assume

the same partition for both pixel size and sensitivity and use the largest pixel size

in our experiments to define minimum dimension of a partition. Hence, the design-

aware reticle partitioning problem can be formally stated as:

Given a reticle with minimum size defect for each feature, create a partitioning

such that a partition j of width Wj and height Hj is assigned a pixel size pj, and

sensitivities SCD
j , SCon

j such that the following function is minimized:

F = FalseDefects+ γ1RealDefects (3.29)

and the following constraints are obeyed:

• Minimum dimension constraint:

min(Wj, Hj) > Lmin (3.30)

• For any feature with minimum size defect DCD and DCon lying in the jth block

of the partition:

DCD > Kc
pj

SCD
j

, DCon > Kc
pj

SCon
j

(3.31)

where γ1 and γ2 are weighting factors of the cost function and Lmin is the minimum

dimension constraint.

We use a recursive partitioning heuristic to reduce the defect count metric. At

any iteration, if we have k partitions, we find an optimal vertical or horizontal split

line that minimizes the defect count for each of the k partitions. Computing the
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false/nuisance defect cost for any partition requires scanning the entire partition

to find the feature with the minimum defect size assigned. This value of tolerance

dictates the resolution for inspection. We then pick the pixel size, sensivitity option

that minimizes the cost while keeping the inspection resolution equal to the minimum

defect size. Note that splitting a partition can never decrease the total defect count.

If both new partitions after splitting have the same value of minimum tolerance

then the cost remains the same. If one of them has a higher tolerance then it can

be inspected at a lower resolution which would reduce false/nuisance defect count.

If a partition has reached the minimum dimension constraint (Lmin) or no split line

reduces the cost then we mark that partition as “optimized” and do not analyze it

in any future iterations. This step helps to improve runtime. To locate the optimal

split line for any partition, we exhaustively search all the potential horizontal and

vertical lines at increments of Lmin and pick the line which minimizes the cost. The

algorithm terminates when all partitions have been labelled as “optimized” or a

fixed maximum number of iterations have been reached. The overall algorithm has

been summarized in Algorithm 2.

3.6 Experimental Results

3.6.1 Non-Functional Feature Finding

We implement our neighborhood graph based algorithm to identify redundant vias

and dummy fill in C++ using OpenAccess (OA) API [oa]. Layouts of some bench-

mark circuits implemented in 45nm Nangate OpenCell library along with the inser-

tion of double vias and dummy fill was done in Cadence Encounter [enc08]. OPC

was performed on the generated GDSII files using Mentor Calibre [cal08]. All the

implementation was done on a 2.0 GHz Intel Xeon machine with 4 GB memory.

The size of the post-OPC benchmark layouts that we considered along with

improvement in the rectangle count due to shape simplification is shown in Table

3.6. The threshold for bucketing was taken as 20nm, which is less than the minimum
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Algorithm 2 Design-aware reticle partitioning for inspection

Require: Criticality value of each shape of reticle, minimum dimension constraint

Lmin.

1: Define partition array P.

2: Initialize P with one partition, the full reticle.

3: while iter < MAX − ITER AND numopt < size(P ) do

4: for all pi ∈ P do

5: if pi NOT “optimized” then

6: Find minimum cost split line SL for pi which reduces cost by ∆Cost.

7: if ∆Cost > 0 then

8: Partition pi using SL to get new partitions piA and piB.

9: Insert piA and piB into P.

10: else

11: pi is “optimized”.

12: end if

13: end if

14: end for

15: Count number of “optimized” partitions in P, numopt.

16: iter + +.

17: end while
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metal width for 45nm FreePDK [fre09]. Around 50% reduction in number of shapes

is observed for the three benchmark circuit layouts considered.

Table 3.7 summarizes the results of redundancy finding for all the layers. Notice

that the benchmark design aesCipher takes a long time despite the small number

of rectangles. This is because the design is heavily congested and has a very large

number of edges in the neighborhood graph. Runtime can be easily improved by

partitioning the layout into smaller blocks and using a separate graph for each

region. The algorithm can also be parallelized easily by running the critical graph

construction step for each set MiVj in parallel. These techniques are left for future

work.

The number of redundant vias and dummy fill reported by our approach are

verified with the number obtained from DEF file of the corresponding design. Double

vias are reported with 100% accuracy by our approach and there is less than 1%

error in dummy fill due to some outliers.

Table 3.6: Rectangle count before and after shape simplification for all layers

Design Name # Gates Area (um2) # Rectangles (before) # Rectangles (after)

Mips 19983 15947 2582260 1591124

AesCipher 11395 19678 2893906 1850315

Nova 62800 169628 20621302 13626203

Table 3.7: Non-functional feature finding results

Design Name # Double Vias # Dummy Fill Runtime (min.) Memory Usage (MB)

Mips 23562 20040 3 1212

AesCipher 24267 5308 683 1143

Nova 156774 144727 135 5888

Table 3.8 shows the percentage non-critical regions for the benchmarks which

indicates the potential benefits that can be derived from design-aware inspection of

metal and via layers. For contact and via layers, we mention the total number of
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contact/vias along with the number of redundant ones. Contact layer has redun-

dancy only at the standard cell level. Since very few Nangate cells have redundant

contacts, the number of redundant contacts is very low. For metal layers, dummy

area is reported as a percentage of the total die area. Higher metal layers typically

have less congestion after routing and hence have a greater percentage of dummy

area. Note that we have not considered active or polysilicon fill and hence the crit-

icality assignment of polysilicon and active layers is based on the slack of timing

critical paths only.

Table 3.8: Layer by layer non-critical regions

Design Via Layer # Vias # Redundant Metal Layer % Dummy Area

Mips

Contact 171272 6 Metal1 3.47

Via1 30737 3140 Metal2 26.54

Via2 40715 29592 Metal3 26.68

Via3 15731 9874 Metal4 42.29

Via4 7666 3056 Metal5 53.37

Via5 2811 1468 Metal6 81.69

AesCipher

Contact 190230 0 Metal1 0.00003

Via1 46857 8987 Metal2 4.0

Via2 52950 27461 Metal3 4.9

Via3 27872 10641 Metal4 11.8

Via4 15854 2022 Metal5 14.3

Via5 10287 1650 Metal6 31.9

Nova

Contact 1399817 62 Metal1 0.0009

Via1 237337 22878 Metal2 19.97

Via2 300009 206249 Metal3 19.69

Via3 104190 58682 Metal4 43.14

Via4 39005 17708 Metal5 58.54

Via5 14897 8054 Metal6 83.63
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3.6.2 Criticality Assignment & Reticle Partitioning

For assigning minimum size defect to each layout feature, we use 45nm design rules

from FreePDK [fre09]. Location of dummy fill and redundant via was used for metal

and via layers, respectively. For polysilicon and active layers, we need slack values

which was obtained from the timing analysis of the post-routed design using Cadence

Encounter [enc08]. The criticality assignment method assumes MEEF=1 unless

otherwise stated. The tolerance guardband, αcycle, used for criticality assignment of

polysilicon and active layers is taken as 1% of the design cycle time

Using the criticality assignment, reticle partitioning was implemented in C++

using OpenAccess API [oa]. From the fitting results of false and nuisance defects,

we found that the false defect count is typically at least 10× the number of nuisance

defects. But nuisance defects are more important to maskshops as they help improve

first pass yield. Hence, we took γ1 = 10 in the cost function for these experiments.

Only two pixel sizes, 72nm and 90nm, were used in our experiments. The minimum

dimension constraint was taken as 2µm, which is slightly larger than dimension of

80 pixels at 90nm pixel size.

We tested our partitioning algorithm for poly, active, contact and all the back-

end layer reticles for the same three designs for which the non-functional features

have been reported. Since the designs we consider are very small compared to real

reticle sizes, we find out the number of copies of these benchmark designs which can

fit on an industrial reticle (104mm × 132mm). Since defect count is proportional

to inspection area, the false and real defect count of one design layout are scaled

by the number of copies of the design on a full field reticle in order to demonstrate

the potential benefits of our approach for a full field reticle. Table 3.9 shows these

results. The false and real defect count after partitioning is compared to the case

where inspection is done at a single value of pixel size and CD and contamination

sensitivities for the entire reticle.

The results of Table 3.9 demonstrate the reduction of false and real defects with

our design-aware inspection methodology. Note that the improvement in the real
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defect count is due to the reduction in nuisance defects only as the partitioning

method is constrained to not miss any critical defects. Highly congested layers with

very few non-critical features such as the lower metal/via layers show little benefit of

design-aware inspection since most areas of the reticle are very critical. Polysilicon

and active layers show significant improvement due to different timing criticality of

various features. Higher via and metal layers, which have a significant amount of

redundancy as shown in Table 3.8, show up to 4× improvement in false and real

defect count. Note that the metal/via layer processing does not require any explicit

timing information while the polysilicon layer leverages it heavily.

Inspection tools typically allow inspection of different mask regions at different

sensitivities in a single scan of the mask. But inspection at different pixel sizes

implies that the reticle needs to be scanned multiple times. Hence, it is important

to evaluate the additional benefit achieved by varying the pixel size over the reticle

area. Table 3.10 compares the false and nuisance defect count after partitioning

using both pixel size and sensitivity as parameters versus using sensitivity as the

only tunable parameter (pixel size taken as 72nm). The results show that pixel size

is a significant knob and using it might be worthwhile despite the need for multiple

scans of the reticle. Note that we retain the minimum partition size constraint for

sensitivity-only case even though it is not a strict requirement as too many partitions

are impractical to store in the inspection tool.

3.6.3 First-Pass Yield

Using the formulation for first pass yield described in Section 3.6.3, we can estimate

the first pass yield if the entire reticle is inspected at a single resolution and compare

it to the design-aware approach of inspecting different regions of the mask at different

resolution. A reticle is assumed to yield only when all copies of the design on the

full field reticle work. Table 3.11 shows the result of this computation for the three

benchmark designs we partitioned. Notice that the improvement in first pass yield
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Table 3.9: Improvement in defect count after partitioning

Design
Layer

Before After Runtime
Name # False # Real # False # Real (sec.)

Mips

Polysilicon 70.59 5.52 39.95 3.48 24
Active 70.59 5.52 38.16 2.37 17

Contact 66.60 3.36 60.44 3.05 157
Via1 66.60 3.36 56.78 2.95 64
Via2 65.94 3.17 57.84 2.83 82
Via3 65.94 3.17 47.90 2.46 68
Via4 56.83 2.07 30.86 1.25 30
Via5 56.83 2.07 14.02 0.65 30

Metal1 42.62 2.80 42.62 2.80 18
Metal2 42.20 2.57 39.37 2.40 30
Metal3 42.20 2.57 40.40 2.46 15
Metal4 36.37 1.14 32.38 1.02 8
Metal5 36.37 1.14 32.56 1.02 8
Metal6 36.37 1.14 22.55 0.72 8

AesCipher

Polysilicon 74.95 5.83 52.60 4.44 42
Active 74.95 5.83 60.72 4.44 22

Contact 70.71 3.54 70.71 3.54 129
Via1 45.24 2.98 44.06 2.91 26
Via2 44.76 2.71 44.48 2.71 36
Via3 44.76 2.71 42.54 2.57 20
Via4 60.30 2.22 33.31 1.04 10
Via5 60.30 2.22 28.73 0.90 8

Metal1 45.24 2.98 45.24 2.98 67
Metal2 44.76 2.71 44.76 2.71 33
Metal3 44.76 2.71 44.76 2.71 41
Metal4 38.58 1.18 38.24 1.18 22
Metal5 38.58 1.18 38.10 1.18 15
Metal6 38.58 1.18 35.39 1.11 15

Nova

Polysilicon 73.86 5.78 44.77 3.90 2132
Active 73.86 5.78 45.74 2.98 801

Contact 69.69 3.51 67.61 3.40 7684
Via1 69.69 3.51 42.02 2.76 1217
Via2 44.16 2.68 42.08 2.56 1000
Via3 68.99 3.32 35.19 2.15 542
Via4 59.46 2.17 19.05 0.65 272
Via5 59.46 2.17 8.89 0.36 548

Metal1 44.60 2.93 44.60 2.93 2444
Metal2 44.16 2.68 43.06 2.62 981
Metal3 44.16 2.68 43.38 2.63 509
Metal4 38.05 1.19 35.78 1.13 236
Metal5 38.05 1.19 33.61 1.06 141
Metal6 38.05 1.19 22.03 0.70 195
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Table 3.10: Comparison of pixel size and sensitivity (P+S) partitioning versus sen-

sitivity only (S) partitioning

Design
Layer

P+S partitioning S partitioning

Name # False # Real # False # Real

Mips

Polysilicon 39.95 3.48 62.34 3.48

Active 38.16 2.37 58.82 2.37

Contact 60.44 3.05 60.44 3.05

Via1 56.78 2.95 57.75 2.95

Via2 57.84 2.83 59.47 2.83

Via3 47.90 2.46 49.98 2.46

Via4 30.86 1.25 33.97 1.25

Via5 14.02 0.65 17.05 0.65

Metal1 42.62 2.80 66.60 2.80

Metal2 39.37 2.40 61.52 2.40

Metal3 40.40 2.46 63.13 2.46

Metal4 32.38 1.02 50.59 1.02

Metal5 32.56 1.02 50.87 1.02

Metal6 22.55 0.72 35.23 0.72
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correlates well with the reduction in real defect count in Table 3.9. For example,

contact and lower metal/via layers show little improvement in first pass yield whereas

poly, active and higher via layers show an increase of 30% in first pass yield in some

cases. The only exception to this similarity is the higher metal layers, which have

a high first pass yield even with the conventional approach and hence only a small

improvement in first pass yield. The reason for this is the relaxed design rules of

the higher metal layers.

3.6.4 Accouting for non-unity MEEF

Our previous results have assumed that the inspection tool can report MEEF-

adjusted defect dimensions [DMI08], hence we used MEEF = 1. In this section, we

do not rely on this feature and instead use a single worst-case value of MEEF for

each reticle layer during criticality assignment. Computing the MEEF value sepa-

rately for each feature would be more accurate but due to the minimum partition

size limitation of inspection tools, it is unlikely to yield much benefit. Hence, we

chose the simplistic approach of applying a single pessimistic MEEF correction for

each layer.

In order to compute MEEF we used Mentor Calibre [cal08] which can compute

MEEF value for each layout fragment separately. Since typical MEEF values are a

function of technology node and OPC recipe, we computed the MEEF for different

layers of a 10µm× 10µm snippet of post-OPC Mips layout and used the worst-case

value across all fragments of this snippet layout. MEEF was computed using this

approach at two defocus values, 0nm and 50nm and the worst case value is chosen.

The MEEF values for different layers are shown in Table 3.12. These values are larger

than previously reported data from the industry [KSJ06, XCP08, CJH06]. This is

due to the lack of a well optimized optical correction recipe, that should include

SRAF insertion and retargeting. Despite this limitation, these MEEF values can be

used to validate the feasibility and potential benefit of our approach in the presence

of high MEEF mask features.
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Table 3.11: Improvement in first pass yield (FPY) with design-aware mask inspec-

tion.

Design Name Layer FPY before (%) FPY after (%)

Mips

Polysilicon 12.74 33.72
Active 12.74 51.71

Contact 29.17 32.69
Via1 29.17 34.00
Via2 31.21 36.08
Via3 31.21 40.94
Via4 42.92 61.81
Via5 42.92 79.14

Metal1 49.32 49.32
Metal2 54.36 56.63
Metal3 54.36 55.79
Metal4 85.87 87.31
Metal5 85.87 87.25
Metal6 85.87 90.98

AesCipher

Polysilicon 11.22 23.50
Active 11.22 21.38

Contact 27.04 27.04
Via1 47.22 48.19
Via2 52.36 52.60
Via3 52.36 54.08
Via4 40.74 86.65
Via5 40.74 87.80

Metal1 47.22 47.22
Metal2 52.36 52.37
Metal3 52.36 52.38
Metal4 85.07 85.19
Metal5 85.07 85.25
Metal6 85.07 86.30

Nova

Polysilicon 11.58 29.55
Active 11.58 41.14

Contact 27.55 28.62
Via1 27.55 49.81
Via2 52.85 54.46
Via3 29.57 60.01
Via4 41.27 90.00
Via5 41.27 93.17

Metal1 47.73 47.73
Metal2 52.85 53.69
Metal3 52.85 53.44
Metal4 85.26 86.10
Metal5 85.26 86.87
Metal6 85.26 91.18
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Table 3.12: Improvement in defect count and first pass yield after partitioning when

MEEF correction applied

Design
Layer Worst-case MEEF

Before After

Name # False # Real FPY # False # Real FPY

Mips

Polysilicon 2 70.59 5.87 8.73 64.15 5.34 10.91

Active 2 70.59 5.87 8.73 63.47 4.71 15.39

Contact 6.5 70.59 5.87 8.73 64.06 5.33 10.94

Via1 5.5 70.59 5.87 8.73 61.21 5.15 11.70

Via2 20 70.59 5.87 8.73 63.67 5.31 11.01

Via3 2.5 70.59 5.87 8.73 53.50 4.56 14.85

Via4 2 65.94 3.17 31.21 35.80 1.95 50.03

Via5 1.5 63.30 2.65 36.91 15.62 0.85 74.91

Metal1 9 70.59 5.87 8.73 70.59 5.87 8.73

Metal2 6.5 70.59 5.87 8.73 65.85 5.48 10.28

Metal3 6 70.59 5.87 8.73 67.58 5.63 9.69

Metal4 9 70.59 5.87 8.73 62.84 5.23 11.41

Metal5 6.5 70.59 5.87 8.73 63.18 5.26 11.28

Metal6 4.5 70.59 5.87 8.73 43.76 3.65 22.06

After correcting for the MEEF values of different layers during criticality as-

signement, results obtained from partitioning are shown in Table 3.12 for a Mips

design. Note that the defect count and first pass yield before partitioning are worse

compared to the case when MEEF = 1. This is expected since the minimum toler-

able defect size across the entire reticle worsens due to larger MEEF values. Despite

the pessimistic and high MEEF values, the results demonstrate the benefits of our

partitioning based design-aware inspection.
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3.7 Conclusions

In this chapter we developed a comprehensive design-aware mask inspection flow. A

summary of the key contributions of this chapter is as follows:

• We proposed a graph based algorithm that finds non-functional features (dummy

fill and redundant vias) in a post-OPC layout with almost 100% accuracy.

• We formulated a method to assign a minimum size defect to each feature of a

reticle for poly, active, contact and all the back end layers.

• We developed a recursive partitioning algorithm to inspect different regions of

the layout with different pixel size and sensitivity and up to 4× reduction in

nuisance and false defects was observed along with up to 4× improvement in

first pass yield coming from reduction in nuisance defects.

We also demonstrated the importance of pixel size as a paramater in achieving

the full benefit of design-aware inspection. Despite the overhead of additional scans

of the reticle for each pixel size, the significantly lower defect count suggests that it

is a parameter that needs to be exploited in any design-aware inspection flow.

The design-aware methodology that we proposed can be applied easily by captive

mask shops since they have access to the design database. Merchant mask shops

would need additional information from their customers in the form of either timing

report for front-end layer reticles or the database of all the back-end layers so that

redundant and dummy features can be identified. In case mask shops cannot get

access to design database and are limited to die-die inspection mode, the criticality

partitioning can be done at the design end.

In the future, we plan to test our approach in an actual commercial mask shop

and explore the implications of our methodology if all mask layers are not avail-

able. Only amplitude defects are dealt with in this work. We plan to extend this

methodolody to model the design impact of phase defects as well.
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CHAPTER 4

Benchmarking of Mask Fracturing Heuristics

4.1 Introduction

Photomasks are one of the most significant contributors to semiconductor manu-

facturing cost. The use of aggressive resolution enhancement techniques (RETs)

has made mask manufacturing extremely expensive and challenging. Moreover, the

number of critical masks required for a particular design has increased due to the

use of multiple patterning. As a result, controlling the cost of mask manufacturing is

urgently needed to sustain benefits derived from Moore’s-Law scaling of patterning

technologies.

Masks are fabricated using variable-shaped electron beam (VSB) writing tools.

These tools directly expose shots, i.e., axis-parallel rectangles of different sizes. Mask

fracturing is used to obtain a set of shots from the mask pattern, which can then

be input to a VSB tool. Since the total shot count strongly affects mask fabrication

time, the key objective of mask fracturing tools is to minimize the number of shots.

Traditionally, mask fracturing has been formulated as rectilinear polygon parti-

tioning, which is a very well-studied problem. Imai and Asano propose anO(n1.5 log (n))

algorithm to optimally partition a polygon into the smallest number of rectangles

[?]. Since such theoretical approaches are unable to handle additional manufactur-

ing constraints such as minimization of slivers, Kahng et al. [?] propose an ILP

based fracturing method. A faster heuristic based on selection of rays from concave

corners is also proposed by the same authors [?]. Jiang and Zakhor propose a re-

cursive algorithm to minimize a weighted sum of shot count and slivers [?]. Ma et

al. propose a rectangle combination technique to minimize sliver length along with
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shot count [?].

Due to aggressive RET techniques such as ILT, mask shapes are now often curved

and non-rectilinear [?] [?]. Fracturing these polygons using traditional methods with

acceptable fidelity can dramatically increase the shot count [?]. To manage the shot

count of such complex patterns, Chua et al. propose model-based fracturing [Chu11],

which is also often referred to as model-based mask data preparation (MB-MDP).

Two key features of model-based fracturing distinguish it from traditional mask

fracturing:

(i) shots are allowed to overlap, which allows greater flexibility in determining

shot locations and hence lower shot count; and

(ii) e-beam proximity effects in VSB mask writers are simulated during the mask

fracturing itself to ensure that the final pattern on the mask accurately matches

the intended target.

A consequence of allowing overlapping shots is that model-based mask fracturing

becomes similar to the rectilinear covering problem, which is known to be NP-

hard [CR88]. In fact, there is no known constant-factor approximation algorithm

for rectilinear covering [Aro03] [?]. For polygons which are convex in vertical or

horizontal direction, Franzblau and Kleitman propose a quadratic-time algorithm

to solve the covering problem optimally [FK84]. But, ILT shapes are rarely convex

in vertical or horizontal direction. For hole-free polygons that do not obey this

convexity constraint, Wu and Sahni propose several heuristics that guarantee covers

that do not have more than twice the optical number of rectangles [?]. Franzblau

propose an approximation algorithm with strong bounds for any rectilinear polygons

[Fra89]. The need to correct for proximity effects means that these methods cannot

be used for mask fracturing.

In addition to overlapping shots and proximity effect correction, Galler et al.

propose to adjust the dose of each shot independently [?]. . The use of L-shaped

shots for reducing shot count has been suggested by Yu et al. [YGP13]. The use
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of circular shots [FKK10] [?] or shots with 45o edges [?] has also been proposed.

Elayat et al. [?] analyze the benefits and disadvantages of different mask fracturing

strategies. They conclude that, among the alternatives studied, model-based mask

fracturing with fixed dose is the most viable candidate for improvement of shot count

without significant changes in mask writing tools. Hence, in this work we focus on

the fixed-dose problem.

Jiang and Zakhor propose an algorithm based on matching pursuit to solve frac-

turing problem [JZ11]. The same authors also propose a greedy approximate cover-

ing algorithm that grows rectangles from convex vertices of a target polygon [JZ14].

Although both these heuristics allow the shot dosage to be adjusted, the method can

be extended to solve the fixed-dose problem. Lin et al. present a comparison of a few

different heuristics to solve the model-based fracturing problem [?]. Although these

recent works on model-based mask fracturing have demonstrated improvements in

shot count over traditional partitioning-based approaches, the gap between existing

methods and optimal solutions remains unclear.

Benchmarking of heuristics used to solve NP-hard EDA problems such as place-

ment [CRX03][?], gate sizing [?] and partitioning [?] enables the development of

better methods for solving these problems. The goal of our present work is to en-

able the benchmarking of model-based fracturing as a foundation for further research

towards more effective heuristics. To the best of our knowledge, this is the first work

that attempts to benchmark model-based mask fracturing. The key contributions

of this work are the following:

• We propose an ILP formulation to optimally solve the model-based mask frac-

turing problem. We then develop a branch and price method that, in practice,

generates strong upper and lower bounds for benchmarking.

• To deal with the slow running time of ILP-based benchmarking, we propose a

systematic method to generate benchmarks with known optimal shot count.

• To make the benchmark generation more realistic, we propose an automated

benchmark generation method that takes a real ILT shape as input and creates

72



a benchmark with known optimal shot count that looks similar to the input

shape.

• Using the above methods of benchmarking, we evaluate the suboptimality

of three mask fracturing heuristics: greedy set cover, matching pursuit and

a state-of-the-art prototype [version of] capability within a commercial EDA

tool for e-beam mask shot decomposition.

The rest of this paper is organized as follows. Section 4.2 defines the mask

fracturing problem. Section 4.3 describes heuristics for solving the mask fracturing

problem that we shall benchmark in this work. Section 4.4 proposes an ILP-based

method to obtain tight upper and lower bounds on the optimal shot count. Sec-

tion 4.5 introduces our method for benchmark generation with known minimum shot

count. Section 4.6 presents a method to automatically generate benchmarks with

known minimum shot count which are similar to an input mask shape. Section 5.6

concludes the paper. We summarize the key notation used in this work Table 4.1.

4.2 Mask Fracturing Problem

The goal of mask fracturing is to find the minimum number of rectangular shots

required to construct a mask target shape. Although each shot is rectangular, the

e-beam proximity effect blurs its boundary [Chu11]. As a result, the developed mask

pattern is different from the union of rectangular shots. Note that the blurring due to

the e-beam proximity effect is significantly smaller than the spacing between different

shapes. Hence, each shape in the mask can be fractured independently. Moreover,

to better understand which target shapes are more challenging, the suboptimality

of mask fracturing heuristics should be evaluated for individual mask target shapes

rather than for the entire mask.

We define S as the set of all possible candidate shots that could be used to

reconstruct the target shape tori, i.e., the dictionary of candidate shots. S consists

of all the different shot sizes ranging from Wmin to Wmax with shot size granularity
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Table 4.1: Glossary of Terminology

Term Meaning

S
Set of all possible candidate shots with differ-

ent sizes and locations to fracture target shape

(x, y) Coordinates of particular point on the mask

p(x, y) Pixel at coordinate (x, y) for sampled mask

shape

σ Parameter characterizing the spreading of the

e-beam

s Particular candidate shot under consideration

I(x, y, s) Intensity at pixel p(x, y) due to shot s

W (s), H(s) Width and height of shot s

ρ Threshold value for e-beam resist

tori Target mask shape to fracture

γ CD tolerance limit for fracturing

Pd Set of pixels lying within distance γ of bound-

ary of tori

P1(P0)
Set of pixels within (outside) the closed bound-

ary tori not belonging to Pd

Smin(tori)
Minimal set of shots used to fracture tori (De-

pends on γ, σ, ρ as well, but not shown for

brevity)

Wmin(Wmax) Minimum (Maximum) shot size allowed

∆ Shot size granularity

∆MP Shot size granularity used in matching pursuit

heuristic

I(x, y)
Total intensity at p(x, y) due to all shots in

current fracturing solution

zs

0−1 indicator whether candidate shot s is part

of fracturing solution

W (tori), H(tori) Width and height of bounding box of tori

Bv(Bh) Vertical (horizontal) boundary segments of

tori

bi ith boundary segment

tori,i ith split-shape of tori

λ∗
p Value of dual variable at pixel p(x, y)

Pneg Set of pixels for which λ∗
p ≤ 0

(xbl(s), ybl(s)) Bottom left coordinate of candidate shot s

(xtr(s), ytr(s)) Top right coordinate of candidate shot s

NC

Maximum number of candidate shots inserted

in one pricing round

α
Maximum distance outside target boundary

where candidate shot corner can lie without

exposing any pixel in P0

β
Maximum distance outside shot at which the

intensity is nonzero

Bn
Set of all boundary segments that require at

least n shots to construct
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of ∆ and shifted copies of each shot size.1 E-beam proximity effect is modeled using

a low pass filter, typically a Gaussian or sum of Gaussians [Pav86]. In this work,

we model the proximity effect by a single 2D Gaussian low-pass filter, described by

Equation (4.1). However, our proposed methods for benchmarking can be easily

extended to handle other proximity effect models.

K(x, y) =











1
F

exp−
x2+y2

σ2 if − 3σ ≤
√

x2 + y2 ≤ 3σ

0 otherwise (4.1)

Here, K(x, y) is the kernel function of the Gaussian filter, F is a normalization

factor (i.e., the sum of K(x, y) across all values of x and y) and σ is a parameter

which characterizes the spreading of the e-beam. For any rectangular shot s, the

intensity at a pixel can be computed by convolving the ideal rectangular function

(ψ(x̂, ŷ))[Bra65] with the kernel function. That is,

I(x, y, s) = K(x, y)⊗ ψ(
(x− xc,s)

W (s)
,
(y − yc,s)

H(s)
)

ψ(x̂, ŷ) =











1 if |x̂| < 0.5 and |ŷ| < 0.5

0 otherwise

(4.2)

where xc,s and yc,s are the x and y coordinates of the center of the shot. In this

paper, all dimensions are in wafer scale.2

We model the e-beam resist using a constant-threshold model with threshold

value of ρ. Any pixel (p(x, y)) on the mask will be exposed if and only if the total

intensity at that pixel resulting from all shots exceeds the resist threshold ρ.3

As shown in Figure 4.1, we divide the set of pixels on the mask into three disjoint

sets: P1, P0 and Pd. The pixels in P1 must have intensity greater than or equal to

ρ. Similarly, we define P0 as the set of the pixels outside the target shape which do

not belong to Pd. The pixels in P0 must have intensity less than ρ.

1The step size of shifting is ∆.
2Typically, mask scale is 4× wafer scale.
3The exposed pixels will form the mask shape.
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Figure 4.1: Each grid in the figure is a pixel p(x, y). The thick black line is the

target boundary. In this figure, the CD tolerance is γ = 2nm and the grid size is

1nm× 1nm. p(x, y) ∈ Pd if p(x, y) is within 2nm of the target boundary.

The mask fracturing problem is formally defined as follows.

Goal: Minimize the total number of mask shots N = |Smin(tori)|.
Inputs: Mask target shape, set of all candidate shots S, ρ, σ, γ.

Outputs: Set of rectangular shots, Smin(tori).

Constraints:
∑

s∈Smin

I(x, y, s) ≥ ρ if p(x, y) ∈ P1

∑

s∈Smin

I(x, y, s) < ρ if p(x, y) ∈ P0

(4.3)

CD control of the target pattern is a key concern for mask manufacturing. To

minimize CD variation, any critical vertical or horizontal segment of the target

shape boundary should not be constructed with more than one shot [?]. This issue

is illustrated in Figure 4.2. To check if a particular candidate shot satisfies the CD

control constraint, we first identify critical vertical or horizontal regions of a given

target shape (i.e., long and narrow part of a target shape). Then, any candidate shot

that overlaps with these horizontal (vertical) critical regions must be such that both

it’s vertical (horizontal) edges touch the target boundary. Only candidate shots that

satisfy this criteria of CD control are included in the set S.

The mask writing process may also require additional constraints to avoid resist
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Figure 4.2: Illustration of CD control constraint for candidate shots for a horizontal

critical region.

over-heating. In this work, we do not consider the imposition of maximum intensity

constraints to model resist over-heating, since the over-heating is an effect at length

scales on the order of microns [?][?].

4.3 Fracturing Heuristics

To evaluate the suboptimality of different mask fracturing heuristics, we have de-

veloped two simple methods to fracture mask shapes, based on prior work, that we

describe in this section. The fracturing solutions created by both these heuristics

tend to have CD violations, i.e. pixels that violate Constraint 4.3. Hence, we use an

additonal step, shot refinement, to fix the CD violations. In addition to the two sim-

ple heuristics, we evaluate the suboptimality of a prototype [version of] capability

within a commercial EDA tool for e-beam mask shot decomposition (PROTO-EDA).

Greedy set cover (GSC) heuristic is inspired by the well-known greedy approxi-

mation algorithm for the NP-complete set cover problem [Chv79]. We first construct

an Hanan grid by constructing X- and Y-axis parallel lines from each vertex of the

target polygon. Then every grid element that lies inside the polygon and contains

at least one pixel p(x, y) ∈ P1 is considered an ’element’ of the set cover problem.

We then find all the maximal rectangles lying inside the polygon 4. Each maximal

rectangle is treated as a ’set’ that covers some of the grid elements. The fractur-

ing problem then reduces to the set cover problem to which we apply the greedy

approximation algorithm. Note that the e-beam proximity model is not considered

4A rectangle is maximal if all four edges touch the boundary of the target polygon.
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in constructing this fracturing solution but is handled during the subsequent shot

refinement.

Matching pursuit (MP) is a well-known technique to represent a signal sparsely

for an over-complete basis set [?]. Jiang and Zakhor [JZ11] propose a technique

to apply this method to the mask fracturing problem. A dictionary of different

shot sizes is first constructed. To keep the dictionary size tractable, some step size

∆MP ≥ ∆ is used to discretize the width/height range between Wmin and Wmax.

The proximity model is applied to each shot in the dictionary. Then we iterate over

the dictionary and over all potential positions of the candidate shot to pick the shot

that reduces the residual error the most. This procedure is repeated until no shot

is found that can reduce the residual error. We define residual error as the sum of

|I(x, y)− ρ| for all the pixels which violate the CD constraint.

Shot refinement works by moving the edges of the shots greedily to minimize the

residual error. Once this greedy procedure stops reducing the residual error, we bias

all the shots of the current solution by a small value. If the number of pixels in set

P0 that violate the CD constraint (over-cover) are more than the number of pixels

in P1 that violate the CD constraint (under-cover), we shrink all shots otherwise we

expand all shots during this bias step. After biasing, we continue with the greedy

shot edge adjustment. If this iterative procedure fails to reduce the residual error for

several iterations, we add or remove one shot depending on if more pixels are under-

covered or over-covered, respectively. We terminate when the residual error is zero,

i.e. there are no CD violations. Although this iterative procedure is not guaranteed

to find a feasible (CD error-free) fracturing solution, in practice the method works

well for most test-cases.

4.4 ILP-Based Benchmarking

To evaluate the suboptimality of fracturing heuristics on any given mask shape, we

apply an optimal ILP formulation. The straightforward ILP formulation requires

a large number of binary variables, even for small target shapes. As a result, even
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commercial ILP solvers can run out of memory on high-performance computers. To

circumvent this, we propose three strategies, described in this section: (1) pruning

the set of candidate shots, (2) splitting large target shapes, and (3) solving the ILP

using branch and price. With these strategies, we can obtain strong upper and

lower bounds on the optimal solution within feasible runtime. Note that although

the proposed ILP can be used to inspire effective mask fracturing heuristics, the goal

of this work is benchmarking. Hence, runtime is important only to the extent of

making the method tractable.

4.4.1 Optimal ILP Formulation

Inspired by the ILP formulation of Heinrich-Litan et al. [HL07], we propose a simple

ILP formulation for the model-based mask fracturing problem. We define a binary

selection variable zs for each candidate shot s ∈ S, where zs = 1 if shot s is used

and zs = 0 otherwise. Then, based on the problem description in Section 4.2, we

may formulate an optimal ILP to solve the fracturing problem as:

Minimize
∑

s

zs

subject to
∑

s

{zs · I(x, y, s)} ≥ ρ, p(x, y) ∈ P1

∑

s

{zs · I(x, y, s)} < ρ, p(x, y) ∈ P0

(4.4)

The problem with this ILP formulation is that |S| can be very large even for small

target shapes. For a target shape tori with a bounding box of W (tori) ×H(tori), if

the shot size granularity is ∆ and no shots are disallowed due to the CD control

constraint, then the size of the set of candidate shots would be
(

(Wmax−Wmin)
∆

)2 ·
(W (tori)− Wmax+Wmin

2
) · (H(tori)− Wmax+Wmin

2
), where Wmin and Wmax are the mini-

mum and maximum allowed shot sizes. Even for a small post-ILT contact shape as

shown in Figure 4.3a (Wmin = 13, Wmax = 55,W (tori) = H(tori) = 60, ∆ = 1), the

number of candidate shots is 1.19M .

Attempting to solve such a large ILP, even with commercial sol-

vers, is very challenging due to long runtime and large memory usage. In fact, the
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CPLEX v12.5 solver[?] runs out of memory when we attempt to solve the instance

of Figure 4.3a on an Intel Xeon L5420 server with 128GB RAM.

4.4.2 Pruning Candidate Shot Dictionary

Reducing |S| can significantly help in making the above ILP tractable for bench-

marking. Here we highlight two simple rules that can be used to reduce |S|:

(i) For any candidate shot s, if there exists a pixel p(x, y) ∈ P0 such that I(x, y, s) ≥
ρ, then s can be removed from the set S. This pruning criterion obviously does

not affect optimality because any candidate shot that satisfies this condition

cannot be a part of a feasible solution of the ILP. Depending on the specific

target shape, this pruning strategy can significantly reduce |S|.

(ii) If a candidate shot s is inside the target shape and none of its four edges are

close to the target boundary, then we remove s from set S. If s is a part of

the optimal solution, then we can replace s with a larger shot that covers s

and has at least one boundary close to the edge of the target shape, without

affecting the optimality of the solution.

An interesting side-effect of pruning candidate shots is that the LP relaxation of

the ILP becomes a stronger lower bound for the optimal shot count. After applying

these pruning rules to the contact shape of Figure 4.3a we can reduce |S| to 591K

for a Gaussian proximity effect model (σ = 1nm). Using CPLEX v12.5 solver, the

final optimal shot count is just four (shown in Figure 4.3b).

Note that the reduction in |S| due to these pruning rules depends strongly on

the specific target shape and the e-beam proximity effect model. For many target

shapes, the number of variables even after pruning could be more than 106, making

it difficult to solve the problem efficiently with commercial ILP solvers.
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(a) (b)

Figure 4.3: (a) ILT mask target shape and (b) optimal mask fracturing solution

obtained from ILP.

4.4.3 Splitting Target Shapes

The size of the mask fracturing ILP depends on the size of the bounding box of the

target shape because it affects both the number of variables (candidate shots) and

the number of CD constraints (pixels). Hence, the ILP can become prohibitively big

for large target shapes. In this subsection, we propose a simple strategy that can

be used to split large target shapes. This allows us to solve a separate smaller ILP

for each smaller split-shape. The fracturing solution of each smaller ILP can then

be aggregated to obtain a solution of the full target shape. Using this solution as

the initial solution, the larger ILP corresponding to the full target shape can then

be solved.

For splitting any target shape, the key step is determining locations where the

shape should be split. We find horizontal and vertical line segments which serve as

split locations to obtain smaller target shapes. The procedure we use to determine

split locations is illustrated in Figure 4.4. Algorithm 3 describes the procedure we

use to obtain horizontal split locations. An analogous procedure can be used to find

vertical split locations.

In Algorithm 3, we first identify vertical boundary segments5 of tori which are

longer than Lth. Each such vertical boundary segment bi is characterized by three

features: x-coordinate of the orthogonal segment (bi.val), along with y-coordinates

of the two end points of the segment (bi.low and bi.high). Using these, we then

5A boundary segment is a contiguous part of the boundary of a target shape.
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Figure 4.4: Steps involved in splitting a target polygon into smaller polygons.

Algorithm 3 Determine horizontal locations to split target shape

Require: Target shape tori and length threshold Lth

Ensure: Locations where tori is split

1: Bv ← all vertical boundary segments longer than Lth, sorted by x-coordinate

2: for all bi ∈ Bv do

3: for all bj ∈ Bv do

4: low ← max(bi.low, bj.low)

5: high← min(bi.high, bj.high)

6: if bi 6= bj&&(high− low) > Lth then

7: (xbl(rect), ybl(rect))← (bi.val, low)

8: (xtr(rect), ytr(rect))← (bj.val, high)

9: if rect lies inside tori then

10: Split location ← Line segment from (bi.val,
low+high

2
) to

(bj.val,
low+high

2
)

11: end if

12: end if

13: end for

14: end for
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find pairs of parallel vertical segments which satisfy the following two conditions;

(i) Length of shadow rectangle between the two parallel segments is longer than

Lth (Lines 5-7). (ii) Any line segment perpendicular to the two parallel segments

connecting two point, one on each segment, lies inside the target polygon (Lines

8-10). Then we can split tori at the center of the shadow rectangle.

Suppose we split a target shape into two target shapes, tori,i and tori,j with a

horizontal split location, using the steps described above. Then we can bound the

minimum shot count of tori as a function of the minimum shot count of tori,i and

tori,j using the two lemmas we describe next.

Lemma 4.4.1. |Smin(tori)| ≤ |Smin(tori,i)|+ |Smin(tori,j)|

Proof. If we consider all the shots of an optimal fracturing solution of the two split-

shapes tori,i and tori,j, we extend all the shots that touch the split location vertically,

so that these shots from tori,i and tori,j overlap at the split location. This modified

set of shots is a feasible solution that satisfies all the CD constraints. This feasible

solution is clearly an upper bound on the optimal solution of the full shape. Note

that this step of combining solutions of the smaller split-shapes is valid if and only

if the distance between the horizontal split line from the top and bottom of shadow

rectangle is large enough to ensure that any small change to a shot at the split

location does not add intensity to any pixel above or below the shadow rectangle.

To ensure this, we set the length threshold Lth = 2β.

Lemma 4.4.2. |Smin(tori)| ≥ max(|Smin(tori,i)|, |Smin(tori,j)|)

Proof. Without loss of generality, let us assume that |Smin(tori,i)| ≥ |Smin(tori,j)|,
and tori,i lies below a horizontal split location. We can prove this lemma using

contradiction. Suppose there exists an optimal fracturing solution S∗min(tori) for

target shape tori, such that |S∗min(tori)| ≤ |Smin(tori,i)|. From this solution, we can

obtain a feasible fracturing solution for tori,i by taking all the shots that lie below

the split location and cutting all shots that overlap with the split location. Clearly,

the number of shots of this fracturing solution |S∗min(tori,i)| ≤ |S∗min(tori)| since only
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a subset of the shots comprising the fracturing solution of tori are used. This implies

that |S∗min(tori,i)| ≤ |Smin(tori,i)|. This is clearly not possible. Consequently our

original assumption must be incorrect, and |Smin(tori)| ≥ |Smin(tori,i)|.

After splitting tori using the method described above, we solve a separate ILP

for each split-shape. We then combine the fracturing solution of the separate ILPs

to obtain a feasible fracturing solution for tori, which we use as a starting solution

for the larger ILP for tori. Note that this splitting technique is effective only if the

target shape boundary contains long vertical or horizontal boundary segments.

4.4.4 Branch and Price Method

Branch and price (B&P) is a well-known method for solving large ILPs [?]. The key

feature that distinguishes B&P from typical ILP solvers is that the LP relaxation

at each node of the branch and bound tree is solved using column generation. To

solve the LP relaxation, which contains too many variables to handle efficiently, a

reduced master problem (RMP) containing only a small subset of the variables is

solved first. To confirm the optimality of this RMP, a separate pricing subproblem

is solved to find any new variables that must be inserted back into the RMP. If no

variable is found by the pricing subproblem, then the LP relaxation is optimal and

branching can be done to obtain the integral solution to the original ILP.

The selective insertion of variables based on the pricing subproblem in B&P

means that most variables are never inserted into the LP relaxation. As a result,

the LP relaxation solver does not consume too much memory. This is the main

reason why we choose to apply this technique to solve the ILP described in Equation

(4.4). The runtime of B&P is known to be limited by the pricing subproblem for

most problems [?]. Hence, we propose a novel pricing mechanism comprising a fast,

approximate pricer and a slower, optimal pricer.

The goal of the pricing subproblem is to identify additional variables that should

be inserted into the RMP. For the mask fracturing problem, let λ∗p be the optimal

value of the dual variable corresponding to the CD constraint (Equation 4.4) at pixel
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p(x, y) ∈ P1 ∪ P0, obtained after an iteration of the RMP. The pricing subproblem

(derived from the dual of the RMP) reduces to finding a new candidate shot s such

that
∑

p I(x, y, s) ·λ∗p ≤ −1. This candidate shot must also satisfy the pruning rules

discussed above. Moreover, additional constraints imposed by the branching rules

of the branch and bound tree must be met. The reduced cost of any candidate shot

s is given by Rs = 1 +
∑

p{I(x, y, s) · λ∗p}. For the sake of brevity, we shall refer

to any candidate shot that has Rs ≤ 0 and satisfies all the pruning and branching

constraints as an insertable candidate shot (ICS).

To ensure that the LP relaxation is solved optimally, the pricing subproblem

must guarantee that no ICS exists. If there are several ICSs, the pricing subproblem

only needs to find a subset of all the ICSs in an iteration. The maximum number of

candidate shots that are inserted in each pricing iteration can be tuned to improve

the convergence of B&P. In this work, we limit the maximum number of variables

that can be inserted in each iteration to NC = 500.

One simple strategy to solve the pricing problem is to iterate over all possible sizes

and locations of candidate shots and insert any shot that has a negative reduced

cost and satisfies pruning and branching rules. To improve the efficiency of this

naive pricing strategy, we carefully analyze the dual variables of the RMP. Based on

the well-known Karush-Kuhn-Tucker (KKT) conditions, we note the following key

features of the dual variables:

(i) Due to complementary slackness, λ∗p 6= 0 if and only if
∑

s{zs · I(x, y, s)} = ρ. Since this is likely to occur only close to the boundary

of the target shape, λ∗p is nonzero only for a small number of pixels that lie very

close to the target boundary. We shall refer to the set of pixels with nonzero

dual values as dual points.

(ii) To ensure dual feasibility, λ∗p ≥ 0 for p(x, y) ∈ P0 and λ∗p ≤ 0 for p(x, y) ∈ P1.

This implies that all negative dual points (Pneg) are located inside the target

shape.

That negative dual points are sparse and are located close to the target shape bound-
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ary is illustrated in Figure 4.5 for a particular pricing iteration of a target shape.

Based on this insight, we propose two pricing strategies to effectively find ICSs, as

we now describe.

4.4.4.1 Fast Pricer

The basic idea behind the fast pricer is to look for ICSs in the vicinity of p(x, y) ∈
Pneg because if any candidate shot s has negative reduced cost, then s must be

located such that it covers or is close to at least one negative dual point. The steps

involved in finding ICSs are summarized in Algorithm 4.

Algorithm 4 Fast Pricer Heuristic
Require: Target shape t, and list of pixels with negative dual values Pneg

Ensure: Set of candidate shots inserted into the RMP

1: for all p(x, y) ∈ Pneg do

2: Draw vertical/horizontal line from (x, y) to find ylow, yhigh, xlow and xhigh (iillustrated in Figure 4.5)

3: Find all candidate shots in vicinity of (x, y) that satisfy Equation (4.5) below

4: Insert (up to NC
|Pneg|

) candidate shots that satisfy reduced cost, pruning and branching constraints to RMP

5: end for

xlow − α ≤ xbl(s) ≤ x+ β , x− β ≤ xtr(s) ≤ xhigh + α

ylow − α ≤ ybl(s) ≤ y + β , y − β ≤ ytr(s) ≤ yhigh + α
(4.5)

The intuition behind constraining xbl(s), ybl(s), xtr(s) and ytr(s) as shown in

Equation (4.5) is that such candidate shots will have nonzero intensity at the negative

dual point under consideration and are likely to obey the first pruning rule (not

exposing any pixel in P1).

4.4.4.2 Optimal Pricer

Although the pricing heuristic we described above is effective in identifying most

ICSs which can be inserted into the RMP, it does not guarantee that if no ICS is

found, then there does not exist any ICS. Hence, if the heuristic fails to find any ICS,

we call the optimal pricer that is guaranteed to find a candidate shot with negative

reduced cost, if it exists. The optimal pricer iterates over all candidate shots in
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Figure 4.5: Illustration of negative dual points (pink dots) for part of a target shape.

Coordinates xlow, xhigh, ylow and yhigh (points of intersection of blue dashed lines with

target shape boundary) for a particular negative dual point (point of intersection of

the two dashed lines) are also shown.

the vicinity of the negative dual points. The method is described in Algorithm 5.

The optimal pricer first constructs constructs square boxes of size 2× β centered at

each negative dual point. Any candidate shot which could have negative reduced

cost must overlap with at least one of these boxes. Hence, we could iterate over

all such candidate shots to find ICSs. But several dual points may lie close to each

other which may cause candidate shots to be generated twice. To avoid this, we first

merge the boxes using polygon Boolean OR operation. Then we find the bounding

box of each resulting polygon. All candidate shots that overlap with these bounding

boxes are then checked for insertion into the RMP.

Algorithm 5 Optimal Pricer

Require: Target shape t, and list of pixels with negative dual values Pneg .

Ensure: Set of candidate shots inserted into the RMP

1: mergedBoxes← new list of polygons

2: for all p(x, y) ∈ Pneg do

3: rect←square box of size 2× β with p(x, y) as center

4:

5: mergedBoxes← mergedBoxes
W

rect (Polygon Boolean OR operation)

6: end for

7: for all polygon ∈ mergedBoxes do

8: Find bounding box of polygon

9: Find all candidate shots that overlap with the bounding box of polygon

10: Insert (up to NC
|Pneg|

) candidate shots that satisfy reduced cost, pruning, CD control and branching con-

straints to RMP

11: end for
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4.4.5 Initialization and Overall Summary

In addition to solving the pricing subproblem efficiently, B&P can benefit signifi-

cantly from a good initial feasible solution. Although B&P is capable of discovering

feasible solutions using Farkas pricing [Ach09], it can take many iterations of pricing

to do so. In this work, we use the results of the GSC heuristic as the initial solution

for B&P.

Although B&P allows us to circumvent the problem of excessive memory usage,

it can take a lot of time to converge to the optimal solution. Since our objective is

to evaluate suboptimality, we choose to run B&P with a fixed time limit and report

the best upper and lower bounds on the optimal shot count. The overall method we

use to solve LP relaxations within B&P is summarized in Figure 4.6.

Figure 4.6: Steps involved in solving LP relaxation at any node of the branch and

bound tree in B&P.

For each split-shape tori,i, we first obtain an initial solution using GSC and we

then solve the ILP using B&P. Based on the upper and lower bounds of each smaller

ILP, we can obtain lower and upper bounds for tori using Lemma 4.4.1 and Lemma

4.4.2, respectively. To further improve these bounds, we combine the solutions from

each split-shape by merging shots lying at the split locations. If this does not give

a feasible solution for tori, we apply shot refinement to fix the constraint violations

and then use this as the initial solution for solving the larger ILP corresponding to
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the tori using B&P.

To improve the running time of the pricing method, we parallelize both the fast

and optimal pricing method. For the fast pricer, Lines 4-5 in Algorithm 4 can

easily be parallelized since candidate shot can be checked for insertion to the RMP

independently. Similarly for the optimal pricer, Lines 8-9 can be parallelized easily.

4.4.6 Experimental Results

Our B&P based suboptimality evaluation method has implemented in C++. We

use the OpenAccess API to parse layouts [oa], Boost Polygon Library to perform

polygon operations [?] and Eigen Library to perform matrix operations [Gue10]. To

implement B&P, we use the SCIP framework [Ach09], along with CPLEX v12.5 as

the LP solver [?]. We parallelize the pricing methods using OpenMP.

In this work, we set resist threshold ρ = 0.5. We use a Gaussian e-beam proximity

effect model with two values of σ, 6.25nm and 4nm 6. For CD tolerance γ, we

consider values of 2nm and 1nm. The shot dimension constraints are Wmin = 13nm,

Wmax = 1000nm and ∆ = 1nm. The pixel size in all our experiments is 1nm.

We apply ILT to benchmark pre-RET layouts from the 2013 ICCAD contest [?],

using a commercial EDA tool. From the ILT solutions, we select ten representative

mask shapes for evaluation. These benchmarks are illustrated in Figure 4.7.

For each of the 10 target shapes, we run B&P on an eight-core machine with a

time limit of 12 hours. Half the time limit is devoted to solving the ILP corresponding

to the split-shapes, with the time limit of each split-shape tori,i proportional to the

size of its bounding box. The remaining time limit is spent in solving the larger ILP

corresponding to tori.

In any branch and bound based search method for integer programs, the upper

bound corresponds to the best integral solution that has been discovered so far. The

lower bound corresponds to the LP relaxation at a particular level of the branch and

6σ = 6.25nm is consistent with recent work on mask fracturing [JZ11] [JZ14]. Results are shown
for σ = 4nm to highlight the impact of Gaussian blur on shot count.
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Figure 4.7: ILT mask shapes obtained after applying inverse lithography to layouts

from the ICCAD-2013 contest [?] (wafer scale).

bound tree. We report the upper and lower bounds reached by B&P within the set

time limit.

The shot count and running time of the MP heuristic depends strongly on ∆MP

and the value by which each shot size is shifted for finding new shots. Selecting a

large value for these parameters reduces the running time, but typically increases

shot count. Moreover, it can cause many mask shapes to have CD violations even

after shot refinement. For this work, we set ∆MP = 15nm and shots are shifted by

(∆MP/2).

We show the results of our ILP-based suboptimality analysis method for actual

ILT mask shapes in Table 4.2. For all ten benchmark shapes and three scenarios, our

method is able to report a lower bound based on LP relaxation.7 Although this seems

trivial, typical LP methods (simplex and barrier methods) run out of memory while

trying to solve the LP relaxation of the ILP in Equation (4.4) for these benchmark

shapes. Hence, our B&P based method appears to be enabling to the computation

of this lower bound. Moreover, for the baseline case with σ = 6.25nm, γ = 2nm,

our method is able to discover a fracturing solution (upper bound) better than any

of the heuristics for five of the ten shapes. For two of them, the optimal solution is

7The fractional LP relaxation value is rounded up to the next integer to obtain the lower bound.
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Table 4.2: Comparison of shot count for ILT mask shapes shown in Figure 4.7 for

three different heuristics (GSC, MP and PROTO-EDA) along with lower bound

(LB) and upper bound (UB) obtained from Branch and Price (B&P). Shot count is

shown for three scenarios with different values of e-beam proximity model Gaussian

variance (σ) and CD tolerance (γ).

Clip-ID Shot Coun

σ = 6.25nm, γ = 2nm σ = 4nm, γ = 2nm σ = 4nm, γ = 1

GSC MP PROTO-EDA B&P GSC MP PROTO-EDA B&P GSC MP PROTO-EDA B&P

LB/UB LB/UB LB/UB

1 14 14 7 3/4 14 7 12 4/5 22 20 12 5/10

2 18 13 21 5/9 23 27 31 6/13 47 28 32 8/23

3 5 4 7 3/3 3 9 27 3/3 13 78 27 3/8

4 31 14 21 6/17 40 27 36 7/14 60 52 36 10/36

5 23 25 12 5/13 27 19 22 5/16 40 25 22 8/23

6 9 5 6 3/3 9 5 11 3/4 17 27 11 4/7

7 10 7 8 3/4 15 5 11 3/4 22 33 14 4/10

8 26 9 12 5/17 26 21 21 5/9 44 29 23 8/26

9 39 14 26 7/20 39 22 53 4/19 66 46 54 6/36

10 14 7 11 4/8 15 8 19 4/6 30 16 21 6/16
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found.

If we assume that the lower bound reported by the ILP is indeed the optimal shot

count, the suboptimality of GSC, MP and PROTO-EDA heuristics ranges from 1.7×
to 5.6×, 1.7× to 5.0× and 2.3× to 4.2×, respectively for σ = 6.25nm and γ = 2nm.

Although MP is able to achieve lower shot count than the other two heuristics for

most shapes, it is significantly slower than GSC. For the above ten shapes, the

running time of GSC ranges from 1s to 38s. In contrast, the running time of MP

ranges from 11s to 787s.

Since the gap between the optimal solution of an ILP and the LP relaxation

can be very large, suboptimality analysis based on the lower bound may be too

pessimistic. If we make the optimistic assumption that the integer solutions obtained

by the ILP are in fact optimal, i.e. the upper bound is equal to the optimal shot

count, then the suboptimality of the GSC, MP and PROTO-EDA heuristics could

be as large as 3.5×, 1.7× and 2.3×, respectively. These results suggest that there is

significant room for improving the quality of mask fracturing solutions.

Improvements in e-beam mask writing tools are likely to reduce the blurring of

shot intensity caused by forward scattering since it helps improve the resolution of

the tool. Consequently, the Gaussian model σ is likely to reduce. The shot count

with different heuristics, along with the lower/upper bounds are also shown in Table

4.2, if the σ of the Gaussian proximity model is reduced to 4nm instead of 6.25nm.

The impact of change in σ on the shot count can vary for different shapes. For most

shapes, the change in shot count of GSC heuristic, and the lower upper bounds of

B&P is not very large. However, MP heuristic is very sensitive to the value of σ and

the shot count increases for most mask shapes shown here.

In addition to σ, another important factor that can affect the shot count is

CD tolerance γ. Tighter CD tolerance will increase the number of constraints that

a fracturing solution must follow, leading to higher shot count. More constraints

also slows down B&P and increases the gap between the reported upper and lower

bounds. This is illustrated in Table 4.2, if we compare the shot count of the scenario
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with σ = 4nm, γ = 2nm to the one with σ = 4nm, γ = 1nm.

4.5 Generation of Benchmarks with Known Optimum

The results of Section 4.4.6 show that ILP-based benchmarking requires consider-

able computational resources just to find lower and upper bounds on the optimal

shot count. In this section, we propose a more scalable method to evaluate the

suboptimality of mask fracturing heuristics by constructing target shapes for which

the minimum shot count is known. This benchmark generation method is based on

the key observation that there is a set of boundary segments each of which requires

at least two shots in any fracturing solution. Here we use Bn to denote the set of

all boundary segments such that each boundary segment bn ∈ Bn requires at least

n shots. For example, the union of green and red lines in Figure 4.10 is a boundary

segment b2.

In our benchmark generation method, we first use exactly two shots to generate

a target shape which contains a boundary segment b2. By the definition of b2, we

need at least two shots to produce the boundary segment. Since we use exactly two

shots to generate the target shape, our solution is optimal and the minimum shot

count is two. To extend the target shape, we then add a new shot adjacent to one of

the existing shots. We select the location of the new shot such that there is a new

b2 in the extended target shape. Note that we only increase the total shot count by

one (and reuse an existing shot) to produce the new b2 which requires two shots.

Because the extended target shape cannot be produced by stretching or shifting the

shots in the previous solutions (i.e., at least one more shot is required), the solution

corresponding to the extended target shape remains optimal with respect to shot

count.

In the remainder of this section, we describe the details of our benchmark gen-

eration method and prove that a generated target shape has known minimum shot

count.
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4.5.1 Boundary Segment Analysis

To determine the set of boundary segments which require at least two shots, we

analyze the relationship between straight/concave boundary segments and the image

produced by a shot. We do not analyze the case of convex boundary segments

because it is not used in our benchmark generation.

Straight boundary segment. Since a mask shot must be isothetic, a single mask

shot cannot produce a long straight boundary at an angle (θ) which is not a multiple

of 90◦.8 Figure 4.8 shows a straight boundary segment bseg (black solid line) at an

angle θ. The dashed lines parallel to bseg are the inner and outer boundaries. The

inner (resp. outer) boundary is obtained by shrinking (resp. expanding) the target

boundary towards the inside (resp. outside) of the target shape by the value of γ.

To produce the straight boundary using a single shot, we must place a corner of the

shot close to bseg. The longest straight boundary covered by the single shot is the

length (Lθ
lin(W,H)) between the crossing points (blue cross marks in Figure 4.8) of

the inner target boundary and the image boundary.9 To maximize the coverage of

a single shot, we must shift the shot and therefore the image boundary to touch the

outer boundary as shown in Figure 4.8. The shot must not be shifted beyond the

outer boundary because I(x, y, s) must be less than ρ for all pixels in P0.

Concave boundary segment. Figure 4.9(a) shows a concave boundary bseg and

its inner (bseg in) and outer (bseg out) boundaries. For a concave target boundary,

the maximum boundary length covered by a single shot is defined by the straight

line between the points of intersection between bseg in and the shot image boundary

(i.e., the blue cross marks in Figures 4.9(a) and 4.9(b)). From the straight line

between the points of intersection, we define a “virtual” straight line (bvir) and its

inner (bvir in) and outer (bvir out) boundaries. Note that because of the concavity of

bseg, any point along bvir in is always closer than bseg in to the point that touches

the target boundary (i.e., pc in Figure 4.9(a)). Thus, bvir out is always in P0, outside

8ILT masks can have non-orthogonal target shapes, especially if methods such as level set are
used for ILT [?].

9W and H correspond to the width W (s) and height H(s) of the shot s under consideration.
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Figure 4.8: Definition of the length Lθ
lin(W,H) of a straight-line target boundary

covered by a single shot.

the boundary of the shot image. This means that the shot and its corresponding

image can be shifted until the shot image boundary touches bvir out as shown in

Figure 4.9(b). As a result, the length of the virtual straight line, which is the same

as Lθ
lin(W,H) at the same θ, is always larger than the length Lθ

con(W,H) of the

concave target boundary.

Maximum length covered by a shot. As mentioned above, the rounded corner

of a single shot image determines the maximum length covered by the shot. As the

shot size increases, the corner rounding due to the e-beam proximity effect saturates.

As a result, the Lθ
lin(W,H) does not change further with respect to the shot size. For

example, Therefore, we can calculate the Lθ
max by increasing W and H iteratively,

and stopping when Lθ
max does not increase.

Lθ
max = max

s∈S
{Lθ(W (s), H(s))} (4.6)

Since Lθ
con(W,H) < Lθ

lin(W,H) for any shot s, the maximum value of Lθ
lin(W,H) is

an upper bound on maxs∈S{Lθ
con(W (s), H(s))}.

Lemma 4.5.1. For a mask fracturing problem with finite γ and σ, if a target bound-

ary segment is a straight line or concave shape with length Lt (defined in Figure 4.10)

larger than Lθ
max, more than one mask shot is required to pattern the target boundary

segment.
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Figure 4.9: (a) Definition of the length Lθ
con(W,H) of a concave target boundary

covered by a single shot. (b) Comparison of the lengths covered by a single shot for

concave vs. straight-line target boundaries.

Figure 4.10: Lt is the Euclidean distance between the startpoint and the endpoint

on the target boundary, provided that the target boundary from the startpoint to

the endpoint is concave or a straight line.

Proof. As mentioned above, the corner of the image produced by a shot does not

change beyond a certain shot size, and there exists an Lθ
max for straight boundary

which is also the upper bound for concave target boundary. By definition, Lθ
max

is the maximum length on the target boundary which can be covered by a single

shot. Therefore, when a target boundary segment has length Lt > Lθ
max, we require

more than one shot to produce the boundary segment. Note that to check whether

a boundary segment has length > Lθ
max, it suffices to calculate the Lt for all

combinations of startpoint and endpoint along the boundary.
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4.5.2 Construction of a Target Shape

We now describe a systematic method to construct a target shape with known

minimum shot count. We first construct a bseg using two shots by placing the second

shot to the top right of the first shot as shown in Figure 4.11. We define the top left

boundary (e.g., the union of green and red lines in Figure 4.11) as the main boundary

(bmain).10 By placing the second shot far enough from the first shot, we create a

critical boundary segment bcri ∈ B2, which is part of the bmain. The bcri is a straight

line or a concave segment with length Lθ larger than Lθ
max (Lemma 4.5.1). Note

that although there can be many boundary segments ∈ B2, only those overlapping

with bmain are considered as the critical boundary segments. For example, the yellow

boundary segment in Figure 4.11, while an element of B2, is not considered to be a

bcri because it does not overlap with bmain.

Figure 4.11: Example of benchmark generation with three shots. bmain is the union

of green and red lines and contains two bcri.

Lemma 4.5.2. Given a boundary segment bn of a target with n−1 critical boundary

segments, and its corresponding shots, we can add a shot to obtain bn+1 with an

optimal (n+ 1)-shot solution if the addition satisfies the following conditions:

(i) Adding a shot does not affect the critical boundary segments of bn.

10bmain is at the top left boundary because we place the next shot to the top right of previous
shots.
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(ii) bmain of the new target shape is continuous.

(iii) There is a b2 in the bmain of the new target shape which cannot be made by

extending the shots which produce bn without altering the critical boundary

segments of bn.

Proof. Since there are n− 1 critical boundary segments in bn and the newly added

shot does not affect the critical boundary segments in bn, the new target shape

still requires n shots for the n − 1 critical boundary segments. To create a b2 in

the new boundary which cannot be made by extending shots which produce bn, we

need exactly one more shot. Thus, the new target shape has a boundary segment

bn+1.

Based on Lemma 4.5.2, we then add a shot at the top right of the existing

target shape. This ensures that we have a continuous bmain. Moreover, the top-left

coordinate of the newly added shot is selected such that there is a b2 in the new

bmain. Since the new b2 is always at the top of the target shape, it cannot be made by

extending previous shots unless the existing critical boundary segments are altered.

Also, placing the shot at the top right does not affect the existing critical boundary

segments. By adding n−2 shots to the target shape generated by two shots, we can

obtain a target shape ∈ Bn based on Lemma 4.5.2.

An important property of our method is that the critical boundary segments are

defined only by the top-left coordinates of the shots. Therefore, we may freely place

the bottom-right coordinates of the shots to create different target shapes as long

as they do not affect the critical boundary segments.

4.5.3 Merging Target Shapes

Lemma 4.5.3. Given two target shapes with critical boundary segments ba ∈ Bna

and bb ∈ Bnb, which have, respectively, na−1 and nb−1 critical boundary segments,

we can merge ba and bb by stretching a shot to create bc ∈ Bna+nb−1 if the following

conditions are satisfied:
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[(i)]

(i) The stretched shot must not alter the critical boundary segments in ba or bb.

(ii) The stretched shot must merge a shot from ba with a shot from bb.

(iii) The non-stretched shots in ba must be far apart from or misaligned from the

non-stretched shots in bb so that any two non-stretched shots cannot be merged

to reduce the number of shots.

Proof. Since stretching the shot does not alter the critical boundary segments in ba

and bb, we need at least na shots for target shape ba and nb shots for the target

shapes bb. Since the merged bc contains both ba and bb, which share one shot, bc

requires na + nb − 1 shots. Therefore, bc belongs to Bna+nb−1.

The first condition in Lemma 4.5.3 imposes a tight constraint on merging the

target shapes generated by the method described in Section 4.5.2. This is because

we can only stretch a shot by moving the lower right corner of the shot in either the

rightward and/or downward direction, such that the critical boundary segments are

not affected. However, stretching a shot of a target shape to the right and/or down

directions will affect the critical boundary segments on the other target shape. This

problem can be solved by rotating the target shapes before merging them.

Lemma 4.5.4. A bn rotated by 90◦ is still an element of Bn.

Proof. After applying Gaussian blur, the intensity of a shot is symmetric about the

x- and y-axes. Therefore, rotating a target shape by a multiple of 90o does not affect

the number of shots. As a result, if any boundary segment b is in Bn, the boundary

segment b′ = b rotated by 90o (or any multiple of 90◦) is also in Bn.

Figure 4.12 shows an example in which we use Lemmas 4.5.3 and 4.5.4 to merge

a target shape and its rotated copy into a larger and more complex target shape.

Using the incremental target boundary extension (Lemma 4.5.2) and merg-

ing/rotation of optimal target shapes, we can generate a variety of different bench-

marks with arbitrary values of optimal shot count.
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(a)

(b)

Figure 4.12: Example of rotating a target shape for merging.

4.5.4 Experimental Results

Using the same experimental setup as described in Section 4.4.6, with σ = 6.25nm, γ =

2nm, we generate the following two types of target shapes:

(i) Arbitrary generated benchmarks (AGB): We generate five shapes with

known optimal shot count using the method described in Section 4.5.2. These

benchmarks are shown in Figure 4.13a.

(ii) Realistic generated benchmarks (RGB): Since generated benchmarks can

often be unrealistic compared to actual ILT mask shapes, we also generate five

mask shapes that look similar to actual ILT shapes with known optimal shot

count, again using the method described in Section 4.5.2. We manually select

shot locations so that the generated benchmarks are similar to actual ILT mask
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(a) Arbitrary generated benchmarks

(b) Realistic generated benchmarks

Figure 4.13: Illustration of generated benchmarks with the optimal mask fracturing

solution shown in dashed lines (wafer scale).

shapes.

These benchmarks are illustrated in Figure 4.13b.

We compare the optimal shot count of our generated benchmarks with the shot

counts of the comparison heuristics in Table 4.3. For the ten target shapes that we

analyze, the suboptimality ranges from 2.4× to 5×, 1.3× to 5.6× and 1.6× to 2.9×
for the GSC, MP and PROTO-EDA heuristics, respectively.

For comparison, we also report the lower and upper bounds obtained from B&P

for our generated benchmarks in Table 4.3. The results show that for testcases

AGB-{1,5} and RGB-{3,5}, the B&P method can find the optimal solution, i.e. the

upper bound is equal to the optimal shot count. However, for some shapes, the

upper bound reported by B&P within the set time limit may be very far from the

optimal shot count (testcases AGB-2, AGB-4 and RGB-4).

Note that the generated benchmarks are more wavy (i.e., have high-frequency

components in the boundary of the target shape) compared to actual ILT shapes.

This could make the suboptimality estimation more pessimistic. However, high-

lighting scenarios where mask fracturing heuristics perform poorly is important for
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Table 4.3: Comparison of shot count for generated benchmarks with known optimal

solution.

Clip-ID Shot count

Opt GSC MP PROTO-EDA Branch and Price

LB/UB

AGB 1 3 8 4 7 3/3

2 16 64 26 30 10/47

3 17 52 35 40 11/19

4 7 26 9 20 5/18

5 3 13 6 8 3/3

RGB 1 5 12 19 8 3/6

2 7 15 31 14 5/8

3 5 13 28 12 4/5

4 9 45 19 17 6/14

5 6 21 16 14 4/6

developing better heuristics.

4.6 Automated Benchmark Generation

In Section 4.5, we constructed benchmark shapes by placing shots manually. This

can be extremely tedious, especially for generating benchmarks similar to real ILT

shapes. In this section, we propose an automated benchmark generation (AutoBG)

method to generate a benchmark ILT mask shape (tgen), which resembles a given

actual shape (tori), with known optimal shot count. To guarantee that the optimal

fracturing solution of tgen is known, AutoBG places shots such that they obey the

constraints specified in Section 4.5.

In AutoBG, we first split tori using the method described in Section 4.4.3.11 For

each split-shape (tori,i), we generate a separate benchmark shape (tgen,i) with known

minimum shot count that resembles tori,i. Then we apply Lemma 4.5.3 to obtain

the benchmark shape tgen, which resembles tori.

11We set the threshold (Lth) to split tori as 2β, then to get better similarity, we push the Lth

lower for certain shapes in AutoBG but we check the intensity map to guarantee optimality
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To obtain tgen,i from tori,i, we first generate several candidate sets of linear seg-

ment such that each set approximates part of the boundary of tori,i. The candidate

set of linear segments that is eventually picked would become the main boundary

segment bmain of tgen,i. Next, we determine the locations of corner points of shots

to construct bmain. Lastly, for each corner point of a shot used to generate bmain, we

find the diagonally opposite corner point to minimize the XOR difference between

the input and generated shape (d(tori,i, tgen,i)). In the remainder of this section, we

describe the details of these steps.

4.6.1 Finding Candidate Main Boundary Segments

Based on the Lemma 4.5.2, bmain is a continuous boundary segment of the generated

mask shape which determines the minimum number of shots required to construct

tgen,i. Moreover, all the shot corner points used to generate bmain must be the same

type (i.e., bottom-left, bottom-right, top-left, top-right). Given the input split-shape

tori,i, to construct the benchmark shape with known optimal shot count tgen,i, we

need to find a boundary segment that it can be used as the main boundary segment to

place the optimal shot corners. To simplify this, we use a set of connected straight

line segments, which approximates part of the boundary of tori,i. We enumerate

several such candidate main boundary segments, construct the optimal benchmark

shape for each such main boundary segment, and then pick the generated shape

that is the most similar to the input shape tori,i as tgen,i. Note that the similarity

between any two shapes is measured by the area of the region obtained after polygon

Boolean XOR operation between the two given shapes.

For finding a candidate main boundary segment, we shall select an ordered subset

of the vertices of tori,i (Vmain) such that the line segments obtained after connecting

the vertices approximates some boundary segment of tori,i within the CD tolerance

γ. We first define a cost function slopeCDcost for selecting the two vertices vk(t)

and vl(t) as a part of Vmain in Algorithm 6. The cost is equal to the area of the error

pixels which are outside the CD tolerance region of the line segment, as illustrated in
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Figure 4.14 (Line 3). To ensure that the set of line segments obtained from Vmain can

be constructed using only one type of shot corner points, we need to guarantee that

all the chosen linear segments have angle with x-axis in the same quadrant. We add

an additional constraint to the cost function that assigns the cost value to infinity

if the angle of the linear segment with the x-axis is outside the specified lower and

upper bound (θLB and θUB). The values of θLB/θUB could be 0/90, 90/180, 180/270

or 270/360 corresponding to upper-left, upper-right, lower-right and lower-left shot

corners respectively.

Algorithm 6 Cost function for selecting a pair of vertices as part of b′main

Procedure: slopeCDcost( Target shape t, two vertices vk(t) and vl(t), θLB , θUB)

Output: Cost of the segment formed by vertices vk(t) and vl(t)

1: θ(vk(t),vl(t))
← the angle of the segment formed by vertices vk(t) and vl(t)

2: if (θ(vk(t),vl(t))
≤ θUB) && (θ(vk(t),vl(t))

≥ θLB) then

3: cost← CD violating area of line segment between vk(t) and vl(t) (Figure 4.14)

4: else

5: cost← +∞

6: end if

7: return cost;

Figure 4.14: Number of error pixels along the segment vk(t) - vl(t).

Inspired by Sato’s dynamic programming method to approximate any given curve

by a set of linear segments, we propose a similar technique to find a candidate main

boundary segment as shown in Algorithm 7. For each vertex of the input shape, we

iterate over all the previous vertices in the list and find the cost (slopeCDcost of
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Algorithm 6) for using the linear segment connecting the two vertices as a part of

the main boundary segment (Lines 6-8). For each vertex, we then pick the previous

vertex with the minimum cost and store it (Lines 9-10). To find only those line

segments which have zero cost, we also store the last vertex which has zero cost

(Lines 11-13). Then we backtrack from this last vertex to the first vertex and get

all the linear segments with zero cost that approximate part of the boundary of the

input shape tori,i (Lines 15-20) to obtain a candidate Vmain.

Algorithm 7 Dynamic programming algorithm to get a candidate main boundary

segment for target shape t

Input : Vertices V (t), target shape t, CD tolerance γ, θLB , θUB)

Output: Ordered subset of V (t), Vmain

1: k = 1

2: last index = 1

3: min cost(k) = 0

4: for k = 1 to |V (t)| do

5: for l = 1 to k do

6: cost(l) = slopeCDcost(vl(t), vk(t), t, θLB , θUB);

7: end for

8: sol index(k) = the index l which has the minimum cost

9: min cost(k) = cost(sol index(k))

10:

11: if (min cost(k) == 0) then

12: last index = k

13: end if

14: end for

15: j = last index

16: Insert vj(t) to Vmain

17: while j 6= 1 do

18: Insert vsol(j)(t) to Vmain

19: j = sol(j)

20: end while

21: return Vmain

The list of vertices of any polygon, V (t), is cyclical, i.e. any vertex can be used

as the starting point. Moreover, the vertices can be ordered in clockwise or anti-

clockwise direction. However, the choice of the starting vertex and the direction

affect the candidate boundary segment that we obtain from Algorithm 7. A poor

choice of the starting vertex or direction for getting Vmain could construct tgen,i
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which does not look similar to tori,i. To avoid this limitation, we pick different

starting vertices. Then for each starting vertex, we consider both the clockwise and

anti-clockwise direction to obtain different candidate main boundary segments. We

obtain a benchmark shape for each candidate segment and then pick the one which

looks most similar to tori,i. We select the starting vertices for generating candidate

Vmain using the following criteria:

• If the target shape tori has no split location, we select the four vertices that

are the top, bottom, left and right vertices of tori as the starting vertices.

• When the target shape is a split-shape, we can find the starting point from the

split-line. Split-line is the horizontal (vertical) line splits tori. We define the

shot which is split by the split-line as split-shot. Since we want to maximize the

coverage of split-shot, we stretch the shot as much as possible from the split-

line. When the split-shot is across the boundary of tori,i, we set the crossing

vertices as the starting vertices.

4.6.2 Determine Corner Points

For each candidate main boundary segment that we get from Algorithm 7, we need

to place shot corner points to construct the boundary segment. The set of shot

corner points that construct the straight line segments obtained from Vmain, Cmain,

must be placed such that Lemma 4.5.1 and Lemma 4.5.2 are obeyed so that the

fracturing solution of the generated benchmark split-shape tgen,i is actually optimal.

Algorithm 8 outlines the steps we use to find Cmain.

In Algorithm 8, we first order the points in Vmain such that they are sorted by

x-coordinate of the points in Line 1. Next we shift all the line segments of Vmain to

get V sft
main, such that all the shot corner points must lie on the line segments obtained

by connecting consecutive points of V sft
main (Line 2). This shift compensates for the

difference between the rectangular mask shot and its rounded corner due to the

e-beam proximity effect, as illustrated in Figure 4.15.
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Figure 4.15: Illustration of the gap (ζ(θ)) between a shot corner point and the line

segment with slope θ that is part of boundary segment.

Once we obtain the shifted set of points V sft
main such that all shot corner points

lie on the line segments connecting consecutive points from V sft
main, we can then find

a set of shot corner points using the function getCnrPtsFrmSrt in Algorithm 8.

We first sample the line segments connecting consecutive points from V sft
main and get

all points with integral coordinates that lie on these line segments, Vsamp (Line 1).

Next, we include the first point of Vsamp as a shot corner point in Line 2. We then

iterate over the set of sampled points and if the distance between the previously

added shot corner point cprev and the sampled point vsamp,i is greater than Lθ
th, we

add the sampled point to the set of shot corner points (Lines 4-9). Note that θ

is the angle of the line segment connecting cprev and vsamp,i with the x-axis. This

distance criteria ensures the optimality of the fracturing solution of tgen,i by adhering

to Lemma 4.5.1 and Lemma 4.5.2.

If we obtain shot corner points from the shifted set of points V sft
main using the

method described in getCnrPtsFrmSrt() of Algorithm 8, it could lead to large

error between the input mask shape and generated shape near the location of the

last point of V sft
main. This is illustrated in Figure 4.16(a) that shows V sft

main, Vmain

and tori,i. If the right-most point of V sft
main is the first point, then the shot corner
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points we get from getCnrPtsFrmSrt() are clmain,1, c
l
main,2 and clmain,3. Due to the

minimum distance constraint between shot corner points imposed by Lemma 4.5.1

and Lemma 4.5.2, no additional shot corner points can be chosen after clmain,3. As a

result, there is significant pixel error after the last shot corner point clmain,3.

To reduce the pixel error after the last shot corner point, we first get two sets

of potential shot corner points: C l
main with the ordered set of points V sft

main as in-

put, and Cr
main with reverse ordered set of the same points V sft,rvr

main , as input to

getCnrPtsFrmSrt() (Lines 2-4). Then we reverse the order of Cr
main and check if

the first corner point of C l
main and Cr

main are close to each other (≤ γ) in Line 5.

If this is true, then all the points of C l
main and Cr

main will be close to each other,

and hence we can just use C l
main as the set of shot corner points Cmain that can

construct the line segments formed by Vmain (Line 7). However, if the potential shot

corner points of C l
main and Cr

main are not close to each other, we take the average of

the x- and y- coordinate of the corresponding points in C l
main and Cr

main. We also

include the lowest x-coordinate point, i.e. the first point of C l
main, and the highest

x-coordinate point, i.e. the last point of Cr
main. Figure 4.16(b) shows the result

with this choice of corner points. Although this creates error pixels all along the

main boundary, it does not cause any large pixel error after the last corner point.

Moreover, choosing the lowest and highest x-coordinate shot corner point in Cmain

makes it easier to merge the tgen,i shapes to obtain tgen.

4.6.3 Determine opposite corner points

We now describe the method to determine the locations of diagonally opposite corner

points (Copp
main) of Cmain. Since a shot is determined by Copp

main and Cmain, Copp
main must

be placed such that the shot do not affect b′main, the shot size constraints are obeyed,

and the generated shape tgen,i is similar to tori,i.

Algorithm 9 summarizes our method for finding the opposite shot corner points.

Given a fixed corner point cmain ∈ Cmain, we first enumerate all points which could

become the opposite corner point copp
main ∈ Copp

main in Line 3. If cmain is a top-left shot
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Figure 4.16: (a) Example of C l
main. (b) Example of Cmain.

corner, we can find candidate opposite points by considering all the points within

distance γ of the boundary of tori,i that also satisfy the following two conditions:

(i) lie below and to the right of cmain, and

(ii) distance from cmain is such that the corresponding shot will satisfy shot size

constraints.candidates for copp
main.

Candidate opposite points for cmain if it is a bottom-left, top-left or top-right shot

corner can be obtained using a similar criteria.

After finding the candidate set of opposite corner points in Algorithm 9, we

iterate over this set and find the opposite point for which the corresponding shot

best covers the input shape tori,i in Lines 4-10. This opposite point is then inserted

to the list of opposite shot corner points in Line 11. Once the set of shot corner

points that construct b′main (Cmain) are known along with the corresponding opposite

shot corner points (Copp
main), we can obtain the shape tgen,i by adding the intensity of

all the corresponding shots and applying the resist threshold.

4.6.4 Experimental Results

We first generate shapes by using the manually generated benchmark shapes from

Figure 4.13 as input to our implementation of AutoBG in C++. Table 4.6.4 shows
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the shot count, runtime and the similarity (area of XOR of input shape and generated

shape divided by the area of the input shape). The shapes generated by AutoBG

are also shown in Figure 4.17.

Table 4.4: Validation of AutoBG method.

Clip-ID Manual AutoBG

Shot count Shot count Similarity (%) Runtime (s)

AGB 1 3 3 87 <1

2 16 10 87 4

3 17 16 85 8

4 7 8 70 2

5 3 3 87 2

RGB 1 5 3 82 2

2 7 7 85 4

3 5 3 90 4

4 9 8 79 4

5 6 6 85 4

From Table 4.6.4, it is clear that AutoBG can generate shapes that are more

than 80% similar to input mask shapes for most cases. The similarity is somewhat

less for a few complex shapes such as AGB-4. In addition to similarity, the optimal

shot count of the input shapes and the optimal shot count of the AutoBG generated

shapes are fairly close.12 In fact, they are the same for four cases. This suggests that

the optimal shot count of the AutoBG generated shapes for real ILT mask shapes

will be close to the unknown optimal shot count of the ILT shapes. Lastly, the

runtime to generate benchmark shapes is less than eight seconds.

The Tables 4.5 and 4.6 show the shot count and similarity of AGB1 according to

different γ and σ. As increasing γ and σ, shot count decreases from five to two shots

and the similarity becomes worse from 92% to 73%. This is because the larger γ and

σ increase the Lθ
th and the increased Lθ

th results in reducing the shot and worsening

the similarity. For the AGB3 shape, the same trend is shown in Tables 4.7 and 4.8.

12Note that this difference in optimal shot count is between the input shape and AutoBG gener-
ated shape. The shot count of the AutoBG generated shapes is still optimal since the generation
process obeys the constraints of Section 4.5.
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Figure 4.17: Illustration of generated benchmark shapes obtained from AutoBG

with shapes in Figure 4.13 as inputs.

CD tolerance

(nm)

1 2 3

Proximity 3.25 5 5 4

model 6.25 4 3 3

(nm) 9.25 3 3 2

Table 4.5: #Shots of AGB1

CD tolerance

(nm)

1 2 3

Proximity 3.25 92 90 82

model 6.25 86 88 84

(nm) 9.25 78 73 73

Table 4.6: Similarity of AGB1

CD tolerance

(nm)

1 2 3

Proximity 3.25 28 21 19

model 6.25 17 17 14

(nm) 9.25 13 12 13

Table 4.7: #Shots of AGB3

CD tolerance

(nm)

1 2 3

Proximity 3.25 90 90 86

model 6.25 87 86 83

(nm) 9.25 78 78 78

Table 4.8: Similarity of AGB3
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Table 4.9: Comparison of optimal shot count for AutoBG-generated benchmark

shapes that are similar to the shapes shown in Figure 4.7 to the shot count of

three fracturing heuristics. Benchmark shapes are generated for three scenarios with

different values of e-beam proximity model Gaussian variance (σ) and CD tolerance

(γ).

Clip-ID

σ = 6.25nm, γ = 2nm σ = 4nm, γ = 2nm σ =

Optimal GSC MP PROTO-EDA Optimal GSC MP PROTO-EDA Optimal GSC MP PR

1 3 9 5 7 4 7 8 13 6 13 10

2 7 20 9 16 7 10 13 35 10 32 42

3 1 1 9 6 1 1 1 8 3 24 24

4 9 26 20 15 11 21 15 27 13 46 35

5 6 18 12 11 7 16 11 19 10 38 27

6 3 4 5 6 3 4 4 13 3 16 10

7 4 11 4 8 4 7 6 13 6 20 11

8 7 24 9 9 9 19 15 19 11 33 24

9 9 29 16 21 10 20 47 29 14 44 59

10 4 11 7 9 4 9 10 17 7 23 19

4.6.4.1 Scalability

Next we generate benchmark shapes using all the ten ILT mask shapes shown in

Figure 4.7 as inputs with different values of σ and γ. We then compare the sub-

optimality of the fracturing heuristics for all these generated benchmark shapes,

with the results summarized in Table 4.9. The suboptimality ratio of GSC, MP and

PROTO-EDA across the ten shapes for the baseline case (σ = 6.25nm, γ = 2nm)

ranges from 1× to 3×, 1× to 9× and 1.2× to 6×, respectively. Interestingly, if σ is

reduced to 4nm, GSC and MP heuristics perform better and the suboptimality ratio

reduced. However, the suboptimality range of PROTO-EDA worsens and becomes

2.1× to 8×. On the other hand, if γ is reduced, the performance of PROTO-EDA

improves and that of GSC and MP worsens.
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4.7 Conclusions

The use of aggressive RET techniques such as ILT, the need for e-beam proximity

effect correction, and the use of overlapping shots have transformed mask fracturing

into a very challenging computational problem. Although several heuristics have

been proposed in the last few years, there has been no systematic study to ana-

lyze the quality of solutions. In this work, we propose two methods to evaluate the

suboptimality of mask fracturing heuristics. First, we formulate the mask fractur-

ing problem as an integer linear problem and develop a practical branch and price

method to generate tight upper and lower bounds on the optimal shot count. Sec-

ond, we introduce a systematic method to generate a set of benchmarks with known,

provably optimal solutions. Third, we describe an automated benchmark generation

method to construct shapes which look similar to real ILT shapes.

Using our benchmarking method, we evaluate the suboptimality of three mask

fracturing heuristics: greedy set cover, matching pursuit and a state-of-the-art pro-

totype [version of] capability within a commercial EDA tool for e-beam mask shot

decomposition (PROTO-EDA). Our experimental results show that PROTO-EDA

has up to 6×more shots compared to the optimal solution for generated benchmarks,

and has up to 2.3× more shots for ILT mask shapes with unknown optimal solution.

These results suggest that there remains considerable opportunity to improve mask

fracturing heuristics.

Our future works include (i) to develop better mask fracturing heuristics based on

insights from boundary analysis and ILP solutions, and (ii) extend our suboptimality

evaluation methodology for the fracturing problem which allows variable-dose or

non-rectangular shots.

The latest versions of our source code and benchmark suite are available publicly

(http://impact.ee.ucla.edu/maskFracturing/Bench-

marks). We hope that this will stimulate further research toward development of

improved mask fracturing heuristics.
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Algorithm 8 Get shot corner points (Cmain) to construct a candidate main bound-

ary segment

Require: Ordered set of points Vmain, CD tolerance γ, the distance between corner point of shot and its image

ζ(θ), and Gaussian proximity model σ

Ensure: Set of shot corner points Cmain

1: If vmain,1 has largest x-coordinate in Vmain reverse order of Vmain

2: V sft
main ← Shift every point of Vmain such that every line segment between consecutive points is shifted by

ζ(θ) + γ

3: Cl
main ← getCnrPtsFrmSrt(V sft

main)

4: V sft,rvr
main ← Reverse order of V sft

main

5: Cr
main ← getCnrPtsFrmSrt(V sft,rvr

main )

6: Reverse order of Cr
main

7: if (L(cl
main,1, cr

main,1) ≤ γ) then

8: Cmain = Cl
main

9: else

10: Insert cl
main,1 to Cmain

11: for i = 2 to |Cl
main| − 1 do

12: cmain,i ← (cl
main,i + cr

main,i)/2

13: Insert cmain,i to Cmain

14: end for

15: Insert cr
main,|Cr

main
|
to Cmain

16: end if

17: return Cmain

Procedure: getCnrPtsFrmSrt(Ordered set of points V sft
main)

Output: Set of shot corner points C

1: Vsamp ← Sample points on all the line segments obtained from V sft
main

2: Insert vsamp,1 to C

3: cprev ← vsamp,1

4: for i = 2 to |Vsamp| do

5: if (L(vsamp,i, cprev) ≥ Lθ
th

) then

6: Insert vsamp,i to C

7: cprev ← vsamp,i

8: end if

9: end for

10: return C
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Algorithm 9 Determine opposite corner points for given set of shot corners.

Input : Shot corner points Cmain, input shape tori,i

Output: A set of opposite corner points Copp
main

1: for all cmain ∈ Cmain do

2: maxCover ← 0

3: Ccan opp
main ← Candidate opposite shot points for cmain

4: for all c ∈ Ccan opp
main do

5: s← Shot with opposite corners cmain and c

6: cover ← area(XOR(s, tori,i))

7: if cover > maxCover then

8: copp
main ← c, maxCover ← cover

9: end if

10: end for

11: Add copp
main to Copp

main

12: end for
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CHAPTER 5

Defect Avoidance Techniques to Mitigate EUV

Mask Defects

5.1 Introduction

As described in Chapter 1, EUV mask blanks suffer from hard-to-repair buried

defects. Hence, the ability to tolerate some of these defects without any impact

on yield is a very attractive proposition. Defect avoidance based techniques have

emerged as a very effective means to tolerate mask defects. These techniques rely

on inspection of mask blanks to first determine defect locations. The position of the

design pattern, which needs to be written on the mask, can then be shifted relative

to the mask to avoid the defects. There are three degrees of freedom that can be

exploited to avoid mask blank defects, which is illustrated in Figure 5.1:

• Pattern Shift requires moving the entire mask field pattern relative to the de-

fective mask blank to avoid defects. Several prior approaches look at methods

to exploit pattern shift to avoid defects [BA10, ZD12, WB12, YL12].

• Rotation involves rotating the entire mask pattern about the center of the

mask blank. Most approaches consider rotation only in multiples of 90 degrees

[BA10, WB12, YL12]. However, Zhang et al. [ZDW12] propose small-angle

rotation as well. Although this additional flexibility can improve the chances

of using a defective mask blank, it is unclear whether EUV scanners will be

able to support non-orthogonal rotation of the mask.

• Mask Floorplanning avoids defects by moving each die copy inside the mask

field independently. Recently, Du et al. [DZW12b] propose methods to per-
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form mask floorplanning together with pattern shift. There are two key issues

that could hinder the use of mask floorplanning as a defect avoidance method.

First, it can lead to gaps between die copies (scribe area), which is area wasted

on the wafer. However, this wasted scribe area is less than 1% of the total

area of the die copies according to our experimental results in Section 5.5.3.

Second, different layers of the same design must be moved simultaneously.

Consequently, mask floorplanning can help improve defect avoidance only if

the number of critical design layers patterned using EUV lithography is small.

Elayat et al.[ETS12] and Jeong et al.[JKP11] provide a cost-benefit assesment

of different defect avoidance and reticle planning strategies, respectively. The low

accuracy of mask blank inspection tools is a serious limitation for defect avoidance

based mitigation. Recent techniques have also looked at methods that can toler-

ate defect position inaccuracy [DZW12a]. Alternate approaches for mask defect

mitigation that rely on correcting the absorber pattern after mask write have also

been proposed [Cli10, MG13], but they may be less effective than defect avoidance

techniques [JH10], especially for large defects or high defect density.

Figure 5.1: Summary of three degrees of freedom for avoiding EUV mask defects.
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In this chapter, we present two methods for defect avoidance. First we describe a

simulated annealing based method that uses pattern shift and mask floorplanning to

avoid mask defects. However, this method is unable to handle small-angle rotation.

Moreover, it requires discrete moves which which limits the solution space to avoid

defects.

To address the limitations of simulated annealing based defect avoidance, we

propose a global optimization based method that allows simultaneous and contin-

uous optimization of all the three degrees of freedom offered by defect avoidance:

pattern shift, rotation and floorplanning. We formulate the problem as a non-convex

optimization problem and then solve it using a combination of hit-and-run based

random walk and gradient descent.

The remainder of this chapter is organized as follows. Section 5.2 describes our

method for estimating the wafer CD impact of EUV mask defects. Next, we describe

our simulated annealing based defect avoidance method in Section 5.3. Section 5.4

describes our global optimization method. Section 6.5 then shows some simulation

results where we compare our methods to prior art and analyze the impact of several

different manufacturing scenarios. Finally, we conclude this chapter in Section 5.6.

All notation used in this paper is summarized in Table 6.1.

5.2 Modeling CD Impact of Buried Defects

Estimating the impact of buried defects on wafer has been extensively studied

through experimental work (wafer exposure followed by inspection) [TYT10] and

lithography simulations [CN09] for different defect dimensions and optical condi-

tions. These approaches typically study minimum pitch grating patterns and look

at printability and CD change caused by these mask defects for different defect

height, width and position relative to the absorber pattern. Using their EUV lithog-

raphy simulator, Clifford and Neureuther [CN08] propose a simple linear model to

estimate the CD change of a grating pattern as a function of defect height for a fixed

width and position. Using this model as starting point, with the assumption that it
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Table 5.1: Glossary of Terminology

Term Description

γ Correction factor of CD impact model of EUV mask defect.

L Number of design layers patterned using EUV

l Particular design layer under consideration

BDl Set of buried defects in layer l

d Current defect under consideration

Wd Full width half maximum of mask defect d

Hd Height of mask defect d

(Xd, Yd) Coordinate of center of mask defect d

∆ Maximum position inaccurary of EUV mask blank inspection tool

Al Set of absorber edges in layer l of design

e Absorber edge under consideration

dist(e, d) Distance between absorber edge e and the center of defect d

DefHeight(e, d) Height of defect d at location of absorber edge e

CDdef (e, d) Change in critical dimension (CD) of absorber edge e caused by defect

d

CDtol(e) CD tolerance of absorber edge e

IRd Region of influence of buried defect d

WD(HD) Width (height) of die

WM (HM ) Width (height) of usable area of mask blank

WF (HF ) Width (height) of mask field size

R(C) Number of rows (columns) of die copies in mask field

r(c) Row (column) number under consideration

CostSA Overall CD impact cost function for defect avoidance using simulated

annealing method

Xpl(Y pl) X(Y)-coordinate of center of mask field relative to mask blank center for

layer l

Θl Angle by which the mask field pattern is rotated relative to the mask

blank coordinates

Xfr(Y fc) X(Y)-coordinate of rth(cth) row of dies

X(e) X-coordinate of a vertical absorber edge e relative to die center

X̂(e) X-coordinate of a vertical absorber edge e relative to mask field center

Ylow(e) Bottom y-coordinate of a vertical absorber edge e relative to die center

Ŷlow(e) Bottom y-coordinate of a vertical absorber edge e relative to mask field

center

Yhigh(e) Top y-coordinate of a vertical absorber edge e relative to die center

Ŷhigh(e) Top y-coordinate of a vertical absorber edge e relative to mask field

center

u(.) Unit step function. u(y) = 1 if y ≥ 0, u(y) = 0 otherwise

CostGO Overall CD impact cost function for defect avoidance using global opti-

mization method

NG Number of iterations of gradient descent for each starting point

S Step size of gradient descent
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is valid even for non-grating layout patterns, we make the following assumptions to

evaluate the CD impact of buried defects on a general layout pattern:

• All defects have a 3D symmetric Gaussian shape as shown in Figure 5.2. The

application of a smoothing process during the multi-layer deposition [CN08]

step for EUV mask manufacturing makes this a fairly accurate assumption for

defect modeling.

• The CD impact of a defect on a particular absorber is assumed to be propor-

tional to the height of the defect at the closest edge of the absorber. Hence as

a defect moves away from an absorber, its impact reduces exponentially. But,

as shown in Figure 5.3, this assumption implies that two defect locations D1

and D2 lead to the same CD impact. In reality, intensity drop of an aerial

image, and hence CD impact, would be more when most of the defect is not

covered by the absorber. To correct for this, we apply an additional correction

factor to our model (γ). We chose γ = 0.5 if the center of the defect lies under

the absorber, and γ = 1.0 if the defect center lies outside the absorber, based

on simulation results in [Cli10].

• To account for defocus, which can have a significant impact on CD change

due to the phase nature of these buried defects [TYT10, CN09], we scale up

the values obtained from the linear model by 3×. This is based on existing

simulation results for defocus value of ±75nm [Cli10].

• A single absorber pattern cannot be affected by more than one defect. This

assumption is reasonable, considering that typical defects are randomly dis-

tributed across an entire 6in.× 6in. mask. Unless defect density is very high,

two defects are unlikely to lie close to a single absorber pattern, a situation

illustrated in Figure 5.4.

• Current mask blank inspection tools are unable to accurately locate the posi-

tion of the defect. In order to make the mask floorplanner robust to positional

error, we consider a circular region of uncertainty around the most likely de-
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Figure 5.2: A 3D, symmetric Gaussian defect on the left and its planar projection

with height H and full width at half maximum FWHM.

Figure 5.3: Two potential locations of a defect, D1 and D2 relative to absorber edge.

We assume that D1 has twice the CD impact of D2.

fect center location (as per the blank inspection tool). We then assume that

the distance between the defect and an absorber edge is equal to the smallest

distance between the uncertainty region and the absorber. This assumption is

illustrated in Figure 5.5.

With these assumptions, the CD impact for the buried defect d, which is at a

distance dist(e, d) from an absorber edge e, as shown in Figure 5.6, can be calculated

using Equations 5.1 - 5.3. dist∆(e, d) is the worst case distance between the defect

and the absorber that accounts for the inaccurary of the mask blank inspection

tools. mdefect = 0.191nm−1, bdefect = 0.094, INoDefect = 0.3 and ImageSlope =
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Figure 5.4: A scenario with two defects changing CD of a single absorber. The worst

case CD change may not lie at minimum distance edge fragment of either defect.

Figure 5.5: Pessimistic approach to model a uncertainty in defect position.

0.0471nm−1 are constants whose values are taken from [CN08].

dist∆(e, d) = max(dist(e, d)−∆, 0) (5.1)

DefHeight(e, d) = Hde
−dist2

∆(e,d)
/(Wd/2)2 (5.2)

CDdef (e, d) =
3 · γ ·

√

INoDef · (mdef ·DefHeight(e, d) + bdef )

ImageSlope
(5.3)

Figure 5.6: A defect and absorber with r as distance between center of defect and

closest absorber edge.
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5.3 Simulated Annealing Based Defect Avoidance

In this section, we describe a simulated annealing based method for defect avoidance

that can exploit two degrees of freedom for defect avoidance, pattern shift and mask

floorplanning. We first describe the overall CD impact metric that we minimize

during the optimization, after which we describe our algorithm.

5.3.1 Optimization Metric

To find out whether a buried defect will cause a design to fail or not, we also

need to know the acceptable CD deviation that each design shape can tolerate.

This CD tolerance can be computed using the method we described in Chapter

3 if some design information is available to mask manufacturers. If not, a single

conservative CD tolerance can be assigned to each shape in the design. Using a

CD tolerance assignment and the CD impact of of each defect on every absorber

shape, we develop a concise metric to estimate the overall design impact of buried

mask defects, which can then be optimized for by our floorplanner. A design is

said to work if CDdef (e, d) < CDtol(e) for the all the defects and absorber shapes

of each layer of the entire mask pattern. This binary requirement can be treated

as a constraint to find a valid floorplan. But a better alternative is to minimize a

continuous metric that minimizes the overall CD change of the entire mask so that

the impact of defects on the printed patterns is minimized, even if the mask does

yield. To do this, we propose a simple cost metric that estimates the design impact

of all the buried defects on a mask by aggregating an exponential penalty function

across all defects and absorber edges, as shown in Equation 5.4.

CostSA =
∑

l∈L

∑

d∈BDl

∑

e∈Al

expCDdef (e,d)−CDtol(e) (5.4)

(5.5)

The runtime to compute this metric across all layers is O(
∑

l∈L |BDl| · |Al|). But

instead of computing the cost for each polygon for every defect we can consider only

those polygons which lie in a region of influence IRd from the defect center. This
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region is a function of Hd, Wd and defect position error ∆. Finding all polygons

which lie within distance IRd of the defect center can be done in O(log |Al) using 2D

region query tree data-structure to represent the entire die pattern [Ben75]. Hence

the runtime for computing the cost reduces to O(
∑

l∈L |BDl| · log |Al| · |A′l|), where

A′l is the set of polygons inside the region of influence (|A′l| << |Al| for typical defect

size and alignment error).

Note that this cost metric is not equivalent to yield but it is indicative of the

overall electrical impact of buried defects on the design. For example, if a single

die has multiple defects, moving the die may not improve yield at all, but it could

still reduce this cost metric. Another important point is that although we have

used a closed form expression to calculate the CD impact of a buried defect, our

floorplanner is agnostic to the defect model. It is possible to use a fast simulator

such as RADICAL [CN09] for layout snippets around each buried defect to evaluate

the design impact more accurately.

5.3.2 Algorithm

To solve the single project, multiple die reticle floorplanning problem formulated

above, we consider only gridded solutions because they guarantee that no die is

lost after side-to-side wafer dicing. A non-gridded solution can potentially be more

compact, but will usually lose some dies during dicing which need to be accounted

for during yield computation. Enforcing a gridded solution also limits the solution

space and simplifies the floorplanning algorithm. We chose the simulated anneal-

ing framework [KGV83] to solve this optimization problem since previous work on

floorplanning [CL03, Kah07] suggests that it is a good heuristic for floorplanning

problems.

In simulated annealing based optimization, an initial solution is randomly chosen,

which in our case is a floorplan with no space between any die, starting from the

center of the usable reticle area. An appropriate perturbation or move is applied

to the solution, which increases or decreases the metric we wish to minimize. If a
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change or move reduces the cost it is accepted. But the move increases the cost, it is

accepted with a finite probability depending on the increase in cost and the number

of prior iterations. Temperature is usually used as a parameter that reduces with

each iteration of the optimization, in analogy to thermal annealing. So, initially

when the system is hot, most moves, even those that increase cost, are accepted. As

the system cools down, the optimizer behaves more like a greedy algorithm.

To define moves for gridded solutions, we first define a set of horizontal and ver-

tical gridlines. If we have an initial compact floorplan with R rows and C columns

of dies, then we have R horizontal gridlines and C vertical gridlines. Each horizon-

tal(vertical) gridline has its corresponding y(x) coordinate linked to all die whose

bottom (left) coordinate is the same. So, each die is linked to two gridlines, one ver-

tical and one horizontal. Both horizontal and vertical gridlines are sorted by their

respective coordinates. Each gridline coordinate (and all the linked dies) can be

moved by a predefined value ±δ. This is a move or perturbation for our optimiza-

tion. Hence any vertical (horizontal) gridline LV
i (LH

i ) has two possible moves:(1)

xi(yi) = xi(yi)+ δ;(2) xi(yi) = xi(yi)− δ. A move is labeled as valid or invalid based

on whether spatial constraints are obeyed after the move is made. The three main

types of spatial constraints that must be obeyed by every gridline are listed below,

where WM(HM) is the usable reticle width (height), WD(HD) is die width (height),

c ∈ {1, 2...C}, r ∈ {1, 2...R} and, x1(y1) and xn(ym) are the smallest and largest

co-ordinates of the gridlines.

• Reticle Boundary Constraints (c(r) 6= 1): x1(y1) ≥ 0, xC(yR) + WD(HD) ≤
WMM(HR).

• Die Overlap Constraints: xc(yr)− xc−1(yr−1) ≥ WD(HD)(c(r) 6= 1).

• Maximum Allowed Field Size Constraints: xC(yR) + WD(HD) − x1(y1) ≤
WF (HF )

Figure 5.7 graphically illustrates these moves and their validity. There are a total of

2 ∗R+ 2 ∗C potential moves and 4 + (R− 1 +C − 1) + 2 spatial constraints which
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Figure 5.7: Illustration of valid and invalid moves

Figure 5.8: Illustration of various orientations for a die

must be checked to determined which of the potential moves are valid.

Apart from moving dies, their orientation can also be changed. Each die can

have four possible orientations as shown in Figure 5.81. However, these orientation

changes can have significant manufacturing overheads. Flipping the die would lead

to dies with different pin locations and hence require a different package. Rotation by

180o makes wafer testing significantly harder (potentially requiring a different probe-

card). Due to these manufacturing overheads, we have disallowed any orientation

changes in our algorithm.

Although die level orientation changes are disallowed, rotation of the entire mask

pattern (all R×C dies) will not suffer from any of the manufacturing issues discussed

above. In order to allow this orientation change, we apply our simulated annealing

based floorplanning described above to four rotated versions (default, 180o, flipX,

flipY) of the entire mask pattern. We then choose the best solution among them.

190o/270o rotation is not considered due to lithographic patterning constraints.
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We noted earlier that floorplanning incurs an overhead in the form of wasted

scribe and consequently, wafer area. It is possible that for a certain defect distri-

bution on the mask, just shifting the entire mask pattern is sufficient. In order to

circumvent this limitation of floorplanning, we first perform pattern shift and then

check if the mask works. If the mask does not work after pattern shift, we perform

floorplanning. Additionally, the minimum CD impact position returned by pattern

shifting is used as a starting solution for reticle floorplanning.

Algorithm 10 summarizes the complete algorithm. Lines 1 − 2 define an initial

partition where dies are placed in a compact grid on the reticle such that the mask

pattern is at the center of the usable reticle area. Lines 3 − 12 iterate over the

four orientation options for the mask pattern and performs floorplanning for each

orientation and the best orientation is chosen in Line 13. Lines 4−7 incorporate the

step of shifting the entire mask pattern by calling the function PATTERNSHIFT().

Reticle floorplanning is then performed in Line 11 by calling FLOORPLAN(), if the

mask still fails.

The function PATTERNSHIFT() in Lines 14 − 20 of Algorithm 10 essentially

merges all the dies on the mask to create a single larger pseudo-die, DfullMask.

With this new die, it calls the existing simulated annealing based FLOORPLAN()

function. The final shifted position of the pseudo-die is returned.

The function FLOORPLAN() in Lines 21−41 of Algorithm 10 is the key function

that actually performs the simulated annealing based gridded floorplanning. In each

iteration of the while loop the best valid move (maximum cost reduction or minimum

increase) is chosen in lines 29− 31. The simulated annealing criteria is then applied

to determine if the move should be accepted or not in Lines 32 − 37. To improve

runtime, we stop the annealing optimization as soon as the mask yields, in Lines

26−28. This helps reduce the runtime by stopping the optimization when a solution

that yields is found.

The runtime of our approach summarized in Algorithm 10 is dominated by the

cost computation for each valid move during the FLOORPLAN() function. Among
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Algorithm 10 Simulated Annealing Based EUV Mask Defect Avoidance Method
Require: Width (WM ) and Height (HM ) of reticle, width(WD) and height (HD) of each

die, location/size of defects on mask blank BDl and all design layout shapes (Al) with

CD tolerances for all design layers l ∈ L

Ensure: Location of die such that number of defects in critical areas is minimized.

1: R = HM/HD rows of dies, C = WM/WD columns of dies.

2: Place R×C dies on the reticle such that the reticle field is at the center of the usable

reticle area.

3: for all orientation ∈ (default, 180o, flipX, flipY) do

4: if Number of die > 1 then

5: for all l ∈ L do

6: (Xpl, Y pl) ← PATTERNSHIFT(BDl, Al)

7: Shift all d ∈ BDl by (Xpl, Y pl)

8: end for

9: end if

10: if Mask works then

11: Exit for loop, choose current solution

12: end if

13: Dfp(orientation)←FLOORPLAN(D, BD, CDtol)

14: end for

15: Dfinal = argmin(Cost(Dfp)).
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Algorithm 11 Functions used in Algorithm 10
1: function PATTERNSHIFT(BD, S).

2: Merge every die ∈ D into one large die DfullMask.

3: Dshift ←FLOORPLAN(DfullMask, BD, S).

4: X = Dshift− > left−DfullMask− > left.

5: Y = Dshift− > bottom−DfullMask− > bottom.

6: Return (X, Y ).

7: end function

8: function FLOORPLAN(D, BD, S)

9: Define vertical gridlines for each column of dies in D.

10: Define horizontal gridlines for each row of dies in D.

11: T = Tinitial, cr is cooling rate .

12: while T > Tfinal do

13: if Mask works then

14: Exit while loop, choose current solution.

15: end if

16: Find all valid gridline moves.

17: Compute cost change ∆Cost for each valid move.

18: c∗ = min(∆Cost), m∗ = argmin(∆Cost)

19: if c∗ <= 0 then

20: Accept m∗.

21: end if

22: if c∗ > 0 then

23: Accept m∗ with probability P = exp(−c∗/T ).

24: end if

25: T = T ∗ cr.

26: end while

27: Return D with updated coordinates.

28: end function
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the 2 ∗ (R + C) potential moves, we first find the set of valid moves and then

evaluate the cost change of each valid move. Although this cost computation is

done incrementally in the sense that cost needs to be computed only for the dies

which move, at worst it needs to be done for each defect on the mask. For a simulated

annealing schedule with initial temperature Tinitial, final temperature Tfinal and

cooling rate cr the overall complexity of this approach is therefore, O(logcr(
Tfinal

Tinitial
)×

(k1 ∗ (R + C)× fcost)), where k1 is a constant and fcost is the time to calculate the

cost function of Equation ?? for one die which is O(
∑

l∈L |BDl| × log |Al|).

5.4 Global Optimization Based Defect Avoidance

5.4.1 Problem Formulation for Defect Avoidance

In this work, we focus on EUV mask defect avoidance of single-project masks. This

is because EUV is likely to be economically viable only for high volume designs where

single-project masks are used. Moreover, we shall assume that the floorplan of the

die copies on the mask is gridded. Although this restricts the potential solution

space, it guarantees full dicing yield. The number of die copies inside the mask is

kept fixed. This contrasts with Du’s approach [DZW12b], where the number of die

copies on the defective mask is maximized.

Since pattern shift and rotation can be done independently for each layer we

define (Xpl, Y pl,Θl) as the coordinates of the center of the mask field relative to

the center of the mask itself and rotation of each layer, l. Mask floorplanning, on

the other hand, must be done together for all the layers to ensure layer alignment.

Hence we define the relative coordinates of the rth row of dies relative to the zeroth

row as Y fr (r ∈ 1, 2...(R− 1)), and the relative coordinate of the cth column of dies

relative to the zeroth column is Xfc (c ∈ 1, 2, ...C − 1). The goal of EUV mask

defect avoidance is to determine this set of 3L+ R + C − 2 variables such that the

impact of defects is minimized.

In order to ensure that the final mask is manufacturable, certain spatial con-
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straints need to be satisfied by any defect avoidance solution. The various types of

constraints are the following:

(i) Reticle boundary constraints ensure that the entire mask field is inside the

usable area of the mask. These spatial constraint must account for rotation,

and must be applied for each EUV layer of the design. In order to make these

constraints linear, we make the small angle assumption (sin Θ ≈ Θ, cos Θ ≈ 1).

±Xpl ±
WF

2
Θl ≤

WM −WF

2
± Y pl ±

HF

2
Θl ≤

HM −HF

2
(5.6)

for l ∈ {1, 2, · · · , L}

(ii) Maximum field constraints ensure that mask floorplanning does not move the

die copies too far apart causing the field size to become too large.

XfC−1 +WD ≤ WF Y fR−1 +HD ≤ HF (5.7)

(iii) Die overlap constraints ensure that the die copies do not overlap.

Xf1 ≥ WD Xfc+1 −Xfc ≥ WD for c ∈ {1, 2, · · · , (C − 2)} (5.8)

Y f1 ≥ HD Y fr+1 − Y fr ≥ HD for r ∈ {1, 2, · · · , (R− 2)} (5.9)

(iv) Maximum allowed rotation restricts the maximum angle by which we can rotate

the mask blank.

−Θmax ≤ Θl ≤ Θmax for l ∈ {1, 2, · · · , L} (5.10)

This leads to a total of 8L+ 2 + (C − 1) + (R− 1) + 2L linear constraints.

A key part of this defect avoidance methodology is to model the CD impact of

defects as a function of these pattern shift, rotation and mask floorplanning variables.

Suppose a mask defect d, with center (Xd, Yd) relative to the mask center, lies on the

mask blank corresponding to layer l. To account for pattern shift and rotation, the

defect coordinates can be modified as shown in Equation 5.11 and Equation 5.12.

X̂d = Xdcos(Θl)− Ydsin(Θl)−Xpl (5.11)

Ŷd = Xdsin(Θl) + Ydcos(Θl)− Y pl (5.12)
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Next let us consider one vertical edge of an absorber shape e with x-coordinate X(e)

and y-coordinates

(Ylow(e), Yhigh(e)), relative to the die origin. If the absorber edge is a part of a die

in the rth row and cth column, we can write the coordinates of the edge relative to

the mask origin as shown in Equation 5.13.

X̂(e) = X(e) +Xfc

Ŷlow(e) = Ylow(e) + Y fr Ŷhigh(e) = Yhigh(e) + Y fr (5.13)

We can then compute the distance of the edge from the defect using Equation 5.14,

where u(y) is the step function that is one if y ≥ 0, else it is zero. Using this

distance, we can then compute the CD impact of the defect on the layout shape

using Equation 5.2 and Equation 5.3.

dist(e, d)2 = (X̂d − X̂(e))2 + (Ŷd − Ŷlow(e))2u(Ŷlow(e)− Ŷd)

+ (Ŷd − Ŷhigh(e))
2u(Ŷd − Ŷhigh(e)) (5.14)

(5.15)

In order to ensure that the die works, we must ensure that the CD impact of the

defect is less than the CD tolerance for every absorber edge. Since the number of

mask defects is significantly smaller than the number of absorber edges in the field

pattern, we assume that a single absorber edge is not affected by more than one

defect. Moreover, a defect only impacts a small set of absorber edges around it, so

for any given floorplan solution, we only need to look at the absorber shapes within

a certain distance of the defect. For this method, we take this distance as 3 ∗Wd.

This significantly reduces the overhead of checking every defect-absorber edge pair

of the mask pattern. The CD tolerance value for any absorber edge could be a single

value assigned to all absorber shapes, or design-aware, as done in mask inspection

(Chapter 3).
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5.4.2 Random Walk + Gradient Descent Based Solution Method

The objective of EUV mask defect avoidance is to determine a feasible value of

Xpl, Y pl,Θl, Xfc and Y fr such that all the spatial constraints and CD tolerance

constraints are obeyed. The spatial constraints are simple linear constraints. How-

ever, the CD tolerance constraints are non-convex as proven below.

Theorem: For any absorber edge defect pair, the constraint CDdef (e, d) ≤ CDtol(e)

is non-convex.

Proof: Consider a left vertical edge of an absorber shape as shown in Figure

5.9 below. Let us consider the multi-variable function f(Xpl, Y pl,Θl, Xfc, Y fr) =

CDdef (e, d)−CDtol(e). By analytically computing the partial second derivative with

respect to any of the pattern shift (Xpl, Y pl), rotation (Θl) or floorplanning variables

(Xfc, Y fr) we find that it is not guaranteed to be positive for all possible defect-

absorber edge positions. This proves that all the CD tolerance constraints are non-

convex. Geometrically, we can consider two potential defect locations relative to this

edge, as shown in Figure 5.9. Both defect locations obey the CD constraint, but the

line segment connecting them contains potential defect locations which would cause

a CD violation. This implies that the geometric space of feasible defect locations

relative to a single absorber edge is non-convex.

Figure 5.9: Illustration of non-convexity of CD constraint showing that two feasible

defect locations and the segment connecting them crosses through the prohibited

region for an absorber edge.
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Since handling non-convex constraints is very hard in optimization, we relax

the CD tolerance constraints by converting it into an objective function that we

then minimize. We use the sigmoid penalty function to relax every CD constraint

(sigmoid(x) = 1
1+e−αx , α = 4.0 for this work). As a result, the cost function for our

optimization problem is the sum of sigmoids for all the relevant defect-absorber edge

pairs, as shown in Equation 5.16. Hence our overall optimization problem is to find

the pattern shift, rotation and mask floorplanning variables to minimize this sigmoid

cost function while obeying the linear spatial constraints of Equations 5.6-5.10.

CostGO =
∑

l∈L

∑

d∈BDl

∑

e∈Al

sigmoid(CDdef (e, d)− CDtol(e)) (5.16)

To solve the non-convex optimization problem for EUV mask defect avoidance, we

use a combination of random walk and gradient descent. Random walk is used to

perform a coarse grained search over the multi-dimensional linear polytope formed

by the spatial constraints. For each of the sample points generated by random walk,

we use gradient descent for local search in the vicinity of the sample. The overall

method is summarized in Figure 5.10.

Figure 5.10: Illustration of the method used to solve the EUV mask defect avoidance

problem.

We use hit-and-run based Markov chain random walk, which is known to mix

fast [Lov98]. Starting from an initial point inside the linear polytope, hit-and-run

finds new points inside the linear polytope using the following steps:

(i) Draw a line in a randomly chosen direction passing through the given point.
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(ii) Find the two points where this line intersects the linear polytope.

(iii) Pick a random point on the line segment connecting the two points above.

(iv) Go back to Step 1 with this new random point.

In order to apply gradient descent to each sample point generated by random

walk, we need to analytically compute the gradient of the cost function of Equation

5.16. The analytical expression for gradient of one defect and vertical absorber edge

pair is shown in Equation 5.17. The intermediate variables Z1, Z2 and UY are shown

in Equations 5.18, 5.19 and 5.20, respectively. Note that the discontinuity of the

cost function at Ŷlow(e) and Ŷhigh(e) is handled by function UY in Equation 5.20 by

assuming that only one of the three conditions will hold during a round of gradient

descent. Since gradient descent moves in small steps, this assumption is reasonable.

∂CostGO

∂(Xpl)
= ∂CostGO

∂CDdef (e,d)

∂CDdef (e,d)

∂(dist(e,d)2)
∂(dist(e)2)

∂(Xpl)
= −2Z1Z2 · (X̂d −Xf(e))

∂CostGO

∂(Y pl)
= ∂CostGO

∂CDdef (e,d)

∂CDdef (e,d)

∂(dist(e,d)2)
∂(dist(e,d)2)

∂(Y pl)
= −2Z1Z2 · UY

∂CostGO

∂(Θl)
= ∂CostGO

∂CDdef (e,d)

∂CDdef (e,d)

∂(dist(e,d)2)
∂(dist(e,d)2)

∂(Θl)
= −2Z1Z2 · (Xd sin Θl +Xd cos Θl)

∂CostGO

∂(Xfc)
= ∂CostGO

∂CDdef (e,d)

∂CDdef (e,d)

∂(dist(e,d)2)
∂(dist(e,d)2)

∂(Xfc)
= −2Z1Z2 · (X̂d −Xf(e))

∂CostGO

∂(Y fr)
= ∂CostGO

∂CDdef (e,d)

∂CDdef (e,d)

∂(dist(e,d)2)
∂(dist(e)2)

∂(Y fr)
= −2Z1Z2 · UY

(5.17)

Z1 =
∂CostGO

∂CDdef (e, d)
= α · sig(CDdef (e, d)− CDtol(e)) · (1− sig(CDdef (e, d)− CDtol(e)))

(5.18)

Z2 =
∂CDdef (e, d)

∂(dist(e, d)2)
=

3γ ·
√

INoDefmdef

ImageSlope
·DefHeight(e, d) · −1

(Wd/2)2
(5.19)

UY =



























(Ŷ dl(n)− Ŷlow(e)), if Ŷ dl(n) ≤ Ŷlow(e)

0, if Ŷlow(e) ≤ Ŷ dl(n) ≤ Ŷhigh(e)

Ŷ dl(n)− Ŷhigh(e), if Ŷ dl(n) ≥ Ŷhigh(e)

(5.20)
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For computing the gradient of the cost function, we need to find all the interacting

defect-absorber edge pairs, calculate the analytical expressions of Equation 5.17 for

each such pair and then add them. Since the number of defects are typically much

smaller than the number of absorber shapes on the mask, we do this by iterating

over all the defects and finding all the absorber shapes within a certain distance

(3Wd) of each defect. We then compute the gradient for each absorber edge within

this radius of influence of the defect. Finding all absorber shapes within a certain

radius of a defect can be done efficiently by storing the entire mask layout in a 2D

region query tree data-structure [Ben75].

The running time for computing the gradient during the iterations of local search

is dominated by the process of querying the large layout repeatedly. Since only small

moves are made during local search, we can avoid this overhead by upfront storing all

the absorber shapes that could be affected by any defect when we make small local

moves. For examples, if we set the maximum number of gradient descent iterations

for each random starting solution as NG and the gradient step size is S, we can

upfront store all the absorber shapes that are within a radius of 2NGS+3Wdl(n) of

a particular defect. At the start of the gradient descent iterations, we store all such

shapes for each defect. As a result, we do not need to query the large layout every

time the gradient needs to be computed.

5.5 Results and Discussion

Our proposed EUV mask defect avoidance method has been implemented in C++.

OpenAccess API has been used to read and access layout shapes [oa]. Eigen Matrix

library is used to handle vectors and matrix operations [Gue10]. All our results

are shown for an ARM Cortex M0 processor layout which was synthesized, placed

and routed using Cadence Encounter with 32nm Synopsys Standard Cell Library.

The layout is then scaled to 8nm technology node to show our results. We apply

defect avoidance to the polysilicon layer, unless otherwise stated. Although we

set the CD tolerance of every absorber shape edge to 10% of the technology node
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(CDtol = 0.8nm), it is also possible to make the CD tolerance assignment design-

aware, as done in Chapter 3.

We assume a single size for all the defects, with peak height Hd = 2nm and

FWHM Wd = 50nm except in Section 5.5.4. Due to the lack of any real data

on spatial distribution of buried defects, we assume that defects are uniformly dis-

tributed accross the entire usable area of the mask. 100 randomly generated spatial

defect maps are considered. The main quality metric for evaluating the efficacy of

defect avoidance is mask yield, which we define as the percentage of random defect

maps that are made usable (i.e. there is no impact on chip yield) by defect avoid-

ance. We show mask yield for different number of defects on the mask to highlight

acceptable defect density levels.

We set the number of gradient descent iterations for each random point obtained

from hit-and-run to 50 and the step size to 1nm. We fix the number of random walk

iterations as the ratio of volume of the linear spatial polytope and the volume of

the multi-dimensional (3L+R+C − 2 dimensions) ball that is covered by gradient

descent. The rationale behind this choice is to ensure equivalent coverage of the

available space when we compare different scenarios. The volume of the linear

polytope was computed using the tool VINCI [BE], and the volume of the gradient

ball can be computed using a simple analytical expression [nba].

We chose the mask field size such that four rows and three columns of die copies

of the Cortex M0 ARM processor can be placed inside the mask field. We allow a

maximum pattern shift of 20µm, small-angle rotation of 6o and maximum allowed

scribe area of 1% of the mask field size. Scribe area is defined as the difference in area

between the total area of all the die copies inside the field pattern and the total field

size (WF ×HF ). Since the size of one ARM Cortex M0 layout is 162µm × 159µm,

the total field size becomes 486µm × 636µm and the usable area of the mask is

511µm × 662µm. Note that although this is much smaller than the full field size

of 132mm × 104mm, we have analyzed smaller layouts in order to get reasonable

runtimes, especially since we perform Monte Carlo analysis over 100 random defect

maps. Because our analysis is done for small mask size, the mask yield values
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Table 5.2: Comparison of mask yield after defect avoidance using prohibited region

based method with our simulated annealing based method.

Defect Count

Prohibited Region Simulated Annealing

Pattern Shift [ZD12] Pattern Shift Pattern Shift + Pattern Shift +

Rotation Mask Floorplanning

10 100% 100% 100% 100%

20 81% 100% 100% 100%

30 8% 97% 0% 6%

40 1% 11% 0% 0%

50 0% 0% 0% 0%

we report for different defect density levels in this section may not correspond to

realistic values in production. Nevertheless, the analysis in this section is sufficient

to evaluate the efficacy of our proposed mask defect avoidance method and compare

it with prior work.

5.5.1 Comparison with Other Defect Avoidance Methods

Mask yield after defect avoidance using prohibited region based defect avoidance

method [ZD12, ZDW12] with our simulated annealing based method is shown in

Table 5.2. Prohibited region based defect avoidance methods allow continuous pat-

tern shift and small angle rotation, but cannot handle mask floorplanning. Simulated

annealing based defect avoidance method allows pattern shift and mask floorplan-

ning, but small-angle rotation is not possible. With our implementations of both

these methods, prohibited region method performs significantly better than sim-

ulated annealing method because the prohibited region method allows continuous

pattern shift instead of making discrete jumps. As a result, the solution space is

explored more efficiently.

Table 5.3 shows mask yield using our defect avoidance method, using the dif-

ferent degree of freedom. Notice that even if defect avoidance is limited to pattern
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Table 5.3: Summary of mask yield after our global optimization based defect avoid-

ance method with different degrees of freedom

Defect Pattern Shift Pattern Shift Pattern Shift Pattern Shift + Rotation

Count + Rotation + Mask Floorplanning + Mask Floorplanning

10 100% 100% 100% 100%

20 100% 100% 100% 100%

30 35% 91% 55% 100%

40 3% 10% 9% 74%

50 0% 1% 2% 13%

shift, our method performs better than both the prohibited region and simulated

annealing methods. Our method performs significantly better than the prohibited

region method because prohibited rectangle construction is inherently pessimistic at

corners of absorber shapes, as illustrated in Figure 5.11 (CD impact of defect de-

pends to Euclidean distance from absorber edge). When pattern shift and rotation

are both allowed but mask floorplanning is not, our method is slightly worse than

the prohibited region method because of the number of random walk iterations that

we set. Given enough iterations, our method can always reach the best possible

solution. More importantly, by allowing mask makers to exploit all three degrees

of freedom for defect avoidance, our method allows significantly better mask yield

compared to these earlier approaches. For a 40-defect mask, the mask yield of pro-

hibited region based defect avoidance with rotation is just 11%. Our method is able

to improve the mask yield to 74% in this case.

The running time complexity of all the defect avoidance methods we described

in this section is O(
∑

l∈L |Al| log (|Al|)), since the running time depends on the the

region query operation to obtain all the layout shapes within a rectangular box.

Note that the number of queries depends on the number of defects for all the defect

avoidance methods. It also depends on the number of random iterations for the

simulated annealing method, and our global optimization method. The average
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Figure 5.11: Pessimism of prohibited rectangle construction compared to true pro-

hibited region based on Euclidean distance for one absorber edge.

running time across all the 100 random defect maps with 40 defects that we analyzed

is shown in Figure 5.12. These results show that the performance of the different

methods depends on the degree of freedom. If pattern shift and rotation are the two

degrees of freedom that are allowed, our method is faster than the prohibited region

method. However, for most other scenarios, our method does require additional

computation time to achieve better mask yield. Note that since we consider a

smaller field size in this work, the reported running time is much less than the time

it would take for a real full-field chip.

Figure 5.12: Average running time of the three defect avoidance methods with

different degrees of freedom for a 40-defect mask. Note that the mask yield of the

different methods in reported in Table 5.2 and Table 5.3. Our proposed method has

the largest mask yield followed by the prohibited region and simulated annealing

methods, respectively.

140



Although Figure 5.12 may suggest that defect avoidance methods will require

considerable running time for a full-field mask, there are several simple techniques

that could improve the running time significantly. Our global optimization method

can be easily parallelized because gradient descent for each random starting point can

be done independently. Hence, the critical region query operation can be performed

in parallel which would enable signficant performance improvement. Moreover, by

using a hierarchical layout, each query operation can be made significantly faster.

5.5.2 Analysis for Multiple Layer Defect Avoidance

Our earlier analysis focused on just the polysilicon layer, which is typically the

most critical layer. If more layers need to be patterned using EUV lithography,

defect avoidance needs to be applied for each of the corresponding masks. Although

pattern shift and rotation can be done independently for each of these layers, mask

floorplanning must be done together to ensure alignment.

As described in Section 5.4.1, our method can handle multiple layer defect avoid-

ance as well. However the number of variables increases by three every time an

additional layer is patterned using EUV. If we were to set the number of random

walk iterations based on volume of the linear polytope and gradient ball as done

earlier, then the number of random walk iteration would be around 1010. Since this

would require considerable running time, we decided to fix the number of random

walk iterations as 107 for all cases in this subsection. This makes the exploration of

the solution space less efficient for multi-layer cases.

We have summarized the results for single layer (polysilicon only), two layer

(polysilicon and active) and four layer (polysilicon, active, contact and metal 1)

scenarios in Figure 5.13. Note that mask yield here is defined as the percentage of

cases where all the layers work. Consequently, mask yield is lower for multi-layer

defect avoidance. Mask yield is close to 100% for all cases, when the number of

defects is 30 or less. Then the mask yield for multiple layer cases reduces as we add

more layers.
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Figure 5.13: Comparison of mask yield after defect avoidance when multiple layers

of a design are patterned using EUV lithography.

An important concern for multi-layer defect avoidance is mask blank assignment,

i.e. determining the mask blank on which each design layer should be patterned.

More precisely, given L design layer and L mask blanks with known defect maps, the

goal of mask blank assignment is to map each layer to one of the L mask blanks so

that the best mask yield can be achieved. For the results shown in Figure 5.13, we

use the simple strategy of applying defect avoidance to each possible blank mapping

solution and picking the mapping that works, which we refer to as complete mapping.

Complete mapping, which is similar to the blank assignment problem explored

by Du et al. [DZ11], requires applying defect avoidance L! times, making it slow.

However, it gives the best possible mask yield. Figure 5.14 compares complete

mapping to random mapping, where each layer is assigned to a mask blank randomly

and defect avoidance is applied just once.

As confirmed by Figure 5.14, blank mapping can have a huge impact on mask

yield. For the four layer defect avoidance with 30-defect mask blanks, the difference

is mask yield between complete and random mapping is more than 70%. This is

because the mask yield is limited by the regular and unidirectional polysilicon layer

as discussed in more detail in Chapter 6. Complete mapping allows the critical

polysilicon layer to pick one of four mask blanks, which leads to significantly better

mask yield.
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Figure 5.14: Comparison of mask yield for multiple layer defect avoidance with

complete blank mapping and random blank mapping.

5.5.3 Impact of Spatial Constraints on Defect Avoidance

There are three key manufacturing constraints (corresponding to each of the three

degrees of freedom) that strongly affect the potential benefit of defect avoidance:

(i) Maximum pattern shift is the difference between the size of usable area of mask

and the size of pattern field ((WM −WF )× (HM −HF ) in Equations 5.6).

(ii) Maximum rotation angle is the largest angle by which the mask blank can be

rotated relative to the field pattern. It is the value of Θmax in Equation 5.10.

(iii) Maximum scribe area is the difference in area between the total area of all the

die copies inside the field pattern and the total field size (WF ×HF ), expressed

as a percentage of the total field area.

These three manufacturing constraints limit the solution space available for

avoiding defects and hence can affect the mask yield strongly. We shall analyze

the impact of each of these constraints in this subsection. For the sake of brevity,

we shall only analyze the single layer scenario (polysilicon layer), and we will report

the mask yield for 40-defect masks.

The impact of maximum pattern shift is shown in Figure 5.15. Note that all our

prior analysis was done assuming a maximum pattern shift of 20µm. Here we look

at values ranging from 10µm to 100µm. For the layout we chose to analyze, mask
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yield for 40-defect mask was 100% for pattern shift values larger than 50µm. We also

computed the volume of the linear polytope formed by all the spatial constraints of

the defect avoidance optimization problem because this volume is a good indicator

of the potential mask yield benefit due to the change in the size of the solution space.

Figure 5.15: Volume of linear polytope and mask yield for 40-defect mask with

respect to maximum allowed pattern shift.

Similarly, the benefit of rotation is highlighted in Figure 5.16. Both the mask

yield for a 40-defect mask, and linear polytope volume is plotted for maximum

rotation angle (Θmax) ranging from 0 degrees to 10 degrees. The interesting thing

to note here is that mask yield saturates at around 80%. The reason for this is that

the overall solution space does not grow due to reticle boundary constraints, which

is confirmed by the polytope volume in Figure 5.16.

Figure 5.16: Volume of linear polytope and mask yield for 40-defect mask with

respect to maximum allowed rotation.
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Lastly the impact of scribe area is shown in Figure 5.17. Mask yield can improve

up to 100% with scribe area of 5%. However, this improvement comes at the expense

of wasted space on the wafer.

Figure 5.17: Volume of linear polytope and mask yield for 40-defect mask with

respect to maximum allowed scribe area.

5.5.4 Impact of Defect Size Distribution

We have assumed that every defect is the same size with Wd = 50nm and height

Hd = 2nm so far. However, in real masks, different defects will have different

sizes. In this subsection, we shall assume that both the FWHM and height of every

defect are independent random variables with probability density function (PDF) as

described in Equation 5.21. Although there is little experimental data available on

EUV mask defect size distribution, we chose this distribution since it is frequently

used to model wafer defect sizes [GP10].

P (r) =











r
r2
0
, 0 ≤ r ≤ r0

r2
0

r3 , r0 ≤ r ≤ ∞
(5.21)

Here r0 is a fitted parameter based on distribution statistics, and r is a random

variable that corresponds to either height or FWHM of a defect.

Figure 5.18 compares the mask yield for the following three scenarios:

(i) All defects have constant size with height 2nm and FWHM 50nm
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(ii) Height and FWHM of each defect is derived from the PDF of Equation 5.21,

with mode (value with maximum probability, in this case r0) equal to 2nm

and 50nm, respectively.

(iii) Height and FWHM of each defect is derived from the PDF of Equation 5.21,

with expected value (in this case 4
3
r0) equal to 2nm and 50nm, respectively.

These results show that mask yield is the lowest when the mode of defect height and

FWHM is 2nm and 50nm, respectively (Scenario 2). This is because the expected

value of defect height and FWHM is 2.67nm and 66.67, respectively, which is larger

than the other two scenarios. Comparing the two cases with the same expected value

of defect height and FWHM (Scenario 1 and 3), mask yield is better when defect

size is not constant. Since defect size follows the probability distribution specified

in Equation 5.21, most defects are smaller than the expected value and only a few

are larger than the expected value. Defect avoidance is able to handle this better

than constant sized defects by placing the smaller number of large defects in sparse

regions of the mask field pattern.

Figure 5.18: Comparison of mask yield for different defect size distributions.

5.6 Conclusions

In this work, we proposed an EUV mask defect avoidance method that can explore

all the available degrees to freedom: pattern shift, rotation and mask floorplanning.
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Our method can handle multiple layers of a design and explores the continuous

solution space instead of discretizing it.

We modeled EUV mask defect avoidance as a global optimization problem with

non-convex objective and linear constraints. We then solved the problem using a

combinatuon of hit-and-run based random walk and gradient descent. Compared

to previously proposed methods for defect avoidance, our method can improve the

probability of using a defective mask blank without any yield impact (mask yield)

significantly, and hence our methods allows tolerance to a larger number/size of

defects than possible with previous methods. For the polysilicon layer of a 8nm

ARM Cortex M0 layout, our defect avoidance method was able to improve mask

yield by more than 60%-point compared to prior approaches for a 40-defect mask.

Using our method, we have also compared the potential mask yield benefit of

each degree of freedom. Our analysis shows that pattern shift has the most impact

on mask yield since increasing the maximum allowed pattern shift always improves

mask yield. Rotation and mask floorplanning also help in improving mask yield but

their benefit is not as significant as pattern shift because increasing the maximum

allowed rotation angle or scribe area improves mask yield only up to a certain limit.

147



CHAPTER 6

EUV-CDA: Pattern Shift Aware Critical Density

Analysis for EUV Mask Layouts

6.1 Introduction

As discussed in Chapter 5, defect avoidance is likely to play a key role in enabling

EUV lithography. A likely design to fabrication flow for EUV masks is illustrated

in Figure 6.1. A mask shop will typically have a collection of inspected mask blanks

with known defect locations. Since each critical layer of the taped out design must

be patterned on a defective mask blank, the mask shop must apply defect avoidance

to find a defective mask blank that works for each layer. Given a defect density and

size distribution, the probability of finding a mask blank from a large set of blanks

on which the given design layout can be patterned without causing any yield loss is

referred to as mask yield.

Figure 6.1: Set of steps involved in a EUV mask shop involving pattern shift based

mask defect mitigation.

Certain layout topologies may be more capable of tolerating mask defects, and

exploiting the benefits of defect avoidance strategies. An understanding of what

characteristics of a layout can make it more robust to EUV mask defects can signif-
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icantly aid EUV layout design and even the formulation of design rules. In order to

develop any layout or design level techniques to create robust layouts, a quantifiable

metric that characterizes the robustness of layouts to such mask defects is needed.

In addition to layout optimization, such a layout robustness metric can be used for

mask blank assignment as well. Layouts with low mask yield can be assigned to a

mask blank with lower defect density. This would save the computational effort of

performing pattern shift for each layout-blank pair, as done in [DZ11].

In this chapter, we propose a new metric, critical density, that evaluates the

robustness of EUV layouts to mask defects. To the best of our knowledge, this work

is the first attempt towards developing such a metric. This metric allows us to esti-

mate pattern shift aware mask yield for any defect density using a simple analytical

expression, and enables us to distinguish between layouts that have different mask

yield for any given defect density.

The need for a metric that quantifies robustness of layouts to mask defects bears

resemblance to conventional

critical area analysis (CAA) [GP10]. CAA is commonly used to check robust-

ness of layouts to random wafer defects through the use of statistical metrics that

estimate chip yield for some random distribution of defects. The key features of this

work that also distinguish EUV-CDA and conventional CAA are the following:

• Unlike wafer defects, a single mask defect will print on every copy of the design

on the wafer. Hence, the goal of EUV-CDA is to predict mask yield, not chip

yield.

• The impact of defect avoidance techniques on mask yield must be probabilis-

tically modeled as a part of EUV-CDA since actual defect locations are not

known at the design stage. Pattern shift based defect avoidance is modeled in

this work since it is the most popular defect avoidance strategy [ETS12].

• The need to account for pattern shift means that mask failure depends on the

simultaneous location and size of several defects on the mask. This is in con-

149



trast to conventional CAA, where every defect can cause failure independently.

This dependence complicates the analysis significantly, requiring much more

computational effort and modeling.

The remainder of this chapter is organized as follows. Prohibited region of a

layout is described in Section 6.2. In Section 6.3, we propose analytical methods

to estimate mask yield for two limited scenarios. We describe our critical density

method in Section 6.4. Experimental results are then presented in Section 6.5. We

conclude this work in Section 6.6. All notation used in this paper is described in

Table 6.1.

6.2 Prohibited Region

We define the prohibited region of a given layout, for a particular defect size s, as the

set of polygons PBs such that if the center of a mask defect lies inside any polygon

p ∈ PBs, the given mask layout pattern will not yield.

The method for constructing prohibited region is the same as proposed by Zhang

et. al. [ZD12] with the additional step of merging the constructed rectangles. It is

similar to the process of using simple Boolean operations to compute critical area

in conventional CAA [GP10]. But the criteria for determining prohibited region

is CD tolerance, in constrast to opens/shorts in conventional CAA. We chose this

pessimistic approach since we are dealing with mask defects. Assignment of this CD

tolerance to layout shapes can be done by either setting a single pessimistic value for

all the patterns (10% of the technology node, in our case), or by using some design

information (timing slack, redundant/dummy patterns) to assign an appropriate CD

tolerance, as done in Chapter 3. Although EUV-CDA can be easily applied for such

smart CD tolerance, for the sake of brevity we assign a single CD tolerance to all

shapes in this work.

If pattern shift was not a part of EUV mask manufacturing, estimating mask yield

from prohibited region would be fairly straightforward. Assuming a uniform spatial
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Table 6.1: Glossary of Terminology

Term Description

s Defect size (Height, full width half maximum pair)

PBs Prohibited Region for defect size s

P (s) Probability of occurrence of defect size s

AM Mask area

Ds
P Prohibited region density (Area(PBs)

AM
)

DP Expected prohibited region density (
∑

s P (s)Ds
P )

K Number of different defect sizes considered

Nd Number of defects on mask

∆X Available pattern shift in X direction

∆Y Available pattern shift in Y direction

A∆ Total pattern shift area (∆X ×∆Y )

LX Design layout width

LY Design layout height

AL Total design area (LX × LY )

ρ Number of prohibited region shapes per unit area

NX Number of discrete X direction shifts

NY Number of discrete Y direction shifts

(Xi, Yj) Potential pattern shift solution

E∆
ij Event that pattern shift solution (Xi, Yj) works

P (E∆
ij ) Probability of event E∆

ij

PBs
ij Prohibited region for defect size s, shifted by (Xi, Yj)

Ar(PBs
ij) Total area of all the polygons in the prohibited region

Wpl Width of periodic parallel line structure

Ppl Pitch of periodic parallel line structure

Y ct
M Mask Yield of periodic contact array layout

Dcric Critical density

Y true
M Accurate mask yield (Monte Carlo method)

Nmin
d Minimum defect count considered

Nmax
d Maximum defect count considered

AC Autocorrelation matrix

ACF FFT of AC

pix Pixel size (Sampling size) for computing AC

NF Number of terms from ACF used for predicting Dcric
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distribution of defects on the mask, mask yield could be estimated as (1 − Ds
P )Nd

since every defect must lie outside the prohibited region1. This simple approach

would imply that any two design layouts with the same prohibited region density

will have the same mask yield. But if pattern shift is used to avoid mask defects,

layout topology may also affect mask yield. To confirm this suspicion, we created

four 20µm× 20µm layouts such that their prohibited region is a set of parallel lines

with pitch 80nm. The width of the lines was treated as a Gaussian random variable

with mean 20nm. Different values of variance (σ) were used to construct the four

layouts. We compared the mask yield of these four layouts, which is estimated using

rigorous Monte Carlo simulation (described in Section 6.3). The results, shown in

Figure 6.2, highlight the huge difference in post pattern shift mask yield between

the layouts which have very similar prohibited region density (confirmed by the

pre-pattern shift mask yield of the four layouts, which are almost same).
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Figure 6.2: Comparison of pre-pattern shift (dashed lines) and post-pattern shift

(solid lines) mask yield of four parallel line layouts with same prohibited region

density but different σ of Gaussian width.

1All defects are assumed to be of size s in this example.
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6.3 Approximate Analytical Methods

Monte Carlo based mask yield estimation is a simple, but computationally expensive

strategy of generating random defect maps and performing pattern shift for each

defect map. Mask yield can then be computing as the ratio of samples for which

the final mask works, i.e. every defect on the mask is avoided. The Monte Carlo

method starts off by constructing the prohibited region for different defect sizes. We

then generate a defect map with Nd defects, assigning a size to each defect based

on the given defect size distribution P (s). Pattern shift is then applied for this

defect map to determine if a feasible solution exists. Note that for each Monte Carlo

iteration, Nd defects need to be generated since pattern shift makes mask failure

dependent on location of several defects on the mask. This dependence necessitates

a large number of Monte Carlo iterations to achieve convergence. The methodology

we used for pattern shift is the same as the approach proposed by Wagner [WB12],

which is optimal with respect to mask yield.

This naive method of estimating mask yield, although accurate, is cumbersome

and slow, requiring many Monte Carlo iterations to give accurate results. Therefore

this method of estimating mask yield is impractical for realistic layouts. Moreover,

the method does not provide any design insights that could help improve the mask

yield of a given layout. Despite these limitations, the accuracy of this method makes

it appropriate for validating the faster, approximate method that we shall propose

in this paper.

6.3.1 Inclusion-Exclusion Method

In this section, we propose a method to estimate the mask yield with one simplifying

assumption: pattern shift picks a feasible solution from a finite set of alternatives.

Let us first discretize all the potential defect sizes, into K discrete defect sizes,

s1, s2, ..., sK with respective probabilities of occurrence, P (s1), P (s2), ..., P (sK). For

a uniform spatial distribution of defects, we can then calculate the probability that

a particular pattern shift solution (Xi, Yj) works using Equation 6.1. Note that
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Ar(PB
sk
ij )

AM
is equal to the prohibited region density for defect size sk since shifting the

polygons does not change area.

P (E∆
ij ) =

(

∑

k

P (sk)

(

1−
Ar(PBsk

ij )

AM

)

)Nd

(6.1)

Pattern shift aware mask yield can be estimated as the union of all the events

E∆
ij since the mask will yield if any of the potential solutions work (Note that a

solution is picked once the defect locations are known). Calculating this union of

events can be done using inclusion-exclusion principle as shown in Equation 6.2.

P (∪i,jE
∆
ij ) =

∑

P (E∆
mn)−

∑

P (E∆
pq ∩ E∆

mn) . . . (6.2)

The second order intersection term P (E∆
pq ∩E∆

mn) corresponds to the event that

all defects lie in the non-prohibited region of both solution E∆
pq and E∆

mn. Hence, it

can be computed using a polygon Boolean OR operation as shown in Equation 6.3.

P (E∆
pq ∩ E∆

mn) =

(

∑

k

P (sk)

(

1−
Ar(PBsk

pq ∪ PBsk
mn)

AM

)

)Nd

(6.3)

Computation of all the inclusion exclusion terms comprising NX × NY orders

(only first two order are shown above), is a #P -complete combinatorial enumeration

problem since it requires the computation of 2NX×NY terms [KLS96]. This computa-

tional limitation, along with the quantization error incurred due to the assumption

that the pattern shift solution space is discrete, make this method unsuitable for

estimating mask yield for any realistic layouts.

Despite the impracticality of the inclusion-exclusion method, it does provide one

interesting insight: in addition to prohibited region density, mask yield depends on

autocorrelation of the prohibited region of the input layout. The second order terms

in Equation 6.3, Ar(PBsk
pq ∪PBsk

mn), are linearly related to Ar(PBsk
pq ∩PBsk

mn), which

measures the degree of overlap between the prohibited region PBsk with a shifted

transform of PBsk (shifted by (Xp − Xm, Yq − Yn)). Each such overlapping area

corresponds to one entry of the autocorrelation matrix of the 2D binary prohibited
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region signal, PBsk . Moreover, mask yield depends on the weighted sum of the

prohibited region autocorrelation for different defect sizes. We will later leverage

this dependence of mask yield on the weighted autocorrelation of prohibited region

for critical density computation.

6.3.2 Spacings Method

In this sub-section, we will show that if the prohibited region of a given layout is

regular, the problem of finding the post-pattern shift mask yield can be mapped to the

maximal spacing distribution problem, a classic geometric probability problem. Note

that pattern shift is assumed to be continuous here, unlike the previous sub-section.

Also, we consider only one defect size s here, and the assumption on regularity is

for the prohibited region, PBs.

First, suppose the prohibited region of the entire layout is a periodic parallel line

structure. Assuming the lines are infinitely long and parallel to Y axis, any pattern

shift in Y direction will not improve mask yield. Hence, only the X coordinates of the

defects is relevant, and we can map all the defects to a single line. The periodicity

assumption implies that the X coordinates of all the defects can be mapped to a

modulo Ppl space with a single line of width Wpl. An optimal pattern shift based

defect avoidance technique can successfully avoid all the defects, if and only if there

exists a gap or spacing of sizeWpl with no defect inside it. This mapping is illustrated

in Figure 6.3.

This problem is equivalent to finding the probability of existence of a gap larger

than
Wpl

Ppl
on a unit circle with a uniform distribution of points 2. This geomet-

ric probability, also referred to as the one dimensional maximal spacing problem

[Pyk65], was first computed exactly by Stevens [Ste39], which allows us to estimate

pattern shift aware mask yield of a parallel line layout.

Similar to the parallel line case above, we can show that the the mask yield for a

regular, square contact array pattern is equivalent to the two-dimensional maximal

2Since there is no mask defect distribution data available, we assume uniform spatial distribution
of defects as it usually gives more pessimistic yield estimates compared to clustering [JKP11, WB12]

155



Figure 6.3: Mapping mask yield estimation of parallel line to maximal spacing dis-

tribution.

spacing distribution. Janson derived an asymptotic analytical expression for the

multi-dimensional maximal spacing problem [Jan87], that holds true as the number

of random points (defects, in our case) tend to infinity. Using his expression, we

can estimate pattern shift aware mask yield for an infinite contact array layout as

shown in Equation 6.4. An additional condition is included for Nd ≤ 2
DP

to correct

for the anomaly that mask yield increases with increase in the number of defects.

This analytical expression will be referred to as Janson’s formula in the rest of this

paper.

Y ct
M =











1− e−N2
d
DP e−NdDP if Nd ≥ 2

DP

1 otherwise

(6.4)

6.4 Critical Density Method

Although the periodicity assumption of parallel line and contact arrays enables us

to map the yield estimation problem to a maximal spacing distribution problem,

deriving such analytical expressions for random layouts is not straight-forward. In

order to address the issue of estimating the yield of realisitic layout patterns, we
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propose a two-step model that applies principles from Section 6.3.1 and 6.3.2.

We first define critical density of a layout as follows. For any given input layout,

critical density is the value of DP such that Equation 6.4 can most accurately predict

the actual mask yield of the layout for any number of defects. Mathematically, we

can use the ubiquitous least squares as the criteria for accuracy and thereby define

critical density as given in Equation 6.5.

Dcrit = argmin
0≤DP≤1

Nd=Nmax
d

∑

Nd=Nmin
d

(Y ct
M (Nd, DP )− Y true

M (Nd))
2 (6.5)

With this definition of critical density, our two-step model first estimates critical

density of an input layout using the weighted autocorrelation matrix of the prohib-

ited region as the predictor variables (motivated by the derivation in Section 6.3.1).

Equation 6.4 is then used to estimate mask yield.

The use of critical density as a part of a two-step model to estimate mask yield

abstracts out defect density thereby providing a defect density-independent metric

that depends solely on the prohibited region of a given layout. This metric can be

used to compare the robustness of different layouts to EUV mask defects. Addition-

ally, critical density is similar to probability of failure (ratio of critical area to chip

area) in conventional CAA.

For a realistic full chip layout, using the entire autocorrelation matrix of a layout

as a feature set to predict critical density is infeasible, both from the perspective

of computing the autocorrelation, and fitting a model (“curse of dimensionality”).

We propose the following set of steps to reduce the dimension of the autocorrelation

matrix which is then used to predict the critical density:

• Limited autocorrelation: Based on the derivation in Section 6.3.1, only the

first ∆X

pix
× ∆Y

pix
entries of the autocorrelation matrix of size LX

pix
× LY

pix
need to

be considered as a part of the feature set. Moreover, we scale all the entries

of the autocorrelation matrix by the reticle area, to make it independent of

design size.
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• Compression: Only the low-frequency Fourier components of the limited au-

tocorrelation matrix are used as features for predicting critical density. This

is reasonable since layouts are dominated by lower frequency components due

to design rule constraints.

With this reduced autocorrelation based feature set, we apply a simple multi-

variate linear regression model to predict critical density of any given layout. Since

the autocorrelation matrix size depends on the maximum available pattern shift and

is scaled by reticle size, it is independent of the layout size. Therefore the linear

regression model can be trained using small layout clips, and the trained model can

then be applied to large realistic designs. This makes the training of the model

manageable.

The operations involved in computing critical density, and then mask yield, of a

given random layout are specified in Algorithm 12. Note that the two-step critical

density model does not assume discrete pattern shift solutions. It actually accounts

for the optimal continuous pattern shift since the linear model that estimates critical

density is fitted using the Monte Carlo method that uses the optimal continuous

pattern shift.

The runtime for estimating critical density is dominated by the polygon Boolean

operations to compute the autocorrelation matrix. Each polygon Boolean operation

takes O(ρAL log ρAL) runtime. With a sampling pixel size of pix, fast fourier trans-

form can be performed in O( A∆

pix2 log A∆

pix2 ). Hence, the runtime order complexity to

compute the critical density is O(K × A∆

pix2 × ρAL log ρAL + A∆

pix2 log A∆

pix2 ). In con-

strast, the order complexity of Monte Carlo is O(Nd× (ρA∆ log ρA∆ + (log ρAL)3)))

per iteration3. This method can also be easily parallelized by computing each entry

of the autocorrelation matrix independently.

3Number of Monte Carlo iterations also depends on AL and A∆
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Algorithm 12 Steps for estimating critical density

Require: Design layout of size LX × LY and total shift size permitted ∆X ×∆Y .

Tunable parameters: sample size for autocorrelation pix, and number of fourier

order to pick NF

1: Construct prohibited region of layout PBs for s ∈ s1, s2, ...sK

2: Define matrix AC of size ∆X

pix
× ∆Y

pix

3: reticleArea = (LX + ∆X)× (LY + ∆Y )

4: for all Xi ∈ {0, p, 2p, .....∆X} do

5: for all Yj ∈ {0, p, 2p, .....∆Y } do

6: AC( Xi

pix
,

Yj

pix
) =

∑

k P (sk)
Area(PBsk∪PB

sk
ij )

reticleArea

7: end for

8: end for

9: ACF = fft(AC)

10: Pick all terms of ACF with Fourier order less than or equal to NF

11: Apply fitted linear model to get critical density

6.5 Experimental Results

Both the Monte Carlo method, and our proposed critical density method are imple-

mented in C++. OpenAccess API [oa] is used to read and query layouts. The poly-

gon Boolean operations are performed using Boost Polygon Library [boo]. Fourier

transform of the autocorrelation matrix is done using FFTW library [fft], and ma-

trix operations are done using Eigen [Gue10]. OpenMP is used to parallelize both

the Monte Carlo Method4 and the autocorrelation matrix construction step of our

critical density method, with eight threads for execution. All our computation has

been done on a high performance compute cluster. The reported runtime for the

various testcases is the wall time on the compute nodes of the cluster.

The number of Monte Carlo iterations is kept fixed at 20, 000 for all the training

clips and test layouts. For all our testcases, the Monte Carlo method is run 15

times, with defect density ranging from 10 defects to 150 defects. All of our reported

4Thread-safe random number generation is done here [Hoe07]
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average, maximum and average root mean square error (RMSE) values are across

this range of defects.

All our analysis in this section is done on designs created using Synopsys 32nm

standard cell library [syn10], and scaled down to 8nm. The designs were synthesized,

placed and routed using Cadence Encounter [enc08] with 90% cell utilization, unless

otherwise stated.

All mask defects are taken as 3D Gaussian-shaped, with three discrete height

values (0.5nm, 1.0nm, 2nm) and three discrete full width half maximum values

(25nm, 50nm, 75nm). The corresponding nine discrete defect sizes are assigned

probability of occurrence inversely proportional to their respective volume. The

CD tolerance of all the shapes was set at 0.8nm.

The available pattern shift (∆X × ∆Y ) is taken as 0.5µm × 0.5µm. Current

literature on pattern shift suggest that the total available shift is around 200µm ×
200µm [YL12]. A smaller shift value is chosen to demonstrate our methodology

since the runtime of the validation Monte Carlo method becomes too slow with

large shift area (≥ 5, 000 hours based on the runtime of [ZD12]). Moreover, the

shift area we have chosen is sufficient for comparing different layouts since it is large

enough to cover several pitches at 8nm node. pix is set to 20nm 5, and the size of

the autocorrelation based feature vector for each layout is 17. It comprises all the

entries from the FFT matrix of the limited autocorrelation matrix with both row

and column indices less than 4, and a constant.

The linear regression model to estimate critical density of a layout is trained

using 5µm× 5µm layout clips obtained from a large 8nm layout. We used a total of

400 layout clips from each of the four critical layers of a design as the training set:

polysilicon, metal 1, contact and active. For these small layout clips, we used the

Monte Carlo method to estimate the true mask yield for different number of defects.

Using this data, we computed the critical density of the layout clips by solving

Equation 6.5 in MATLAB with the interior point method. The autocorrelation

5Pixel size only dictates the shift values for which the Boolean AND operations are performed.
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Figure 6.4: Mask yield versus defect density for two layers of s1423 design

based features are computed for each clip, and used to train the linear regression

model for critical density in MATLAB.

6.5.1 Model Validation

The trained linear regression model is then applied on different layers of four bench-

mark layouts from ISCAS’89 [iscb], and one RISC processor layout. All these layouts

are different from the training clips used to fit the model. The results are summa-

rized in Table 6.2 6.

Compared to the rigorous Monte Carlo method, our critical density method

is able to predict critical density fairly accurately for all the test layouts with a

runtime improvement ranging from 300× to 1300× The average RMSE in estimating

mask yield ranges from 0, .08%− 6.44%. Moreover, the method is able to track the

general trend of how mask yield changes with defect density fairly accurately. This

is illustrated in Figure 6.4, which plots the mask yield versus defect density of the

Monte Carlo and the critical density method for the polysilicon and metal 1 layers

of s1423.

6The validation Monte Carlo method is too slow to be run for the larger processor layout, hence
the missing entries in the table.
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Table 6.2: Validation of critical density method. Mask yield RMSE is avg.RMSE between the mask yield estimate of Monte Carlo

and proposed method across the defect range. Runtime is total wall time required to compute mask yield for the defect range.

Design Layer Number of Layout Monte Carlo method Critical density method

shape edges density Runtime (sec.) Critical density Mask yield RMSE Runtime (sec.)

s349-syn32nm
POLY 4084 0.16 10742 0.14 4.15% 19

ACT 2384 0.32 14725 0.04 4.67% 16

Utilization 90%
CO 20132 0.03 57432 0.03 0.32% 62

M1 9432 0.22 48382 0.08 2.84% 84

s1423-syn32nm
POLY 20672 0.16 66651 0.14 4.24% 86

ACT 11348 0.33 24895 0.04 4.54% 79

Utilization 90%
CO 101856 0.03 239572 0.03 0.50% 349

M1 47554 0.22 261816 0.08 1.98% 465

s1196-syn32nm
POLY 11788 0.16 28201 0.14 4.28% 47

ACT 5800 0.29 23522 0.03 3.40% 39

Utilization 90%
CO 60448 0.03 253287 0.03 0.54% 192

M1 26128 0.19 198613 0.07 2.91% 222

s1196-syn32nm-u70
POLY 11788 0.12 34597 0.10 6.44% 47

ACT 6176 0.23 12797 0.03 0.94% 41

Utilization 70%
CO 62336 0.03 255483 0.03 0.08% 233

M1 26502 0.16 208513 0.06 4.15% 227

Cortex M0
POLY 333748 0.15 NA 0.13 NA 858

ACT 178396 0.29 NA 0.03 NA 999

Utilization 90%
CO 1746968 0.03 NA 0.03 NA 4743

M1 767380 0.19 NA 0.07 NA 5852
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6.5.2 Impact of Layout Density and Regularity

The critical density of a layout is strongly influenced by the layout density. This is

confirmed by comparing two version of s1196 in Table 6.2 with cell utilization of 90%

(default) and 70%. Reducing the cell utilization reduces the layout density of all the

layers, thereby reducing the critical density as well. Moreover, note that different

designs constructed with the same utilization have almost equal critical density for

each respective layer. This suggests that critical density depends on global layout

characteristics instead of local hotspot-like regions. Hence, improving this metric

may necessitate changes in design rules or physical design techniques.

Although layout density plays an important role in determining critical density,

it is not the only factor that affects critical density. Polysilicon layer (which is a

fixed pitch regular grating) has higher critical density compared to irregular metal

1 layer of each design, despite lower layout density. This indicates that random

layout patterns are better suited to exploit the benefits of pattern shift due to

better autocorrelation properties. To further highlight this impact of regularity, we

constructed two regular layouts, parallel line and contact array, which have the same

layout density as the polysilicon layer of s1423 and metal 1 layer of s1196 − u70.

The results, shown in Figure 6.5, highlight two key aspects of layouts that affect

mask yield:

• 1D layout topology (parallel line and polysilicon), are significantly worse than

2D topology (contact array and metal 1) because 2D layouts can benefit from

pattern shift in both X and Y directions, whereas 1D layouts benefit only in

the direction perpendicular to the parallel lines.

• An irregular 2D layout like metal 1 is much better suited to derive the benefit

of pattern shift compared to a regular 2D contact array.

Most manufacturing processes, especially lithography, favor 1D regular layouts. This

has led to increasing layout regularity with each technology node. But our results

show that the reduced mask yield of such regular layouts can significantly increase
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mask cost for EUV lithography. Hence, a systematic co-optimization to balance

these two competing requirements may be required for EUV layouts.

Figure 6.5: Illustration of impact of regularity on critical density (and consequently,

mask yield) for layouts with same density.

6.6 Conclusions

In this work, we proposed a new metric for evaluating the robustness of EUV layouts

with respect to mask defects, critical density. Using critical density, layout designers

and mask makers can quickly estimate the probability of finding a defective EUV

mask blank on which the layout can be safely patterned for any defect density(mask

yield). Our method accounts for the impact of pattern shift based defect avoidance

technique on mask yield, which is the most challenging part of this methodology.

We first solved the problem assuming discrete pattern shift solutions using inclusion-

exclusion. Then we mapped the problem to a classic geometric probability problem,

maximal spacings, for the limited case of parallel line and contact array patterns.

Using principles from both these approaches, we defined our critical density metric

and proposed a novel method to estimate critical density, which can then be used to

estimate the pattern shift aware mask yield for any arbitrary layout. Our method was

shown to be 300−1300× faster than the rigorous Monte Carlo method for estimating

mask yield and was able to predict mask yield with 0.08% − 6.44% average RMSE
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across a range of defect density for four critical layers (polysilicon, active, contact

and metal1).

The methodology for estimating critical density shows that mask yield is a strong

function of the autocorrelation of the layout. Our analysis indicates that irregular

2D layouts have better mask yield for the same layout density, which is contrary

to most manufacturing processes that demand layout regularity. By using dummy

features to make irregular layouts regular with respect to printability, this problem

can be addressed since defects on dummy features do not matter.

Fast estimation of critical density enabled by our method can allow us to develop

techniques to improve the mask yield of EUV layouts. Our preliminary experiments

to improve critical density by iteratively adjusting the whitespace after placement

suggests that 3% − 7% improvement in mask yield is possible without any area

penalty. Since we used a random search based whitespace optimization for each row

independently. the method is too slow to be practically useful. In the future, we plan

to develop a scalable layout optimization methodology to improve the robustness of

EUV layouts. Our future work also includes further enhancing the critical density

model to account for other defect avoidance strategies such as pattern rotation or

floorplanning, and dealing with non-uniform spatial distribution of defects (if defect

data necessitate so).
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CHAPTER 7

Conclusions and Future Work

Our current approach for criticality assignment sets a single CD tolerance value for

each layout shape. In the case of front-end layer reticles, polysilicon and active,

this was done by using the timing slack. This would typically require the designers

to pass all the timing paths of the design to the foundry, along with the layout.

Considering the large size of today’s designs, this might not be feasible. We plan

to look at more efficient representations of this timing data. One approach we are

planning to look at involves partitioning the layout such that all layout shapes in

a partition have the same CD tolerance. Instead of assigning a fixed CD tolerance

to each partition, these CD tolerances could be bound by some linear constraints.

Interestingly, timing constraints already provide one such representation, if we treat

each cell as a separate partition. Hence, solving this problem reduces to essentially

clustering groups of neighboring cells to the same CD tolerance so the number of

CD tolerance variables, and the linear constraints that bind them, are reduced.
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