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The reliability of memory subsystems is worsening rapidly and needs to be considered as one of

the primary design objectives when designing today’s computer systems. From on-chip embedded

memories in Internet-of-Things (IoT) devices and on-chip caches to off-chip main memories, they

have become the limiting factor in the reliability of these computing systems. Today’s applications

demand large capacity of on-chip or off-chip memory or both. With aggressive technology scaling,

coupled with the increase in the total area devoted to memory in a chip, memories are becoming

particularly sensitive to manufacturing process variation, environmental operating conditions, and

aging-induced wearout. However, the challenge with memory reliability is that the resiliency

techniques need to be effective but with minimal overhead. Today’s typical error correcting schemes

do not take into consideration the data value that they are protecting and are purely based on

positional errors. This increases their overheads and makes them too expensive, especially for

on-chip memories. Also, the drive for denser off-chip main memories is worsening their reliability.

But strengthening today’s error correction techniques will result in non-negligible increase in

overheads. Hence, this dissertation proposes Lightweight Opportunistic Memory Resilience. We

exploit the following three aspects to make memories more reliable with low overheads: (1)

Underlying memory fault models, (2) Data value behavior of commonly used applications, and (3)

The architecture of the memory itself. We opportunistically exploit these three aspects to provide

stronger protection against memory errors. We design novel error detecting and correcting codes

and develop several other architectural fault tolerance techniques at minimal overheads compared to
ii



the conventional reliability techniques used in today’s memories.

In part 1 of this dissertation, we address the reliability concerns in lightweight on-chip caches or

embedded memories like scratchpads in IoT devices. These memories are becoming larger in size,

but needs to be low power. Using standard error correcting codes or traditional row/column sparing

to recover from faults are too expensive for them. Here, we leverage the fact that manufacturing

defects and aging-induced hard faults usually only affect only a few bits in a memory. These

bits, however, inhibit how low of a voltage these chips can be operated at. Traditional software

fails even when a small number of bits in a memory are faulty. For the first time, we provide

two solutions, FaultLink and SAME-Infer, which help deal with these weak faulty cells in the

memory by generating a custom-tailored fault-aware application binary image for each chip. Next,

we designed Software-Defined Error Localization Code (SDELC) and Parity++ as lightweight

runtime error recovery techniques that leverage the insight that data values have locality in them

and certain ranges of data values occur more frequently than others. Conventional ECC is too

expensive for these lightweight memories. SDELC uses novel ultra-lightweight error-localizing

codes to localize the error to a chunk in the data. It then heuristically recovers from the localized

error by exploiting side information about the application’s memory contents. Parity++ is a novel

unequal message protection scheme that preferentially provides stronger error protection to certain

“special messages”. This protection scheme provides Single Error Detection (SED) for all messages

and Single Error Correction (SEC) for a subset of special messages. Both these novel codes utilize

data value behavior to provide single error correction at 2.5x-4x lower overhead than a conventional

hamming single error correcting code.

In part 2 of this dissertation, we focus on off-chip main memory technologies. We primarily

leverage the details of the memory architecture itself and their dominant fault mechanisms to

effectively design reliability schemes. The need for larger main memory capacity in today’s

workstation or server environments is driving the use of non-volatile memories (NVM) or techniques

to enable high density DRAMs. Due to aggressive scaling, the single-bit error rate in DRAMs is

steadily increasing and DRAM manufacturers are adopting on-die error correction coding (ECC)

schemes, along with within memory controller ECC, to correct single-bit errors in the memory. In

COMET we have shown that today’s standard on-die ECCs can lead to silent data corruption if not
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designed correctly. We propose a collaborative on-die and in-controller error correction scheme that

prevents double-bit error induced silent data corruption and corrects 99.9997% of these double-bit

errors at absolutely no additional storage, latency, and area overheads. Not just DRAMs, reliability

is a major concern in most of the emerging NVM technologies. In Compression with Multi-ECC

(CME), we propose a new opportunistic compression-based ECC protection scheme for magnetic

memory-based main memories. CME compresses every memory line and uses the saved bits to add

stronger protection. In some of these NVMs, error rates increase as we try to improve read/write

latencies. In PCM-Duplicate, we propose an enhanced PCM architecture that reduces PCM read

latency by more than 3x and makes it comparable to that of DRAM. We then use ECC to tolerate

the additional errors that arise because of the proposed optimizations.

Overall, we have developed a complementary suite of novel methods for tolerating faults and

correcting errors in different levels of the memory hierarchy. We exploit the memory architecture

and fault mechanisms as well as the application data behavior to tune the proposed solutions to

the particular memory characteristics; lightweight solutions for low-cost embedded memories and

latency-critical on-chip caches while stronger protection for off-chip main memory subsystems.

With memory reliability being a major bottleneck in today’s systems, these novel solutions are

expected to alleviate this problem, help cope with the unique outcomes of hardware variability in

memory systems and provide improved reliability at minimal cost.
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CHAPTER 1

Introduction

Memories are one of the key bottlenecks in the performance, reliability, and energy efficiency of

most computing systems. As computing systems have scaled over the decades, the need for memory

systems where large amounts of data can be stored and retrieved efficiently has also risen rapidly.

To achieve this, memory and storage systems have been scaled for maximum information density.

Moore’s Law has been the primary driver behind the phenomenal advances in computing capability

of the past several decades. However, with technology scaling having reached the nanoscale era,

integrated circuits, especially computing memories, are becoming increasingly sensitive to process

variations leading to reliability and yield concerns.

The biggest challenge with memory reliability is that the resiliency techniques are expected to

be effective while incurring minimal overheads. Today’s standard error detection and correction

schemes do not take into consideration multiple factors, such as underlying actual fault models

and error mechanisms, application data value behavior as well memory architecture and protocols.

As a result, they are unable to provide maximum protection possible within the area, power, and

performance overhead budgets. Lightweight Opportunistic Memory Resilience opportunistically

exploits these aspects to provide a complementary suite of novel methods that tackle memory

reliability at different levels of the memory hierarchy while incurring minimal cost.

To contextualize and motivate the research in this dissertation, a brief overview of memory

reliability challenges is provided in Section 1.1. The problems faced in the reliable operation of

on-chip memories are outlined in Section 1.2. Sections 1.3 and 1.4 discuss the challenges faced

in today’s off-chip main memory technologies (DRAM as well as alternate emerging non-volatile

memory technologies). Lightweight Opportunistic Memory Resilience provides a complementary

suite of novel methods that tackle memory reliability at different levels of the memory hierarchy,

1



and is described in Section 1.5 summarizes all the research projects covered in this dissertation that

provide efficient resiliency solutions tailored to the memory type. The overall framework helps

to cope with the reliability and performance challenges that computing memory faces today and

tomorrow.

1.1 Memory Reliability is Becoming a Key Concern

Memories have become the limiting factor in the reliability of computing systems [10] because

they are primarily designed to maximize bit storage density. On one hand, with technology scaling,

the memory cell dimensions are reducing that is allowing memory manufacturers to pack in more

memory cells per unit area. This makes memories particularly sensitive to manufacturing process

variation, environmental operating conditions, and aging-induced wearout [11, 12]. On the other

hand, system designers are trying to accommodate as many memory modules as possible to increase

the total memory capacity and improve overall system performance. This is increasing the total

memory array area and the likelihood of defects affecting the memory as well as the number of

memory module components in the overall system that can fail during operation. The combined

effect of these two phenomena is significantly worsening memory subsystem reliability.

In warehouse-scale computers, hard faults in memories manifest as correctable/uncorrectable

errors. These errors have become expensive culprits that cause machine crashes, corrupted data,

security vulnerabilities, service disruption, and costly repairs and hardware servicing [10, 13].

Google has observed 70000 failures in time (FIT)/Mb in commodity on-chip DRAM memory, with

8% of modules affected per year [10], while Facebook has found that 2.5% of their servers have

experienced memory errors per month [14]. The Blue Waters supercomputer had 8.2% of the dual

in-line memory modules (DIMMs) (modules that contain multiple RAM chips) encounter an error

over the course of a 261-day study [15]. These trends are expected to continue rising.

The concern with memory reliability is not limited to high-performance systems. With

IoT/embedded devices increasingly becoming part of critical infrastructure and being deployed in

failure-intolerant modes (e.g., cars), the development of inexpensive fault tolerance schemes for

them has become important [16]. Also, with sensing and data-processing being one of the most
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important use cases for edge devices, these devices are seeing increasing use of large memories.

SRAM-based scratchpad memories are often the choice of memory architecture used in IoT devices.

As demand for higher memory density increases, memory cells are shrunk using advanced technol-

ogy nodes which, in turn, makes the memory cells more susceptible to both soft and hard faults.

The need for low-power and hence lower operating voltage exacerbates the error rates further.The

weak cells in the memory limit the voltage and energy scaling in these memories. These trends

indicate that memory failures are likewise going to be critical for emerging edge/IoT computing

devices as well.

Techniques adopted to ensure reliability in today’s systems incur performance, power, and area

overheads. Error correcting codes (ECC) are typically used to recover from memory errors. However,

they explicitly ignore data values stored in the memory and are purely based on positional errors. As

a result, they add significant overheads. Ideally, we want to ensure reliable memory operation while

incurring negligible overheads. Hence, the solution has to be tailored to the type of memory and its

position in the memory hierarchy. For latency/power critical on-chip caches or embedded memories,

tolerable overhead is much smaller than that for off-chip memories. Hence, conventional ECCs are

too expensive for them. Also, systems running moderately fault-tolerant applications do not require

strong protection techniques that reliability critical systems do. In workstation/server environments,

need for larger amounts of memory is driving use of dense non-volatile memories or techniques to

enable high density DRAMs. These memory technologies have significant reliability concerns and

hence, require much stronger protection. Hence, in this dissertation, we take into account all these

factors and provide a suite of novel memory resiliency techniques for different classes and types of

memory technologies. We exploit data value behavior to design novel ECC solutions with much

reduced overheads as compared to conventional codes. For embedded memories, our lightweight

solutions provide protection against both hard faults discovered pre-deployment and unpredictable

soft faults during runtime. For off-chip dense memories, we exploit the underlying fault models and

memory architecture to improve reliability by providing stronger protection techniques with almost

negligible increase in overheads.
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1.2 Power/Performance Scaling and Fault Tolerance in Lightweight On-Chip

SRAM-based Memories

Low power density is the key to achieving the vision of both exascale computing and the Internet

of Things (IoT) [17]. To achieve that, systems need to adopt intelligent power-saving techniques.

Memories, both on-chip and off-chip, consume a significant portion of system power. One way

to reduce power consumption in on-chip SRAM-based memories is to reduce the supply voltage

(VDD). However, as shown in Figure 1.1, scaling the VDD down leads to an exponential rise in

hard faults in the memory cells [18]. Not only hard faults, but the memories also become more

susceptible to radiation-induced soft faults at lower voltages, thus degrading yield at low voltage.

Moreover, on-chip embedded memories or caches in high-performance computing systems are

often the largest consumers of chip area. This further increases the likelihood of defects affecting

memory rather than logic and process variations with respect to individual memory cells create a

significant impact.

Figure 1.1: Faults in two SRAM based scratchpad memories at different voltages

To deal with on-chip memory errors due to manufacturing defects designers traditionally include

spare rows and columns in the memory arrays [19] and employ large voltage guardbands [20]
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to ensure reliable operation. Unfortunately, large guardbands limit the energy proportionality of

memory. For unpredictable runtime bit flips, the widely used technique to guarantee the reliability

of storage devices is using information redundancy in the form of Error Correcting Codes (ECC). In

typical ECCs, extra redundancy bits are added to every row to detect and correct errors. There are

additional encoding (while writing data) and decoding (while reading data) procedures required as

well. Thus, redundancy in ECC schemes not only incurs area overhead, the encoding and decoding

mechanisms also incur additional overheads in terms of latency and energy. As a result, using

strong ECC to correct errors in these latency/power critical lightweight memories often becomes

overkill and has a non-negligible impact on overall system performance, power, and area. Thus,

designing low overhead resiliency schemes to tolerate hard and soft faults in these memories is often

a challenge. This dissertation proposes a two-step approach to improve the reliability of on-chip

lightweight memories at minimal cost. In step one, we propose techniques to tolerate hard faults

that are detected during deployment. In step two, we propose multiple correction mechanisms that

allow recovery from unpredictable single-bit flips that occur during runtime. We exploit software

behavior and characteristics to reduce the overall protection overheads.

1.3 Scalability Concerns in DRAM-based Main Memories

Memory reliability is a significant problem not just in on-chip memories, but also in off-chip main

memory systems. Main memories serve a pivotal role, sitting in between the processor cores

and the slow storage devices. With aggressive technology scaling, a large number of processor

cores are being integrated in today’s systems. As a result, there is an ever-increasing demand for

main memory capacity in order to be able to exploit the processing power of these multicore and

manycore systems and maintain the performance growth. DRAM is the primary main memory

technology used in today’s systems. However, DRAM scaling is, unfortunately, slowing down.

Also, DRAM reliability is worsening with scaling. With increasing rate of scaling induced errors

in DRAM [21–28], the traditional method of row/column sparing used by DRAM vendors to

tolerate manufacturing faults [29] has started to incur large overheads. To improve yields and

provide protection against single-bit failures in the DRAM array, memory manufacturers have
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started incorporating on-die single error correction (SEC) coding (on-die ECC) [24, 26]. The ECC

encoding/decoding happens within the DRAM chip. Only the actual data, post correction, is sent

out of the DRAM, making on-die ECC transparent to the outside world. The on-die ECC, along

with within memory controller Single-Error Correction Double Error Detection (SECDED) ECC, is

used to improve DRAM reliability. However, in the case of multi-bit errors (especially double-bit

errors), using the two disjoint ECC schemes in the data pipeline results in increased chances of

silent data corruption. This is because, for double-bit errors, the on-die SEC ECC has a > 45%

of miscorrecting it to a triple-bit error. The in-controller SECDED then has a ∼55% chance of

further miscorrecting the triple-bit error, leading to silent data corruption. This was previously

not an issue with only in-controller ECC as the SECDED decoder in the controller could always

detect the double-bit error and flag a detectable-but-uncorrectable error (DUE). Thus, on-die SEC

improves DRAM yield by silently correcting SBEs, but significantly reduces memory reliability and

increases chances of SDC in the case of double-bit errors. This dissertation proposes a collaborative

technique that utilizes memory data transfer protocol to not only eliminate double-bit error-induced

SDCs but also correct almost all the double-bit errors that occur within the memory array.

1.4 Reliability and Performance Challenges of Non-Volatile Main Memory

Systems

Though DRAM is still the main memory workhorse, several application contexts need different

properties from the main memory (higher density, non-volatility, higher performance, etc). Hence,

it is becoming increasingly important to consider alternative technologies that can potentially avoid

the problems faced by DRAM and enable new opportunities.

Several emerging non-volatile memory (NVM) technologies are now being considered as

potential replacements for or enhancements to DRAM. Most of these new non-volatile technologies

(Phase Change Memory[PCM], STT-RAM, Resistive RAM[ReRAM], etc.) promise better scaling,

higher density, and reduced cost-per-bit [30]. However, they come with their own set of challenges.

The biggest problem that these emerging technologies face is the high stochastic bit error rate. In

fact, the reliability challenges of NVMs can offset the density and energy advantages that they offer.
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Increase in demand for memory capacity requires aggressive scaling of area-per-bit of storage. At

higher density, these non-volatile emerging memory technologies tend to be more susceptible to

stochastic bit errors [31]. Due to the random nature of the bit errors, these memory technologies

require strong in-field error-correcting code (ECC) [32]. Also, for most of these emerging NVM

technologies, some states show higher error rates than the rest. As a result, the conventional ECC

schemes used in DRAM-based memory need to be extended for providing multi-bit asymmetric

protection to maintain acceptable limits of yield and performance of systems. However, this adds

significant overhead not just in terms of storage but also power and performance.

The other concern with NVMs is the higher read and write latency of most of these memory

technologies. For example, Phase Change Memory (PCM) is considered one of the most promising

scalable DRAM alternatives. However, the read latency of PCM is more than 4x [33] higher than

that of DRAM. This leads to significant overall system performance degradation. One way to deal

with this problem is to use a hybrid main memory system where DRAM is used as a last-level cache

for the slower NVM main memory like PCM. However, there are two problems with this approach.

Firstly, the DRAM cache is transparent to the OS and hence, reduces the overall main memory

capacity by a non-negligible amount. Secondly, using the DRAM as a transparent cache makes the

overall main memory system volatile. Hence, lightweight main memory-based persistence cannot

be achieved even though a non-volatile main memory technology is being used. In most cases,

optimizations to improve read/write latencies result in an increase in read/write error rates.

Overall we see that there are significant performance and reliability challenges in adopting these

alternate emerging non-volatile memory technologies. This dissertation proposes solutions to (1)

provide strong protection against the stochastic read/write errors while minimizing the overheads,

(2) improve performance by trading off some of the density benefits as we need to pack in stronger

ECC to tolerate the increased error rates.

1.5 Dissertation Outline

This dissertation, Lightweight Opportunistic Memory Resilience, presents a complementary suite of

novel methods for tolerating faults and correcting errors in different levels of memory hierarchy. The
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solutions proposed are tuned to particular memory characteristics; lightweight solutions for low-cost

embedded memories and latency critical on-chip caches (Part 1) while stronger protection for

off-chip main memory subsystems (Part 2). The high-level vision is depicted in Figure 1.2. Unlike

conventional error correction schemes, we exploit data value behavior, underlying memory fault

model, and memory architecture to opportunistically provide stronger protection against memory

errors through novel code constructions and fault tolerance techniques at minimal overhead.

The organization and key contributions of this dissertation are as follows:

Figure 1.2: High level concept of Lightweight Opportunistic Memory Resilience

In Part 1, we provide a comprehensive set of solutions that cope with both hard and soft faults

in lightweight on-chip memories at minimal cost.

• In Chapter 2, we develop FaultLink, a fault tolerance technique that tackles the problem

of hard faults that appear at low voltages in software managed/scratchpad memories for

embedded systems at the edge of the Internet-of-Things (IoT). It is a novel lazy link-time

approach that extends the software construction toolchain with new fault-tolerance features

for such memories. This approach builds an application binary that is custom-tailored for

each individual chip based on the chip’s memory fault map so that the faulty locations in the

memory are never accessed when it is run at lower voltages.

• In Chapter 3, we extend FaultLink for approximation tolerant Deep Learning (DL) inference

applications. We name the proposed technique SAME-Infer: providing the same inference

accuracy in the presence of memory hard faults. Unlike FaultLink, SAME-Infer first deter-
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mines the fault tolerance capabilities of each program section in the application. Based on

this, it places the absolute critical program sections in non-faulty memory regions and the

fault-tolerant sections in the partially faulty memory regions. This helps us to tolerant higher

fault rates as compared to FaultLink and allows operation at even lower voltages.

• In Chapter 4, we propose Software-Defined Error Localization Code (SDELC), a hybrid

hardware/software technique that allows the system to heuristically recover from unpredictable

single-bit soft faults in instruction and data memories, which cannot be handled using

FaultLink/SAME-Infer. SDELC first localizes the single-bit error to a particular chunk in

the data and then heuristically recovers from it using side-channel information from the

neighboring memory content.

• In Chapter 5, we propose Parity++, a novel unequal message protection scheme for embedded

memories and last level caches that preferentially provides stronger error protection to certain

“special messages”. Like SDELC, Parity++ also helps to recover from single-bit flips that

occur during runtime. Parity++ sits in between basic Single Error Detecting(SED) parity and

a full single error correcting (SEC) Hamming code. The special messages get SEC protection

while the non-special messages only have SED capability. This code requires only one extra

parity bit over SED code and 4x lesser parity bits compared to a 64-bit SEC Hamming code.

The critical portions of the application or the most frequently used instructions/data can be

annotated as special messages to protect them from single-bit flips.

In Part 2, we provide solutions that improve the reliability of DRAM-based main memories and

tackle challenges in adopting dense alternate non-volatile main memory technologies.

• In Chapter 6, we propose COMET: A Collaborative on-die and in-controller Memory ECC

Technique that allows safer and stronger protection from DRAM errors. The proposed

ECC construction techniques in COMET completely eliminate silent data corruption when

a double-bit error occurs in the memory array. It also proposes a collaborative mechanism

between the memory dies and the controller that allows correction of the majority (99.9997%)

of the double-bit errors.
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• In Chapter 7, we propose Compression with Multi-ECC (CME), a technique that opportunis-

tically provides enhanced error resiliency for Magnetic Memories. We first compress each

memory line using a compression scheme. Depending on how effective the compression was,

the ECC scheme for that particular memory line is determined. The higher the compression,

the stronger is the protection. This technique is designed such that it is compatible with most

standard memory protocols.

• Chapter 8 presents an optimized PCM architecture that trades off some of the PCM density

advantages over DRAM to bring down the PCM read latency. The proposed PCM-Duplicate

mechanism provides a 2x capacity advantage (at the same cost) over DRAM while having

almost DRAM-like read latency. We propose two possible memory system organizations to

efficiently use PCM-Duplicate.

The different solutions discussed throughout this dissertation could be generalized to other

systems and memory technologies. Overall the proposed suite of novel complementary techniques

improves reliability across a broad domain of computing systems – from embedded edge devices in

the IoT to high-performance computing systems – with significant energy efficiency and performance

improvements that are critically needed in the nanoscale era. Instead of providing uniform protection

against all errors, this dissertation exploits the behavior of the actual data it is protecting, understands

the error patterns and fault models to identify the most dominant error mechanisms and then proposes

a solution that is stronger and cheaper than the conventional techniques used in today’s systems.
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CHAPTER 2

FaultLink: Low Cost Fault Tolerance for IoT Devices

IoT devices need reliable hardware at low cost and low energy. One way to reduce energy con-

sumption is by scaling down the on-chip memory supply voltage. However, this results in an

exponential increase in the hard fault rate in these SRAM-based embedded scratchpad memories.

It is challenging to efficiently cope with these faults. To address this problem, in this chapter, we

propose FaultLink. FaultLink avoids hard faults found during testing by generating a custom-tailored

application binary image for each individual chip. During software deployment-time, FaultLink

optimally packs small sections of program code and data into fault-free segments of the memory

address space and generates a custom linker script for a lazy-linking procedure. Our FaultLink

approach improves min-VDD at which the scratchpad memories can be run by up to 440 mV as

compared to the nominal VDD. This dramatically reduces energy consumption. Besides, FaultLink

also helps to protect against aging-induced hard faults in memories and provides significant cost

savings by removing the need for hardware replacement when memory faults occur post-deployment.

It also helps to improve manufacturing yield and cost as memories with faults detected during

testing no longer need to be discarded.

Collaborators:

• Dr. Mark Gottscho, UCLA/Google

• Dr. Clayton Schoeny, UCLA/Square

• Prof. Lara Dolecek, UCLA

• Prof. Puneet Gupta, UCLA
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2.1 Introduction

For embedded systems at the edge of the Internet-of-Things (IoT), hardware design is driven by

the need for the lowest possible cost and energy consumption, which are both strongly affected by

on-chip memories [34]. Memories consume significant chip area and are particularly susceptible

to parameter variations and defects resulting from the manufacturing process [35]. Meanwhile,

much of an embedded system’s energy is consumed by on-chip SRAM memory, particularly during

sleep mode. The embedded systems community has thus increasingly turned to software-managed

on-chip memories – also known as scratchpad memories (SPMs) [36] – due to their 40% lower

energy as well as latency and area benefits compared to hardware-managed caches [37].

It is challenging to simultaneously achieve low energy, high reliability, and low cost for embed-

ded memory. For example, an effective way to reduce on-chip SRAM power is to reduce the supply

voltage [38]. However, this causes cell hard fault rates to rise exponentially [18] and increases

susceptibility to radiation-induced soft faults, thus degrading yield at low voltage and increasing

cost. Thus, designers traditionally include spare rows and columns in the memory arrays [19] to

deal with manufacturing defects and employ large voltage guardbands [20] to ensure reliable opera-

tion. Unfortunately, large guardbands limit the energy proportionality of memory, thus reducing

battery life for duty-cycled embedded systems [39], a critical consideration for the IoT. Although

many low-voltage solutions have been proposed for caches, fewer have addressed this problem for

scratchpads and embedded main memory.

Our goal in this work is to improve embedded software-managed memory reliability at minimal

cost. We propose FaultLink that helps to guard applications against known hard faults. The key idea

of this work is to automatically customize an application binary to individually accommodate each

chip’s unique hard fault map with no disruptions to source code. The contributions of this chapter

are the following.

• We present FaultLink, a novel lazy link-time approach that extends the software construction

toolchain with new fault-tolerance features for software-managed/scratchpad memories.

FaultLink relies on hard fault maps for each software-controlled physical memory region that

may be generated during manufacturing test or periodically during run-time using built-in-
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self-test (BIST).

• We detail an algorithm for FaultLink that automatically produces custom hard fault-aware

linker scripts for each individual chip. We first compile the embedded program using specific

flags to carve up the typical monolithic sections, e.g., .text, .data, stack, heap, etc. Fault-

Link then attempts to optimally pack program sections into memory segments that correspond

to contiguous regions of non-faulty addresses.

By experimenting with both real and simulated test chips, we find that with no hardware changes,

FaultLink enables applications to run correctly on embedded memories using a min-VDD that can

be lowered by up to 440 mV. Our FaultLink approach could thus enable more reliable IoT devices

while significantly reducing cost and run-time energy.

This chapter is organized as follows. Background material that is necessary to understand

our contributions is presented in Section 2.2. We then describe FaultLink in detail in Section 2.3

and evaluate in Section 2.4. We list some of the related works in Section 2.5. We then discuss

other considerations and opportunities for future work in Section 2.6 and conclude the chapter in

Section 2.7.

2.2 Background

We present the essential background on scratchpad memory, the nature of SRAM faults and sections

and segments used by software construction linkers needed to understand our contributions.

2.2.1 Scratchpad Memories (SPMs)

Scratchpad memories (SPMs) are small on-chip memories that, like caches, can help speed up

memory accesses that exhibit spatial and temporal locality. Unlike caches, which are hardware-

managed and are thus transparent in the address space, data placement in scratchpads must be

orchestrated by software. This requires additional effort from the application programmer, who

must – with the help of tools like the compiler and linker – explicitly partition data into physical

memory regions that are distinct in the address space. Despite the programming difficulty, SPMs
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can be more efficient than caches. Banakar et al. showed that SPMs have on average 33% lower

area requirements and can reduce energy by 40% compared to equivalently-sized caches [37]. In

energy and cost-conscious embedded systems, SPMs are increasingly being used for this reason

and because they provide more predictable performance. In this work, FaultLink is used to improve

the reliability/min-VDD of SPMs/software-managed main memory.

2.2.2 Program Sections and Memory Segments

The Executable and Linkable Format (ELF) is ubiquitous on Unix-based systems for representing

compiled object files, static and dynamic shared libraries, as well as program executable images in a

portable manner [40]. ELF files contain a header that specifies the Instruction Set Architecture(ISA),

Application Binary Interface(ABI), a list of program sections and memory segments, and various

other metadata.

• A section is a contiguous chunk of bytes with an assigned name: sections can contain

instructions, data, or even debug information. For instance, the well-known .text section

typically contains all executable instructions in a program, while the .data section contains

initialized global variables.

• A segment represents a contiguous region of the memory address space (i.e., ROM, instruction

memory, data memory, etc.). When a final output binary is produced, the linker maps sections

to segments. Each section may be mapped to at most one segment; each segment can contain

one or more non-overlapping sections.

The toolchain generally takes a section-centric view of a program, while at run-time the segment-

centric view represents the address space layout. Manipulating the mapping between program

sections and segments is the core focus of FaultLink.

2.2.3 Tolerating SRAM Faults

There are several types of SRAM faults. In this chapter, we define hard faults to include all recurring

and/or predictable failure modes that can be characterized via testing at fabrication time or in the
14



Figure 2.1: Our high-level approach to tolerating hard faults in on-chip scratchpad memories.

field. These include manufacturing defects, weak cells at low voltage, and in-field device/circuit

aging and wearout mechanisms [41]. A common solution to hard faults is to characterize memory,

generate a fault map, and then deploy it in a micro-architectural mechanism to hide the effects of

hard faults.

We define soft faults to be unpredictable single-event upsets (SEUs) that do not generally reoccur

at the same memory location and hence cannot be fault-mapped. The most well-known and common

type of soft fault is the radiation-induced bit flip in memory [42]. Soft faults, if detected and

corrected by an error-correcting code (ECC), are harmless to the system.

2.3 FaultLink

The high-level concept of FaultLink is illustrated in Figure 2.1. At fabrication time, process

variation and defects may result in hard faults in embedded memories. During test-time, these are

characterized and maintained in a per-chip fault map that is stored in a database for later. When

the system developer later deploys the application software onto the devices, FaultLink is used to

customize the binary for each individual chip in a way that avoids its unique hard fault locations.

Conventional software construction toolchains assume that there is a contiguous memory address

space in which they can place program code and data. For embedded targets, the address space is

often partitioned into a region for instructions and a region for data. On a chip containing hard faults,
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(a) Chip floorplan (b) Board

Figure 2.2: Test chip and board used to collect hard fault maps for FaultLink.

however, the specified address space can contain faulty locations. With a conventional compilation

flow, a program could fetch, read, and/or write from these faulty locations, making the system

unreliable.

FaultLink is a modification to the traditional embedded software toolchain to make it memory

“fault-aware.” At chip test-time, or periodically in the field using built-in-self-test (BIST), the

software-managed memories are characterized to identify memory addresses that contain hard

faults.

At software deployment time – i.e., when the application is actually programmed onto a

particular device – FaultLink customizes the application binary image to work correctly on that

particular chip given the fault map as an input. FaultLink does this by linking the program to

guarantee that no hard-faulty address is ever read or written at runtime. Note that FaultLink is not

heuristic and therefore does not induce errors.

We motivate FaultLink with fault mapping experiments on real test chips, describe the overall

FaultLink toolchain flow, and present the details of the Section-Packing problem that FaultLink

solves.
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(a) 750 mV (b) 700 mV (c) 650 mV

Figure 2.3: Measured voltage-induced hard fault maps of the 176 KB data memory for one test

chip. Black pixels represent faulty byte locations.

2.3.1 Test Chip Experiments

To motivate FaultLink, we characterized the voltage scaling-induced fault maps for eight micro-

controller test chips. Each chip contains a single ARM Cortex-M3 core, 176 KB of on-chip data

memory, 64 KB of instruction memory. They were fabricated in a 45nm SOI technology with

dual-Vth libraries [43–45]; the chip floorplan and test board are shown in Figure 2.2. The locations

of voltage-induced SRAM hard faults in the data memory for one chip are shown in Figure 2.3 as

black dots. Its byte-level fault address map appears as follows:

0x200057D6

0x200086B4

...

0x2002142F

0x200247A9.

Without further action, this chip would be useless at low voltage for running embedded ap-

plications; either the min-VDD would be increased, compromising energy, or the chip would be

discarded entirely. We now describe how the FaultLink toolchain leverages the fault map to produce

workable programs in the presence of potentially many hard faults.
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Figure 2.4: FaultLink procedure: given program source code and a memory fault map, produce a

per-chip custom binary executable that will work in presence of known hard fault locations in the

SPMs.

2.3.2 Toolchain

FaultLink utilizes the standard GNU tools for C/C++ without modification. The overall procedure is

depicted in Figure 2.4. The programmer compiles code into object files but does not proceed to link

them. The code must be compiled using GCC’s -ffunction-sections and -fdata-sections

flags, which instruct GCC to place each subroutine and global variable into their own named sections

in the ELF object files. Our FaultLink tool then uses the ELFIO C++ library [46] to parse the object

files and extract section names, sizes, etc. FaultLink then produces a customized binary for the

given chip by solving the Section-Packing problem.

2.3.3 Fault-Aware Section-Packing

Section-Packing is a variant of the NP-complete Multiple Knapsacks problem. We formulate it as

an optimization problem and derive an analytical approximation for the probability that a program’s

sections can be successfully packed into a memory containing hard faults.
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2.3.3.1 Problem Formulation

Given a disjoint set of contiguous program sections M and a set of disjoint hard fault-free contiguous

memory segments N, we wish to pack each program section into exactly one memory segment such

that no sections overlap or are left unpacked. If we find a solution, we output the M→ N mapping;

otherwise, we cannot pack the sections (the program cannot accommodate that chip’s fault map).

An illustration of the Section-Packing problem is shown in Figure 2.5, with the program sections on

the top and fault-free memory regions on the bottom.

Let mi be the size of program section i in bytes and n j be the size of memory segment j, y j be 1

if segment j contains at least one section, otherwise let it be 0, and zi j be 1 if section i is mapped to

segment j, otherwise let it be 0. Then the optimization problem is formulated as an integer linear

program (ILP) as follows:

Minimize: ∑
j∈N

y j

Subject to:

∑
i∈M

mi · zi j ≤ n j · y j ∀ j ∈ N

∑
j∈N

zi j = 1 ∀i ∈M

zi j = 0 or 1 ∀i ∈M; j ∈ N

y j = 0 or 1 ∀ j ∈ N.

We solve this ILP problem using CPLEX [47]. We use an objective that minimizes the number

of packed segments because the solution naturally avoids memory regions that have higher fault

densities. The constraints ensure that every program section gets packed in the non-faulty segments

of the memory and the total size of all the sections packed in one non-faulty segment is no more

than the size of that particular segment. (Note that other objectives will produce equally-valid

section-packing solutions in terms of correctness; the important fault-avoidance constraints are

fixed.) To pack any benchmark onto any fault map that we evaluated, CPLEX required no more

than 14 seconds in the worst case; if a solution cannot be found or if there are few faults, typically
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Figure 2.5: FaultLink attempts to pack contiguous program sections into contiguous disjoint

segments of non-faulty memory. Gray memory segments are occupied by mapped sections, while

white segment areas are free space. The depicted gaps between some of the gray/white boxes

indicate faulty memory regions that are not available for section-packing.

FaultLink will complete much quicker. If a faster solution is needed, a greedy ILP relaxation can be

used.

2.3.3.2 Analytical Section-Packing Estimation

We observe that the size of the maximum contiguous program section often comprises a significant

portion of the overall program size, and that most FaultLink section-packing failures occur when

the largest program section is larger than all non-faulty memory segments.
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Therefore, we estimate the FaultLink success rate based on the probability distribution of the

longest consecutive sequences of coin flips as provided by Schilling [48]. Let Lk be a random

variable representing the length of the largest run of heads in k independent flips of a biased

coin (with p as the probability of heads). The following equation is an approximation for the

limiting behavior of Lk, i.e., the probability that longest run of heads is less than x and assuming

k(1− p)� 1 [48]:

P(Lk < x)≈ e−p
(x−log

p−1 (k(1−p)))

. (2.1)

We apply Schilling’s above formula to estimate the behavior of FaultLink. Let b be the i.i.d.

bit-error-rate and s be the probability of no errors occurring in a 32-bit word, i.e., s = (1− b)32.

Let size be the memory size in bytes and mmax be the size in bytes of the largest contiguous

program section. Using Equation 2.1, we plug in p = s, k = size/4, and x = mmax/4. Then, we

can approximate the probability of there not being a memory segment that is large enough to store

the largest program section:

P
(

Lsize/4 <
mmax

4

)
≈ e−s(

mmax
4 −log

s−1( size4 (1−s)))
. (2.2)

This formula will be used in the evaluation to estimate FaultLink yield and min-VDD.

2.4 Evaluation

We evaluate FaultLink in terms of its ability to proactively avoid hard faults in software-managed

memories.

We first demonstrate how applications can run on real test chips at low voltage with many hard

faults in on-chip memory using FaultLink, and then evaluate the yield benefits at low voltage for a

synthetic population of chips.

2.4.1 Voltage Reduction on Real Test Chips

We first apply FaultLink to a set of small embedded benchmarks that we build and run on eight of

our microcontroller-class 45nm “real test chips.” Each chip has 64 KB of instruction memory and
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(a) Chip 1 (b) Chip 2

Figure 2.6: Result from applying FaultLink to the sha benchmark for two real test chips’ 64 KB

instruction memory at 650 mV.

176 KB of data memory. The five benchmarks are blowfish and sha from the mibench suite [49]

as well as dhrystone, matmulti and whetstone. We characterized the hard voltage-induced fault

maps of each test chip’s SPMs in 50 mV increments from 1 V (nominal VDD) down to 600 mV

using March-SS tests [50] and applied FaultLink to each benchmark for each chip individually at

every voltage. Note that the standard C library provided with the ARM toolchain uses split function

sections, i.e., it does not have a monolithic .text section. For each FaultLink-produced binary

that could be successfully packed, we ran them to completion on the real test chips. The FaultLink

binaries were also run to completion on a simulator to verify that no hard fault locations are ever

accessed.

FaultLink-packed instruction SPM images of the sha benchmark for two chips are shown in

Figure 2.6 with a runtime VDD of 650 mV. There were about 1000 hard-faulty byte locations in

each SPM (shown as black dots). Gray regions represent sha’s program sections that were mapped

into non-faulty segments (white areas).

We observe that FaultLink produced a unique binary for each chip. Unlike a conventional binary,

the program code is not contiguous in either chip because the placements vary depending on the

actual fault locations. In all eight test chips, we noticed that lower addresses in the first instruction

SPM bank are much more likely to be faulty at low voltage, as seen in Figure 2.6. This could be

22



caused either by the design of the chip’s power grid, which might have induced a voltage imbalance

between the two banks, or by within-die/within-wafer process variation. Chip 1 (Figure 2.6a) also

appears to have a cluster of weak rows in the first instruction bank. Because FaultLink chooses a

solution with the sections packed into as few segments as possible, we find that the mapping for

both chips prefers to use the second bank, which tends to have larger segments.

We achieved an average min-VDD of 700 mV for the real test chips. This is a reduction of 125

mV compared to the average non-faulty min-VDD of 825 mV, and 300 mV lower than the official

technology specification of 1 V. FaultLink did not require more than 14 seconds on our machine to

optimally section-pack any program for any chip at any voltage.

2.4.2 Yield at Min-VDD for Synthetic Test Chips

To better understand the min-VDD and yield benefits of FaultLink using a wider set of benchmarks

and chip instances, we created a series of randomly-generated synthetic fault maps. For instruction

and data SPM capacities of 128 KB, 256 KB, 512 KB, 1 MB, 2 MB, and 4 MB, we synthesized 100

fault maps for each in 10 mV increments for a total of 600 “synthetic test chips.” We used detailed

Monte Carlo simulation of SRAM bit-cell noise margins in the corresponding 45 nm technology.

Six more benchmarks were added from the AxBench approximate computing C/C++ suite [51]

that are too big to fit on the real test chips: blackscholes, fft, inversek2j, jmeint, jpeg, and

sobel. These AxBench benchmarks were compiled for the open-source 64-bit RISC-V (RV64G)

instruction set v2.0 [52] and privileged specification v1.7 using the official tools. This is because

unlike the standard C library for our ARM toolchain, the library included with the RISC-V toolchain

has a monolithic .text section. This allows us to consider the impact of the library sections on

min-VDD.

The expected min-VDD for 99% chip yield across 100 synthetic chip instances for seven

memory capacities is shown in Figure 2.7. The vertical bars represent our analytical estimates

calculated using Equation 2.2. The red line represents the empirical worst case out of 100 synthetic

test chips, while the blue line is the lowest non-faulty voltage in the worst case of the 100 chips.

Finally, the green line represents the nominal VDD of 1 V.
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Figure 2.7: Achievable min-VDD for FaultLink at 99% yield. Bars represent the analytical lower

bound from Equation 2.2 and circles represent our actual results using Monte Carlo simulation for

100 synthetic fault maps.

FaultLink reduces min-VDD for the synthetic test chips at 99% yield by up to 450 mV with

respect to the nominal 1 V and between 370 mV and 430 mV with respect to the lowest non-faulty

voltage. All but jpeg from the AxBench suite were too large to fit in the smaller SPM sizes

(hence the “missing” bars and points). When the memory size is over-provisioned for the smaller

programs, min-VDD decreases moderately because the segment size distribution does not have a

strong dependence on the total memory size.

The voltage-scaling limits are nearly always determined by the length of the longest program

section, which must be packed into a contiguous fault-free memory segment. This is strongly

indicated by the close agreement between the empirical min-VDDs and the analytical estimates, the

latter of which had assumed the longest program section is the cause of section-packing failure.

To examine this further, the program section size distribution for each benchmark is depicted in

Figure 2.8. The name of the largest section is shown in the legend for each benchmark.

We observe all distributions have long tails, i.e., most sections are very small but there are

a few sections that are much larger than the rest. We confirm that the largest section for each

benchmark – labeled in the figure legend – is nearly always the cause of failure for the FaultLink
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Figure 2.8: Distribution of program section sizes. Packing the largest section into a non-faulty

contiguous memory segment is the most difficult constraint for FaultLink to satisfy and limits

min-VDD.

section-packing algorithm at low voltage when many faults arise. Recall that the smaller ARM-

compiled benchmarks have split C library function sections, while the AxBench suite that was

compiled for RISC-V has a C library with a monolithic .text section; we observe that the latter

RISC-V benchmarks have significantly longer section-size tails than the former benchmarks. This is

why the AxBench suite does not achieve the lowest min-VDDs in Figure 2.7. Notice that program

size is not a major factor: jpeg for RISC-V is similar in size to the ARM benchmarks, but it still

does not match their min-VDDs. If the RISC-V standard library had used split function sections,

the AxBench min-VDDs would be significantly lower. For instance, jpeg compiled on RISC-V

achieves a min-VDD of 750mV for 128 KB memory, while on ARM (not depicted) it achieves a

min-VDD of 660mV.

FaultLink does not require any hardware changes; thus, energy-efficiency (voltage reduction)

and cost (yield at given VDD) for IoT devices can be considerably improved.
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2.5 Related Work

We summarize and differentiate our work from related work on fault-tolerant caches and scratchpads.

2.5.1 Fault-Tolerant Caches

There is an abundance of prior work on fault-tolerant and/or low-voltage caches. Examples

include PADded Cache [53], Gated-VDD [54], Process-Tolerant Cache [55], Variation-Aware

Caches [56], Bit Fix/Word Disable [57], ZerehCache [58], Archipelago [59], FFT-Cache [60], VS-

ECC [61], Correctable Parity Protected Cache (CPPC) [62], FLAIR [63], Macho [64], DPCS [65],

DARCA [66], and others (see related surveys by Mittal [11, 67]). These fault-tolerant cache

techniques tolerate hard faults/save energy by sacrificing capacity or remapping physical data

locations. This affects the software-visible memory address space and hence they cannot be readily

applied to SPMs.

Although they are cache-specific, some of the above techniques can be roughly compared with

FaultLink in terms of min-VDD. For instance, DPCS [65] achieves a similar min-VDD to FaultLink

of around 600 mV, while FLAIR [63] achieves a lower min-VDD (485 mV). We emphasize that the

above techniques cannot be applied to SPMs and are therefore not a valid comparison.

2.5.2 Fault-Tolerant Scratchpads

The community has proposed various methods for tolerating variability and faults in SPMs that

relate closely to this work. Traditional fault avoidance techniques like dynamic bit-steering [68]

and strong ECC codes are too costly for small embedded memories. Meanwhile, spare rows and

columns cannot scale to handle many faults that arise from deep voltage scaling.

E-RoC [69] is a SPM fault-tolerance scheme that aims to dynamically allocate scratchpad space

to different applications on a multi-core embedded SoC using a virtual memory approach. However,

it requires extensive hardware and run-time support. Several works [70–73] propose to use OS-based

virtual memory to directly manage memory variations and/or hard faults, but they are not feasible

in low-cost IoT devices that lack support for virtual memory; nor do they guarantee avoidance of
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known hard faults at software deployment time. Others have proposed to add small fault-tolerant

buffers that assist SPM checkpoint/restore [74], re-compute corrupted data upon detection [75],

build radiation-tolerant SPMs using hybrid non-volatile memory [76] and duplicate data storage to

guard against soft errors [77]; these are each orthogonal to this work.

2.6 Discussion

We highlight several considerations and beneficial use cases for FaultLink and outline directions for

future work.

2.6.1 Memory Reliability Binning

FaultLink could bring significant cost savings to both IoT manufacturers and IoT application

developers throughout the lifetime of the devices. Manufacturers could sell chips with hard defects

in their on-chip memories to customers instead of completely discarding them, which increases

yield. Customers could run their applications on commodity devices with or without hard defects at

lower-than-advertised supply voltages to achieve energy savings. Fault maps for each chip at typical

min-VDDs are small (bytes to KBs) and could be stored in a cloud database or using on-board flash.

Several previous works have proposed heterogeneous reliability for approximate applications to

reduce cost [78–81].

2.6.2 Coping with Aging and Wearout using FaultLink

Because IoT devices may have long lifetimes, aging becomes a concern for the reliability of the

device. Although explicit memory wearout patterns cannot be predicted in advance, fault maps

could be periodically sampled using BIST and uploaded to the cloud. Because IoT devices by

definition already require network connectivity for their basic functionality and to support remote

software updates and patching of security vulnerabilities, it is not disruptive to add remote FaultLink

support to adapt to aging patterns. Because running FaultLink remotely takes just a few seconds,

customers would not be affected any worse than the downtime already imposed by routine software
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updates and the impact on battery life would be minimum.

2.6.3 Directions for Future Work

The FaultLink approach can be further improved upon. One could extend FaultLink to accommodate

hard faults within packed sections to reduce min-VDD and increase reliability. For FaultLink with

instruction memory, one approach could be to insert unconditional jump instructions to split up

basic blocks, similar to a recent cache-based approach [82]. For FaultLink with data memory, one

could use smaller split stacks [83] and design a fault-aware malloc().

2.7 Conclusion

We proposed FaultLink to improve memory resiliency for IoT devices in the presence of hard faults.

FaultLink tailors a given program binary to each individual embedded memory chip on which it is

deployed. This improves both device yield by avoiding manufacturing defects and saves runtime

energy by accounting for variation-induced parametric failures at low supply voltage. FaultLink

does not require any hardware changes; thus, energy-efficiency (voltage reduction) and cost (yield

at given VDD) for IoT devices can be considerably improved.
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CHAPTER 3

SAME-Infer: Software Assisted Memory Resilience for

Efficient Inference at the Edge

In the previous chapter, we presented FaultLink that helps to tolerate hard faults at low voltages in

SRAM-based scratchpad memories typically found in edge devices. Deep learning neural network

applications constitute a significant fraction of the workloads that are run today on these low cost

embedded devices. Despite the inherent resilience of most of these deep learning applications,

inference accuracy degrades significantly at high fault rates. In this chapter, we propose SAME-Infer,

a software assisted memory resilience technique for efficient inference at the edge. It is a fault-

aware linking methodology for software-managed embedded memories to efficiently map the critical

code/layers onto the non-faulty segments of the memory and the non-critical fault tolerant sections in

the faulty or error-prone memory segments. This is done in a way such that memory hard faults can

be tolerated and voltage be lowered without degrading the accuracy (SAME inference accuracy at

lower voltage/higher error rate). Unlike FaultLink, SAME-Infer exploits the approximation-tolerant

nature of DNNs and efficiently uses faulty regions of the memory as well, thereby delivering

much higher energy reduction/fault tolerance (more than 100mV min-VDD gain) as compared to

FaultLink. Our evaluation on 10 real microcontroller class chips shows that more than 175mV

reduction in voltage can be achieved without any loss in accuracy for a variety of neural networks.

SAME-Infer can also be considered as an efficient fault tolerance/in-field repair technique as it

tolerates on average 25x (upto 350x) increase in bit error rate with minimal impact on inference

accuracy.

Collaborators:

• Prof. Puneet Gupta, UCLA
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3.1 Introduction

The demand for deploying deep learning neural network (DNN) algorithms in edge and mobile

devices is increasing. These applications are extremely compute intensive. Since the edge devices

are often energy constrained, it is critical to enhance the energy efficiency of DNN inference on such

devices. Further, these edge devices are deployed in increasingly harsh environments resulting in

worsened hardware failure rates [84] but still require continued reliable operation. To make matters

worse, typical fault tolerance techniques (sparing, system-level fault tolerance, error correcting

codes) are usually unaffordable due to cost or energy reasons in these contexts. Furthermore, many

of the faults are permanent or semi-permanent and possibly wearout related. As a result, in-field

repair/replace, though needed, is very difficult in many environments.

As mentioned in Chapter 2, cost and energy consumption in embedded systems at the edge

of the Internet-of-Things (IoT) are both strongly affected by on-chip memories [34]. To make

these memories efficient, these devices typically use software-managed on-chip memories – also

known as scratchpad memories (SPMs) [36] – due to their 40% lower energy as well as latency and

area benefits compared to hardware-managed caches [37]. One way to further reduce the energy

consumption of these on-chip memories is by reducing the supply voltage. However, doing so

leads to an exponential rise in the memory cell hard fault rate. Running applications on a voltage

scaled device with faulty memory leads to erroneous behaviour of the application. To enable voltage

scaling, we proposed FaultLink in Chapter 2.

On the other hand, DNN algorithms are known to be approximation friendly and fault re-

silient [85]. Previous works have shown that if a few elements in the weight matrix or inputs are

erroneous, the final inference accuracy remains unchanged. These errors often do not get propa-

gated to the output or the perturbation these errors cause is negligible enough such that the final

classification is not affected. A recent body of work has focused on exploiting this characteristic

of Deep Learning (DL) networks by reducing precision of computation through quantization as it

does not affect accuracy but significantly reduces storage requirement [86, 87]. Therefore, DNN

algorithms have an inherent capability of masking errors due to memory faults if the errors occur in

non-critical locations.
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In this chapter we extend FaultLink and propose SAME-Infer, a lazy link-time fault-aware mem-

ory mapping approach for Deep Learning networks. SAME-Infer extends the software construction

toolchain (compiler and linker), for software managed memories, to intelligently map the critical

regions of the network in non-faulty memory segments and non-critical fault tolerant regions in the

faulty segments of the memory. Contributions of this chapter include:

• We study the impact of memory faults on inference accuracy by approximating the error

tolerance of each layer’s weight and activation values. We extend this methodology to

approximate the error tolerance of every weight kernel (per layer, per filter). Further, we use

this methodology to bin the data sections of a DNN program based on varying degrees of

criticality.

• We develop SAME-Infer approach to relink compiled program based on memory fault map

and the criticality measure of the data partitions.

• We develop analytical models for predicting probability of successful relinking given the

program and the expected bit error rate (BER).

• We evaluate the SAME-Infer approach on ten real microcontroller class chips running 8-

bit and binarized CNNs and MLPs on well-known MNIST, Google Speech command and

CIFAR10 datasets. We measure the achieved energy reduction and fault tolerance. The results

show opportunities of memory voltage reduction by up to 175mV and 350x improvement in

BER tolerance.

• We also show approaches which try to make trained networks generally robust (e.g., [88]) do

not work as well as SAME-Infer.

Thus, SAME-Infer provides a methodology to tolerate (and repair) increased hard fault rate in

systems with scratchpad based memories while maintaining the same inference accuracy for Deep-

Learning applications. The increased BER tolerance not only helps to lower supply voltage and

save energy, it also helps to tolerate aging induced faults. When in-field memory faults happen, it

provides a simple software patch solution alternative to difficult in-field repair and/or expensive
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hardware replacement solutions. SAME-Infer also provides significant cost saving since device

manufacturers can now save chips with fault-prone or faulty cells rather than discarding them.

3.2 Background

In this section we briefly present the essential background beyond FaultLink that is required to

understand our contributions in SAME-Infer.

3.2.1 SRAM Faults

SRAM faults can be primarily characterized as either soft or hard faults. Soft faults manifest at

runtime due to radiation induced high energy particle strikes, value disturbance due to cell leakage

etc. Error Correcting Codes (ECC) is a typical approach to deal with soft faults. Hard faults, on

the other hand, include all recurring and/or predictable failure modes that can be characterized

via testing at fabrication time or in the field. These include: manufacturing defects, weak cells

at low voltage, and in-field device/circuit aging and wearout mechanisms [41]. Using ECC for

low voltage induced hard faults will require a very strong protection scheme with high overheads,

making them impractical in the context of low cost platforms. A common solution to hard faults is

to characterize the memory, generate a fault map, and then deploy it in a system-level mechanism

(e.g., page retirement in systems which support virtual memory) to hide the effects of hard faults.

However, most IoT devices are bare metal and do not have support for operating system and virtual

memory framework due to limited memory capacity and energy budget. Simple solutions used

traditionally by designers to increase reliability are including spare rows and columns [19] in the

memory arrays and employing large voltage guardbands [20]. Unfortunately, as the voltage is

scaled and the fault rate rises exponentially, sparing soon becomes insufficient. Also, large voltage

guardbands limit the energy proportionality of memory, thus reducing battery life for duty-cycled

embedded systems [39], a critical consideration for the IoT. Although there are several past works

that propose approaches for reliable operation in low voltage SRAM caches [57, 61], they cannot

be used in the context of scratchpads and embedded main memory and often incur impractical

overheads for low cost devices.
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3.2.2 Fault Resilient DL networks

Most deep learning neural networks are known to be moderately fault resilient because of the

abundant redundancy present in these networks. However, the resilience of a DL network depends

on the type of data (such as inputs vs. weights), data values, data-types (32-bit float vs. 8-bit

integer), layer type/position in the network (such as input layer vs. hidden layer, convolution

layer vs. fully connected layer), etc [85]. Inherent resilience and redundancy in neural networks

have also been leveraged to reduce precision of computation [86, 87] or for compression [89].

A recent work [88] focuses on exploiting the fault resilient characteristic of these networks for

performance improvements and energy savings in DRAM. However, it requires the network to be

retrained on the target approximate DRAM system. Such an approach is often infeasible for low

cost, compute/memory starved edge devices. They also proposed offloading the retraining on a

separate system using a random bit error rate (BER). However, hard faults in memory (especially

at lower voltage in SRAMs) are often correlated and hence, modeling the bit errors as a uniform

random distribution is not very accurate (as we show later in this chapter).

3.3 SAME-Infer Methodology

Software construction toolchains, by default, consider the memory address space to be contiguous

and place the program code and data accordingly. However, with hard faults in the memory, the

contiguous placement of data and code can result in the intersection of program sections with faults,

making the system and program execution unreliable. SAME-Infer extends the default toolchain so

that it is fault-aware and has the ability to incorporate the fault map while placing instructions and

data into the memory with faults. Thus, at software deployment time, SAME-Infer, with the help of

the modified toolchain, prepares a customized binary for each chip such that all critical sections of

the program are placed in non-faulty contiguous memory segments and the non-critical sections in

memory segments containing faults.

Figure 3.1 shows the complete SAME-Infer flow. In order to be able to place program sec-

tions into different memory segments efficiently, the monolithic program sections such as .text
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Figure 3.1: SAME-Infer procedure: given source code of a DL network and a memory fault

map, produce a per-chip custom binary executable that will work in presence of known hard fault

locations in the SPMs.

and .data need to be split up on a per-function and/or a per-variable basis so that each smaller

section can be mapped to a particular memory segment by the fault-aware linker. In order to do

that, the programmer initially needs to compile the code using special compiler flags for GCC

(-ffunction-sections and -fdata-sections) so that the compiler can place each subroutine

and global variable into their own named sections in the ELF object file. After compiling the code

the programmer does not link the object files. In the next step, the object file is parsed using standard

ELFIO C++ library [46] to record the name of each program section and its size.

Once the program sections and their sizes are recorded, the sections are then annotated with

their criticality level (i.e., how many least significant bit (LSB) errors can be tolerated). The section

packing algorithm (described later in Section 3.3.2) then iteratively maps sections to segments

starting with most critical sections first (each criticality level gets its own memory fault map). If the

tool provides a feasible solution, a part of the customized linker is generated based on that solution

for the critical program sections. The stack and heap are placed in the largest remaining non-faulty

contiguous memory segment.

34



3.3.1 Fault Impact Analysis

The non-critical sections of the network (in this chapter we considered weights and activation data as

non-critical sections) are fault resilient, but upto a certain degree. Naively placing these non-critical

sections in the memory can dramatically impact accuracy. As a result it is important to measure the

effect of bit errors in each of these non-critical weights and activation data on overall accuracy. In

the ideal scenario, it is required to search for the highest tolerable bit error rate (maximum error) of

each weight and activation data that would still yield an acceptable inference accuracy. However,

this search space is exponential, given the total number of weights and activations in a reasonably

sized DNN. In order to keep the granularity of sections reasonable, we did layer-wise sensitivity

analysis of the weights and activations to understand the impact of each layer’s weights and outputs

on the overall accuracy.

The approach to calculate inference error sensitivity to bit errors leverages the quantization

approach proposed in [90]. We essentially approximate bit errors in the k least significant bits by

reducing the precision by k bits. For example, in our 8-bit 2 layer MLP network (weights and

activations have 8-bit fixed point precision), the most sensitive weights (layer-1 weights) can be

quantized down to 5 bits without loss in accuracy. We interpret this as layer-1 weights can have upto

three bit errors in the least significant 3 bits. The fault map for layer-1 weights, thus, will contain all

memory addresses where there is an error in the most significant 5 bits.

3.3.2 Packing Critical and Non-Critical Sections

We solve the section to segment mapping problem iteratively. In a 8-bit network, we allow 5

criticality levels: from 0 to 4 LSB errors. For every criticality level, the corresponding program

sections are identified from the sensitivity analyses above. For every chip, the fault map is obtained

from a software/BIST memory testing routine. The fault map is different for every criticality

level depending on how many LSB errors can be tolerated. Section packing is then solved in

criticality order (most critical first) i.e., the section packing algorithm is run 5 times (in the 8 bit

case) sequentially each time with a different fault map and available memory segments. A sample

packing solution is shown in Figure 3.2.
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The section-packing problem itself, is a variant of the Multiple Knapsacks problem [91] which

we solve using an ILP1 with multiple criticality levels. The objective is to minimize the number

of packed memory segments so that there are large enough chunks of memory in between the

packed segments to accommodate the program sections for the remaining criticality levels. This

objective also helps to naturally provide a solution that avoids memory regions with higher fault

densities. The placement algorithm ensures that no weights or activation data of a particular layer

intersects with faulty bytes that have errors in the intolerable more significant bit positions. The

algorithm also ensures that these non-critical sections do not overlap with the already placed critical

program sections. Once this mapping is done, the linker generates the customized binary ready to

be deployed on that particular chip.

3.3.3 Breaking up monolithic weight sections into smaller kernels

We observe that SAME-Infer fails when the packing of the largest section fails. A lot of times

the largest section turns out to be a data section corresponding to a particular layer’s weight. One

way to relieve this would be to do a one-time simple modification of the source code where the

weight data sections are broken down into smaller sections. A simple way to do this would be to

break up the convolution layer weights on a per-filter basis. This splitting induces no code space

overhead as the same functions can be used, the only additional step would be to concatenate the

final output. The layer-wise sensitivity analysis of the weights in [90] can be modified to compute

weight quantization noise gain on a per layer per filter basis as shown below:

EW,l,k =E

 M

∑
i=1

i 6=Y f l

∑h∈Wl,k

∣∣∣∣∂ (Zi−ZYf l )

∂wh

∣∣∣∣2
24
∣∣Zi−ZY f l

∣∣2
 (3.1)

Here, M is the number of classes, {Zi}M
i=1 are the soft outputs, ZY f l is the floating point output, and

{{Wl,k}L
l=1}

NC
k=1 are the per layer (L is the total number of layers), per filter (Nc is the number of

filters in layer l) weights.

1Number of sections/segments is small enough that the ILP runtime was always less than 20 seconds in our
experiments.
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Figure 3.2: A sample section packing solution provided by SAME-Infer. The critical sections are

placed in fault free memory segments while the non-critical sections intersect with faults (grey

regions represent fault locations). The stack and heap is placed in the largest non faulty contiguous

memory segment remaining after placing the critical sections.

We computed the per filter quantization noise gain for a large CNN (with 6 convolution layers

and 3 fully connected layers). The network architecture is 32C3−32C3−MP2−64C3−64C3−

MP2−128C3−128C3−256FC−256FC−10 using CIFAR-10 dataset [92]. The layer 1 and 2

filter wise quantization noise gain results obtained using Equation 3.1 are shown in Figure 3.3.

From the results it can be seen that the sensitivity of the weights across kernels varies significantly.

Since the precision assignment matches the quantization noise gain profile on a logarithmic scale,

using the same number of least significant bits for error tolerance for every weight in a layer might

lead to under utilization of available network redundancy for energy efficiency. In Section 3.5.2, we

analyze the min-VDD benefits of weight splitting.
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Figure 3.3: Weight quantization noise gain per filter - layers 1 and 2 of a nine layer CNN.

Finding the best split size: The smallest granularity at which the non critical sections need to be

split in order to be able to run at a given voltage can be determined analytically, as provided in the

next subsection. Note that going to finer-grained splitting than what is ”natural” for neural networks

(layer/filter), would require fairly intrusive code changes which we want to avoid. Furthermore,

making the split granularity much smaller than section sizes in the code part of memory (dictated by

the code and not weights/activations) is not useful as code memory will limit the voltage scalability

in that case(Figure 3.6). In this work, we limit splitting to a filter granularity.

Performance and Code Size Overheads We evaluated the performance and code size overheads

of splitting up data and code sections on a per-variable/per-function basis and placing them in
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non-contiguous memory segments. The performance impact is almost negligible (∼ 0.1%). This is

because of static allocation of program sections. Also, since stack and heap are not split, there is no

additional performance overhead due to increased pointer chasing. There is no impact on code size

since the source code remains unchanged and hence, the size of the final executable that is loaded

into the memory also remains unchanged. Even splitting to a filter granularity resulted in minimal

code changes and negligible (∼ 1%) code size overhead.

3.3.4 Analytical Critical and Non-critical Section Packing Estimation

As determined by our evaluations in FaultLink, the section packing mostly fails when the largest

program section is larger than the largest non-faulty contiguous memory segment. We extend the

packing failure probability model developed in FaultLink to account for multiple criticality levels.

For that we need to iteratively perform the estimation for each section since the fault tolerance

capability of different sections is different. We use the same Equation 2.2 that we developed in

FaultLink for approximating the packing failure probability. However, size and s varies between

program sections. For example, if each weight of a particular layer is n bits and it can tolerate errors

in upto k−bits from the LSB, then

s =
(
(1−b)(n−k)

)32/n
(3.2)

This value of s is then substituted in Equation 2.2. We start with the most critical weights and

activations. For that layer, the size of the memory is taken as size− sizecrit bytes where sizecrit is

the sum of the sizes of all program sections more critical than the current one being packed. After

computing each layer, the size of the memory is reduced by the total size of weights and outputs of

that layer since we will try to pack the next layer (in terms of criticality) after the previous layer has

already been placed in the memory.

This analytical approach, combined with the sensitivity analysis results, can be used to estimate

the achievable accuracy and packing yield at a particular VDD or BER and hence predict before

deployment, fault tolerance and/or energy benefits of SAME-Infer for a specific hardware platform

and neural network.
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3.4 Experimental Setup

We evaluate SAME-Infer on ten micro-controller class test chips, same as FaultLink. Each chip

contains a single ARM Cortex-M3 core, 176 KB of on-chip data memory, 64 KB of instruction

memory. They were fabricated in a 45nm SOI technology with dual-Vth libraries the chip floorplan

and test board are shown in Figure 2.2. We characterized the voltage scaling-induced bitwise fault

maps for these ten chips using detailed March-SS tests [50].

For most of our experiments, we used four 8-bit networks as given in Table 3.1. The first

network is a minimally sized perceptron (MLP) with one hidden layer and is tested using MNIST

dataset [93]. The second is a convolutional neural network (CNN) with two convolution layers

and one fully-connected layer and is tested using Google Speech Command dataset [94]. The third

and the fourth networks are bigger convolutional neural networks with three and six convolution

layers and one and three fully-connected layers, respectively. Both these networks are tested using

CIFAR-10 dataset [92]. All the layer weights and activation data of all networks are quantized to

8-bit precision. The first three networks are implemented using the ARM CMSIS-NN [95] library,

version 5.6.0, optimized for Cortex-M processors and run on the test chip. The fourth network was

too big to fit on our test chip. Hence, a fault injection framework was developed using PyTorch 0.4.1.

In Table 3.1, 32CONV5-MP2 means 32 5x5 filters and 2x2 max pooling layer while 12FC/10FC

means fully connected layer with 12/10 output neurons. The networks were trained using PyTorch

0.4.1.

For all these networks we considered all weights and activation data to be non-critical (i.e.,

where sensitivity to errors would be calculated to assign them a criticality level) and all other

parameters and instructions to be critical.

The toolchain, by default, packs the entire program code sequentially in the memory with no

notion of faults. The supply voltage of each chip is reduced from the nominal 1V to 600mV in step

size of 25mV. As the voltage is reduced, the hard fault rate in the memory increases. For each step,

the binary is loaded and ran till completion to note the accuracy drop with decrease in voltage.

We then performed SAME-Infer for all 10 chips at every 25mV voltage step from 1V to 600mV

and ran the customized binary on the chips to measure the final accuracy for all the voltage levels
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Table 3.1: DL networks used in our experiments

Model (Precision) Architecture Dataset

MLP (8-bit, 1-bit) 784-128-10 MNIST

32CONV5-MP2

CNN-1 (8-bit) 32CONV5-MP2 SPEECH

12FC

32CONV5-MP2

CNN-2 (8-bit) 32CONV5-MP2 CIFAR-10

64CONV5-MP2

10FC

CNN-3 (8-bit) 32CONV3-32CONV3 CIFAR-10

MP2-64CONV3-64CONV3

MP2-128CONV3-128CONV3

256FC-256FC-10FC

which had feasible packing solutions. The layer-wise precision results were obtained using a

Theano [96] based framework. We used CPLEX [47] to solve the ILP packing problem in our

experiments. All code is packed in the instruction memory while all data is packed in the data

memory. If the section packing (solved iteratively for the multiple criticality levels) failed, we

considered SAME-Infer not to have a feasible solution for that network on that particular chip at

voltage equal and/or less than the current one. Since CNN-3 was too large for the test chip, the

accuracy results were obtained using our PyTorch based fault injection framework. We created a

series of randomly-generated synthetic fault maps for memory of size 1 MB. We synthesized 10

fault maps in 10 mV increments for a total of 10 “synthetic test chips.” using detailed Monte Carlo

simulation of SRAM bit-cell noise margins in the corresponding 45 nm technology. The fault maps

were fed into our PyTorch framework and inference with faulty weights and activations were run to

get the final accuracy.

We extended our analysis to binarized networks which can often be used for very resource-
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constrained embedded devices. As an example, we analyze binarized versions (dense and one with

85% sparsity) of the two layer MLP network. Since binarized networks, especially the sparse one,

have the least amount of redundancy in them and are much smaller in size as compared to the

8-bit networks, they will be less resilient to faults, while at the same time, would be easier to fit

in the memory. As binarized networks are already at the lowest precision level, error sensitivity

is not calculated for these networks. Instead, while packing the weights, we try to maximize the

intersection of 1’s with stuck at one faults and the 0 values with stuck at zero faults.

3.5 Results

As the supply voltage of each of the ten chips is reduced from the nominal 1V to 600mV in step size

of 25mV, the hard fault rate starts increasing. The first faults start appearing around 800-850mV

and the fault rate increases exponentially beyond 750mV.

3.5.1 Reduction in voltage with SAME-Infer

Using the default toolchain placement (without SAME-Infer), all three networks are ran for each

voltage step on all ten chips and the results are shown by the solid lines in Figures 3.4a, 3.4b

and 3.4c for MLP, CNN-1 and CNN-2, respectively. For the 2-layer MLP and the 2-layer CNN

(CNN-1), network accuracy remains almost unchanged till above 750mV for 8 out of 10 chips and

drops drastically at 725mV. This is because from 750mV to 725mV, the hard fault rate (bit error

rate) increases by 2.7x. For the three-layer CNN (CNN-2), the network accuracy starts dropping at

around 750mV. This is because of the larger size of the network resulting in a higher number of

intersections with faults. Also, in CNNs, if a particular weight or an input is erroneous, it affects

multiple output values due to the high amount of reuse. Thus, the weights and activation data in

CNNs have higher impact on the final accuracy as compared to MLP. Two, out of the ten test chips

had intersecting faults with critical code sections at 775mV and hence, these chips start failing at

higher voltage compared to the rest.
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(a) 8-bit MLP

(b) 8-bit CNN-1

(c) 8-bit CNN-2

Figure 3.4: Change in inference accuracy with voltage. Dotted lines are results with SAME-Infer

while the solid lines are without SAME-Infer.
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The results with SAME-Infer are shown in Figures 3.4a, 3.4b and 3.4c using dotted lines. The

red vertical line shows the minimum voltage estimated by the analytical model that can be scaled

down to while having minimal impact on accuracy. For the two layer MLP and the two layer CNN,

there is minimal impact on accuracy above 650mV and 625mV respectively. At 600mV, for all the

ten test chips, the critical section packing failed. Thus, with SAME-Infer, about 100mV-150mV

voltage reduction was achieved for the two layer MLP and 125mV-175mV reduction was achieved

for the two layer CNN network. The min-VDD estimated by the analytical model for the two layer

CNN (CNN-1) is 620mV, but since we used step size of 25mV, we have not shown the exact result

at 620mV. However, the model estimation falls within our obtained min-VDD range.

For the three layer CNN (CNN-2), the voltage could be scaled down to 675mV with no impact

on accuracy (100mV lower than baseline). At 650mV, the non-critical section packing failed. From

the sensitivity analysis results, the layer-2 weights and activation have the highest quantization

noise gain or the highest minimum precision requirement. Therefore, for this layer, the number

of tolerable faulty bit positions is 1 from the least significant bit (LSB) for weights and activation

data. The weights in this layer also form the largest data section. As a result, packing the layer’s

weights in a contiguous memory segment with where each memory location can have at most one

faulty LSB becomes infeasible at 650mV. The best case reduction achieved for this network was

125mV. This is similar to the minimum voltage estimated by the analytical model (670mV), thus,

validating the model. Once again because we used step sizes of 25mV, we have not shown the

results at 670mV, but we tested on three chips at 670mV and the network accuracy gets minimally

(<2%) affected at that voltage.

For all three networks, SAME-Infer achieved more than 100mV min-VDD reduction. Since

memories consume significant fraction of the total system energy, 100mV-175mV reduction in

min-VDD of the SRAM based scratchpad memories would lead to dramatic decrease in overall

system energy consumption. Also, SAME-Infer can now tolerate upto 350x higher Bit Error Rate

(BER). This is critical for tolerating aging induced or other in-field failures. If a built-in-self-test

(BIST) engine can periodically upload fault maps to the cloud, SAME-Infer can be run remotely and

the new failures can be avoided with a simple inexpensive software patch instead of an expensive

faulty hardware replacement or in-field repair.
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3.5.2 Splitting up Weights to Achieve Better Packing

As seen in the three layer CNN, at 650mV, SAME-Infer fails to pack the largest and the most

sensitive weight section. As mentioned in Section 3.3.3, one way to further reduce min-VDD and

achieve better packing would be to split per layer’s weight sections into smaller sections. The

sensitivity analysis of the weights is extended to compute weight quantization noise gains on a per

layer per filter basis. The results for the three layer CNN-2 are shown in Figure 3.5. An additional

50mV reduction in min-VDD was achieved for all 10 chips tested at negligible (<1%) code space

overhead and no impact on accuracy compared to SAME-Infer with layer-wise monolithic weight

sections.

Figure 3.5: Change in three layer CNN-2 inference accuracy as voltage on the test chips is scaled

down. The result shown here is the average accuracy across 10 test chips for each test case. The test

cases are - (1) without SAME-Infer (2) with SAME-Infer and layerwise monolithic weight sections

(3) when the weight sections are split up on per filter basis in every layer.

The weights can be further split up by granularity finer than a kernel. The best case is when

each weight section is as small as a memory word. However, splitting up the data sections into

such small sizes require non-negligible code modifications. Also, as can be seen in Figure 3.6, for

the bit-error rate measured in our test chips and the three layer CNN-2 network, splitting up the

non-critical sections to a size smaller than the kernel size doesn’t really provide much benefit as the
45



packing gets limited by the critical sections. Therefore, splitting on a per kernel basis is often good

enough and results in least intrusive code changes.

Figure 3.6: Achievable min-VDD as the smallest non-critical section size is reduced for the three

layer CNN. The min-VDD is obtained using Equation 2.2 while the min-VDD for critical section is

obtained from the test chip results.

We extended the analysis for a larger CNN (with 6 convolution layers and 3 fully connected lay-

ers). The network architecture is 32C3−32C3−MP2−64C3−64C3−MP2−128C3−128C3−

256FC− 256FC− 10. Since the network was too large for the test chip, we created a series of

randomly-generated synthetic fault maps for memory of size 1 MB. We synthesized 10 fault maps in

10 mV increments for a total of 10 “synthetic test chips.” We used detailed Monte Carlo simulation

of SRAM bit-cell noise margins in the corresponding 45 nm technology. The filter-wise precision

results were obtained in Theano [96]. The accuracy results were obtained by running inference

with faulty weights and activations using our PyTorch based fault injection framework and the

synthetic fault map. The results are shown in Figure 3.7. With only SAME-Infer and monolithic

layer weights, the desired packing could not be obtained for layers 5, 6 and 7 below 750mV. With

split weight sections, in 8 out of 10 synthetic test chips, the min-VDD achieved was 550mV with

desired precision, thus, having almost no impact on accuracy. The overall min VDD reduction with
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split weights was as much as 200mV compared to simple layerwise weight packing.

Figure 3.7: Change in nine layer CNN inference accuracy as voltage on the synthetic chips is

scaled down. The result shown here is the average accuracy across 10 synthetic chips for each test

case. The test cases are - (1) with SAME-Infer and layerwise monolithic weight sections (2) when

the weight sections are split up on per filter basis in every layer.

3.5.3 Importance of Sensitivity Analysis of Fault Tolerant sections

For comparison against naive placement strategy, we tried placing the non-critical weights and

activation data sections at the first available memory region (greedy placement - first available

unused memory segment) with no notion of sensitivity or bitwise intersection with faults at 700mV

for the three layer CNN network on five test chips. Thus, instead of having 5 levels of criticality,

we only had two levels. The first level is for the critical sections, and the second level is for all

non-critical sections with no upper bounds on the number of faulty least significant bits. So, for the

non-critical sections, even the most significant bit could have a fault.

The impact on accuracy was significant (shown in Figure 3.8) because a large number of weights

and activation data were intersecting with faults in the most significant bits, thus, making the chips

unusable at 700mV. With the intelligent placement of the fault tolerant sections we can run the

network at 700mV with negligible impact on accuracy. Thus, doing a sensitivity analysis of the

fault tolerant weights and activation data and placing these sections such that only the tolerable bits

intersect with faults result in more than 50mV reduction in voltage.
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Figure 3.8: Change in the three layer CNN-2 inference accuracy as voltage on the test chips is

scaled down. The result shown here is the average accuracy across 5 test chips for each test case.

The test cases are - (1)when the fault tolerant sections are naively placed (greedy placement) in the

memory while the critical text sections are placed in non-faulty memory regions (2) SAME-Infer

with criticality aware placement.

3.5.4 Analytical Model to Estimate for Larger Sized Memories

Using the analytical model we estimated the minimum voltage (maximum BER) that the three

layer CNN-2 network can tolerate if the size of the memory is increased. In most cases, the target

inference systems are of standard sizes while the network sizes vary greatly. The results are shown

in Figure 3.9. It can be seen that for a memory size of 512KB (instead of the 176KB in our test

chip), the voltage can be scaled down to 640mV (from 670mV with 176KB) and a 2.5x higher BER

can be tolerated. Once again, we used detailed Monte Carlo simulation of SRAM bit-cell noise

margins in the corresponding 45 nm technology to calculate the bit error rate.

3.5.5 Evaluation for Binarized Dense and Sparse Networks

To evaluate the impact of SAME-Infer on networks that are expected to be less fault tolerant

(quantized and/or sparse networks), we extended our analysis to binarized dense and sparse versions
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Figure 3.9: Voltage reduction or BER tolerance estimation by the analytical model for the three

layer CNN-2 on different memory sizes.

of the two layer perceptron network, tested using MNIST dataset (results shown in Figures 3.10

and 3.11). For the 8-bit version of the same network, at 750mV, the network accuracy almost

remains unaffected for all 10 chips. The same is true for the dense binarized version. However,

in the binarized sparse MLP network, we start seeing an impact on accuracy at 750mV. This is

because most of the redundant weights have been removed from the network and only the critical

weights are used. Therefore, any intersection with faults results in an impact on accuracy, causing

the network to have very low tolerance to faults. However, all three versions of the network can be

scaled down to 650mV with SAME-Infer. The non-critical sections in the sparse network are the

smallest in size and hence, can be packed perfectly even at 650mV.
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Figure 3.10: Change in dense binarized MLP inference accuracy as voltage on the test chips is

scaled down.

Figure 3.11: Change in sparse binarized MLP inference accuracy as voltage on the test chips is

scaled down.
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3.5.6 Comparison with Past Works

3.5.6.1 Treating all data sections as critical

In FaultLink (Chapter 2), we treat all program sections (data and instructions) as critical and try to fit

them in fault-free segments of the memory. Doing so has two primary disadvantages. Firstly, it fails

to exploit the inherent redundancy in deep learning inference (or any other approximation tolerant)

applications. As a result, the packing solution would fail at a much lower fault rate (higher voltage)

than what it can actually tolerate. Secondly, since this solution does not allow any intersection

with faults, the actual size of the memory needs to be much higher than the size of the binary to be

able to successfully pack all sections in fault free memory segments at low voltages. We compared

FaultLink with SAME-Infer and the results are in Figure 3.12. SAME-Infer allows scaling by more

than 100mV (average) for most applications. The 100mV voltage scaling translates to >25x higher

fault tolerance as well. Thus, SAME-Infer delivers much higher energy reduction/fault tolerance as

compared to FaultLink. Also, for the same memory size, SAME-Infer will be able to fit a larger

sized network than FaultLink when running at the same voltage. This is critical as network sizes

that are being deployed on these edge devices is increasing rapidly.

Figure 3.12: SAME-Infer achieves lower min voltage as compared to FaultLink [1] with negligible

impact on accuracy because SAME-Infer allows intersection with faults in the less critical LSB bits

of non-critical fault tolerant data sections.
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3.5.6.2 Fault Injection During Training as an Alternative to SAME-Infer

In order to boost DNN’s error tolerance, [88] proposed a curricular retraining approach. This

mechanism injects errors into the DNN training procedure to boost the error tolerance of the network.

A similar fault-aware training has also been proposed in [97]. We assumed a random uniform

distribution of bit errors and measured the average bit error rate (BER) at every voltage across our

10 test chips. This is because training on the target faulty edge devices is impractical and hence,

exact fault maps cannot be used while retraining. The authors also make a similar assumption

in [88]. The results are shown in Figure 3.13. The baseline here refers to running the original trained

network (without curricular retraining) on the chip at reduced voltage. The baseline min-VDD is

compared against the min-VDD obtained with curricular retraining and with SAME-Infer. For the

10 test chips tested, curricular retraining helps to lower the voltage by at most 50mV in only 5 chips

(a few of them see a non-negligible impact on accuracy), whereas, SAME-Infer allows voltage

reduction in all of them.

Figure 3.13: MLP (2 layer) with MNIST - average accuracy measured across 10 chips for each test

case - (1) Baseline (2) Curricular Retraining (3) SAME-Infer

From the results it can be seen that curricular retraining using uniform random bit error distri-

bution provides negligible improvement in this case. This is because, at lower voltage, faults in

SRAMs tend to be correlated (shown in Figure 3.14). Hence, unless it is retrained on the target
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platform, the retraining mechanism would provide very limited improvement. But retraining on

target platform is likely impractical (e.g., training may have been done with proprietary datasets on

high performance GPUs). Most edge platforms lack the computational power required for training

these networks [98]. Large networks require tens of exaFLOPS of compute across the entire training

cycle [99], making them infeasible to be run on edge devices. Moreover, faults appear in code

memory as well. Therefore, only making network data (weights and activations) more resilient

to faults is insufficient. In the next section, we discuss how error-injection based training may be

helpful.

Figure 3.14: Hard Fault Map of the 64KB instruction memory (left) and the 176KB data memory

(right) of a test chip. The black dots represent the faulty byte locations.

Overall we see that SAME-Infer not only allows energy saving through voltage scaling, it is

also an efficient fault tolerance technique as it tolerates 25x average increase in byte error rate

with minimal impact on inference accuracy. For some chips it tolerates upto 350x increase in BER

with minimal to no impact on network accuracy. Since edge devices may have long lifetimes,

aging becomes a concern for the reliability of the device. SAME-Infer can be used as an in-field

repair technique where fault maps are periodically sampled using BIST and uploaded to cloud.

SAME-Infer is then run remotely for aging induced faults and the updated binary is deployed during

software updates with minimal disruption to the customers. SAME-Infer also helps to increase the

increase the yield of chips by allowing usage of faulty chips leading to significant cost savings.
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3.6 Discussion

In this section, we briefly discuss some of the possible extensions to SAME-Infer, which though not

explored thoroughly in our current set of experimental results, can provide additional fault tolerance

and/or power benefits as well as easier deployment.

3.6.1 Fault Injection During Training to Tolerate Soft Errors

As we saw in Section 3.5.6.2, curricular retraining by injecting bit errors while training does not

provide much benefit against correlated hard faults at lower voltage when used on its own. However,

curricular retraining or random fault injection during training can help with tackling soft errors

(random memory bit flips during runtime). At lower voltage, susceptibility to radiation-induced

soft faults increases because critical charge, which is the charge threshold to cause a soft error,

decreases [100, 101]. Curricular retraining can be used to augment SAME-Infer to tolerate this

increased soft error rate at lower voltage.

3.6.2 Improving Packing by Optional Reversing of Non-Critical Sections

SAME-Infer is able to tolerate faults in the least significant bit regions of the memory but largely

leaves the most significant bit regions untouched. As a result, faults in roughly half the memory

remain unaddressed by SAME-Infer. An interesting way to extend SAME-Infer is to optionally

reverse the weights/activations (i.e., essentially reverse the order of bits in the byte).

In our framework, we try to pack our non-critical weight/activation sections in contiguous

memory segments with no faults in the desired most significant bits. If the number of error tolerant

least significant bits for a particular weight is 2, every address in the memory segment used to pack

this section needs to have fault-free 5 most significant bits. Now if the weights have the option of

being reversed before being stored in the memory, the packing algorithm has the option of storing

the weights in either a memory segment where every address has fault free 5 MSBs or in a memory

segment where every address has fault free 5 LSBs. If the latter is chosen, the weights need to be

reversed. This doesn’t require a pre-compilation modification to the source code for every chip. The

54



way to do this is to have custom load and store procedures for weights. When storing or loading

weights, a particular address location is checked. If the value stored there is 1, then the weights

are not reversed, if 0, then the weights need to be read from or written to in a reversed fashion.

The value to be stored in that particular address can be done during link time based on the packing

solution. Therefore, this is a one-time source code modification, every-time link solution (like

the rest of our methodology). The probability of there not being a memory segments that is large

enough to store the largest program section decreases and the updated Equation 2.2 will be:

P
(

Lsize/4 <
mmax

4

)
≈ e−2s(

mmax
4 −log

s−1( size4 (1−s)))
. (3.3)

We evaluated this for a limited number of synthetic test chips with the nine layer CNN. For two

out of ten chips, it helped to reduce the min-VDD by 50mV as compared to the baseline SAME-Infer

(with no weight splitting). The obvious drawback of this approach is the additional runtime and

code size overhead of checking and reversing. The code size overhead is small though the runtime

overhead can be noticeable since every load operation now translates to branch, load and rotate

operations. As a result, we did not explore this option further. However, this approach is useful in

very high fault rate or very low power scenarios.

3.6.3 Universal Packing Solution to Allow Dynamic Voltage Scaling and Tolerate Aging

Induced Faults

Hard faults in SRAMs due to voltage scaling are inclusive, that is, faults that appear at a higher

voltage remain as the voltage is lowered [65]. The fault map at 600mV would include all the faults

that appeared at voltages higher than 600mV (along with some additional faulty bits). Therefore, if

the SAME-Infer packing is done for the lowest possible VDD, the same packing solution can be

used when running the chip at higher voltages. This allows having a universal packing solution for

a given chip. The application is loaded into the memory based on this solution during deployment

and the voltage can be dynamically scaled during runtime without having to repack every time.

We tested the solution out on three test chips where the packing solution at 650mV was used

when running at 700mV and the accuracy was the same as what was achieved when specifically
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packed using the memory fault map and packing solution of 700mV.

Memory chips go through multiple rounds of burn-in [102] testing which involves a series of

full chip read and write operations. We suggest having something similar for the memories in

embedded chips. During burn-in, a March test equivalent can be run. As embedded memories are

much smaller than standard DRAM chips, burn-in testing overhead should be small. Based on the

stored fault map, the application can be packed for the lowest possible supply voltage. Having

this not only saves the effort of repacking every time the voltage is scaled during runtime, it also

provides protection against in-field aging induced failures. This is because the weaker cells are

expected to fail and get captured in the low voltage fault map and the universal packing solution

would take care of it.

3.6.4 Addressing the Code Memory Bottleneck

In several of our benchmark/chip combinations (especially for smaller networks), SAME-Infer

packing failure is due to code (which is all considered critical) that is unable to get packed in code

memory. There are two possible ways to address this. First, microcontroller designs can allow

for separate power delivery network for code memory (so that data memory can be independently

voltage scaled). Second, more intrusive changes to the machine learning code can be made to build

it from smaller functions. This would have a negligibly small impact on code size and runtime but

will result in more packable code in presence of faults in code memory (as every function can be

mapped to different memory segment).

3.6.5 Use of Error Correcting Codes (ECC)

ECC is a common approach for error detection and correction in memories. However, they are

better suited for random, temporary faults and incur area, performance and energy overheads. If a

t-bit error correcting code is used, i.e., errors upto t-bits can be detected and corrected by the code,

all k-bit messages get encoded into (k+r)-bit codewords before they are stored in the memory. The

extra r-bits of parity are added onto the original message to enable error correction. As the code

becomes stronger or the requirement for t increases, the number of parity bits (r) also increases.
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During a read operation, the encoded message is loaded from the memory and decoded such that

the original k-bit message can be recovered and errors upto t-bit can be detected and corrected. The

additional parity bit storage as well as the encoding and decoding overheads are non-negligible

and increase rapidly as the correction capability of the code increases. As a result, they can be an

overkill (and therefore a bad approach) for permanent faults.

Our experiments revealed that the hard faults at lower voltages normally tend to be correlated.

As a result, multi-bit error correction would be required. While SAME-Infer can tolerate up to

4-bit faults on 8-bit weights/activations with negligible performance overheads, an double-bit error

correcting (DEC) code would require 8 additional bits of parity and have 2 cycles of encoding and

decoding latency. For example, the 9-layer CNN-3 network has a total size of ∼700KB. To fit this

network at nominal voltage with no faults, at least 1.4MB of memory is needed if DEC code is used

for protection. Moreover, around 650mV-670mV, triple bit errors start appearing and thus, lowering

the voltage further will lead to loss in accuracy as the un-correctable errors can coincide with MSBs.

On the other hand, with SAME-Infer, we managed to fit in the entire network within a 1MB memory

and could lower our voltage to less than 600mV with no impact on accuracy (Figure 3.7). However,

if ECC is available, it should augment SAME-Infer to address soft errors during runtime.

3.6.6 Extending SAME-Infer to Other Approximation Tolerant Applications

The SAME-Infer framework can be easily extended to other approximation tolerant applications.

There are several applications in the field of approximate computing that can tolerate controlled

relaxation of correctness for improving performance or energy efficiency. For such workloads,

already existing frameworks (such as Approxilyzer [103]) can be used to identify the non-critical

approximation friendly sections of the code that can intersect with faults without impacting output

quality. Once the one-time analysis of the code is done, SAME-Infer can be used to correctly map

the critical and non-critical sections in non-faulty and faulty memory segments respectively, leading

to lower energy or higher fault tolerance.
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3.7 Conclusion

Design of edge devices is driven by the need for the lowest possible cost and energy consumption,

which are both strongly affected by on-chip memories. Further, many of these may be deployed in

harsh environments where in-field replacement is difficult due to faults. The proposed SAME-Infer

methodology addresses both these issues for embedded scratchpad memories running machine

learning applications. SAME-Infer uses the linker to map the critical code/layers onto the non-faulty

segments of the memory while the fault-tolerant sections of data are placed in faulty memory

segments. This allows SAME-Infer to tolerate upto 350x (average 25x) higher bit error rate without

degrading inference accuracy. Our evaluations on 10 real micro-controller class chips and 10 larger

synthetic chips show that up-to 175mV reduction in voltage can be achieved without any loss in

accuracy for a fully connected network and for two convolutional neural networks. Thus, SAME-

Infer helps to tolerate higher hard fault rate by exploiting the redundancies in the DL applications

and helps in cost savings by making error prone memory chips usable.
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CHAPTER 4

Software-Defined Error-Localizing Codes (SDELC):

Lightweight Recovery from Soft Faults at Run-Time

For embedded memories, it is always challenging to address reliability concerns as additional area,

power, and latency overheads of reliability techniques need to be minimized as much as possible.

Software-Defined Error-Localizing Codes (SDELC) is a hybrid hardware/software technique that

deals with single-bit soft faults at run-time using novel Ultra-Lightweight Error-Localizing Codes

(UL-ELC) with a software-defined error handler that knows about the UL-ELC construction and

implements a heuristic recovery policy. UL-ELC codes are stronger than basic single-error-detecting

(SED) parity, yet they have lower storage overheads than a single-error-correcting (SEC) Hamming

code. Like SED, UL-ELC codes can detect single-bit errors, yet they can additionally localize them

to a chunk of the erroneous codeword. UL-ELC codes can be explicitly designed such that chunks

align with meaningful message context, such as the fields of an encoded instruction. SDELC then

relies on side information (SI) about application memory contents to heuristically recover from the

single-bit fault. It focuses on heuristic error recovery that is suitable for microcontroller-class IoT

devices.

Collaborators:

• Dr. Mark Gottscho, UCLA/Google

• Dr. Clayton Schoeny, UCLA/Square

• Prof. Lara Dolecek, UCLA

• Prof. Puneet Gupta, UCLA
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4.1 Introduction

For embedded systems at the edge of the Internet-of-Things (IoT), hardware design is driven by

the need for the lowest possible cost and energy consumption, which are both are strongly affected

by on-chip SRAM-based memories [34]. With technology scaling the feature size of each SRAM

memory cell is reducing. Thus, the amount of critical charge required to flip the cell contents is

also decreasing. At the same time, the total memory capacity in these devices is increasing, thereby,

consuming significant fraction of chip real estate. As a result, the probability of radiation induced

soft faults affecting memory cells is also rapidly increasing. Overall, the rate of soft faults affecting

the on-chip memory during runtime is rising. One way to recover from soft errors is by having error

detection and correction (EDAC) schemes. However, the standard EDAC techniques used in today’s

systems usually incur large area, power, and performance overheads.

Our goal in this chapter is to recover from unpredictable single-bit soft faults in embedded

memory at minimal cost. We propose Software-Defined Error-Localizing Codes (SDELC), a hybrid

hardware/software technique that allows the system to heuristically recover from unpredictable

single-bit soft faults in instruction and data memories. SDELC relies on side information (SI) about

application memory contents, i.e., observable patterns and structure found in both instructions and

data. We describe the novel class of Ultra-Lightweight Error-Localizing Codes (UL-ELC) that are

used by SDELC. UL-ELC codes are stronger than basic single-error-detecting (SED) parity, yet

they have lower storage overheads than a single-error-correcting (SEC) Hamming code. Like SED,

UL-ELC codes can detect single-bit errors, yet they can additionally localize them to a chunk of

the erroneous codeword. UL-ELC codes can be explicitly designed such that chunks align with

meaningful message context, such as the fields of an encoded instruction.

We find that our SDELC technique recovers from up to 90% of random single-bit soft faults in

32-bit data memory words and up to 70% of errors in instruction memory using a 3-bit UL-ELC

code (9.375% storage overhead). SDELC can even be used to recover up to 70% of errors using a

basic SED parity code (3.125% storage overhead). In contrast, a full Hamming SEC code incurs a

storage overhead of 18.75%.
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4.2 Background

This section highlights the essential background on the error correcting codes (ECC), and error-

localizing codes that is needed to understand our contributions.

4.2.1 Error-Correcting Codes (ECCs)

ECCs are mathematical techniques that transform message data stored in memory into codewords

using a hardware encoder to add redundancy for added protection against faults. When soft faults

affect codewords, causing bit flips, the ECC hardware decoder is designed to detect and/or correct a

limited number of errors. ECCs used for random-access memories are typically based on linear

block codes.

The encoder implements a binary generator matrix G and the complementary decoder imple-

ments the parity-check matrix H to detect/correct errors. To encode a binary message ~m, one

multiplies its bit-vector by G to obtain the codeword ~c: ~mG =~c. To decode, one multiplies the

stored codeword (which may have been corrupted by errors) with the parity-check matrix to obtain

the syndrome~s, which provides error detection and correction information: H~cT =~s. Typical ECCs

used for memory have the generator and parity-check matrices in systematic form, i.e., the message

bits are directly mapped into the codeword and the redundant parity bits are appended to the end

of the message. This makes it easy to directly extract message data in the common case when no

errors occur.

Typical ECC-based approaches can tolerate random bit-level soft faults but they quickly become

ineffective when multiple errors occur due to hard faults. Meanwhile, powerful schemes like

ChipKill [104] have unacceptable overheads and are not suited for embedded memories. In this

work, we propose novel ECC constructions that have very low overheads, making them suitable for

low-cost IoT devices that may experience occasional single-bit SEUs.
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4.2.2 Error-Localizing Codes

In 1963, Wolf et al. introduced error-localizing codes (ELC) that attempt to detect errors and

identify the erroneous fixed-length chunk of the codeword. Wolf established some fundamental

bounds [105] and studied how to create them using the tensor product of the parity-check matrices

of an error-detecting and an error-correcting code [106]. ELC has been adapted to byte-addressable

memory systems [107] but until now, they had not gained any traction in the systems community.

To the best of our knowledge, ELCs in the regime between SED and SEC capabilities has not

been previously studied. We describe the basics of Ultra-Lightweight ELC (UL-ELC) that lies in

this regime and apply specific constructions to recover from a majority of single-bit soft faults.

4.3 Software-Defined Error-Localizing Codes (SDELC): Recovering Soft Faults

at Run-Time

In today’s systems, either basic SED parity is used to detect random single-bit errors or a Hamming

SEC code is used to correct them. Unfortunately, Hamming codes are expensive for small embedded

memories: they require six bits of parity per memory word size of 32 bits (an 18.75% storage

overhead). On the other hand, basic parity only adds one bit per word (3.125% storage overhead),

but without assistance by other techniques it cannot correct any errors.

SDELC is a novel solution that lies in between these regimes. A key component is the new class

of Ultra-Lightweight Error-Localizing Codes (UL-ELCs). UL-ELCs have lower storage overheads

than Hamming codes: they can detect and then localize any single-bit error to a chunk of a memory

codeword. We construct distinct UL-ELC codes for instruction and data memory that allows a

software-defined recovery policy to heuristically recover the error by applying different semantics

depending on the error location. The policies leverage available side information (SI) about memory

contents to choose the most likely candidate codeword resulting from a localized bit error. In this

manner, we attempt to correct a majority of single-bit soft faults without resorting to a stronger and

more costly Hamming code.

This section covers, in detail, the SDELC architecture, the concept of UL-ELC codes, and two
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SDELC recovery policies for instruction and data memory.

4.3.1 Architecture

The SDELC architecture is illustrated in Figure 4.1 for a system with split on-chip instruction and

data SPMs (each with its own UL-ELC code) and a single-issue core that has an in-order pipeline.

When a codeword containing a single-bit soft fault is read, the UL-ELC decoder detects and

localizes the error to a specific chunk of the codeword and places error information in a Penalty Box

register (shaded in gray in the figure). A precise exception is then generated, and software traps to a

handler that implements the appropriate SDELC recovery policy for instructions or data, which we

will discuss shortly.
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Figure 4.1: Architectural support for SDELC on an microcontroller-class embedded system.

Once the trap handler has decided on a candidate codeword for recovery, it must correctly commit

the state in the system such that it appears as if there was no memory control flow disruption. For
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instruction errors, because the error occurred during a fetch, the program counter (pc) has not

yet advanced. To complete the trap handler, we write back the candidate codeword to instruction

memory. If it is not accessible by the load/store unit, one could use hardware debug support such

as JTAG. We then return from the trap handler and re-execute the previously-trapped instruction,

which will then cause the pc to advance and re-fetch the instruction that had been corrupted by the

soft error. On the other hand, data errors are triggered from the memory pipeline stage by executing

a load instruction. We write back the chosen candidate codeword to data memory to scrub the

error, update the register file appropriately, and manually advance pc before returning from the trap

handler.

4.3.2 Ultra-Lightweight Error-Localizing Codes (UL-ELC)

Localizing an error is more useful than simply detecting it. If we determine the error is from a

chunk of length ` bits, there are only ` candidate codewords for which a single-bit error could have

produced the received (corrupted) codeword.

A naı̈ve way of localizing a single-bit error to a particular chunk is to use a trivial segmented

parity code, i.e., we can assign a dedicated parity-bit to each chunk. However, this method is very

inefficient because to create C chunks we need C parity bits: essentially, we have simply split up

memory words into smaller pieces.

We create simple and custom Ultra-Lightweight ELCs (UL-ELCs) that – given r redundant

parity bits – can localize any single-bit error to one of C = 2r−1 possible chunks. This is because

there are 2r−1 distinct non-zero columns that we can use to form the parity-check matrix H for our

UL-ELC (for single-bit errors, the error syndrome is simply one of the columns of H). To create a

UL-ELC code, we first assign to each chunk a distinct non-zero binary column vector of length r

bits. Then each column of H is simply filled in with the corresponding chunk vector. Note that r of

the chunks will also contain the associated parity-bit within the chunk itself; we call these shared

chunks, and they are precisely the chunks whose columns in H have a Hamming weight of 1. Since

there are r shared chunks, there must be 2r− r−1 unshared chunks, which each consist of only data

bits. Shared chunks are unavoidable because the parity bits must also be protected against faults,
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just like the message bits.

UL-ELCs form a middle-ground between basic parity SED error-detecting codes (EDCs) and

Hamming SEC ECCs. In the former case, r = 1, so we have a C = 1 monolithic chunk (H is a row

vector of all ones). In the latter case, H uses each of the 2r−1 possible distinct columns exactly

once: this is precisely the (2r−1,2r− r−1) Hamming code. An UL-ELC code has a minimum

distance of two bits by construction to support detection and localization of single-bit errors. Thus,

the set of candidate codewords must also be separated from each other by a Hamming distance of

exactly two bits. (A minimum codeword distance of two bits is required for SED, while three bits

are needed for SEC, etc.)

For an example of an UL-ELC construction, consider the following Hexample parity-check matrix

with nine message bits and r = 3 parity bits:

Hexample =

S1 S2 S3 S4 S4 S5 S6 S6 S7 S5 S6 S7

d1 d2 d3 d4 d5 d6 d7 d8 d9 p1 p2 p3


c1 1 1 1 0 0 1 0 0 0 1 0 0

c2 1 1 0 1 1 0 1 1 0 0 1 0

c3 1 0 1 1 1 0 0 0 1 0 0 1

,

where di represents the ith data bit, p j is the jth redundant parity bit, ck is the kth parity-check

equation, and Sl enumerates the distinct error-localizing chunk that a given bit belongs to. Because

r = 3, there are N = 7 chunks. Bits d1,d2, and d3 each have the SEC property because no other

bits are in their respective chunks. Bits d4 and d5 make up an unshared chunk S4 because no parity

bits are included in S4. The remaining data bits belong to shared chunks because each of them also

includes at least one parity bit. Notice that any data or parity bits that belong to the same chunk Sl

have identical columns of H, e.g., d7, d8, and p2 all belong to S6 and have the column [0;1;0].

The two key properties of UL-ELC (that do not apply to generalized ELC codes) are: (i) the

length of the data message is independent of r, and (ii) each chunk can be an arbitrary length. The

freedom to choose the length of the code and chunk sizes allow the UL-ELC design to be highly

adaptable. Additionally, UL-ELC codes can offer SEC protection on up to 2r− r− 1 selected
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Table 4.1: Proposed 7-Chunk UL-ELC Construction with r = 3 for Instruction Memory (RV64G

ISA v2.0)

bit→ 31 27 26 25 24 20 19 15 14 12 11 7 6 0 -1 -3

Type-UJ imm[20|10:1|11|19:12] rd opcode parity

Type-U imm[31:12] rd opcode parity

Type-I imm[11:0] rs1 funct3 rd opcode parity

Type-R funct7 rs2 rs1 funct3 rd opcode parity

Type-S imm[11:5] rs2 rs1 funct3 imm[4:0] opcode parity

Type-SB imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode parity

Type-R4 rs3 funct2 rs2 rs1 funct3 rd opcode parity

Chunk C1 (shared) C2 (shared) C3 (shared) C4 C5 C6 C7 C3 C2 C1

Parity- 11111 00 00000 11111 000 11111 1111111 1 0 0

Check 00000 11 00000 00000 111 11111 1111111 0 1 0

H 00000 00 11111 11111 111 00000 1111111 0 0 1

message bits by having the unshared chunks each correspond to a single data bit.

4.3.3 Recovering SEUs in Instruction Memory

We describe an UL-ELC construction and recovery policy for dealing with single-bit soft faults in

instruction memory. The code and policy are jointly crafted to exploit SI about the ISA itself. Our

SDELC implementation targets the open-source and free 64-bit RISC-V (RV64G) ISA [52], but

the approach is general and could apply to any other fixed-length or variable-length RISC or CISC

ISA. Note that although RISC-V is actually a little-endian architecture, for sake of clarity we use

big-endian in this chapter.

Our UL-ELC construction for instruction memory has seven chunks that align to the finest-grain

boundaries of the different fields in the RISC-V codecs. These codecs, the chunk assignments,

and the complete parity-check matrix H are shown in Table 4.1. The bit positions -1, -2, and -3

correspond to the three parity bits that are appended to a 32-bit instruction in memory. The opcode,

rd, funct3, and rs1 fields are the most commonly used – and potentially the most critical – among

the possible instruction encodings, so we assign each of them a dedicated chunk that is unshared
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Figure 4.2: The relative frequencies of static instructions roughly follow power law distributions.

Results shown are for RISC-V with 20 SPEC CPU2006 benchmarks; we observed similar trends

for MIPS and Alpha, as well as dynamic instructions.

with the parity bits. The fields which vary more among encodings are assigned to the remaining

three shared chunks, as shown in the table. The recovery policy can thus distinguish the impact of

an error in different parts of the instruction. For example, when a fault affects shared chunk C1, the

fault is either in one of the five MSBs of the instruction, or in the last parity bit. Conversely, when a

fault is localized to unshared chunk C7 in Table 4.1, the UL-ELC decoder can be certain that the

opcode field has been corrupted.

Consider another example with a fault in the unshared chunk C6 that guards the rd destination

register address field for most instruction codecs. Suppose bit 7 (the least-significant bit of chunk

C6/rd) is flipped by a fault. Assume the original instruction stored in memory was 0x0000beef,

which decodes to the assembly code jal t4, 0xb000. The 5-bit rd field is protected with our

UL-ELC construction using a dedicated unshared chunk C6. Thus, the candidate messages are the

following instructions:

<0x0000b66f> jal a2, 0xb000

<0x0000ba6f> jal s4, 0xb000

<0x0000beef> jal t4, 0xb000

<0x0000bc6f> jal s8, 0xb000

<0x0000bf6f> jal t5, 0xb000.

Our instruction recovery policy can decide which destination register is most likely for the jal
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instruction based on program statistics collected a priori via static or dynamic profiling (the SI). The

instruction recovery policy consists of three steps.

• Step 1. We apply a software-implemented instruction decoder to filter out any candidate

messages that are illegal instructions. Most bit patterns decode to illegal instructions in three

RISC ISAs we characterized: 92.33% for RISC-V, 72.44% for MIPS, and 66.87% for Alpha.

This can be used to dramatically improve the chances of a successful SDELC recovery.

• Step 2. Next, we estimate the probability of each valid message using a small pre-computed

lookup table that contains the relative frequency that each instruction appears. We find that

the relative frequencies of legal instructions follow power-law distribution, as shown by

Figure 4.2. This is used to favor more common instructions.

• Step 3. We choose the instruction that is most common according to our SI lookup table. In

the event of a tie, we choose the instruction with the longest leading-pad of 0s or 1s. This is

because in many instructions, the MSBs represent immediate values (as shown in Table 4.1).

These MSBs are usually low-magnitude signed integers or they represent 0-dominant function

codes.

If the SI is strong, then we would expect to have a high chance of correcting the error by choosing

the right candidate.

4.3.4 Recovering SEUs in Data Memory

In general-purpose embedded applications, data may come in many different types and structures.

Because there is no single common data type and layout in memory, we propose to simply use

evenly-spaced UL-ELC constructions and grant the software trap handler additional control about

how to recover from errors, similar to the general idea from SuperGlue [108].

We build SDELC recovery support into the embedded application as a small C library. The

application can push and pop custom SDELC error handler functions onto a registration stack. The

handlers are defined within the scope of a subroutine and optionally any of its callees and can define
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specific recovery behaviors depending on the context at the time of error. Applications can also

enable and disable recovery at will.

When the application does not disable recovery nor specify a custom behavior, all data memory

errors are recovered using a default error handler implemented by the library. The default handler

computes the average Hamming distance to nearby data in the same 64-byte chunk of memory

(similar to taking the intra-cacheline distance in cache-based systems). The candidate with the

minimum average Hamming distance is selected. This policy is based on the observation that

spatially-local and/or temporally-local data tends to also be correlated, i.e., it exhibits value locality

[109] that has been used in numerous works for cache and memory compression [110–112]. The

Hamming distance is a good measure of data correlation, as shown later in Figure 4.5.

The application-defined error handler can specify recovery rules for individual variables within

the scope of the registered subroutine. They include globals, heap, and stack-allocated data. This is

implemented by taking the runtime address of each variable requiring special handling. For instance,

an application may wish critical data structures to never be recovered heuristically; for these, the

application can choose to force a crash whenever a soft error impacts their memory addresses. The

SDELC library support can increase system reliability, but the programmer is required to spend

effort annotating source code for error recovery. This is similar to annotation-based approaches

taken by others for various purposes [51, 69, 71–73, 113].

4.4 Evaluation - Soft Fault Recovery using SDELC

To evaluate SDELC, we modified Spike simulator [114] to produce representative memory access

traces of 11 benchmarks as they run to completion. Five benchmarks are blowfish and sha from

the mibench suite [49] as well as dhrystone, matmulti and whetstone. The remaining six bench-

marks were added from the AxBench approximate computing C/C++ suite [51]: blackscholes,

fft, inversek2j, jmeint, jpeg, and sobel. Each trace was analyzed offline using a MATLAB

model of SDELC. For each workload, 1000 instruction fetches and 1000 data reads were randomly

selected from the trace and exhaustively all possible single-bit faults were applied to each of them.

SDELC recovery of the random soft faults was evaluated using three different UL-ELC codes
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Figure 4.3: Average rate of recovery using SDELC from single-bit soft faults in instruction and

data memory. r is the number of parity bits in the UL-ELC construction.

(r = 1,2,3). Recall that the r = 1 code is simply a single parity bit, resulting in 33 candidate

codewords. (For basic parity, there are 32 message bits and one parity bit, so there are 33 ways

to have had a single-bit error.) For the data memory, the UL-ELC codes were designed with the

chunks being equally sized: for r = 2, there are either 11 or 12 candidates depending on the fault

position (34 bits divided into three chunks), while for r = 3 there are always five candidates (35

bits divided into seven chunks). For the instruction memory, chunks are aligned to important field

divisions in the RV64G ISA. Chunks for the r = 2 UL-ELC construction match the fields of the

Type-U instruction codecs (the opcode being the unshared chunk). Chunks for the r = 3 UL-ELC

code align with fields in the Type-R4 codec (as presented in Table 4.1). A successful recovery for

SDELC occurs when the policy corrects the error; otherwise, it fails by accidentally mis-correcting.

4.4.1 Overall Results

The overall SDELC results are presented in Figure 4.3. The recovery rates are relatively consistent

over each benchmark, especially for instruction memory faults, providing evidence of the general

efficacy of SDELC. One important distinction between the memory types is the sensitivity to the

number r of redundant parity bits per message. For the data memory, the simple r = 1 parity yielded

surprisingly high rates of recovery using our policy (an average of 68.2%). Setting r to three parity
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Figure 4.4: Sensitivity of SDELC instruction recovery to the actual position of the single-bit fault

with the r = 3 UL-ELC construction.

bits increases the average recovery rate to 79.2% thanks to fewer and more localized candidates to

choose from. On the other hand, for the instruction memory, the average rate of recovery increased

from 31.3% with a single parity bit to 69.0% with three bits.

These results are a significant improvement over a guaranteed system crash as is traditionally

done upon error detection using single-bit parity. Moreover, these results are achieved using no

more than half the overhead of a Hamming SEC code, which can be a significant cost savings for

small IoT devices. Based on these results, using r = 1 parity for data seems reasonable, while

r = 3 UL-ELC constructions can be used to achieve 70% recovery for both memories with minimal

overhead.

4.4.2 Recovery Policy Analysis

The average instruction recovery rate as a function of bit error position for all benchmarks is shown

in Figure 4.4. Error positions -1, -2, and -3 correspond to the three parity bits in the UL-ELC

construction from Table 4.1.

It is observed that the SDELC recovery rate is highly dependent on the erroneous chunk. For

example, errors in chunk C7 – which protects the RISC-V opcode instruction field – have high rates

of recovery because the power-law frequency distributions of legal instructions are a very strong
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Figure 4.5: Sensitivity of SDELC data recovery to the mean candidate Hamming distance score for

two benchmarks and r = 1 parity code.

form of side information. Other chunks with high recovery rates, such as C1 and C5, are often (part

of) the funct2, funct7, or funct3 conditional function codes that similarly leverage the power-

law distribution of instructions. Moreover, many errors that impact the opcode or function codes

cause several candidate codewords to decode to illegal instructions, thus filtering the number of

possibilities that the recovery policy has to consider. For errors in the chunks that often correspond

to register address fields (C3, C4, and C6), recovery rates are less because the side information on

register usage by the compiler is weaker than that of instruction relative frequency. However, errors

towards the most-significant bits within these chunks recover more often than the least-significant

bits because they can also correspond to immediate operands. Indeed, many immediate operands

are low-magnitude signed or unsigned integers, causing long runs of 0s or 1s to appear in encoded

instructions. These cases are more predictable, so they are recovered frequently, especially for

chunk C1 which often represents the most-significant bits of an encoded immediate value.

The sensitivity of SDELC data recovery to the mean candidate Hamming distance score for two

benchmarks is shown in Figure 4.5. White bars represent the relative frequency that a particular

Hamming distance score occurs in our experiments. The overlaid gray bars represent the fraction of

those scores that were successfully recovered using the described policy.
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When nearby application data in memory is correlated, the mean candidate Hamming distance

is low, and the probability that we successfully recover from the single-bit soft fault is high using

the Hamming distance-based policy. Because applications exhibit spatial, temporal, and value

locality [109] in memory, correct recovery is possible in a majority of cases. On the other hand,

when data has very low correlation – essentially random information — SDELC does not recover

any better than taking a random guess of the bit-error position within the localized chunk, as

expected.

4.4.3 Risk of SDCs from SDELC

SDELC introduces a risk of mis-correcting single-bit soft faults that cannot be avoided unless one

resorts to a full Hamming SEC code. However, for low-cost IoT devices running approximation-

tolerant applications, SDELC reduces the parity storage overhead by up to 6× compared to Ham-

ming while still recovering most single-bit faults. Similar to observations by others [115], we

found that no more than 7.2% of all single-bit instruction faults and 2.3% of data faults result in an

intolerable silent data corruption (SDC), i.e., an SDC with more than 10% output error [51]. The

rest of the faults are either successfully corrected, benign, or cause crashes/hangs. The latter are no

worse than crashes from commonly-used SED parity. Current SED-based systems’ reliability could

be improved with remote software updates to incorporate our techniques.

4.5 Conclusion

SDELC implements low-overhead heuristic error correction to cope with random single-event

upsets in memory without the higher area and energy costs of a full Hamming code. Our SDELC

technique recovers from up to 90% of random single-bit soft faults in 32-bit data memory words and

up to 70% of errors in instruction memory using a 3-bit UL-ELC code (9.375% storage overhead).

SDELC can even be used to recover up to 70% of errors using a basic SED parity code (3.125%

storage overhead). In contrast, a full Hamming SEC code incurs a storage overhead of 18.75%. For

SDELC, one could design more sophisticated recovery policies using stronger forms of SI, and use

profiling methods to automatically annotate program regions that are likely to experience faults.
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CHAPTER 5

Parity++: Lightweight Error Correction for Last Level Caches

As the size of on-chip SRAM caches is increasing rapidly and the physical dimension of the SRAM

devices is decreasing, reliability of caches is becoming a growing concern. This is because with

increased size of caches, the likelihood of radiation-induced soft faults also increases. As a result,

information redundancy in the form of Error Correcting Codes (ECC) is becoming extremely

important, especially to protect the larger sized last level caches (LLCs). In typical ECCs, extra

redundancy bits are added to every row to detect and correct errors. There is additional encoding

(while writing data) and decoding (while reading data) procedures required as well. In caches,

these additional area, power and latency overheads need to be minimized as much as possible. To

address this problem, we present in this chapter Parity++: a novel unequal message protection

scheme for last level caches that preferentially provides stronger error protection to certain “special

messages”. This protection scheme provides Single Error Detection (SED) for all messages and

Single Error Correction (SEC) for a subset of messages. Thus, it is stronger than just a basic SED

parity and has∼9% lower storage overhead and much lower error detection energy than a traditional

Single Error Correcting, Double Error Detecting (SECDED) code. We also propose a memory

speculation procedure that can be used with any ECC scheme to hide the decoding latency while

reading messages when there are no errors.

Collaborators:

• Dr. Clayton Schoeny, UCLA/Square

• Prof. Lara Dolecek, UCLA

• Prof. Puneet Gupta, UCLA
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5.1 Introduction

As demand and size of on-chip caches is increasing rapidly and the physical dimension and noise

margins are decreasing, reliability of caches is increasingly becoming an important issue. As

given in [116, 117], the vulnerability of SRAM caches to soft errors grows with increase in size.

Also with reduction in physical dimensions of these devices, the critical charge required to flip

the content of a cell due to a particle strike decreases. As a result, the soft error rate is higher for

large capacity caches. The widely used technique to guarantee reliability of storage devices is

using information redundancy in the form of Error Correcting Codes (ECC). In typical ECCs, extra

redundancy bits are added to every row to detect and correct errors. There are additional encoding

(while writing data) and decoding (while reading data) procedures required as well. Thus ECCs

come with encoding and decoding mechanisms that incur additional overheads in terms of latency

and energy. Both these overheads are critical for caches and hence, ECC protection was not widely

used in caches till recently. However, due to the increased reliability concerns of large capacity

caches and processor performance degradation due to occurrence of errors, cache protection using

ECC schemes is becoming increasingly popular. Nevertheless, these additional area, power and

latency overheads need to be minimized in caches as much as possible.

In this chapter, we present Parity++: a novel unequal message protection scheme for last level

caches that preferentially provides stronger error protection to certain “special messages”. As

the name suggests, this coding scheme requires one extra bit above a simple parity Single Error

Detection (SED) code while providing SED for all messages and Single Error Correction (SEC)

for a subset of messages. Thus, it is stronger than just basic SED parity and has much lower

parity storage overhead (3.5X and 4X lower for 32-bit and 64-bit memories respectively) than

a traditional Single Error Correcting, Double Error Detecting (SECDED) code. Error detection

circuitry often lies on the critical path and is generally more critical than error correction circuitry

as error occurrences are rare even with an increasing soft error rate. Our coding scheme has a

much simpler error detection circuitry that incurs lower energy and latency costs than the traditional

SECDED code. Thus, Parity++ is a lightweight ECC code that is ideal for large capacity last level

caches. We also evaluate Parity++ with a memory speculation procedure [118] that can be generally
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applied to any ECC protected cache to hide the decoding latency while reading messages when

there are no errors.

5.2 Background and Related Work

5.2.1 Error Correcting Codes

Error-correcting codes (ECCs) increase the resiliency of communication and storage systems by

adding redundant bits (or symbols, but in this work we focus on the binary regime). A code C can

be thought of as an injective mapping of messages of length k to codewords of length n. Let r be the

number of redundant bits, i.e., r = n− k. A binary code is considered linear if the sum of any two

codewords in C is also a codeword in C .

A linear block code is described by either its (k×n) generator matrix G or its (r×n) parity-

check matrix H, with the relation GHT = 0. A particular message m is encoded to its corresponding

codeword c by multiplying it with the generator matrix as follows: mG = c. Each row of H is a

parity-check equation that all codewords must suffice, thus HcT = 0. We define the received vector

at the output of the channel as y = c+ e, in which e is the error-vector representing which bits

have been flipped. The receiver calculates the syndrome, s = HyT, and if s 6= 0, then it is known

that the received vector is not a valid codeword. At this point, the decoder can either attempt to

determine the most likely originally transmitted codeword or it can simply raise a flag that an error

was detected (depending on the system goals and design). We say a code is systematic if a message

is directly embedded in the codeword, i.e., each message bit is equal to a specific codeword bit.

A useful parameter of a linear code is its minimum distance, dmin, which is the minimum

Hamming distance between any two (non-identical) codewords. Additionally, since a linear code

must include the 0 codeword, the minimum distance of a linear code is simply the minimum weight

of any (non-zero) codeword in the code:

dmin = min
c1,c2∈C ;

c1 6=c2

[dH(c1,c2)] = min
c∈C ;
c6=0

[wt(c)].

A linear code guarantees correction of up to t = b1
2(dmin− 1)c bit-errors, or detection of up to
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(dmin− 1) bit-errors (without any correction guarantees). For even values of dmin, a linear code

simultaneously guarantees correction of up to t bit-errors and detection of up to (t +1) bit-errors.

Further explanation of the fundamental properties of codes can be found in classic textbooks

[119, 120].

5.2.2 SRAM Reliability and Error Detection and Correction in Caches

As mentioned before, SRAM reliability concerns are growing. Although the soft error rate of

SRAM cell has almost been constant at 10−3 FIT/bit [121, 122], the likelihood of a particle striking

the array is increasing with increase in size. Most of the recent processors with large capacity

caches have ECC protected L2 and/or L3 caches. Some of the common and recent examples include

Qualcomm’s Centriq 2400 processor [123], AMD’s Athlon [124] and Opteron [125] processors

as well as IBM Power 4 [126] processors. Most of the commercially available processors use

traditional (72,64) SECDED [127] code on each 64-bit word in the cache line. A lot of past works

have suggested decoupling error detection and correction mechanisms so as to reduce the complexity

and overhead of error detection since that is more critical than error correction. In [128], the authors

suggest using SRAM for only error detection and storing the ECC correction bits within the memory

hierarchy to reduce the overhead. In another work on ECC in caches, the authors of [129] suggest

protecting only those cache lines that have been recently used. Thus, they trade-off protection with

area and energy. Some past works like [130] have also focused on ECC protection schemes for L1

cache.

5.2.3 Application Characteristics

Data or instructions in applications are generally very structured. Frequencies of instructions in

most applications follow power law distribution [131]. This means that some instructions get

more frequently accessed than the rest. If the opcode (that primarily determines the action taken

by the instruction) in a certain instruction set architecture (ISA) is, for example, the first x bits,

then the relative frequency of the opcodes of the common instructions are high. This means most

instructions in the memory would have the same prefix of x-bits. Table 5.1 shows the fraction of
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the two most frequently occurring opcode over each of the benchmark suites. The benchmarks

were compiled for 32-bit RISC-V (RV32G) [52] instruction set v2.0 were the least significant 7

bits are designated as the opcode. This is true not just for instructions but also for data. In most

applications, the data in the memory is usually low-magnitude signed data of a certain data type.

However, these values get represented inefficiently, for e.g., 4-byte integer type used to represent

values that usually need only 1-byte. Thus, in most cases, the MSBs would be a leading-pad of 0s

or 1s. Table 5.1 shows that, for a wide range of data sets, most stored data starts with a leading

pad of zeros. Our approach of utilizing these characteristics in applications complements recent

research on data compression in cache and main memory systems such as frequent value/pattern

compression [132, 133], base-delta-immediate compression [134] and bit-plane compression [135].

However, our main goal is to provide stronger error protection to these special messages that are

chosen based on the knowledge of data patterns in context.

Table 5.1: Fraction of Special Messages per Benchmark Within Suite

Top Two Most Freq Opcodes First 6 bits are 0

(Data Memory) (Instruction Memory)

Benchmark Suite Max Mean Max Mean

AxBench 0.51 0.46 0.92 0.86

SPEC CPU2006 0.56 0.37 0.99 0.89

5.3 Lightweight Error Correction Code

5.3.1 Theory

The code we developed in this work, which we call Parity++, is a type of unequal message protection

code, in that we a priori designate specific messages to have extra protection against errors as can

be seen in Figure 5.1. As in [136], there are two classes of messages, normal (non-special) and

special, and they are mapped to normal (or non-special) and special codewords, respectively. When

dealing with the importance or frequency of the underlying data, we refer to the messages; when

discussing error detection/correction capabilities we refer to the codewords.

Codewords in Parity++ have the following error protection guarantees: normal codewords
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Figure 5.1: Conceptual Illustration of Parity++ for 1-bit error

have single-error detection; special codewords have single-error correction. Let us partition the

codewords in our code C into two sets, N and S , representing the normal and special codewords,

respectively. The minimum distance properties necessary for the aforementioned error protection

guarantees of Parity++ are as follows:

min
u,v∈N ,u 6=v

dH(u,v)≥ 2, (5.1)

min
u∈N ,v∈S

dH(u,v)≥ 3, (5.2)

min
u,v∈S ,u 6=v

dH(u,v)≥ 3. (5.3)

A second defining characteristic of the Parity++ code, is that the length of a codeword is only

two bits longer than a message, i.e., n = k+2. Comprehensive comparisons between Parity++ and

other popular ECCs are included in some of the subsequent sections.

For the context of this chapter, let us assume that our Parity++ always has message length k as a

power of 2. The overall approach to constructing our code is to create a Hamming subcode of a

SED code [137]; when an error is detected, we decode to the neighboring special codeword. The

overall code has dmin = 2, but a block in G, corresponding to the special messages, has dmin ≥ 3.

For the sake of notational convenience, we will go through the steps of constructing the (34,32)
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Parity++ code (as opposed to the generic (k+2,k) Parity++ code).

We begin by creating the generating matrix for the Hamming code whose message length is at

least as large as the message length in the desired Parity++ code; in our case, we use the (63,57)

Hamming code. Let α be a primitive element of GF(26) such that 1+x+x6 = 0, then our generator

polynomial is simply gS(x) = 1+ x+ x6 (and we construct our generator matrix using the usual

polynomial coding methods). We then shorten this code to (32,26) by expurgating and puncturing

(i.e., deleting) the right and bottom 31 columns and rows. Now, we add a column of 1s to the end,

resulting in a generator matrix, which we denote as GS, for a (33,26) code with dmin = 4.

For the next step in the construction of the generating matrix of our (34,32) Parity++ code,

we add GN on top of GS, where GN is the first 6 rows of the generator matrix using the generator

polynomial gN(x) = 1+ x, with an appended row of 0s at the end. Note that GN is the generator

polynomial of a simple parity-check code. By using this polynomial subcode construction, we have

built a generator matrix with overall dmin = 2, with the submatrix GS having dmin = 4. At this point,

notice that messages that begin with 6 0s only interact with GS; these messages will be our special

messages. Note that Conditions 5.1 and 5.3 are satisfied; however, Condition 5.2 is not satisfied. To

meet the requirement, we add a single non-linear parity-bit that is a NOR of the bits corresponding

to GN, in our case, the first 6 bits.

The final step is to convert GS to systematic form via elementary row operations. Note that

these row operations preserve all 3 of the required minimum distance properties of Parity++. As a

result, the special codewords (with the exception of the known prefix) are in systematic form. For

example, in our (34,32) Parity++ code, the first 26 bits of a special codeword are simply the 26 bits

in the message (not including the leading run of 6 0s).

At the encoding stage of the process, when the message is multiplied by G, the messages

denoted as special must begin with a leading run of log2(k)+1 0’s. However, the original messages

we deem to be special do not have to follow this pattern as we can simply apply a pre-mapping

before the encoding step, and a post-mapping after the decoding step.

In our (34,32) Parity++ code, observe that there are 226 special messages. Generalizing, it is

easy to see that for a (k+2,k) Parity++ code, there are 2k−log2(k)−1 special messages.
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5.3.2 Error Detection and Correction

We separate the received–possibly erroneous–vector y into two parts, c̄ and η , with c̄ being the

first k+1 bits of the codeword and η the additional nonlinear redundancy bit (η = 0 for special

messages and η = 1 for normal messages). There are three possible scenarios at the decoder: no

(detectable) error, correctable error, or detected but uncorrectable error.

First, due to the Parity++ construction, every valid codeword has even weight. Thus, if c̄ has

even weight, then the decoder concludes no error has occurred, i.e., c̄ was the original codeword.

Second, if c̄ has odd weight and η = 0, the decoder attempts to correct the error. Since GS is in

systematic form, we can easily retrieve HS, its corresponding parity-check matrix. The decoder

calculates the syndrome s1 = HT
S c̄. If s1 is equal to a column in HS, then that corresponding bit in

c̄ is flipped. Third, if c̄ has odd weight and either s1 does not correspond to any column in HS or

η = 1, then the decoder declares a DUE (detected but un-correctable error).

The decoding process described above guarantees that any single-bit error in a special codeword

will be corrected, and any single-bit error in a normal codeword will be detected (even if the bit in

error is η).

Let’s take a look at two concrete examples for the (10,8) Parity++ code. Without any

premapping, a special message begins with log2(3) + 1 = 4 zeros. Let our original message

be m = (00001011), which is encoded to c = (1011010110). Note that the first 4 bits of c is the

systematic part of the special codeword. After passing through the channel, let the received vector

be y = (1001010110), divided into c̄ = (1001010110) and η = 0. Since the weight of c is odd and

η = 0, the decoder attempts to correct the error. The syndrome is equal to the 3rd column in HS,

thus the decoder correctly flips the 3rd bit of c̄.

For the second example, let us begin with m = (11010011), which is encoded to (0011111101).

After passing through the channel, the received vector is y = (0011011101). Since the weight of c̄

is odd and η = 1, the decoder declares a DUE. Note that for both normal and special codewords, if

the only bit in error is η itself, then it is implicitly corrected since c̄ has even weight and will be

correctly mapped back to m without any error detection or correction required.
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5.3.3 Architecture

For a cache with error detection and correction (EDAC) mechanism, there is additional error

detection/correction latency. Error detection latency is more critical than error correction as

occurrence of an error is a rare event when compared to the processor cycle time and doesn’t fall

in the critical path. The data/instruction being read from the cache goes through the ECC error

detection engine first. If there are no errors then the decoded message moves ahead. In case of

an error, the received message goes through an additional correction engine to retrieve the correct

message and then the message can be used in the rest of the computation flow.

When using Parity++, the flow almost remains the same. Parity++ can detect all single bit errors

but has correction capability for “special messages”. When a single bit flip occurs on a message,

the error detection engine first detects the error and stalls the pipeline. If the non-linear bit says it is

a “special message”(non-linear bit is ‘0’), the received message goes through the Parity++ error

correction engine which outputs the corrected message. This marks the completion of the cache

access. If the non-linear bit says it is a non-special message (non-linear bit is ‘1’), then a DUE is

declared and it is checked if the cache line is clean. If so, the cache line is simply read back from

the lower level cache or the memory and the cache access is completed. However, if the cache line

is dirty and there are no other copies of that particular cache line, it leads to a crash or a roll back to

checkpoint. Note that both Parity++ and SECDED have equal decoding latency of one cycle that is

incurred during every read operation from an ECC protected cache. The encoding latency during

write operation does not fall in the critical path and hence, is not considered in our analyses.

Next in this chapter we present a memory speculation scheme that helps to hide the latency

incurred by the error detection engine when there are no errors.

5.3.3.1 Memory Speculation

Figure 5.2 shows the flow of a read operation when the memory speculation scheme is used. The

basic idea behind this speculation scheme is to predict the original message from the encoded

codeword without having to go through the decoding/error detection circuitry in order to hide the

additional latency incurred by the decoding/detection mechanism. While the decoding happens,
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the predicted instruction/data can move forward to the next stages in the pipeline. If the predicted

value is correct, then no action is required and pipeline goes ahead as usual without any additional

stalls. In case an error is detected, the mis-predicted instruction or all the dependent instructions that

received the mis-predicted data needs to be squashed. This prediction scheme for ECC protected

caches is similar to what was proposed in [118] for stronger error protection in on-chip memories.

Figure 5.2: Flow of read operation in cache with memory speculation and Parity++ protection

schemes

This speculation scheme is most effective when the encoded ECC codewords are systematic.

When systematic, the original message can be easily retrieved by truncating the additional redundant

bits that are generally added to the end of the actual message in case of no errors in the received

codeword. Instead of waiting for the decoding to get done, the original message can be speculated by
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truncating the redundant bits. Thus, the computation moves ahead with the predicted data/instruction

without any stalls while the decoding for error detection happens in parallel. A major difference

between SECDED and our scheme, Parity++ is that all codewords under SECDED are systematic

while only the special messages for Parity++ are systematic. As a result, for Parity++, speculation is

used only if the message is special. If not, computation is stalled for one cycle while decoding/error

detection happens. Special messages can be distinguished from non-special messages using the

non-linear bit.

5.3.3.2 Additional Cache Support for Speculation

Figure 5.3 depicts the additional circuitry that needs to be added to a traditional cache to support

the memory speculation scheme with Parity++.

Figure 5.3: Cache architecture to implement Parity++ with memory speculation

The non linear bit is first checked. If it is a special message, then speculation is triggered and

the speculated value is forwarded to the next stage. This speculated value comprises of the lower

26-bits of the received codeword to which the special prefix is separately appended. Meanwhile,

the decoding and the error detection circuitry works in parallel. If an error is detected, the control

module initiates a squash operation to squash all the dependant instructions that used the mis-

predicted data and the ECC correction engine provides the correct output. The control module also

stalls the pipeline when the non linear bit indicates that the message is not special and hence, the

codeword is not systematic. Therefore, speculation cannot be used and the pipeline needs to be
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stalled for one cycle till the original message is decoded. The stall latency is, of course, greater

than one cycle when an error is detected and the ECC correction engine needs to be triggered. This

additional control module is simple and has minimal overhead in terms of area and energy.

5.3.4 Coverage and Overheads

5.3.4.1 Detection/Correction Coverage

As given in Table 5.2 single-bit parity detects any single-bit error. Our Parity++ scheme keeps

this single-bit error detection guarantee, and additionally provides single-bit error correction for

special messages. Also, any 2-bit error on a special message in our Parity++ scheme is guaranteed

detectable.

The coverage of SECDED and DECTED codes can be understood from their names. SECDED

codes guarantee correction of any single bit error and detection of any double bit error; DECTED

codes guarantee correction of any double bit error and detection of any triple bit error.

Table 5.2: Error Detection and Correction Coverage for Parity++ along with some widely used

ECC schemes

ECC scheme Error Bits Detected Error Bits Corrected

Single Error Detecting (SED) 1 0

Parity++ Special Messages - 2 Special Messages - 1

Non-Special Messages - 1 Non-Special Messages - 0

SECDED 2 1

DECTED 3 2

5.3.4.2 Storage Overhead

Single-error detection requires only a single parity bit; our Pairty++ scheme adds an additional

parity-bit for a total of 2. The most efficient SEC code is the Hamming code. Assuming our message

length, k, is a power of 2, then the number of redundancy bits required for the (shortened) Hamming
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code is log(k)+1. Since the Hamming code has a minimum distance of 3, we can create a SECDED

code—the extended Hamming code—with the addition of a single parity bit, yielding a total of

log(k)+2 redundancy bits. Similarly, we can use a (shortened) extended BCH code as a DECTED

code, with 2 log(k)+3 redundancy bits. The parity storage overhead of these schemes for different

cacheline sizes is given in Figure 5.4

Figure 5.4: Storage overhead of different commonly used ECC schemes along with our scheme

Parity++

5.3.4.3 Latency and Energy Overhead

The encoding and decoding latencies when writing to/reading from the memory are almost identical

for Parity++ and SECDED. They would both require an additional one cycle for each of the two

operations. Error correction in case of Parity++ requires an extra matrix multiplication. However,

this latency is not critical as occurrence of errors is a rare event compared to the cycle time of the

processor. With the proposed memory speculation scheme, SECDED incurs no additional decoding

latency when there are no errors. For Parity++ the one cycle extra decoding latency happens only

when it is a non special message (only 20-25% of messages are typically non-special).

The encoding energy overhead is almost similar for both Parity++ and SECDED. The decoding

energy overheads are slightly different. For SECDED, the original message can be retrieved from the

received codeword by simply truncating the additional ECC redundant bits. However, all received
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codewords need to be multiplied with the H-matrix to detect if any errors have occurred. For

Parity++, the original message can be retrieved using truncation when it is a special messages. For

the 20-25% non special messages, the non-systematic received codeword needs to be multiplied with

a decoder matrix to get the original message. This decoder matrix multiplication, when sythesized

using an industrial 45nm library has∼4x higher energy overhead than the H-matrix multiplication of

SECDED since the Parity++ decoder is larger than the SECDED H-matrix. However, for Parity++,

the error detection scheme is much simpler. It is just a chain of XOR gates and the synthesized

detection engine consumes ∼10x lower energy than the H-matrix of SECDED required for error

detection. For Parity++, all messages go through the chain of XOR gates for error detection and

only the non special messages need to be multiplied with the decoder matrix to retrieve the original

message. Since the error detection in Parity++ is much cheaper in terms of energy overhead than

SECDED and the non special messages only constitute about 20-25% of the total messages, the

overall read energy in Parity++ turns out to be much lesser than SECDED. Also, with reduced array

size for caches with Parity++ due to lower storage overhead, the leakage energy is also less than

that in caches with SECDED.

5.4 Experimental Methodology

We evaluated Parity++ over applications from the SPEC 2006 benchmark suite. Two sets of core

micro-architectural parameters (provided in Table 5.3) were chosen to understand the performance

benefits in both a lightweight in-order(InO) processor and a larger out-of-order(OoO) core. Per-

formance simulations were run using Gem5 [138], fast forwarding for 1 billion instructions and

executing for 2 billion instructions.

The first processor is a lightweight single in-order core architecture with a 32kB L1 cache for

instruction and 64kB L1 cache for data. Both the instruction and data caches are 4-way associative.

The LLC is a unified 1MB L2 cache which is also 8-way associative. The second processor is a

dual core out-of-order architecture. The L1 instruction and data caches have the same configuration

as the previous processor. The LLC comprises of both L2 and L3 caches. The L2 is a shared 512kB

SRAM based cache while the L3 is a shared 2MB cache which is 16-way associative. For both the
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baseline processors it is assumed that the LLCs (L2 for the InO processor and L2 and L3 for the

OoO processor) have SECDED ECC protection.

The performance evaluation was done only for cases where there are no errors. Thus, latency

due to error detection is taken into consideration but not error correction as correction is rare when

compared to the processor cycle time and doesn’t fall in the critical path. In order to compare the

performance of the systems with Parity++ against the baseline cases with SECDED ECC protection,

the size of the LLCs were increased by ∼10% due to the lower storage overhead of Parity++ as

provided in Section 5.3.4. We call this iso-area since the additional area coming from reduction in

redundancy is used to increase the total capacity of the SRAM. The iso-area evaluation was done

for both with and without memory speculation. The analysis was also done for the iso-capacity

where the memory capacity of the systems with Parity++ and SECDED remain same and their

performances are measured. As mentioned before, SECDED allows speculation in all cases and thus,

incurs no additional read latency due to error detection when there is no error. But for Parity++, only

the special messages are systematic and thus, for all non-special messages, there is an additional

one cycle read latency due to the error detection circuitry. This additional latency for non-special

messages was also taken into consideration for our simulations.

5.5 Results and Discussion

In this section we discuss the performance results obtained from the Gem5 simulations (as mentioned

in Section 5.4). Figures 5.5 and 5.6 show the comparative results for the two different sets of core

micro-architectures across a variety of benchmarks from the SPEC2006 suite when using memory

speculation. In both the evaluations, performance of the system with Parity++ was compared against

that with SECDED. The evaluation was further split into iso-area and iso-capacity as explained in

Section 5.4.

For both the core configurations, the observations for the iso-area case are almost similar. With

memory speculation it is seen that with additional memory capacity for iso-area, the system with

Parity++ has upto ∼4% better performance (lower execution time) than the one with SECDED.

This improvement in performance happens in spite of the additional one cycle latency incurred
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Table 5.3: Core Micro-architectural Parameters

Processor-I Processor-II

Cores 1, InO (@ 2GHz) 2, OoO (@ 2GHz)

L1 Cache per core 32KB I$ 32KB I$

64KB D$ 64kB D$

4-way 4-way

L2 Cache 1MB (unified) 512KB (shared, unified)

8-way 8-way

L3 Cache - 2MB (shared)

16-way

Cache Line Size 64B 64B

Memory Configuration 4GB of 2133MHz DDR3 8GB of 2133MHz DDR3

Nominal Voltage 1V 1V

on non special messages in the case of Parity++. The applications showing higher performance

benefits are mostly memory intensive. Hence, additional cache capacity with Parity++ reduces

overall miss rate to an extent such that the slight increase in average LLC hit time gets offset. For

most of these applications, this performance gap widens as the LLC size increases for Processor-II.

The applications showing roughly similar performances on both the systems are the ones which

already have a considerably lower LLC miss rate. As a result, increase in LLC capacity due to

Parity++ doesn’t lead to a significant improvement in performance. The same evaluation was also

done for the case where there is no memory speculation, i.e., both Parity++ and SECDED protected

caches have additional hit latency of one cycle for all read operations. The results show that with the

exact same hit latency, Parity++ has upto 7% lower execution time than SECDED due to additional

memory capacity.

A more significant result is the iso-capacity case with memory speculation. It is seen that even

with additional one cycle latency for non special messages in Parity++, the performance of the

system with Parity++ is at par with that of SECDED. This means that by using our lightweight error
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Figure 5.5: Comparing Normalized Execution Time of Processor-I with SECDED and Parity++

(with memory speculation)

Figure 5.6: Comparing Normalized Execution Time of Processor-II with SECDED and Parity++

(with memory speculation)

correction scheme, we manage to save about 5-9% last level cache area (excluding decoder and

peripheral circuit area) with negligible hit in performance. Since the LLCs constitute more than 30%

of the processor chip area, the cache area savings translate to a considerable amount of reduction in

the chip size. This additional area benefit can either be utilized to make an overall smaller sized chip

or it can be used to pack in more compute tiles to increase the overall performance of the system.
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Parity++ in Lightweight Approximation-Friendly Embedded Memory

Instead of limiting ourselves to last level on-chip caches, we extended the evaluation to on-chip

memories in embedded devices. Embedded systems at the edge of the Internet-of-Things (IoT) is

driven by the need for low cost and low energy consumption. On-chip memories in these lightweight

embedded systems consume a significant portion of system energy. As a result, having strong error

correction schemes like SECDED or ChipKill [104] is too costly, in terms of overheads, for such

devices. Based on the iso-capacity results, Parity++ (with 3.5X lower parity storage overhead than

SECDED in a 32-bit memory) seems to be a good fit for SRAM based embedded memories. Since

Parity++ helps in reducing area (in turn reducing SRAM leakage energy) and also has lower error

detection energy, it provides a better protection mechanism in such devices than SECDED. It is

also stronger than a single-error detecting (SED) Parity code and hence can reduce the number of

crashes/hangs when there is a single bit flip in the memory.

Figure 5.7: Output quality of AxBench benchmarks for memory with no ECC vs with Parity++

Most of the applications that run on these low-cost IoT devices are approximation-tolerant.

Hence, we analyzed the benefits of using Parity++ in such devices on 6 applications from AxBench [51],

an approximate benchmark suite. The AxBench benchmarks were compiled for the open-source

64-bit RISC-V (RV64G) instruction set v2.0 [52] using the official tools [139]. Each benchmark

was ran till completion 1000 times on top of the RISC-V proxy kernel [140] using the Spike simula-
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tor [114] that was modified to produce representative memory access traces. For each run, a single

bit error was randomly injected on a demand data memory read. We compared Parity++ against

the case when there is no ECC protection and the program continues with erroneous message. In

case of non-special messages in Parity++, even though a single bit flip is detected, the program

continued with the wrong message instead of crashing immediately since these applications are

approximation-tolerant. The results are shown in Figure 5.7. It can be seen that Parity++ reduces

intolerable Silent Data Corruption (SDC), that is, an SDC with more than 10% output error, by

upto 84.2%(avg. 32.5%). It significantly reduces the number of crashes/hangs by upto 95.3%(avg.

85.6%). This means Parity++ not only improves the quality of output, the system will be much

more resilient to hangs/crashes in case of unpredictable single bit flips during runtime.

5.6 Conclusion

In this work, we present a novel lightweight error protection scheme, Parity++, for last level caches

based on unequal message protection. From our analysis, we find that about 80% of messages/words

have same prefix bits (leading 0’s) and we denote these as special messages. For a 64 bit word,

Parity++ uses only 2 additional redundant bits and provides SECDED protection for these special

messages while providing only SED for the non-special messages. In iso-area evaluations, up

to about 4% performance benefit can be obtained, while iso-capacity evaluations showed almost

negligible (<0.2% in all but one case) performance degradation with ∼9% lower storage overhead

than a traditional SECDED scheme which translates to about 5% cache area savings.
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CHAPTER 6

COMET: On-die and In-controller Collaborative Memory ECC

Technique for Stronger and Safer Correction of DRAM Errors

DRAM manufacturers have started adopting on-die error correcting coding (ECC) to deal with

increasing error rates. The typical single error correcting (SEC) ECC on the memory die is coupled

with a single-error correcting, double-error detecting (SECDED) ECC in the memory controller.

Unfortunately, the on-die SEC can miscorrect double-bit errors (which would have been safely

detected but uncorrected errors in conventional in-controller SECDED) resulting in triple bit errors

more than 45% of the time which are then undetectable or miscorrected in the memory controller

>55% of the time resulting in silent data corruption. We introduce COllaborative Memory ECC

Technique (COMET), a novel method to efficiently design either the on-die or the in-controller

ECC code, that, for the first time, will ensure complete protection from silent data corruption when

a double-bit error happens within the DRAM. Further, we propose a collaboration mechanism

between the on-die and in-controller ECC decoders that corrects most of the double-bit errors

without adding any additional redundancy bits to either of the two codes. Overall, COMET can

eliminate all double-bit error induced silent data corruptions and correct virtually all (99.9997%)

double-bit errors with negligible area, power, and performance impact.

Collaborators:

• Prof. Puneet Gupta, UCLA
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6.1 Introduction

With increasing rate of scaling induced errors [24–28], the traditional method of row/column sparing

used by DRAM vendors to tolerate manufacturing faults [29] has started to incur large overheads.

To improve yields and provide protection against single-bit failures in the DRAM array at advanced

technology nodes, memory manufacturers have started incorporating on-die error correction coding

(on-die ECC) that helps to correct single-bit errors [24, 26]. The ECC encoding/decoding happens

within the DRAM chip. The parity bits are stored in redundant storage on-chip and are not sent

out of the chip; only the actual data, post correction, is sent out of the DRAM, making on-die ECC

transparent to the outside world. Though DRAM manufacturers do not usually reveal their on-die

ECC design and implementation, prior works [25, 26, 141–143] and industry whitepapers [24]

indicate the most commonly used scheme is (136,128) Single Error Correcting (SEC) Hamming

code [144] which corrects any single-bit error that occurs in 128 bits of actual data with the help of

8 bits of additional parity. On-die ECC is typically paired with rank-level single error correction,

double error detection (SECDED) code in the memory controller. The main focus of in-controller

ECC is to correct errors that are visible outside the memory chip, mostly due to failures in pins,

sockets, buses, etc.

With the inclusion of on-die SEC, single-bit errors (SBE) get corrected within the DRAM

chip. Though SBEs are still the most dominant failure mode in the DRAM arrays [24, 145], with

increasing error rates [25, 26, 28], double-bit errors (DBE) within the array are no longer a rarity.

However, a double error correcting (DEC) code incurs large overhead and is not practical for DRAM

manufacturers to have an on-die DEC mechanism. In today’s high reliability systems, the rank-level

in-controller coding scheme is expected to detect DBEs and the system then restarts or rolls back

to a checkpoint [146]. However, the on-die SEC code reduces the efficacy of in-controller DBE

detection and significantly increases the chances of silent data corruption (SDC). As shown in

Figure 6.1, without on-die SEC, the data goes through a single round of decoding inside the memory

controller where the SECDED decoder flags the DBE. Now, with on-die SEC, the data goes through

two rounds of decoding. The SEC decoder in the first round only ensures protection against SBEs.

For DBEs, the decoder has a >45% (on average based on 10 random SEC constructions) chance
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Figure 6.1: Example showing the difference when a DBE occurs in DRAMs with and without

on-die SEC. Both systems have in-controller SECDED. Assumption: data and parity bits that get

decoded in the controller in one cycle are sent from the same DRAM chip across multiple beats.

of miscorrection resulting in a triple-bit error. In the second round of decoding, the in-controller

SECDED decoder has a ∼55% (on average, based on 10 random SECDED constructions) chance of

considering the triple-bit error as a SBE and silently corrupts the data further. For a raw bit error rate

of 10−4 that is often seen in recent works and industrial studies [25, 26, 28, 145, 147], we can expect

SDC once every ∼ 300,000 SECDED decoding cycles (or 64-bit memory access) in a system with

a single DRAM chip that has on-die (136,128) SEC and in-controller (72, 64) SECDED protection

mechanisms. Thus, on-die ECC actually worsens memory reliability in the case of DBEs.

Furthermore, for every 128-bits of data, with on-die and in-controller ECC schemes combined,

we now have 8 more bits of parity as compared to only in-controller ECC. These extra 8-bits for

on-die SEC help only in the rare case when a single-bit fault outside the memory array (e.g. link/pin

failure) coincides with a single-bit error in the chip. Other than that, the on-die SEC is not improving

protection on top of what the in-controller code was already doing.
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In this work, we propose a Collaborative Memory ECC Technique (COMET) that allows one to

efficiently design the on-die and/or in-controller ECC that will not only correct single-bit errors but

will also correct majority of double-bit errors and completely avoid silent data corruption with no

additional parity bits. This chapter makes the following key contributions:

• For the first time (to the best of our knowledge), we provide a detailed on-die SEC code con-

struction technique that completely eliminates DBE-induced SDCs at no additional overhead.

The design technique exploits the overall memory system architecture and steers the miscor-

rected bit when a DBE occurs in such a way that the in-controller SECDED, irrespective of

its actual implementation, never encounters all three bits of errors in the same decoding cycle,

thereby guaranteeing no miscorrection.

• If the on-die SEC code does not guarantee protection from SDC in the case of DBEs, we

show how the in-controller SECDED can be designed to take care of it. We provide a detailed

construction of the SECDED code for a given on-die SEC implementation and memory

system architecture.

• We develop a collaborative DBE correction technique. The SEC code needs to be designed

with an additional constraint and the memory controller needs to send a special command

with additional information once a DUE is flagged. This collaborative technique can correct

almost all (99.9997%) double-bit errors in addition to ensuring no miscorrections.

• SEC-COMET implementations require no additional parity bits, have less than 5% decoder

area and latency overheads and less than 10% power overhead as compared to the most

efficient SEC construction. The COMET correction mechanism has negligible performance

impact (less than 1.5% across multiple benchmarks) even for a high bit error rate of 10−4.

6.2 Background

This section provides an overview of DRAM operation, coding theory background and types of

ECC codes seen in today’s DRAM based memory subsystems.
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6.2.1 DRAM Operation

Dynamic Random Access Memory (DRAM) chip cell stores a single bit of data in a capacitor

[148,149]. These cells are organized in two dimensional arrays called banks. A read/write command

accesses a small subset of columns in a row and includes multiple steps. First the entire row is read

into a row buffer using the ACTIVATE command. Then a READ/WRITE command is sent with the

column address to initiate the data transfer. An xN DRAM chip uses N data pins (DQs) in parallel

during data transfer [150, 151]. Typically, more than one DRAM chip is accessed in parallel to

improve bandwidth and they together form a rank. A single memory access takes multiple cycles

– during each cycle a beat of data (N bits from every chip in a rank) is transferred. The number

of beats transferred in each access constitutes the memory burst length. The number of cycles per

access and the width of a data beat accessed in each cycle depends on the memory device and the

data access protocol. If a rank consists of 8 x8 DRAMs and the burst length is 8 beats, it translates

to 64-bits of data transfer per beat and a total of 64B transfer per READ/WRITE command.

6.2.2 Linear Hamming Error Correcting Codes

Error correcting code (ECC) detects and/or corrects by adding redundant parity bits to the original

data. A (n,k) Hamming code protects a k-bit dataword (original data) by encoding the data

through linear transformation to form a n-bit codeword. The number of parity bits is equal to n− k.

Increasing the number of parity bits increases the minimum Hamming distance between two legal

n-bit codewords. A code of minimum distance dmin is guaranteed to correct is t = b1
2(dmin−1)c

erroneous symbols. The encoding is done by multiplying the dataword (~m) with the generator matrix

G: ~mG =~c and the resulting codeword~c is written to memory. When the system reads the memory

address of interest, the ECC decoder hardware obtains the received codeword~x =~c+~e. Here,~e is

an error-vector of length n that represents where memory faults, if any, have resulted in changed

bits/symbols in the codeword. The decoder multiplies the received codeword~x with parity check

matrix H to calculate the error syndrome: ~s = H~xT. The following conclusions can be drawn from

the syndrome:

• s = 0: No error.
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• s 6= 0: Error detected; syndrome is matched with columns of the parity check matrix H to

determine the exact bit-location of the error. If the syndrome matching is unsuccessful, the

decoder declares it as a detectable-but-uncorrectable error (DUE).

The syndrome is generated without any knowledge about the exact number of errors in the

received codeword. If the number of errors exceeds the correction capability of the code and the

syndrome matching is successful it would mean one of the following scenarios have occurred:

• s = 0: The decoder declares the codeword error-free and all bits of errors go undetected.

• s 6= 0 and points to a bit: This bit can be one of the erroneous bits or a non-erroneous bit. In

either case, the decoder will flag a CE and miscorrect that bit.

This leads to silent data corruption (SDC) where the decoder wrongly declares data with errors as

correct. In this work, we attempt to reduce such SDC events when double-bit errors occur.

6.2.3 SEC vs. SECDED

Single-Error Correcting (SEC) codes (dmin = 3) correct all possible SBEs. The columns in the

parity-check matrix H of a linear SEC code are distinct and the minimum number of columns

to form a linearly dependent set is 3. This ensures that every legal codeword is at-least 3 bit

flips away from each other. Single-Error Correcting, Double-Error Detecting (SECDED) codes

(dmin = 4) [152] can correct all SBEs and detect all possible DBEs. The minimum number of

columns to form a linearly dependent set in the parity-check matrix H of a linear SECDED code

is 4. Every legal codeword is at least four bit flips away from each other. Both these codes can

correct SBEs. In case of DBEs, SEC code either declares a DUE or miscorrects by flipping a third

bit. SECDED, on the other hand, always declares a DUE when a DBE occurs.
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6.3 Motivation

6.3.1 Miscorrections by On-Die ECC

Let us consider the common example of a DRAM device with a (136,128) SEC Hamming code.

This SEC code can correct any SBEs. However, in case of a multi-bit error, there are two possible

outcomes: (1) The errors go undetected and is equivalent to not having an on-die ECC mechanism.

(2) The multi-bit error aliases to a single-bit error. This happens when the sum of the columns in

the H-matrix of the decoder corresponding to the error positions is equal to another column in the

matrix.

In order to better understand the second case, consider the following example SEC Hexample

parity-check matrix with 128 message bits and r = 8 parity bits:

Hexample =

d1 d2 d3 d4 d5...d127 d128 p1 p2 p3 p4 p5 p6 p7 p8



c1 1 0 0 1 .... 1 1 0 0 0 0 0 0 0

c2 1 1 0 0 .... 0 0 1 0 0 0 0 0 0

c3 0 0 1 0 .... 0 0 0 1 0 0 0 0 0

c4 0 0 0 0 .... 1 0 0 0 1 0 0 0 0

c5 0 0 0 0 .... 0 0 0 0 0 1 0 0 0

c6 0 0 1 0 .... 0 0 0 0 0 0 1 0 0

c7 0 1 1 1 .... 1 0 0 0 0 0 0 1 0

c8 0 0 1 0 .... 0 0 0 0 0 0 0 0 1

,

where di represents the ith data bit, p j is the jth redundant parity bit and ck is the kth parity-check

equation. Now, if a double-bit error occurs in bits 1 and 2, the resulting codeword c′ is equivalent

to adding error patterns e1 and e2 to the original codeword c. By the definition of a linear block

code, H.c = 0 for all legal codewords c. Therefore, error patterns e1 and e2 isolate columns 1 and 2

of the SEC H matrix (i.e., Hexample∗,1 and Hexample∗,2) and as shown in Equation 6.1, the resulting

syndrome is the sum of the two columns.
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s = Hexample.c′ = Hexample.(c+ e1 + e2)

= Hexample.













1 0

0 1

0 0

c + 0 + 0

0 0

0 0

0 0

0 0

= 0+Hexample∗,1 +Hexample∗,2 =





1

0

0

0

0

0

1

0

= Hexample∗,4

(6.1)

Now, the sum of columns 1 and 2 of the Hexample matrix is equal to column 4. Therefore, the

generated syndrome s matches column 4. As a result, the decoder would consider it as a single bit

error in bit position 4 and flip it as part of its correction mechanism. Thus, an originally double-bit

error has now become a triple-bit error. On an average (across 10 random SEC Hamming code

constructions), the chances of a DBE miscorrecting to a triple bit error is >45%. With increasing

DRAM error rates, recent studies [26, 28, 145, 147] have shown that the probability of a DBE

occurring within the 128-bit dataword can be as high as ∼ 8× 10−5, which translates to a DBE

every 12500 SEC decoding cycles. Thus, the chances of a double-bit error converting to a triple-bit

error are also high and will only increase in future.

6.3.2 SDC post in-controller SECDED decoding

Now let us look at the problems that arise because of this miscorrection. SECDED code inside

the memory controller is not designed to detect more than double-bit errors. As a result, when

the (136,128) SEC on-die ECC miscorrects and converts a DBE to a triple-bit error, there is a

high probability (greater than 50% on an average over multiple SECDED codes) for the SECDED

decoder to consider it as an SBE and further miscorrect. This will happen when the generated

syndrome or the sum of three columns in the SECDED parity check matrix corresponding to

the erroneous bits is equal to a fourth column. The probability of SDC depends on the exact
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Figure 6.2: Probability of SDC every 64-bits of SCEDED dataword read from memory when a

double-bit error occurs in a system with (136,128) on-die SEC and (72,64) in-controller SECDED

coding schemes for different bit error rates and data access protocols is shown here.

SECDED code and the memory data transfer protocol. A widely used on-die ECC is (136, 128)

SEC [24,143] and in-controller ECC is (72, 64) SECDED [153]. For the rest of the chapter, we will

use these two codes for explaining our proposed code construction mechanisms and DBE correction

technique. However, our proposed constraints can be easily extended to other SEC and SECDED

code constructions with different dataword and codeword lengths.

DBEs are becoming more probable with increasing bit error rate in recent DRAM generations

built. Multiple recent experimental/industrial studies [26, 28, 145, 147] have considered DRAM raw

bit error rate (BER) as high as 10−4. For different memory system architectures and data access

protocols, we evaluate the probability of SDC when a DBE occurs for BERs ranging from 10−4 to

10−8. The result is shown in Figure 6.2. For this evaluation we consider the average miscorrection

rate across ten different (136,128) on-die SEC and (72,64) in-controller SECDED implementations.

We evaluate for different access protocols; x64 means all 64-bits of SECDED dataword come from

the same DRAM chip while x4 means there are 16 DRAM chips and each DRAM chips sends

4-bits per beat of memory transaction. For a BER of 10−4, the probability of silent data corruption

in the case of x16 data access protocol is non-negligible and can happen once every 3 million 64-bit
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accesses. As the data width per chip reduces, the SDC probability decreases. This is because the

probability of a DBE, along with the miscorrected bit, aligning perfectly within the same beat

boundary reduces with decrease in beat width. Without on-die SEC, the SDC probability, however,

is 0 since all double-bit errors within the DRAM array, irrespective of location, would not get

miscorrected and would be flagged as DUE by the in-controller SECDED decoder. Thus, while the

SEC code does not help with detecting or correcting the double-bit errors in any scenario, it causes

miscorrection and turns upto 25% of these DBE events into SDC.

6.4 COMET ECC Design to Eliminate Silent Data Corruption

In today’s DDR or LPDDR based systems, during every read operation, the data that is read into the

memory controller is typically striped across multiple DRAM dies. Each xN DRAM die sends N-bits

data in parallel during each beat of memory transfer to construct the 72-bit controller codeword. But

the on-die ECC decodes a 128-bit dataword inside each DRAM chip. Only a part of this 128-bit data

is accessed by the memory controller per operation (see Figure 6.3) and therefore the data of on-die

ECC eventually spans multiple in-controller SECDED codewords. This has significant implications

on SDC probability. The DBE probability in a 128-bit word and the SEC-induced miscorrection rate

remain constant across the DRAM dies having the exact same SEC implementation. However, the

probability of the double-bit error and the miscorrected bit coinciding within the same in-controller

64-bit dataword decreases with the decrease in the amount of data from each on-die codeword that

constitutes the in-controller codeword (as shown in Figure 6.2). If all 64-bits come from the same

DRAM chip and, therefore, from the same 128-bit SEC dataword, the SDC probability is ∼ 11x

higher than the case where 16 DRAM chips send 4-bits each in parallel.

In this work, we provide two possible solutions that exploit this data access pattern to completely

avoid SDCs when DBE occurs. (1) An on-die SEC construction technique which ensures that

the miscorrected bit is steered to a different beat. It does em not require knowledge of the exact

in-controller code and is compatible with any SECDED implementation in the controller. (2) Our

alternate solution outlines an in-controller SECDED construction technique that ensures that none

of the on-die aliasing triplets result in SDC. However, unlike the first technique, this in-controller
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Figure 6.3: Example showing how steering the miscorrected bit to a different beat transfer boundary

during SEC decoding prevents the SECDED decoder from encountering the problematic triple-bit

error within the same 72-bit codeword.

SECDED construction needs to know the on-die SEC code.

6.4.1 On-die SEC-COMET ECC

In this work we exploit the data transfer protocol in DRAMs to take care of SDCs. As shown in

Figure 6.3, if all the three erroneous bits in the 136-bit codeword do not get transferred and decoded

in the memory controller in the same beat, the SECDED decoder will not encounter a triple-bit

error and SDC can be avoided. Thus, the on-die SEC has to be carefully constructed so that the

miscorrection from any DBE gets steered to a bit that is beyond the single beat transfer boundary.

This will ensure that the three erroneous bits never coincide in the same 72-bit SECDED codeword.

In order to achieve this property in a (136, 128) SEC code, within every beat transfer boundary,

the sum of any two columns in the parity check H matrix should not be equal to a third column in

the same set.

Step-by-step code construction and mathematical guarantee for largest possible beat transfer

size: With 8-bits of parity per 128-bits of dataword, the COMET-SEC additional constraint can be
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Figure 6.4: Example showing SDC occurring due to miscorrection introduced by on-die ECC. We

have considered the SEC construction provided in Section 6.3.1 where the sum of columns 1 and 2

in the Hexample matrix is equal to column 4.
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satisfied when designing the SEC code for any data transfer protocol as long as the beat transfer

boundary (N) consists of 64-bits (64 columns) or less. When constructing the 8x136 parity check

matrix H, we can choose the 136 8-bit columns from 128 odd-weight and 127 even-weight non-zero

options. The DBE-induced miscorrection happens when the sum of two columns is equal to a

third column in the H matrix. Either all these three columns would have even weights or two of

them would have odd weights and the third would have even weight. If Thus, the two aliasing sets

possible are: (1) (odd, odd, even), (2) (even, even, even). If we could construct the H matrix with

all odd weight columns then no pair of columns would sum up to a third column and there would

be no DBE-induced miscorrection. However, we do not have enough odd-weight columns for the

entire matrix. Hence, when constructing the H matrix for our proposed SEC-COMET code for an

xN DRAM architecture, we use a two-step approach.

• Out of the 128 odd weight columns, we use the single weighted columns for the last 8

identity sub-matrix columns. We use the remaining 120 odd-weight options for the first

min(128−N,120) columns. None of these columns would have the problem of aliasing since

they are all odd.

• For the remaining X = max(N,8) locations, we use only even weight columns. We randomly

choose a bit position (say bit 0) and set it to ‘1’ for all X columns. If bit 0 for all X columns

is ‘1’, then the sum of any pair of columns cannot equal a third column in this set as bit 0 of

the sum would always be ‘0’.

The total number of such even weight columns possible =
(7

1

)
+
(7

3

)
+
(7

5

)
+
(7

7

)
= 64. Therefore,

N can be as wide as 64 (largest possible factor of 128). Thus, on-die SEC-COMET code can be

constructed for x4 to x64 DRAMs that can guarantee no silent data corruption. Note that this

SEC-COMET construction requires no knowledge of the in-controller SECDED code.

6.4.2 In-controller SECDED-COMET ECC

An alternative to imposing the additional COMET constraint on on-die SEC ECC as in Section 6.4.1

is to redesign the in-controller SECDED code, albeit with the knowledge of the SEC code used in
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the memory device (for example by using the recent work [26] which proposes an efficient way of

reverse engineering the exact on-die SEC implementation). Once we know the SEC code, we will

know all the bit positions pairs (H column pairs) that lead to a miscorrection (sum of columns equal

to third column) within the same beat transfer boundary. These are the triplets that eventually can

lead to SDC. We first list all such bit positions triplets.

For every triplet, we calculate the all the possible corresponding bit positions in the SECDED

dataword. To understand that let us again look at Hexample provided in Section 6.3.1. Errors in bits 1

and 2 in the 128-bit SEC dataword lead to miscorrection in bit 4. Now, in an x8 DRAM architecture,

bits 1, 2, and 4 in the SEC dataword fall within the same beat transfer boundary and can correspond

to any of the following bit positions (in their respective order) in the SECDED dataword (spanning

8 DRAM chips):

• Bits 1, 2 and 4

• Bits 9, 10 and 12

• ....

• Bits 57, 58 and 60

This is because bit 1 of the SEC dataword from chip 1 would be bit 1 of the SECDED dataword, but

bit 1 of the SEC dataword from chip 2 would be bit 9 of the SECDED dataword. The same is true

for the rest of the DRAM chips. We need to consider positions corresponding to all DRAM chips

since they all would use the same on-die SEC code.

Now let us consider the example shown in Figure 6.4. A DBE affects bits 1, 2 in chip 2 and bit

4 gets miscorrected by the SEC decoder. Post data transfer, this translates to triple-bit error in bit

positions 9, 10 and 12 in the SECDED codeword. This becomes an SDC since the sum of these

columns in the SECDED H matrix is equal to another column (column 63 in the example). The

decoder flips bit 63, declares the error correction as a success, and sends the corrupted data over to

the processor. In order to prevent this SDC from happening in a system with this particular on-die

SEC code, the SECDED parity check matrix has to be designed such that the sum of all the sets of
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columns corresponding to the bit positions listed above do not match with any of the columns in the

rest of the H matrix.

The process has to be repeated for all bit triplets in the SEC dataword that lead to three-bit errors

in the final SECDED codeword. For a given SEC code and system memory architecture, for every

bit/column triplet in the SECDED H matrix that can cause SDC, the sum of the columns has to be

such that it equals no other column in the H matrix.

Using this technique, given the exact SEC implementation and the system architecture, it is

possible to construct the SECDED code that would prevent SDC when double-bit errors happen.

6.5 COMET Double-bit Error Correction

On-die ECC adds 6.25% parity storage overhead without improving error correction capability.

Previous studies have shown that there is almost no difference in reliability between DIMMs with

8 chips that have only on-die ECC and DIMMs with 9 chips that support both on-die ECC and

rank-level in-controller SECDED ECC [25]. Thus, the two disjoint ECC schemes together do not

reduce the overall system failure probability. Instead we have shown that, if one of them is not

carefully designed, it causes additional SDCs. In this section, we show how DBE correction can be

achieved with no extra parity overhead using the redundancy built within the two codes. We add one

more constraint to the on-die SEC code construction and devise a controller-device collaborative

correction scheme to get nearly perfect double-bit error correction. It is important to note that

even though the collaborative technique requires controller-device communication using a special

command, the two ECC codes can be designed completely independently and does not require any

special in-controller SECDED construction.

6.5.1 Constructing on-die SEC code to enable Double-bit Error Correction (SEC-COMET-

DBC)

In order to enable detection and correction of DBEs using syndrome matching we need to ensure

that the sum of any pair of columns in the parity check matrix H generates a unique syndrome.
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However, with just 8-bit redundancy for a 128-bit dataword, this can be achieved only for a small

subset of columns. We add a constraint to SEC-COMET code construction from Section 6.4.1 to

construct the SEC-COMET-DBC code: for every set of x consecutive columns, the sum of every

pair of columns within that set should be unique. For a (136, 128) SEC code, the maximum value of

x (that is also a factor of 128) for which this can be possible is 16. I.e., a valid SEC-COMET-DBC

code can be constructed for x4, x8, x16 DRAM chips but not for x32. This is because, for every pair

of columns to generate a unique syndrome in a set of 32 columns,
(32

2

)
= 496 unique syndromes

are required. This is not possible with 8-bits.

For such a SEC code, when a double-bit error occurs in bit positions that belong to the same

x-bit chunk, the generated syndrome and the chunk position can be used to figure out the exact

DBE locations. The syndrome is generated by the SEC decoder, but for the correction mechanism

to work, the errors also have to be localized to the exact x-bit chunk which the SEC decoder is

unable to do. For this localization we will exploit the memory data access architecture and utilize

information from the in-controller SECDED decoder. For example, in a standard x8 DDR based

ECC DIMM, the beat transfer width per chip is 8 and therefore, we use x = 8 in the (136, 128)

SEC-COMET-DBC code. Now when a DBE happens within the same 8-bit chunk in one of the

DRAM chips, the beat in which the decoder flags a DUE will help to point to the 8-bit chunk

position where the DBE has occurred. Next, we discuss how this information can be sent to the

DRAM chips and the the DBE correction flow. For better understanding we explain the mechanism

using a x8 DDR architecture.

6.5.2 Collaborative DBE Correction

6.5.2.1 Detecting the DBE beat

Let us look at all the possible ways a double-bit error can happen in a 136-bit codeword in a

particular DRAM chip and the possible outcomes after the on-die and in-controller decoding.

• Case 1: The two error bit positions are in two different 8-bit chunks and the miscorrected bit

(if any) belongs to a third chunk. As a result the erroneous bits get decoded in the memory

108



controller in separate beats. In each of these beats, the SECDED decoder flags a CE and

corrects the error. Eventually all the erroneous bits get corrected and no DUE gets flagged.

• Case 2: The two error bit positions are in two different 8-bit chunks and the miscorrected bit

falls in the same chunk with one of the error bits. Now one 8-bit chunk that has two errors and

one has single-bit error. The in-controller SECDED decoder will flag a CE when it decodes

the chunk with SBE but will flag a DUE when the 8-bit chunk with two error bits is decoded.

• Case 3: The two error bit positions are in the same 8-bit chunk. The SEC-COMET constraint

(provided in Section 6.4.1) will ensure that the miscorrected bit lands in a different 8-bit

chunk. Thus, after SEC decoding the 128-bit dataword either has one 8-bit chunk with two

errors (in the case of no miscorrection) or has an additional 8-bit chunk with a single-bit error.

The SECDED decoder will flag a DUE when the 8-bit chunk with two error bits is decoded.

Overall we see that if any two of the error bits collide in the same codeword, the SECDED

decoder would flag a DUE. Let us consider the example shown in Figure 6.3 (Case 3). A DBE

occurs in DRAM chip 1 in bits 1 and 2. Because of our improved SEC construction (shown on

the right), it is ensured that the SEC decoder would steer the miscorrection to a different 8-bit

chunk (in this example the miscorrected bit is 9). Therefore, during the first beat of memory

transaction, the SECDED decoder flags a DUE, while in the second beat it flags a CE and corrects

bit 9. The memory controller communicates this information to the DRAM chips using a special

error correction command where it sends the original read command address and the beat number

in which the DUE was flagged. The SECDED decoder cannot localize the DBE to a particular

chunk in the codeword. Therefore, the double-bit error could have occurred in any of the 9 DRAM

chips. Every DRAM chip receives the information from the memory controller that a DUE has

been flagged in beat 1. Therefore, each DRAM now knows that in the first 8-bits of its 128-bit SEC

dataword there might be a double-bit error.
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Figure 6.5: The different scenarios possible when one chip has double-bit error and another chip

has single bit error that aligns in a way leading to multiple DRAM chips modifying data during

DBE correction

6.5.2.2 Correction within each DRAM chip

Once the memory controller sends the special double-bit error correction command with the beat

number, each DRAM chip checks the syndrome the SEC decoder had generated during the original

read operation. We assume that the special DBE correction command immediately follows the

original READ command. Therefore, the DRAM chips only need to store the last generated 8-bit

syndrome and the 32-bit/64-bit data that was last read. Storing the original data has negligible

overhead but prevents an extra ACTIVATE during correction and possible change in error signature

in case of closed page policy. If the syndrome was zero, the DRAM knows that the DBE did not

occur in its codeword. In our example (Figure 6.3), all DRAMs except chip 1 would have generated

a zero syndrome. If the syndrome is non-zero, the correction mechanism within the chip tries to

match the syndrome with one of the H matrix columns in the 8-column set that corresponds to the
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received beat number. In this case, DRAM chip 1 tries to match the non-zero syndrome against

columns 1-8 (beat 1) in the H matrix. We know that the miscorrected bit position is 9. Therefore,

the generated syndrome would match with column 9. Since, this column falls outside the target set,

the matching is unsuccessful. The decoder moves on to the next step where it matches the generated

syndrome with the sum of every pair of columns from the target set. Because of our improved

SEC construction, every pair of columns should sum up to a unique value. The pair of columns

whose sum equals the generated syndrome (in this example it will be columns 1 and 2) represent

the erroneous bit positions. The decoder would flip those two bits and send the corrected data over

the DRAM bus to the memory controller. The rest of the DRAM chips would not take any action

since they had zero syndrome and send the original 8-bit data.

While the example depicts Case 3, let’s look at what happens in Case 2. In this scenario, the

original double-bit errors are in two separate beat transfer chunks. But the miscorrected bit lands in

the same 8-bit chunk as one of the two errors. Let’s say this is the second 8-bit chunk. Thus, the

SECDED controller flags DUE in the second beat and sends this information to the DRAM chips.

When the erroneous chip matches the generated syndrome against columns 9 to 16 in the H matrix,

it sees that the syndrome matches with the column corresponding to the miscorrected bit position.

In this case, the DRAM chip would only flip that particular bit and send over the data to the DRAM

controller. It will not be able to localize and correct the second error position within that 8-bit

chunk. Considering the rest of the DRAM chips had zero syndrome, they send their unmodified

data over in the same beat. Since the erroneous chip could only correct one bit, the overall data still

has one-bit of error that SECDED will be able to correct.

6.5.2.3 Final Correction within the memory controller

The final correction step in the DRAM controller involves multiple rounds of SECDED decoding of

the corrected data. This is to provision for the rare cases where DBE in one chip coincides with

SBEs in other chips within the same 8-bit chunk and multiple DRAM chips encounter non-zero

syndromes. The DRAM(s) in which the SBE falls within the same beat transfer boundary as the one

in which DUE was flagged would match their generated syndrome with one of the columns in the
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target set and end up flipping the corresponding bit. Thus, while the DRAM with double-bit error

is able to correct one/two of the error bits, the other DRAMs with single bit errors and matching

syndromes end up corrupting their data. This has to be dealt with in the DRAM controller in order

to prevent SDC.

Once the controller receives the miscorrected 72-bit data from the DRAMs, it compares the

corrected codeword with the one it had received during the original read. In the ideal case where

only a single DRAM chip has double-bit error and no other chip has made any corrections, the

two codewords would differ by one/two bits within a particular 8-bit boundary corresponding to

the erroneous chip. However, if multiple DRAM chips send modified data, the controller, post

comparison, would find bit flips in more than one 8-bit chunk. To prevent miscorrection and silent

data corruption, the controller accepts changes corresponding to each chip one at a time. The

possible scenarios are shown in Figure 6.5.

• (a) DBE Case 2 (Chip 1) + SBE (Chip 8) in same 8-bit chunk. Post correction, the data

received by the memory controller is two flips away from the old data. Each of the two

flips are in separate 8-bit chunks and, therefore, is assumed to be introduced by two separate

DRAM chips. Chip 1 has corrected the miscorrected bit while chip 8 has accidentally flipped

the previously corrected bit, making it wrong again. The controller accepts corrections

corresponding to one chip at a time and sends the corrected data through the SECDED

decoder. When chip 1 correction is considered, the resulting data ends up with a single-bit

error. This is because, the rest of the data bits are the same as it was in the pre-correction

data and therefore, the post-correction accidental flip by chip 8 has been replaced by the right

data. The only error bit corresponds to one of the double-bit error locations and the SECDED

decoder corrects it. However, when chip 8 correction is considered, the resulting data ends up

with triple-bit errors. The SECDED decoder, in this case, either flags a DUE or considers it as

a correctable SBE if the syndrome matches with an H column. If it flags a DUE, the controller

rejects this case, accepts the corrections from chip 1, considers the SECDED correction as

legal and moves ahead. If both attempts lead to SECDED correction, the controller panics

and declares the DBE uncorrectable.
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• (b) DBE Case 3 (Chip 1) + SBE (Chip 8) in same 8-bit chunk. Post correction, the data

received by the memory controller is three flips away from the old data. Two of the bit flips

are in the same 8-bit chunk while the third is in a different one. Chip 1 has corrected both

double-bit errors while chip 8 has accidentally flipped the previously corrected bit, making

it wrong again. The controller accepts corrections corresponding to one chip at a time and

sends the corrected data through the SECDED decoder. When chip 1 correction is considered,

the resulting data is error free. The SECDED decoder returns a zero syndrome. However,

when chip 8 correction is considered, the resulting data ends up with triple-bit errors. The

SECDED decoder, in this case, either flags a DUE or considers it as a correctable SBE if the

syndrome matches with an H column. The controller rejects this case irrespective since it had

generated a zero syndrome in one of the other cases, accepts the corrections from chip 1 and

moves ahead.

• (c) DBE Case 2 (Chip 1) + SBE (Chip 8) in a different 8-bit chunk. In this case, even though

the SBE in chip 8 is in a different 8-bit chunk (b16), sum of two H columns in the target 8-bit

chunk equal column 16. Therefore, during correction, the decoder would think that there are

two errors in the target 8-bit chunk and flip the respective bits. Thus, post correction, chip

1 is able to correct one of the two errors but chip 8 has introduced two additional error bits.

The data received by the memory controller is three flips away from the old data. Two of

the bit flips are in the same 8-bit chunk while the third is in a different one. The controller

accepts corrections corresponding to one chip at a time and sends the corrected data through

the SECDED decoder. When chip 1 correction is considered, the resulting data ends up with

a single-bit error. The SECDED decoder corrects the error. However, when chip 8 correction

is considered, the resulting data ends up with quad-bit errors. The SECDED decoder, in this

case, flags a DUE1. The controller rejects this case, accepts the corrections from chip 1 and

moves ahead.

• (d) DBE Case 3 (Chip 1) + SBE (Chip 8) in a different 8-bit chunk. Same as in (c), chip 8 has

accidentally flipped two bits in its data post correction. Chip 1, however, manages to correct

1It is assumed that the SECDED H matrix consists of only odd weight columns and can, therefore, detect all quad-bit
errors.
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Figure 6.6: Step-by-step COMET double-bit error correction mechanism.

both double-bit errors. The data received by the memory controller is four flips away from

the old data, two flips in each 8-bit chunk. When chip 1 correction is considered, the resulting

data ends up error-free. The SECDED decoder generates a zero syndrome. However, when

chip 8 correction is considered, the resulting data ends up with quad-bit errors. The SECDED

decoder, in this case, flags a DUE. The controller rejects this case, accepts the corrections

from chip 1 and moves ahead.

From the detailed breakdown of the four scenarios, we see that the correction mechanism is able

to successfully correct in three of them. The likelihood of the uncorrectable case is ∼1 in 300,000

DBEs (probability of DBE Case 2 in one chip with SBE in another Chip). I.e., COMET achieves

99.9997% double-bit error correction. The step-by-step correction mechanism of DBEs by COMET

is shown in Figure 6.6. A similar correction outcome is expected if there is link error instead of

single-bit error in the data signals of the other chips. The probability of double-bit error striking

two different DRAM chips within the same beat transfer boundary is less than 2×10−10 with BER

of 10−4. Therefore, we only consider upto single bit error in the other DRAM chips.
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Table 6.1: COMET DBE Correction Command Sequence in DDR4 and LPDDR4 protocols

DDR4

Signals Clock Edge
Prev. CKE

/Pres. CKE
CS n ACT n RAS n/A16 CAS n/A15 WE n/A14 A[13, 11]

COMET special

R1

H L H L H H Valid Signal

Signals BG[1:0] BA[1:0] C[2:0] A12/BC n A10/AP A[2:0] A[9:3]

COMET special BG BA Valid Signal L L Target Beat number Column Address

LPDDR4

Signals Clock Edge CS CA0 CA1 CA2 CA3 CA4 CA5

COMET special-1
R1 H L H L H L BL (L)

R2 L BA0 BA1 BA2 C0 (Target Beat) C9 C1 (Target Beat)

COMET special-2
R1 H L H L H H C8

R2 L C2 (Target Beat) C3 (Target Beat) C4 (Target Beat) C5 C6 C7

6.5.3 Implementation of COMET command

The DBE correction mechanism in COMET requires the controller to send a special correction

command to the DRAMs to initiate the on-die correction. This command will need to send the

exact beat number during which the DUE was flagged along with the rest of the column address.

In DDR4/LPDDR4 standards, there are typically one or more spare command sequences that are

reserved for future use (RFU). One such RFU command sequence can be used to support this special

command.

In Table 6.1 we have listed a command sequence for DDR4 and LPDDR4 protocols that can be

used for COMET DBE correction. In DDR4 it will be a single cycle single command sent on the

rising edge of the clock while in LPDDR4 it will be a multi-cycle multi-command sent on successive

rising clock edges like their standard read/write operations. In DDR4, address bits A[2:0] determine

how the beats would be ordered when sending the data from a particular column address [154, 155]

during a read operation. For example, A[2:0] = “010” would send beat number 2 first followed by

beats 3, 0, 1, 6, 7, 4, 5, while A[2:0] = “101” would send beat 5 first followed by beats 6, 7, 4, 1, 2,

3, 0. The same address bits can be used in our special command to denote the target beat in which

DUE had occurred and the DRAM device would correct and send data accordingly. Similarly, in

LPDDR4 protocol [156, 157], C[4:0] of the 10-bit column address (C0 to C9) is used to determine

the beat ordering during read operation and can be re-purposed in our special command to send the

target beat number. Also, both protocols support burst chop, which allows the DRAM devices to
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send reduced number of beats during the memory transaction. Since we need only a single beat

post correction from the DRAMs, the special command can enable burst chop. In DDR4, BC n is

set to LOW for a burst size of 4 beats instead of the standard 8 beats. In LPDDR4, the CA5 pin

in the first cycle can be set to LOW for the shortest burst length. For DRAM devices that do not

guarantee the COMET-SEC-DBC construction, the special command to correct double-bit errors

can be turned off in the memory controller.

6.6 Results

6.6.1 Reliability Evaluation

We evaluate the impact of double-bit errors and silent data corruption caused by these errors on

system-level reliability through a comprehensive error injection study. While, in most cases, SDCs

corrupt the final result or lead to unexpected crashes and hangs during the run of an application,

some SDCs might get masked and would eventually have no impact on the final output. Since

COMET ensures that none of the double-bit errors result in SDC, our objective is to understand the

severity of on-die ECC induced SDCs in the event of a double-bit error without COMET in order to

evaluate the usefulness of COMET.

We selected a random implementation of a (136, 128) SEC on-die code that obeys the basic

constraints of a Hamming code and only ensures single-bit error correction. For the in-controller

ECC, we selected a conventional (72, 64) Hsiao SECDED code [152] that is known to be widely

used. Since approximation tolerant applications are expected to mask SDCs and be least impacted by

them, we used benchmarks from the AxBench suite [158] for this study. Any standard approximation

intolerant application is expected to strictly benefit more from COMET. We built AxBench against

GNU/Linux for the open-source 64-bit RISC-V (RV64G) instruction set v2.0 [52] using the official

tools [139]. Each benchmark is executed on top of the RISC-V proxy kernel [140] using the Spike

simulator [114] that we modified to inject errors. We use our modified version of Spike to run

each benchmark to completion 5000 times. During each run, a load operation is randomly chosen

and a double-bit error is injected in a 128-bit word. The 128-bit SEC code decodes the erroneous
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codeword first, followed by the (72, 64) SECDED decoder. The chosen SEC and SECDED decoder

combination has an overall 20.65% probability (average calculated across 100000 random 136-bit

codewords) of not flagging a DUE and resulting in a DBE-induced SDC because of miscorrections.

We observe the effects on program behavior for the cases where DUE is not flagged and, therefore,

corrupted data is sent over to the processor. The results are shown in Figure 6.7.

Figure 6.7: The impact of on-die ECC induced SDC in the event of double-bit error on the program

behavior when running applications from the AxBench suite.

Overall, on an average, ∼80% of the double-bit errors are flagged as DUE while less than 2%

of the times the resulting SDC gets successfully masked by the application. ∼12%, on an average,

result in erroneous output with a non-negligible impact on output quality and for the rest of the

cases, the program either hangs or crashes.

SEC-COMET or SECDED-COMET code constructions completely eliminate SDCs converting

output errors or crashes in the 18% of cases to more acceptable DUEs. SEC-COMET-DBC corrects

nearly all of these errors, i.e., 98% point improvement in DBE reliability (no improvement in the

2% cases where the application masks the SDC caused by DBE).
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6.6.2 Effectiveness of COMET Double-bit Correction

We evaluate the reliability of a system with 128GB DRAM with three different error correction

schemes: no on-die ECC, standard SEC ECC and SEC-COMET-DBC scheme. We used fault

simulator MEMRES [159] with real world field data from [160] and [159]. We took into account

scaling induced bit error rate of 10−4 for this study. Our system has 2 channels, each containing

dual ranked DIMM of 64GB capacity with 18 x8 DRAMs. In all three systems we have considered

in-controller SECDED protection. We perform Monte Carlo simulations for a 5 year period and

consider both undetected as well as detected-but-uncorrectable errors as system failures. For details

on each failure mode, we refer the reader to [159]. Overall, we see that adding on-die SEC coding

significantly helps in improving device failure by 35% over the system without any on-die coding.

The main failure mode that on-die ECC takes care of is single bit permanent fault intersecting with

a single-bit transient fault(SBT) in the array or the bus. The SBT in the array is taken care of by

the occasional scrubbing that is enabled in the DRAMs. With scrubbing enabled, the DRAM dies,

when idle, occasionally activate rows, check for errors in the row using the on-die SEC mechanism,

correct (if possible) and write the data back. The intersection with bus faults is taken care by

the on-die and in-controller ECCs. With COMET-SEC-DBC, we can achieve a 8.2% reduction

in system faults over standard SEC, which translates to more than 150 lesser failures per year.

This improvement in memory resiliency comes from double-bit correction which helps to reduce

single-row failures and single-word failures.

6.6.3 Impact on Encoder/Decoder Area, Energy and Latency

COMET code constructions do not require additional redundancy bits. But the encoder and decoder

circuitry overheads varies based on the exact code implementation. In order to evaluate our proposed

SEC code overheads, we synthesized few different SEC implementations along with our construction

using a commercial 28nm library. 2 We considered the SEC code with the minimum possible sum

of the weight of the columns in the parity check matrix H as the most efficient implementation in

2Though DRAM technology is different compared to logic technology, the comparison between different implemen-
tations should still hold.
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Table 6.2: Synthesis Results for Different x8 SEC Decoder Implementations in Commercial 28nm

Library

SEC-random SEC-best case
SEC-COMET-DBC

(x8)

SEC-COMET-DBC

(x16)

Gate Count 168 165 170 170

Area (um2) 331.452 318.168 328.374 332.91

Latency (ps) 512 508 517 520

Power (W) 2.12E-05 1.93E-05 2.09E-05 2.12E-05

terms of gate count. We also compared against a random SEC implementation which satisfies the

basic Hamming code constraints required for single error correction.

Based on the results, we see that the difference in area (<5%), latency (<2.5%) and power

(<9.7%) among the different SEC decoders is minimal and negligible. Furthermore, on-die ECC

consumes a very small fraction of the overall DRAM active power (∼5-7% [24]).

6.6.4 Performance Impact of SEC-COMET-DBC

SEC-COMET has no performance impact. In a system using x8 DDRx protocol based DRAMs

with scaling induced bit error rate of 10−4 and on-die (136, 128)SEC mechanism, a double-bit

error in a 572-bit memory line that causes the (72,64)SECDED decoder to flag a DUE can happen

once every ∼17000 read operations. This is the probability of DBE occurring within a 136-bit

SEC dataword where both error bits are either in the same 8-bit chunk belonging to the 64-bit

half that is read from the chip or the mis-corrected bit coincides with one of the two erroneous

bits. To evaluate COMET’s correction mechanism’s impact on performance, we used cycle based

simulation of 18 SPEC CPU 2017 benchmarks [161], 8 Parsec benchmarks [162] and 4 applications

from the GAP suite [163] on the Gem5 simulator [138]. These are the applications that we could

successfully compile and run using Gem5. We used a 2GHz single-core processor with a private

32KB I-cache, 64KB D-cache, shared 512KB L2 cache and shared 2MB L3 cache. For once every
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17000 read operations, we doubled the read latency and added worst-case 9 memory cycle penalty

for the DBE correction. We evaluated the DDR4-2400-x8 memory configuration with a 64b data

channel for 2-billion instructions. The overall performance impact was less than 1.2% compared to

an oracular case with no memory errors. This is because one additional memory read every 17k

reads is still rare and has negligible impact on queuing delay and overall execution time. Of course,

the impact on overall performance reduces with reduction in BER (<0.1% for BER of 10−8). Note

that, in absence of SEC-COMET-DBC, these DBEs would require frequent checkpoint-recovery, the

performance cost of which is extraordinarily high (30 minutes to restore a checkpoint [164]).

6.7 Discussion

6.7.1 Independent design of on-die and in-controller codes

All three COMET schemes proposed allow within-DRAM SBE correction that is invisible to the

rest of the system. Two of the schemes (SEC-COMET and SEC-COMET-DBC) allow independent

code constructions by DRAM and CPU vendors. SEC-COMET and SEC-COMET-DBC require

the DRAM vendors to add constraint(s) while constructing the on-die SEC. But the CPU vendors

can design any SECDED code independently without requiring any knowledge of the on-die SEC

implementation. We proposed in-controller SECDED-COMET for the case where SEC-COMET

construction is not guaranteed by the DRAM vendor. SECDED-COMET guarantees protection

from DBE-induced SDCs only for those DRAMs that have the on-die SEC implementation used for

SECDED-COMET construction.

6.7.2 Using Stronger On-die Codes

SECDED code has the ability to detect double-bit errors, not correct them. Having on-die SECDED

would prevent DBE-induced miscorrections. However, as DRAM vendors prefer check bits in

multiples of 8 [142], the on-die ECC would be (72, 64)SECDED. This would double the parity

storage overhead from 6.25% in (136, 128) SEC to 12.5%. Even after doubling the parity overhead,

the code will only be capable of avoiding miscorrections due to DBE, it will not be able to correct
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the DBE. Our proposed COMET schemes, explained in detail in the subsequent sections, have

the same overhead (6.25%) as today’s on-die SEC code while avoiding all DBE-induced SDCs

and correcting almost all (99.9997%) DBEs. Therefore, using on-die SECDED only doubles the

parity overhead while having weaker protection capabilities as compared to COMET. Similarly,

double error correcting also requires twice the number of parity bits per 128-bit of dataword and

significantly increases the latency, area and power overhead of the encoder/decoder circuitry.

6.7.3 Using Stronger In-controller ECC

Using a double-error correcting, triple error detecting (DECTED) scheme in the memory controller

will require additional storage and data lines to transfer the extra parity bits. For every 64-bits of

dataword, DECTED requires 7 extra parity bits as compared to SECDED. In some high perfor-

mance, high-reliability expensive systems today, single symbol correcting, double symbol detecting

(SSCDSD, also known as Chipkill) coding is used to tolerate upto single chip failures. However, the

standard 4-bit symbol Chipkill code used today can support only x4 DRAM chips [25]. In order to

use x8 DRAM, one data access will have to be split into two, which will have a significant impact

on performance. Entire chip failures are very rare and, therefore, Chipkill is considered an overkill

in most systems today [25].

6.7.4 Comparison with Past Works

Several past works have proposed stronger memory reliability but most of them either do not

improve on-die ECC or incur overheads and require changes to the standard protocol. XED [25]

proposes using error detection within each DRAM die and then exposing the detection result to the

in-controller code for correction. But they assume that on-die codes implemented in today’s DRAM

have guaranteed double-error detection capability while in most known cases [24], the on-die code

only guarantees single-error correction. Using the same code for multi-bit error detection will

not be effective as the code would miscorrect. Besides, it does not support silent SBE correction

within DRAMs which is desired by DRAM vendors. Similarly, DUO [165] also gets rid of on-die

SBE correction and uses those additional bits for stronger in-controller protection. Thus, DRAM
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vendors cannot use DUO to improve yield. Besides, it requires non-negligible changes to the

existing memory protocols. A recent work [142] highlights the aliasing problem in SEC codes

and provides a construction technique that would result in minimal aliasing. However, their code

would still result in SDCs when paired with in-controller SECDED unlike COMET that completely

gets rid of SDCs by carefully steering the miscorrected bit. PAIR [166] uses on-die SECDED that

requires N on-die ECC decoding cycles for xN DRAM. It ensures that each DQ bit comes from

a separate codeword. This incurs a significant latency overhead and is not feasible for larger data

width (x16/x32). Besides, it requires an additional signal to transfer the multi-bit error detection

information. Other proposals such as Frugal-ECC [167] enhances the reliability of non-ECC

DIMMs by adding parity bits to compressed memory lines. Therefore, the maximum achievable

reliability is limited by the compressibility of the memory lines. Software Defined Error Correcting

Code (SDECC) [168] proposes using software based heuristic recovery from DUEs. However,

the correction is prone to miscorrections and is limited by the value locality of the nearby words

in the cacheline. Other proposed reliability techniques like Bamboo-ECC [153] uses large ECC

symbols and codewords to provide stronger protection while incurring performance overhead.

ArchShield [147] provides protection against single-bit scaling induced errors but requires storing

of fault maps within the DRAMs that would need to be updated in-field that requires running full

array testing using a Built-In Self Test (BIST) engine. CiDRA [169] proposes using on-die ECC

to provide protection against multi-bit failures. However, it requires large SRAM overheads that

makes its usage prohibitive. COMET requires no additional storage overheads, no additional signals

and still allows the DRAM manufacturers to silently correct the SBEs in the memory array without

making them visible to the rest of the system.

6.7.5 Accommodating Wider Data Widths

As mentioned previously in Sections 6.4.1 and 6.5.1, with 8-bits of parity for 128-bits of dataword,

SEC-COMET (SEC-COMET-DBC) construction works upto per-chip beat width of 64 (16) bits.

For wider interfaces, COMET cannot avoid SDCs or correct DBEs. To enable COMET, the 64-bit

SECDED dataword has to be formed using multiple 128-bit SEC datawords. Therefore, within the

DRAM chip, every 16-bits of the 64-bit data transferred needs to be a part of a different 128-bit
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SEC dataword. Thus, a single write or read command would require multiple rounds of on-die

SEC encoding and decoding. Typically, during a read/write operation, an entire DRAM row gets

activated into the row buffer. The size of a DRAM row is usually few kBs and therefore, contains

multiple SEC datawords. Hence, to enable COMET for wider per chip beat widths, the multiple

on-chip encoding and decoding can be done in parallel and would not require multiple activations

of DRAM rows.

6.8 Conclusion

Aggressive technology scaling in modern DRMs is leading to a rapid increase in single-cell DRAM

error rates. As a result, DRAM manufacturers have started adopting on-die error-correcting coding

(ECC) mechanism in order to achieve reasonable yields. The commonly used on-die SEC ECC

scheme interacts with in memory controller SECDED ECC, to unfortunately cause silent data

corruption in >25% of double-bit-error cases. To prevent silent data corruption from happening, we

introduce COllaborative Memory ECC Technique (COMET), a mechanism to efficiently design the

on-die SEC ECC or the in-controller SECDED ECC that steers the miscorrection to guarantee that

no silent data corruption happens when a DBE occurs inside the DRAM. Further, we develop the

SEC-COMET-DBC on-die ECC code and a collaborative correction mechanism between the on-die

and in-controller ECC decoders that allow us to correct the majority of the DBEs within the DRAM

array without adding any additional redundancy bits to either of the two codes. Overall, COMET

can eliminate all double-bit error induced SDCs and correct 99.9997% of all DBEs with negligible

area, power and performance impact.
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CHAPTER 7

Compression with Multi-ECC: Enhanced Error Resiliency for

Magnetic Memories

Emerging non-volatile magnetic memories such as the spin-torque-transfer random access memories

(STT-RAMs) provide superior density and energy benefits compared to conventional DRAM or

Flash based memories. However, these technologies often suffer from reliability issues and thus

strong conventional reliability schemes are required. These schemes have large overhead for storage

which, in turn, can potentially eclipse the density and energy benefits these technologies promise.

Moreover, the read and write operations in STT-RAMs show asymmetric behaviour i.e., bit-flip

probability of 1→0 is significantly higher than 0→1. However, conventional Error Correcting

Codes (ECCs) treat both 0 and 1 flips similarly and thus result in unbalanced reliability of these

two types of errors. In this chapter, we propose a new ECC protection scheme for STT-RAM based

main memories, compression with multi-ECC (CME). First we try to compress every cache line to

reduce its size. Based on the amount of compression possible, we use the saved additional bits to

increase the protection to strong ECC schemes, if possible. Compression itself reduces the hamming

weight of the cache lines, thus reducing the probability of 1→0 bit-flips. Opportunistically using

stronger ECC schemes further helps tolerate multiple bit-flips in a cache line. Our results show that

for STT-RAM based main memories, CME can reduce the block failure probability by up to 240x

(average 7x) over using a standard (72,64) SECDED scheme. The latency and area overheads of

CME is minimal with average performance degradation of less than 1.4%.

Collaborators:

• Saptadeep Pal, UCLA

• Prof. Puneet Gupta, UCLA
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7.1 Introduction

The criticality of memories in the design and performance of today’s computer systems is becoming

increasingly prominent. Main memories serve a pivotal role, sitting in between the processor cores

and the slow storage devices. With aggressive technology scaling, a large number of processor

cores are being integrated in today’s systems. As a result, there is an ever increasing demand for

main memory capacity in order to be able to exploit the processing power of these multicore and

manycore systems and maintain the performance growth. However, DRAM scaling is unfortunately

slowing down. Though DRAM is still the main memory workhorse, several application contexts

need different properties from the main memory (higher density, non-volatility, higher performance,

etc). Hence, it is becoming increasingly important to consider alternative technologies that can

potentially avoid the problems faced by DRAM and enable new opportunities.

Several emerging non-volatile memory (NVM) technologies are now being considered as

potential replacements for or enhancements to DRAM. Most of these new non-volatile technologies

(Phase Change Memory[PCM], STT-RAM, Resistive RAM[ReRAM], etc.) promise better scaling,

higher density, and reduced cost-per-bit [30]. However, they come with their own set of challenges.

The biggest problem that these emerging technologies face is the high stochastic bit error rate. In

fact, the reliability challenges of NVMs can offset the density and energy advantages that they offer.

Increase in demand for memory capacity requires aggressive scaling of area-per-bit of storage. At

higher density, these non-volatile emerging memory technologies tend to be more susceptible to

stochastic bit errors [31]. Due to the random nature of the bit errors, these memory technologies

require stronger in-field error-correcting code (ECC) [32].

The stochastic nature of failures in NVMs is similar to the radiation induced soft errors in

DRAM and SRAM and occur without any warning. In order to ensure the integrity of the data,

an error detection mechanism, followed by correction of the error(s) needs to be incorporated in a

system. In conventional systems, ECC schemes are deployed to recover from memory errors. These

schemes require adding redundancy bits alongside the original data (or message). For DRAM based

memory, the most commonly used ECC schemes to recover from bit error or faulty chip error are

the SECDED (Single-Error Correcting, Double-Error Detecting) [127] and Chipkill-Correct [170]
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schemes.

This stochastic bit error rate in NVMs, however, is much higher than the single-bit soft error

rate in DRAM. For example, in PCM, a two-bit cell may have 106-times higher error rate than

DRAM and would, therefore, require a much stronger ECC scheme [32, 171]. Also, for most

of these emerging NVM technologies, some states show higher error rates than the rest. As a

result, the conventional ECC schemes used in DRAM-based memory need to be extended for

providing multi-bit asymmetric protection to maintain acceptable limits of yield and performance

of systems with these emerging memory subsystems. However, the cost and complexity of stronger

error detection and correction circuitry increases exponentially, requiring much larger number of

redundancy bits. This adds overhead not just in terms of storage but also power and performance.

Out of the various magnetic NVMs that have been proposed, Spin-Transfer Torque Random

Access Memory (STT-RAM) is one of the most promising non-volatile technologies and has been

studied extensively as a scalable non-volatile alternative to DRAM [172–174]. While STT-RAM

might not have huge density benefits over DRAM like other technologies like PCRAM [175],

its read performance is comparable to that of DRAM. The write energy and latency are roughly

5-10X and 1.25-2X respectively worse than that of DRAM [176–178] but much better than most

other non-volatile technologies. Also, it has zero leakage power and much better program/erase

endurance than the other competing NVM alternatives. In [178], the authors show that with

certain optimizations, a STT-RAM main memory can achieve performance comparable to DRAM,

while reducing the main memory energy by 60%, thus, making a strong case for STT-RAMs as a

potential main memory alternative. STT-RAMs are also being considered as SRAM substitute for

on-chip caches and has already been introduced in several commercial products [179, 180]. Though

STT-RAMs are not susceptible to radiation induced soft errors, they suffer from a very high Bit

Error Rate (BER) [181, 182]. As the NVM technology scales below 45nm, read disturbance error,

retention error due to thermal instability, and write error rates are growing, leading to unacceptably

high bit error rates (BER). Several circuit level and bit-cell design solutions have been proposed

to lower the error rates [159]. Also, a few recent efforts have been made to provide stronger error

resiliency [32, 183, 184]. Most of these solutions, however, result in very high energy and area

overhead.
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In this chapter, we propose CME (Compression with Multi-ECC), a novel scheme to provide

strong error correction in Magnetic RAM (MRAMs) based main memory subsystems. Though the

proposed techniques would be useful for other types of DDR-based memories, we only consider the

characteristics (and error-rates) of STT-RAM in our evaluations. This chapter makes the following

contributions:

• We use compression to reduce the size of each cache line so that the saved bits can be used

to opportunistically add stronger protection without incurring the storage overhead of the

redundancy bits of the stronger ECC codes. The code is chosen such that the final length of

every cache line after compression and ECC remains constant in order to make the proposed

CME scheme DDR compatible.

• Given the asymmetric nature of errors in STT-RAMs (explained in detail in Section 7.2),

compression not only helps to reduce the length of the cache line, it also reduces the number

of ‘1’s (hamming weight) in each cache line.

• Since the final compressed cache line length can be anywhere between 13-bits (best case) and

512-bits (no compression), there is a wide variety of code choices available. We propose a

dynamic programming solution to choose optimal mix of ECC codes to use, given the weight

distribution of cache line words and the final cache line length distribution after compression.

We show that optimized CME can achieve upto 240x (avg. 7x) reduction in block failure

probability.

• We present two minimal memory architecture changes required to accommodate the tag chip

that holds the tag required for our CME scheme per cache line and show that the performance

overhead of CME is less than 1.4 % on average.

7.2 Background

This section provides a brief background on two important concepts: the reliability concerns of

STT-RAM based memories, and cache line compression techniques. STT-RAM memories suffer

from high read/write/thermal error rates. A lot of these errors are asymmetric in nature, i.e., the
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probability of an error happening in a particular state is higher than the rest of the states. Cache line

compression, on the other hand, has been used extensively in the past mainly to satisfy the rising

demand for memory capacity and bandwidth. But in this work compression is used opportunistically

for providing stronger error detection and correction to the cache lines.

7.2.1 STT-RAM Basics

In an STT-RAM cell, data is stored in a magnetic tunneling junction (MTJ). As current is passed

through a mono-domain ferromagnet, the angular momentum of the electrons flips the direction of

magnetization in the ferromagnet. The basic structure of a STT-RAM cell is given in Figure 7.1.

MTJ consists of a tunneling oxide (MgO) separating two ferromagnetic layers. One layer (reference

layer) has fixed magnetization and the other is a free layer whose direction of magnetization flips

depending on the direction of current of sufficient density. The relative alignment of the two layers

results either in a high resistance path (when opposite and usually represents ‘1’) or a low resistance

path (when parallel and usually represents ‘0’).

Figure 7.1: Schematic of STT-RAM showing the anti-parallel and parallel states

Errors in STT-RAM can be broadly classified under three categories: read disturb errors, write
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errors and retention errors due to thermal instability.

7.2.1.1 Read Errors

The read operation in STT-RAMs is unidirectional, as shown in Figure 7.2. In STT-RAM, feature

size scaling has led to a reduction in write current; however, read current has not reduced as much

since the correct data may not be sensed when using low-current value. As technology scales below

45nm, read current doesn’t reduce significantly beyond 20µA while the write current reduces to

around 30µA [182]. Thus, read current is getting closer to the write current such that the read

operation now has the potential to alter the stored value. Such an error is called read disturbance

error. The data that is read is correct but the stored value becomes erroneous and subsequent

reads from this location may contain multiple bit-flips. Since the read current is unidirectional,

the unintentional bit flip during read is asymmetric and happens only in one direction (1→0

when reading a ‘1’). Thus, reducing the number of 1’s (or hamming weight) in a cache line will

considerably help to reduce the read disturbance errors (RDEs).

7.2.1.2 Write Errors

In STT-RAM, the direction of magnetization in the free layer of the MTJ is flipped based on the

direction of the current flowing through the cell. Thus, the value being programmed determines the

current direction, as shown in Figure 7.2. In STT-RAM, a write failure happens if the switching

current is removed before the MTJ switching completes. The time required for flipping the cell

content varies due to the stochastic switching characteristics of the MTJ. However, this failure is

also asymmetric [181]. When writing to STT-RAM cells, the MTJ switching from low-resistance

state to high-resistance state (0→1) is considered as “unfavorable” switching direction compared

to the MTJ switching in the opposite direction: 0→1 flipping requires larger switching current than

1→0 flipping due to lower spin-transfer efficiency. Also, the variation of MTJ switching time at

0→1 flipping is more prominent. Hence, the chances of write error happening are much higher

during a 0→1 transition than a 1→0 transition. As mentioned in [183], the bit error rate of 0→1

flipping is PER,0→1 ∼= 5×10−3 while that of 1→0 flipping is PER,1→0 ∼= 10−7. They have also
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Figure 7.2: Read and write mechanisms for STT-RAM is shown here

analyzed and concluded that the reliability of a word in a cache line decreases exponentially with

increase in the hamming weight of cache lines. Thus, just like RDEs, Write Error Rate (WER) can

also be reduced by reducing the hamming weight of a cache line.

7.2.1.3 Retention Errors

In STT-RAM, the third major source of errors is retention error where the data stored in the STT-

RAM cell flips after a certain period of time. This false switching of data during the standby state

is due to the inherent thermal instability of STT-RAMs. Increasing the thermal stability not only

reduces retention errors but can also help to reduce read disturb errors [185]. But the critical current

or the write current is proportional to the thermal stability of the cell. Higher thermal stability

requires a higher write current and/or a longer write pulse. Thus there is a fundamental trade-off

between write-ability (write time and/or power) and retention time [186]. Also, thermal stability of

STT-RAM cells can be increased by using larger cell sizes, thus, increasing robustness at the cost of

area [187].
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7.2.2 Previous Work On STT-RAM Reliability

Errors due to read disturbance can be reduced using restore operation, which writes back the

data every time there is a read operation [182]. Another work [188] suggests using a pulsed

read technique to reduce read disturb errors in STT-RAM cells. However, all these techniques

have significant overheads in terms of latency, energy and complexity. One recent work [189]

suggests the use of data compression to enable duplication of bits in the memory. If cache lines are

duplicated, then a restore operation would be needed only after all the copies have been read. This

can potentially decrease the number of restore operations required after every read to deal with read

error disturbances. However, if the STT-RAM based memory system uses DDR protocol, the entire

cache line (both original and duplicated copies) would get read into the row buffer from the memory

array for every read operation. Thus, duplication would technically not reduce the number of restore

operations. There are also some bitcell architectures proposed [190, 191] to alleviate the problem of

read disturb. However, they also incur significant overheads and only help in dealing with a single

type of error. The authors in [192] propose a circuit level technique to detect read disturb errors but

detection alone with no correction or reduction in error rates doesn’t help to reduce performance

degradation that happens due to system crashes when uncorrectable errors occur.

To deal with write errors, [183] suggests reducing the Hamming weight of each cache line. If

the number of 1’s is reduced in each line, it would considerably reduce the probability of having

write errors since a 0→1 flip requires longer time and larger current and is thus, more prone to

write errors. To reduce the Hamming weight of the cache line, [183] suggests using static/dynamic

XOR between words of each cache line exploiting the value locality of stored data. Also, few recent

works [32, 193] suggest improvements at the circuit level to improve BER of magnetic memories.

Intel, in its recent STT-RAM work [2], proposes using a costly write-verify-write scheme to reduce

write errors and a two stage current sensing technique during read to mitigate read disturb error.

However, they still have significantly high write bit error rate (can be as high as 10−6).

In [187], the authors proposed using stronger ECC in order to reliably decrease the size of

STT-RAM cells and have shown that higher density can be achieved if stronger ECC protection is

used. Another work [159] proposed adaptive write-schemes using in-memory variation sensors to
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reduce write latency reliably for better application performance. To deal with read margin errors

under thermal variation, [194] designed a body-biasing feedback circuit to improve read sensing

margin for STT-RAMs. Most of the proposed techniques either target mitigation from one type of

error (write or read error) or have very large overheads in terms of circuit complexity, area or power.

7.2.3 Previous Work On Cache Compression

Cache line compression techniques are being widely proposed to satisfy the rising demand for

memory storage capacity and memory bandwidth [133, 195, 196]. These techniques exploit spatial

and value locality of the data in typical applications. In most cases, there are only a few primitive

data types supported by hardware (e.g., integers, floating-point, and addresses), which typically

come in multiple widths (e.g., byte, halfword, word, or quadword) and are often laid out in regular

fashion (e.g., arrays and structs). The data used in most applications, on the other hand, are low

magnitude and are often represented inefficiently, for e.g., 4-byte integer type used to represent

values that usually need only 1-byte.

One commonly used compression scheme is Base-Delta-Immediate (B∆I), as proposed in [134].

This scheme exploits the low dynamic range of values present in many cache lines to compress

them to smaller sizes. They split up the cache line into multiple equal sized chunks. They take the

first chunk as the base and represent all the subsequent chunks as delta with respect to the base.

The delta value is smaller than the original value due to the existing value locality in the cache line

and hence, can be represented using lesser number of bits. While the authors manage to reduce

the compression and decompression latency as compared to the popularly used cache compression

techniques such as Frequent Pattern Compression [133], the increase in compression ratio is not

significant.

Another recent work on cache compression [135] claims to have better compression ratio than

B∆I. This work exploits locality in two layers: within values or words of the cache line data and

within bits in the same bit-plane. A bit-plane is a set of bits corresponding to the same bit position

within each cache line word in a data array. As a result they manage to achieve higher compression

ration than most of the previously proposed cache compression techniques. However, this scheme
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has been proposed for 128-byte cache lines and needs to be modified for systems with 64-byte

cache lines. Both B∆I and BPC schemes have been compared later in Section 7.6.1 and the pros

and cons of each compression scheme in the context of stronger error detection and correction have

been discussed.

Most of the past works utilize cache compression to effectively increase the size of the cache.

However, our goal is to utilize compression to reduce the hamming weight of the cache lines and

also to utilize the additional space to opportunistically add in stronger error correction codes (ECC).

Compression with ECC has been proposed previously in the context of DRAM based memory

system in FrugalECC [197], COP [198] and Free ECC [199]. In [197] and [199], they used the

same protection for every cache line that could be compressed beyond a certain threshold. If

uncompressed, the overflow data required additional storage and accesses. In [198], they added

error correction only when compression was possible, leaving some cache lines unprotected because

of lack of compressibility. Also they use the same protection for every compressed cache line

irrespective of how much a particular cache line could be compressed. Another problem with these

schemes is that their compression ratio goals are very modest since they focus on metadata. In our

case we use different ECC schemes for different cache lines depending on the final compressed

size of that particular line. Thus, after encoding with ECC, every cache line is of uniform size

and therefore, has no overflow requiring extra storage and accesses. Also we can opportunistically

provide much stronger protection to sufficiently compressed cache lines.

7.3 Our scheme - Compression with Multi-ECC (CME)

In this section, we will discuss the details of Compression with Multi-ECC (CME) scheme. Cache

line compression is used for two reasons. Firstly, it helps in reducing the hamming weight of each

cache line. Secondly, it enables either data duplication (when the compressed cache line is less than

half its uncompressed size) or allows to use the available bits to provide stronger error protection.

The selection of the stronger ECC scheme depends on the size of the cache line post compression

such that the final size of each cache line with the redundant bits remains uniform.
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Figure 7.3: Processor Memory system architecture with CME

7.3.1 Overall Architecture

As shown in Figure 7.3, every time a cache line is to be stored in the memory, it is a two-step

approach. It first goes through the compression engine and then through the Multi-ECC encoder. In

case of a load operation, it first goes through the ECC Decoder and then the de-compression engine.

Even though the size of an ECC word is 72-bits, the 73rd bit shown in Figure 7.3 is to signify a tag

bit that is sent across the DDR bus in every cycle.

We used a slightly modified version of Bit-Plane Compression (BPC) scheme proposed in [135]

which is explained in detail in the following subsection.

7.3.2 Cache Line Compression using modified BPC and an optional Hamming Weight Aware

Inversion Coding

Bit Plane Compression (BPC) as described in [135] is a two-step process on a 128B cache line, the

first step is where the data is transformed to increase compressibility and the second is to encode

the transformed data. We slightly modified the compression scheme for a 64B cache line. We used

it for a 64-bit architecture where each cache line word is 64 bits. However, the compression is done

on 32-bit words. The modified scheme is shown in Figure 7.4. We split each 64-bit word into two

32-bit sub-words, the higher order bits (bits 63-32) constitute one sub-word and the lower order bits

(bits 31-0) form the other sub-word. The first step is cache line manipulation and transformation
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Figure 7.4: An overview of the modified Bit-Plane Transformation scheme

(Delta-BitPlane-XOR [DBX]) to improve compressibility of data and thus reduce the compression

hardware complexity.

The next step after data transformation is the compression of the transformed data. BPC

combines run-length encoding with a type of frequent pattern encoding to compress the transformed

data. As mentioned before, the work in [135] used word-size of 64 bits in a 128-byte cache line,

while for our evaluations we use 32-bit words and 64-byte cache line. Hence, our symbol encoding

is slightly different from theirs and is shown in table 7.1. This encoding scheme not only helps to

reduce the cache line length but also helps to reduce the hamming weight considerably (as seen

in Figure 7.11). For instance, in this encoding scheme, a running length of 1’s gets encoded to

{5’b00000}. The base (first two original) symbols is compressed separately by original symbol

encoder as {3’b000}, {3’b001, 4-bit data}, {3’b010, 8-bit data}, or {3’b011, 16-bit data} if its value

is 0 or fits into 4/8/16-bit signed integer, respectively. Otherwise, the base symbols are encoded as

{1’b1, 32-bit data}.

Since both read and write errors in magnetic memories is asymmetric, reduction of hamming

weight is important for resiliency. After each BPC word is encoded, an optional inversion cod-

ing [200] can be added to further reduce the hamming weight of the cache line. We check the

weight of each BPC encoded word. If it is greater than half the size of the word, we invert the

word. In order to facilitate inversion encoding, we add one additional bit in front of each BPC word

(‘1’ if the word is inverted and ‘0’ otherwise). However, note that the additional bit per BPC word

required for inversion increases the length of the final compressed line. In Section 7.5.2 we show
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that, in many cases, this increase in cache line size due to inversion tag bits leads to weaker ECC

scheme and finally, in spite of reducing the hamming weight, inversion ultimately adversely affects

the overall block failure probability. One way to reap the benefits of hamming weight reduction

using inversion coding without significantly increasing the size of the cache line would be to apply

inversion on groups of multiple BPC words instead of a per word basis.

After doing BPC and inversion coding we check the final encoded size of the entire cache line.

If the length exceeds 512-bits, the raw cache line is taken and encoded with a (72,64) SECDED

code before writing to the main memory. If the compression successfully reduces the size of the

cache line, we opportunistically encode the cache line with a stronger ECC code before writing to

the memory.

Table 7.1: Frequent Patterns for BPC and DBP/DBX symbol encoding

DBP/DBX Pattern Length Code (binary)

0 (run-length 2∼33) 7-bit {2’b01, (RunLength-2)[4:0]}

0 (run-length 1) 3-bit {3’b001}

All 1’s 5-bit {5’b00000}

DBX!=0 and DBP=0 5-bit {5’b00001}

Consecutive two 1’s 9-bit {5’b00010, StartingOnePosition[3:0]}

Single 1’s 9-bit {5’b00011, OnePosition[3:0]}

Uncompressed 16-bit {1’b1, UncompressedData[14:0]}

7.3.3 Multi-ECC on Compressed Cache Line

Compression helps to reduce the size of the cache line in most cases. Once the reduction is done,

the final size of the cache line determines the ECC scheme to be used. Shorter the length of the

compressed cache line, more the available redundant bits for ECC and therefore stronger will be the

protection. We wanted to ensure that the STT-RAM based memory subsystem closely matches the

standard ECC-DDR protocol. Hence, every fetch will be 72-bit wide.
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7.3.3.1 Choice of Codes

The possibility of ECC schemes for a given redundancy is large. Since the final compressed cache

line length can be anywhere between 13-bits (best case) and 512-bits (no compression), there is a

wide variety of code choices available. Usually, each ECC word in DDR memory is comprised of

72 bits (original message + ECC bits) which is equal to the length of one fetch. However in CME,

we also consider ECC code word sizes of 36 (i.e., two ECC words per fetch) and 144 (i.e., one ECC

word per two fetches). We therefore restricted our code space to the options provided in Table 7.2.

Table 7.2: Choice of Error Correcting Codes for CME

ECC scheme Length of ECC word (original message + ECC bits)

SECDED (Single Error Correcting, 36 ( 29 + 7 )

Double Error Detecting) [127] 72 ( 64 + 8 )

144 ( 135 + 9 )

DECTED (Double Error Correcting, 36 ( 23 + 13 )

Triple Error Detecting) [201] 72 ( 57 + 15 )

144 ( 127 + 17 )

3EC4ED (3 Error Correcting, 36 ( 17 + 19 )

4 Error Detecting) [202] 72 ( 50 + 22 )

The reason for using code word sizes of 36-bits and 144-bits alongside 72-bits is to increase

the opportunity for stronger protection. As an example, let’s assume a compressed message is 58

bits long, therefore splitting the message to two 29-bit messages can enable SECDED protection

(29+7) on each 29-bit message and two code words can constitute a 72-bit fetch. If we had restricted

our code space to 72-bit words, the 58 bits of the two messages will only get SECDED protection

since DECTED protection will require the message to be of length 57 bits. It can be noted from

Table 7.2 that, no code stronger than 3EC4ED (3 error correcting, 4 error detecting) has been

used even for cases where stronger protection is possible (for eg. 4EC5ED can be used in cases

where the compressed cache line size is less than 368 bits). This is because stronger ECC not only

adds greater hardware complexity and overheads, the redundant bits added to each word in the
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Figure 7.5: Block failure probability is shown for blocks with different Hamming weight (HW)

and ECC schemes. The probability of 1→0 bit-flip is considered to be 10−5

cache line often increases the Hamming weight of the overall word considerably, thus increasing

chances of read disturb/write errors. As seen in Figure 7.5, with stronger ECC, the block failure

probability decreases rapidly till 3EC4ED, beyond which the benefit of stronger ECC saturates.

144-bit 3EC4ED was not evaluated because of the large size of the encoder/decoder alongside the

large number of redundancy bits.

We also wanted to limit our tag overhead per cache line to 8. If the tag is protected by SECDED,

then 4 bits of redundancy would be required. Thus the actual tag can be at most 4 bits. The first bit

would be used to denote if the cache line is compressed or not. With 3 bits of tag left to denote the

ECC scheme used on a compressed cache line, there can be eight distinct codes that can be used.

We decided to use 2x and 4x duplication for any 512-bit cache line that gets compressed beyond

256-bits or 128-bits respectively. Therefore, cache lines with compressed length higher than 256

are left with six choices of codes.

Unlike [189] which uses duplication to avoid reading the entire line (which in standard DDR

memories actually does not help with read disturb as explained earlier), we use it to minimize

uncorrectable errors. As observed from our SPEC2006 benchmark traces, the average number of

read operations between two write operations is less than two. Thus, when the data is duplicated

once, a cache line word would fail only when both copies of the word have un-correctable errors

(note that all used ECC codes detect more errors than they can correct). Therefore, in our scheme,
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Figure 7.6: An example of CME scheme where the compressed cache line size is 440 bits

we read the entire cache line (with all the copies) and only use the subsequent copies if there is an

error in the first copy. Reduction in errors means scrubbing (refresh with ECC) operations will be

needed less frequently, which saves both time and energy. If the compressed size is less than 1/4th

of the original size, we propose a 4x duplication for even stronger protection against errors.

Since all the cache lines within a certain range of compressed length get the same type of

protection, majority of those cache lines would have to be padded with zeros at the end, before

adding ECC, to increase the final message length to a certain value required by that particular code

type. For example (shown in Figure 7.6), if all the cache lines whose final compressed length lies

between 416 and 456 get (72,57) DECTED protection, all cache lines within that range whose

length is not exactly equal to 456 would need to be padded with zeros to increase the final length to

456 before splitting up the cache line into eight 57-bit words and adding DECTED protection on

each one of them.

Based on this we realized that for any range, most of the cache lines would have the last few

words being all 0s. This can be seen in Figure 7.7 where we show the hamming weight of each

32-bit word of compressed cache lines. Based on the compressed cache line size, we bin the cache

lines with post-compression size in between 256 to 512 bits in to four buckets. Each plot in the

figure corresponds to one bucket and shows the distribution of average hamming weight of the

32-bit words across six benchmarks from the SPEC2006 suite. Each of these 6 benchmarks had
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Figure 7.7: Average hamming weight of each 32-bit word of all cache lines within each bucket.

Uniform bucket size of 64 bits were used for all cache lines whose final size lies between 512 bits

and 256 bits.

widely different average compression ratio (original-size/compressed-size) and hamming weight.

Hence it can be argued that these six benchmarks are good representations of the entire suite.

It can be seen that in most cases, the last few words have much less average hamming weight as

compared to the rest. This is because majority of those words have all 0s. Thus, we decided to add

split codes to our code space. In split codes, the same cache line would have two different types of

protection. The first few words would have stronger protection than the last few. In order to limit

the code space, we decided to evaluate combinations of at most two codes from Table 7.2 and limit

the use of weaker protection up till the fourth word from the end. To further limit the code space,

after listing down all the choices, we chose the strongest code within a redundancy range of 4 bits.

This means that if by adding 4 extra bits we would get a strictly stronger code, we would remove

the weaker one from our final evaluation. Overall, after all these manipulations, we were left with

28 codes (from the possible 64 code pairs) from which we would have to select the best six codes.

Next, we discuss how we select these best six codes which constitutes CME.
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Figure 7.8: Distribution of cache line length after compression of six benchmarks from the

SPEC2006 suite

7.3.3.2 Dynamic Programming to choose the final set of codes

To select the best six codes, we took into account the final distribution of cache line length after

compression and the average hamming weight of each word for all cache lines within a certain range

of compressed length across the SPEC-2006 benchmark suite. The same six benchmarks mentioned

previously were also used for this. The cache line length distribution of the six benchmarks can be

seen in Figure 7.8.

Based on these distributions, we used dynamic programming to choose the six optimal codes.

For each code, the maximum compressed length of a cache line for being protected by that code

is fixed. For example, for each of the 8 words in a cache line to have DECTED protection, the

compressed cache line can be at most 456 bits. This maximum length is fixed for each type of code.

For every code choice, we first find the weight distribution of all cache lines whose compressed

length is within the range (max length, 256), where max length is the maximum allowable length

for that particular code. We use this weight distribution to calculate the block failure probability if

this code was selected for these cache lines. The failure probability is then weighted by the fraction

of cache lines that fall within this range to evaluate the effectiveness of adding the code.
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For the dynamic programming, we start with the code (say codeA) which has the small-

est max length and calculate the block failure probability over the cache lines of compressed

size (max lengthA, 256). Next, we add the second code (say codeB) with the next smallest

(max length). We then evaluate two cases, (1) When codeA and codeB are both used together to

protect cache lines between (max lengthA, 256) and (max lengthB, max lengthA) respectively;

calculating this joint probability can leverage the block probability for (max lengthA, 256) that

was calculated in the last step and (2) When only codeB is used.

In subsequent iterations, we add new code types and calculate the combined block failure

probability by leveraging the already calculated block failure probabilities for smaller max length

codes. From the seventh iteration onwards, we only calculate the probabilities of code combinations

which has six codes in total. Since most of the code combinations except the newly added code

has been evaluated in previous iterations, the dynamic programming approach helps us minimize

the time to calculate the block failure for a set of six codes. After all the six code combinations are

iterated through, we choose the one with the smallest aggregate block failure probability. The set of

codes that are finally chosen are given in the Table 7.3.

Note that this dynamic programming based code space search is done just once to find the best

six codes which constitutes CME. A fixed CME scheme would be built in to the hardware and all

the applications would use the same scheme.

7.3.4 Additional Tag Bits and Memory Organization

Every cache line now needs additional tag bits to denote if the cache line is compressed and what

protection scheme is used.

As shown in Table 7.4, we use 8 additional bits of tag to each cache line to denote the transfor-

mation operation that was done for that particular cache line.

• Bit0: Denotes if the stored cache line has been compressed or not. If compressed then the

first bit of the tag is ‘1’; else ‘0’.

• Bits1-3: When the cache line is compressed, these three additional bits denote the ECC/duplication
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Table 7.3: ECC scheme to be used depending on the compressed cache line size

Length of compressed

cache line (in bits)
ECC scheme to be used

>512 No compression (Use Raw Cache line + (72,64)SECDED)

≤512 and >508 (72,64)SECDED on each 64-bit cache line word

≤508 and >495 (144,127)DECTED on each 127-bit cache line word

≤495 and >482
(72,57)DECTED on the first 2 57-bit cache line words and

(144,127)DECTED on the last 3 127-bit cache line words

≤482 and >469
(72,57)DECTED on the first 4 57-bit cache line words and

(144,127)DECTED on the last 2 127-bit cache line words

≤469 and >427
(72,57)DECTED on the first 6 57-bit cache line words and

(144,127)DECTED on the last 127-bit cache line word

≤427 and >256
(72,50)3EC4ED on the first 6 50-bit cache line words and

(144,127)DECTED on the last 127-bit cache line word

≤256 and >128 Duplicate the cache line (2 copies) and (72,64) SECDED on each word

≤128 Duplicate the cache line (4 copies) and (72,64) SECDED on each word

scheme used for that cache line as given in Table 7.4, else the field is populated with ‘000’.

Note that the tag bits for the duplication cases (last two) are the highest weighted since they

are the least frequently occurring.

• Bits4-7: These 4-bits are ECC bits used to provide a (8,4) SECDED protection on the first

4-bits of tag to correct a single-bit error and detect any double-bit error.

7.3.4.1 DDR4 Primer

In today’s system with DRAM based main memory system, a processor accesses the main memory

through the memory controller. Memory controller buffers memory access requests from the

processor, schedules the requests, converts them into DRAM commands complying with the specific

DDR protocol and sends them over a DDR bus to the dual in-line memory module (DIMM). One
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Table 7.4: 8-bit Tag per Cache Line for CME

Tag Bits When Compression is possible No Compression

Bit-0 - ‘1’ ‘0’

Bits1-3

BPC + (72,64)SECDED ‘000’

‘000’

BPC + (144,127) DECTED ‘001’

BPC + (72,57) DECTED on first two words and

(144,127) DECTED on the rest
‘010’

BPC + (72,57) DECTED on first four words and

(144,127) DECTED on the rest
‘011’

BPC + (72,57) DECTED on first six words and

(144,127) DECTED on the rest
‘100’

BPC + (72,50) 3EC4ED on first six words and

(144,127) DECTED on the rest
‘101’

BPC + duplication (2copies) + (72,64)SECDED ‘110’

BPC + duplication (4copies) + (72,64)SECDED ‘111’

Bits4-7 (8,4)SECDED redundancy for the first 4 Tag bits ECC for Bits 0-3 ‘0000’

or more DIMMs is supported on a memory bus. Each DIMM has a DIMM controller along with

9/18/36 x4/x8 DRAM memory chips. The DIMM controller acts as the interface to the DDR bus

and manages the DIMM. In our example we use a DIMM with 9 x8 memory chips as the baseline to

explain the modifications required to fit an additional STT-RAM tag chip along with 9 x8 STT-RAM

chips on a STT-RAM DIMM connected to a DDR4 bus.

In a conventional DRAM based main memory system with x8 DRAM DIMM, for reading from

or writing a cache line to the memory, each memory chip from the same rank in the DIMM sends

64-bits over 8 cycles to form a 512-bit (576-bits with ECC) cache line. First, the memory controller

sends an ACTIVATE request to the DIMM along with the rank, bank and row addresses. Based on

the addresses the DIMM controller activates the row in the bank of all the chips in that rank. The

row is read from the array into the respective row buffers. Each row buffer now holds one row, i.e.,
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an entire DRAM page. If it is DDR4 type memory one DRAM page size of an x8 memory chip is

equal to 1KB. From this 1KB page per DRAM chip, only 64-bits need to be accessed sequentially

in 8 bursts where each burst consists of 8-bits. The beginning of this 64-bit chunk in the 1KB page

is determined by the column address sent to the DIMM by the memory controller next along with

the READ/WRITE command. For a READ operation the last three bits of the column address

determines the burst order, i.e., the order in which the cache line words will be read. This is to

enable “priority word first” [203] for improving performance where the payload word gets read and

decoded first and sent to the processor while the rest of the words are brought to the cache. The rest

of the bits in the column address determine the beginning of the chunk being accessed.

Assuming the STT-RAM based main memory system uses DDR4 protocol, we explore two

ways of storing the additional bits of tag per cache line.

7.3.4.2 Scheme 1

The first option is to store the tag bits separately in the memory. We require an extra tag chip to

store the 8 bits of tag per cache line and an additional data signal in the DIMM. This extra tag chip

will be a x1 memory chip with one data signal pin. The size of the memory page will be one-eighth

that of the other memory chips in the DIMM (128B) and in each burst only one bit will be read

instead of the conventional 8-bit burst. Thus, when the DIMM controller sends the READ/WRITE

request to the tag chip, it will shift the column address bits by 3 (divide by 8). The data signal pin of

this x1 tag chip will be connected to the extra data signal in the DIMM. The minor changes required

to accommodate this extra tag chip are depicted in Figure 7.9.

Though implementing this only requires subtle changes to the DIMM and memory architecture,

this scheme incurs latency overhead. In today’s systems where the main memory has (72,64)

SECDED protection, each 72-bit word read from the memory in a burst has to go through the ECC

decoder to get the original 64-bit message and to check for any single-bit/double-bit errors. Since

a 576-bit cache line (512-bits of message + 64 bits of ECC) is sent over 8 bursts, each of length

72-bits, and each burst is a separate ECC word, the ECC decoding can begin as soon as the first

burst or ECC word arrives. However, in our case we have to wait for the tag bits before we can start
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Figure 7.9: CME-Scheme 1 is shown where tag bits are stored in an x1 DRAM chip. One tag bit is

read every cycle in burst. Different colors represent different 72-bit ECC words in a 512-bit cache

line.

with the ECC decoding and in every burst only one bit of tag is sent. This latency overhead will vary

from cache line to cache line. For an uncompressed cache line, as soon as the first bit of tag arrives,

the ECC decoding can start since all un-compressed cache lines are protected by (72,64)SECDED

code. However, if the cache line is compressed, i.e., if the first tag bit is ‘1’, the ECC decoding has

to wait for at least 4 cycles. Since the tag is protected by a linear (8,4) SECDED code, the first 4

bits of tag are the original tag message and the last 4 bits are the redundancy bits. So, as long as

there is no error in the tag bits, the first 4 bits of tag should be sufficient to tell us the ECC scheme

used for that particular cache line. Thus, the ECC decoding can start after 4 cycles. If after 8 cycles

it turns out that there was an error in the first 4 bits of tag then the ECC decoding has to be done

again, causing a 8-cycle latency overhead, however probability of that happening is very small and

will not impact the performance of a system.
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Figure 7.10: CME-Scheme 2 where tag bits for ECC scheme used are stored in an x8 DRAM. The

tag bit and it’s parity representing compression are stored in an x2 DRAM chip and are brought in

the same burst. Different colors represent different 72-bit ECC words in a 512-bit cache line.

7.3.4.3 Scheme 2

To avoid this latency overhead, we propose an alternative option of embedding the 8 bits of tag

into the compressed cache line itself. This means that after encoding the compressed cache line

with ECC, the final length has to be 568 bits so that adding 8 bits of tag to the cache line increases

it to 576 bits (as shown in Figure 7.10). If the cache line cannot be compressed at all no tag bits

will be needed as the standard (72,64) SECDED code will be used for all uncompressed cache

lines. However, overall one bit of tag is still required separately to denote if the cache line has been

compressed. The one extra bit of tag can either be stored in the memory controller for a small sized

main memory system or a separate x2 memory chip in the DIMM can be used. If stored in the

memory then an additional bit of parity is required to protect that one tag bit (1 bit is enough since

errros are asymmetric). This tag bit can be fetched using a x2 memory chip in one burst and will

have a page size of 4B. For the x2 memory chip, the least-significant 5-bits of column address select

need to be ignored because of the reduced page size and no requirement of bursts. Reduction of the

burst size will be minimal modifications of the circuitry that is present in today’s DDR4 DIMM
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which supports variable burst sizes of 4 and 8. The DIMM will require 2 additional data signal

pins and the memory controller needs to know that valid data will be sent over those 2 data signal

pins only in the first burst. All these changes should be minimal and easy to implement given the

current existing architectures. This scheme will have latency overhead of only 1 cycle. However,

having this option will require our ECC schemes to change since now the final size of the ECC

encoded message will be different. We re-ran our code selector to select the six optimal schemes

and the selected codes are provided in Table 7.5. We call this CME Scheme-2 when we evaluate it

in Section 7.5.2.

Table 7.5: ECC scheme to be used depending on the compressed cache line size when the tag is

embedded in the cache line (CME-Scheme 2)

Length of compressed

cache line (in bits)
ECC scheme to be used

>504 No compression (Use Raw Cache line + (72,64)SECDED)

≤504 and >500 (71,63)SECDED on each 63-bit cache line word

≤500 and >487 (142,125)DECTED on each 125-bit cache line word

≤487 and >474
(71,56)DECTED on the first 2 56-bit cache line words and

(142,125)DECTED on the last 3 125-bit cache line words

≤474 and >461
(71,56)DECTED on the first 4 56-bit cache line words and

(142,125)DECTED on the last 2 125-bit cache line words

≤461 and >419
(71,56)DECTED on the first 6 56-bit cache line words and

(142,125)DECTED on the last 125-bit cache line word

≤419 and >252
(71,49)3EC4ED on the first 6 49-bit cache line words and

(142,125)DECTED on the last 125-bit cache line word

≤252 and >126 Duplicate the cache line (2 copies) and (71,63) SECDED on each word

≤126 Duplicate the cache line (4 copies) and (71,63) SECDED on each word

If the STT-RAM based memory is embedded and on-chip (as seen in some commercial STT-

RAM based memory systems [204]), the tag placement will be much simpler and will not incur any

additional latency overhead since all 8 bits can be fetched in one cycle.
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7.4 Evaluation Methodology

While compression and error correcting codes are used individually in caches and main memory,

we focus on combining the two and opportunistically providing stronger protection for STT-RAM

(or any other magnetic or high error rate memory) based main memory systems in this chapter.

We first compare the hamming weight reduction achieved after doing Bit-Plane Compression with

and without hamming-weight-aware inversion against another scheme [183] proposed earlier to

reduce hamming weight and an alternative compression scheme (B∆I [134]). We then evaluate the

effectiveness of using stronger codes for STT-RAM based memories with error rates provided in

Table 7.6. We use two design points, one from Intel [2] and the other from Samsung [3], for our

analysis. For the Intel design point, the read/write/retention error rates are as provided. For the

Samsung design point, the write error rate is provided along with the thermal stability factor (∆).

Based on the technology node, the read disturb rate is calculated from [174]. The retention error

rate is calculated based on the ∆ using Equation 7.1.

Pret = 1− e−
tr
τ0

e−∆

(7.1)

where τ0 is reversal attempt period and is on the order of a nanosecond [187], and tr is the

interval for which the evaluation is conducted.

For STT-RAM based memories, refresh is not the same as DRAM [174,187]. In DRAM, refresh

is used to prevent deterministic errors cause by charge leakage over time. But in STT-MRAM,

errors are stochastic in nature. Therefore, if DRAM like refresh is performed in STT-RAM, where

the cell contents are simply read and written back without any error correction, already flipped

bits in the memory would be read and written back, as is, without any correction. This would not

be effective in lowering the error rate. In STT-RAM, refresh needs to be accompanied by error

correction and is similar to the scrubbing operations performed in today’s systems. For all our

analysis, unless otherwise mentioned, we consider a scrubbing interval of one second. We finally

evaluate the hardware overhead of compression with multi-ecc and its impact on performance.

To evaluate our protection scheme for STT-RAMs, we extracted memory traces of 18 bench-

marks from the SPEC CPU2006 benchmark suite using Gem5 [138]. These applications are a mix of
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Table 7.6: Evaluation setup

Cache Line Size 512-bits (64-Byte)

Design Point - I [2]

Write Bit Error Rate 1×10−6

Read Bit Error Rate 1×10−12

Retention Error Rate Negligible (200C 10 years)

Design Point - II [3]

Write Bit Error Rate 1×10−6

Read Bit Error Rate 1×10−10

Retention Error Rate
Calculated based on thermal stability factor

∆ = 40 using equation 7.1

integer and floating point benchmarks. Next, each application was subjected to CME. The average

block failure probability (average failure probability of each word in the cache line) was computed

for each design point based on the final set of cache lines obtained after applying compression to

the obtained memory traces.

The probability of a cache block/word of hamming weight W not failing under a certain

write/read/retention bit error rate PER protected by a t-error correction ECC is given by the following

equation:

Pblock =
t

∑
i=0

(
W
i

)
(1−PER)

W−i(PER)
i (7.2)

For overall block error rate, we calculated the probability of failure using the knowledge obtained

from the memory traces about the number of reads between two consecutive write/scrubbing

instructions to a a particular memory address. For example, when a cache line protected using

(72,57) DECTED code is read twice consecutively before a write operation to the same address,

the probability of no fault is calculated by considering all the following cases: (a) When two or

less faults occur during the same operation (either during write, any of the two reads or because of

retention error). (b) One fault occurs during one operation and another fault occurs during another

operation. When a cache line gets duplicated twice, we consider a block to be failing only when

both copies have un-correctable errors. Based on our memory trace statistics, we saw that most of

the cache lines are read once. However, there are still 2-5% of cache lines that are read more than
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twice (some even more than 10 times).

To evaluate the area and latency overheads of stronger ECC codes, we synthesized both

(72,64) SECDED and (144,127) DECTED decoding engines using an industrial 45nm library.

The (144,127)DECTED decoder is expected to have the largest overheads compared to the baseline

(72,64) SECDED. To evaluate the performance impact of CME due to the overheads of compres-

sion and multi-ECC (discussed in detail in Section 7.5.4), we ran performance simulation using

Gem5 [138]. Two micro-architectural configurations were evaluated as provided in Table 7.7. The

first set of evaluations were done for a system with 8 in-order (InO) cores sharing only 2MB of

unified L2 cache and no prefetch. So that there is minimal memory access latency hiding techniques.

Also the shared L2 cache is not statically partitioned and the different processes compete for

cache space. These are expected to exaggerate the effect of CME overheads on performance. For

these experiments, each thread runs the same application in separate processes. The second set of

evaluation was done for a single out-of-order (OoO) core having a unified 2MB L2 cache and with

prefetching enabled. The performance evaluations on Gem5 were done for the benchmarks in the

SPEC2006 suite, fast forwarding for 1 billion instructions and executing for 2 billion instructions.

The latency overheads considered for the simulations are discussed in detail in Section 7.5.4.

7.5 Results

In this section we demonstrate that CME provides considerable benefit in terms of block error

reduction as compared to a normal (72,64) SECDED code. The evaluations also show the minimal

impact of the hardware overheads of CME on performance.

7.5.1 Reduction in Hamming Weight

We evaluate the hamming weight reduction when using Bit Plane Compression with and without

hamming-weight-aware inversion scheme and compare it against a previously proposed Dynamic-

XOR scheme [183] where the goal was to solely minimize the weight of each cache line. We also

included another popularly used cache line compression scheme (B∆I) [134] for this hamming

151



Table 7.7: Core Micro-architectural Parameters

Config-1 Config-2

Cores 8, InO (@ 2GHz) 1, OoO (@ 2GHz)

ISA ALPHA x86

L1 Cache per core 32KB I$ 32KB I$

32KB D$ 32KB D$

4-way 4-way

L2 Cache 2MB (shared, unified) 2MB (unified)

8-way 8-way

Cache Line Size 64B 64B

Memory

Configuration

32GB of single-channel x4

DDR4-2400

32GB of single-channel x4

DDR4-2400

Nominal Voltage 1V 1V

weight analysis. From Figure 7.11 it can be seen that for all applications both the compression

schemes and the Dynamic-XOR scheme reduce hamming weight of cache line as compared to the

original weight. BPC without inversion reduces hamming weight by upto 67.3% (avg. 21.3%)

compared to the original weight. Adding inversion reduces the hamming weight further (on an avg.

30% compared to the original weight). For most applications, cache line after BPC with or without

inversion ends up with a lower hamming weight than Dynamic XOR. On an average BPC with

inversion has 16.8% lower weight than the Dynamic-XOR scheme. Thus, BPC not only has the

advantage of reducing cache line size over Dynamic-XOR which, in turn, allows for stronger ECC,

it also reduces hamming weight of the entire cache line, thus reducing chances of unwanted bit flips

during write and read operations in STT-RAMs. On top of BPC, hamming weight aware inversion

coding further reduces hamming weight by an additional ∼8%. B∆I, on an average, performs

better than BPC with inversion in the matter of reducing hamming weight of cache lines of most

applications. BPC, however, outperforms B∆I in reducing block failure probability and has been

discussed in detail in Section 7.6.1. In a recent work [205], the authors propose to use stronger ECC

for cache lines whose hamming weight is above a certain threshold and use weaker ECC otherwise.
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Figure 7.11: Comparison of average Hamming weight of original cache line, BPC, B∆I and DBX

schemes

For this work, the stronger ECC scheme is (72,64) SECDED on each 64-bit cache line word while

the weaker ECC is (523,512)SECDED on the entire cache line. In our baseline case, every cache

line, irrespective of its hamming weight, gets the stronger protection used in [205] and with CME,

the cache lines gets even stronger protection.

7.5.2 Reduction in block failure probability

To evaluate the reduction in block errors, block failure probability is computed per application for

all words in all cache lines retrieved from the memory traces for the following three cases:

• Baseline: No Compression and each 64-bit cache line word gets (72,64)SECDED protection.

• Scheme-1: Compression (with and without hamming-weight-aware inversion) with Multi-

ECC protection scheme where the tag bits are separate.

• Scheme-2: Compression (with and without hamming-weight-aware inversion) with Multi-
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Figure 7.12: Reduction in block failure probability induced due to write/read/retention errors for

the first design point [2] is shown. The y-axis is in logarithmic scale (reverse order). The geometric

mean and arithmetic mean of the improvement of CME Schemes over baseline is shown in plot.

ECC protection scheme where the tag bits are embedded into the cache line.

. As mentioned before, both schemes were compared for two design points with different read

disturb/write/retention error rates. The results are shown in Figures 7.12 and 7.13. Please note that

the y-axes are in logarithmic scale (reverse order). This means that the taller the bar, the smaller is

the block failure probability (better it is). Also in both CME schemes, every in-compressible cache

line gets the baseline (72,64) SECDED protection per word.

The Compression (with and without inversion) with Multi-ECC (CME) protection scheme

is compared against the baseline case where each 64-bit cache line word gets (72,64) SECDED

protection. Compared to the baseline, Scheme-1 has 8 extra bits per cache line and Scheme-2 has 2

extra bits. The compression scheme used is the modified version of BPC explained in Section 7.3.2.

We first analyzed the improvement in block failure probability that comes only because of hamming

weight reduction by BPC. To do that we computed the reduction in block failure probability when

there is BPC alone. The compressed cache lines were padded with zero to increase the final size

to 512 and then every 64-bit chunk was provided with (72,64) SECDED protection. For the first

design point, BPC with (72,64) SECDED alone (without inversion and multi-bit error correction)

reduced block failure probability by at most 4x (average 1.38x). Similarly, for the second design

point, the maximum improvement was 4.61x (average 1.35x). These improvements are negligible.

The improvements in block failure probability come mostly from the opportunistic stronger
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Figure 7.13: Reduction in block failure probability induced due to write/read/retention errors

for the second design point [3] is shown. The y-axis is in logarithmic scale (reverse order). The

geometric mean and arithmetic mean of the improvement of CME Schemes over baseline is shown

in plot.

protection that is added to the cache lines. For the first design point, BPC with Multi-ECC (without

inversion) reduces block failure probability by as much as 176x (average 6.18x) and 150x (average

5.11x) for Scheme-1 and Scheme-2 respectively when compared to the baseline. For the second

design point, BPC with Multi-ECC (without inversion) reduces block failure probability by as much

as 240x (average 6.81x) and 148x (average 5x) for Scheme-1 and Scheme-2 respectively. In fact,

successful compression and, therefore, stronger protection is possible for 70.5% cache lines across

the benchmarks used. As a result, CME performs dramatically better than the baseline case as well

as the case with only compression and SECDED protection. For the baseline case, the benchmark

with the worst block failure probability is hmmer. If the entire suite is considered, the reliability

of the system would be limited by this benchmark for both design points. With Compression and

Multi-ECC, this benchmark, however, has the highest compression ratio and the maximum reduction

in the average hamming weight of cache lines. Therefore, it ends up with the maximum reduction in

block failure probability. The two benchmarks with the lowest reductions are namd and libquantum.

This is because these two benchmarks are the least compressible and hence, most of the cache lines

end up with the same (72,64) SECDED protection as the baseline. Across the entire SPEC suite,

the maximum block failure probability with the baseline protection scheme is reduced by 5x and 6x

when CME Scheme-1 is used for the two design points respectively.
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An unexpected result is observed when hamming-weight-aware inversion is used along with

BPC. Since inversion helps to reduce the hamming weight of the cache lines, it is expected to

reduce the block failure probability beyond what compression without inversion and multi-ecc

can achieve. However, for both design points and both schemes it can be seen from the figures

that across majority of the benchmarks, the block failure probability is higher with inversion than

what it is without inversion. With inversion, CME reduces block failure probability by at most 35x

(average 3.2x) compared to the baseline for the first design point (using Multi-ECC Scheme-1).

This is significantly lower than the corresponding 6.18x average improvement that was achieved

without inversion. Though inversion reduces average hamming weight across all benchmarks (see

Figure 7.11), it adds extra bits to the cache lines because each BPC word requires one extra bit to

know if the word has been inverted. This can add as many as 35 extra bits to a cache line. As a result,

a lot of cache lines end up getting weaker protection. To better utilize the reduction in hamming

weight without increasing the cache line size significantly, hamming-weight-aware inversion can be

done on groups of multiple BPC words instead of doing inversion on each BPC word. We analyze

one such case for design point 2 using Multi-ECC Scheme-1. It is seen that when groups of 3 BPC

words are used, BPC with inversion and Multi-ECC (average reduction in block failure probability

is 6.14x) outperforms the case without inversion for multiple benchmarks.

To compare against single strong code scheme such as FrugalECC [197], we further evaluate

the case of having one stronger code (72,57) DECTED for all cache lines that could be compressed,

irrespective of their final size, along with (72,64) SECDED for the uncompressed ones and compared

this against CME Schemes. It is seen in Figure 7.14 that FrugalECC like scheme can achieve at

most 34x reduction in block failure probability compared to the baseline while CME Schemes can

achieve at much as 240x reduction. For all benchmarks, CME Schemes-1 and 2 perform better than

the single strong code scheme.

7.5.3 Hardware Overhead of Multi-ECC Scheme

The CME scheme requires support for multiple ECC engines (SECDED, DECTED and 3EC4ED).

Having multiple ECC encoders and decoders on a memory controller on chip can be costly in terms
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Figure 7.14: Improvement of CME Schemes 1 and 2 over a scheme that provides uniform (72,57)

DECTED for all compressible cache lines and (72,64) SECDED if in-compressible.

of both area as well as power. However, if asymmetric quantum BCH coding [206] is used, G and

H matrices for a smaller ECC (for e.g., DECTED) can be composed out of sub-matrices of G and H

matrices of a stronger ECC scheme (for eg. 3EC4ED), therefore the same hardware can be reused.

Since in our case, the total codeword length is same for all the cases (n=72 bits), eliminating rows

from the bottom of the H-matrix of a stronger code (for e.g., 3EC4ED) would generate the H-matrix

of a weaker code (for e.g., DECTED) with the same codeword length. However, for encoding using

G-matrix, the rows (=k) of the G-matrix decrease as we move towards a stronger ECC code for

a given constant codeword length (=n). Also, (72,57) DECTED H-matrix can re-use a (144,127)

DECTED H-matrix. Thus, the largest decoder would be required for the (144,127) DECTED

and the other BCH based codes ((72,50) 3EC4ED and (72,57) DECTED) can re-use most of the

decoder. (72,64) SECDED code would require a separate decoder. However, even the baseline

(72,64) SECDED protection scheme would require the same parity check engine. Synthesizing the

parity check engines of (144, 127) DECTED using an industrial 45nm library results in about only

about 8700 µm2 of additional area overhead compared to a only SECDED implementation as in

the baseline. Moreover, since only one word is decoded at a time, reuse isn’t expected to have any

performance degradation.
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Figure 7.15: Comparing Normalized Execution Time of two systems (one with 8 InO cores and

another with a single OoO core), both having three protection schemes: baseline (72,64)SECDED,

CME Scheme-1 and CME Scheme-2. InO and OoO results are normalized to their respective

baselines.

As reported in [135], the area overhead of BPC compression engine is about 48000 µm2

when synthesized using 40nm TSMC standard cells. The total area overhead of BPC and ECC

encoding/decoding engines is not significant when compared to the currently available large sizes

of processors. The per-bit energy overhead of BPC is less than 1% of per-bit STT-RAM read

energy [207]. The latency overhead of CME and the possible impact of system performance is

evaluated next.

7.5.4 System Performance Evaluation

As mentioned in [135], Bit-Plane compression takes 7 cycles for compression/decompression.

Since in our case each DBX word is less than half their size, we should be able to fit in twice

the number of DBX encoders in the same area. As a result, we would be able to complete the

encoding step (last step in BPC) in 2 cycles instead of 4. Thus, we would require 5 cycles for BPC

compression/decompression. The latency overhead of fetching the tag bits from the memory would

be different for the two CME Schemes.

In Scheme-1, each bit of tag is fetched in each cycle. As discussed earlier ECC decoding can
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begin after 1 cycle if the cache line is not compressed and after 4 cycles when compressed (only

after all 4 bits of tag are read)1. In our performance simulations we have conservatively assumed

that every cache line is compressed and thus, would incur a latency overhead of 4 cycles every time

a cache line is read from the memory when using CME Scheme 1 as compared to the baseline. From

our synthesis results we see that even the largest ECC decoding gets done in one cycle. Thus, for

stronger protection there is no additional latency overhead. However, in many of today’s memory

systems, the payload word gets read from the memory in the first burst even when it is not the first

cache line word and the rest of the cache line words get read in the successive bursts. This is called

priority word first [203] and is done to improve performance. In our case, we have to wait for the

entire cache line to arrive before we can start with the decompression. Thus, priority word first

cannot be implemented here. To account for this we have taken an average of 4 cycle overhead.

Thus, overall CME Scheme 1 has 13 cycle latency overhead as compared to baseline.

For Scheme 2 the BPC overhead remains the same as Scheme-1. In this scheme, both bits of

tag are read in one burst. Therefore, the additional latency overhead for fetching tag is 1 cycle.

Here also the priority word first cannot be implemented and thus, additional 4 cycles are taken.

Overall accessing a cache line in the memory in Scheme-2 will take 10 more cycles compared to

the baseline. The performance results are shown in Figure 7.15. For the system with 8 InO cores,

the performance degradation for Scheme-1 is, at most, ∼ 6.9% (avg. 1.8%) and for Scheme-2 is,

at most ∼ 3% (avg. 1.05%). This 8 core system had only 2MB shared Last Level Cache (LLC)

and had minimal memory access latency hiding techniques like prefetching enabled. As a result,

this exaggerates the latency overhead of CME. For the system with a single OoO core and 2MB

LLC, the performance degradation when using Scheme-1 is, at most, ∼ 4.5% (avg. 1.6%) and, for

Scheme-2 is, at most, ∼ 3.3% (avg. 1.1%). As expected, for OoO core with a larger cache and no

competition among cores for cache space and better memory access latency hiding techniques like

prefetching, the performance impact when using CME over the baseline is lesser than the previous

system.

1Since the tag bits are encoded using systematic SECDED code, the original message, i.e., the 4 bits of tag remain
unchanged and the remaining 4 bits of redundancy protecting the tag bits are appended at the end.
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Figure 7.16: Improvement in Block Failure Probability of B∆I and BPC over Baseline [no com-

pression and (72,64)SECDED].

7.6 Discussion

7.6.1 Using an Alternative Compression Scheme

The results presented in Section 7.5.2 were generated using the modified BPC compression scheme

discussed in detail in Section 7.3.2. However, we also analyzed another commonly used cache line

compression scheme - B∆I. The results are shown in Figure 7.16.

The observation was that B∆I with (72,64)SECDED protection on each block performs better

than BPC with (72,64) SECDED for majority of benchmarks. This is because, for most of the

benchmarks, cache lines have lower hamming weight when compressed with B∆I as compared

to BPC. Since the write and read disturb errors in STT-RAM are asymmetric in nature and all

cache lines get the same baseline protection irrespective of how much they are compressed, the

reduction in block failure probability comes solely from the lowering of hamming weight. Hence,

B∆I performs better than BPC. However, when the extra space is opportunistically used for stronger

ECC protection, BPC outperforms B∆I for all 18 benchmarks. With BPC and Multi-ECC (Scheme-

1), reduction in block failure probability is upto 175x (geomean of 6.18x). But with B∆I and

Multi-ECC (Scheme-1), reduction in block failure probability is upto 19.55X (geomean of 2.49x).
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This is because BPC has better compression ratio than B∆I. This allows most cache lines to get

stronger ECC protection. Thus, the compression scheme with the highest average compression ratio

needs to be chosen for CME even if the scheme results in higher average hamming weight of cache

lines.

7.6.2 Variable Scrubbing Interval

Scrubbing is done in today’s systems [208] to reduce the probability of multi-bit errors. As

mentioned previously, a refresh operation for STT-RAM would need to be accompanied by an ECC

check, which resembles scrubbing where a cache line need to be read in to the memory controller

which contains the ECC engine and then written back. Therefore, beyond unavailability of the

bank/array, a scrub operation would also consume memory bandwidth. Thus, it is also important to

minimize the bandwidth consumption overhead of scrubbing. Based on our analysis we see that for

most applications, CME allows to relax the scrubbing interval by as much as 50x as compared to

the baseline (72,64)SECDED protection scheme. Another observation is that the scrubbing interval

required to achieve a target block failure probability varies among applications. It depends on the

compressibility of the cache lines. If the compression ratio of the cache lines is high, the scrubbing

interval can be relaxed. For CME, the memory controller needs to check the final compressed

cache line size to determine the ECC scheme to be used. This information can be used to provide

support for variable scrubbing interval. The system initially starts with the lowest scrubbing interval

(maximum scrubbing frequency). A counter keeps track of how many times a cache line gets the

strongest ECC protection. If it is beyond a certain threshold, the scrubbing interval can is increased.

The counter is reset after a certain period of time or every time the scrubbing interval increases.

7.6.3 Using STT-RAM as non-ECC DRAM Alternative - Reliability Point of View

In this work we considered the STT-RAM based memory subsystem as main memory with DDR

protocol. As a result we compared the MTTF of STT-RAM devices with baseline protection as

well as CME protection against that of non-ECC DRAM. Most of the mobile and low power

devices using DRAM do not have ECC protection. STT-RAM, because of its power, density and
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Figure 7.17: MTTF of STT-RAM devices (with different protection schemes and scrubbing

intervals) and non-ECC DRAM devices of different sizes. Note that the y-axis is in log scale.

non-volatility benefits over DRAM [178], is considered as a possible DRAM alternative in these

devices. However, using STT-RAM memory as a DRAM alternative in such devices would require

the STT-RAM device FIT rates to be comparable to what is seen in today’s commodity non-ECC

DRAM devices. While STT-RAM is not susceptible to radiation induced soft errors [159], the

transient read disturb/write/retention error rates can be much worse than the transient bit error rates

of DRAM. We use the Samsung design point for our analysis since it has higher bit error rates and

used the geometric mean of the block failure probabilities across all benchmarks. We analyze using

STT-RAM scrubbing (refresh with ECC) intervals of 64ms (same as the DRAM refresh interval)

as well as one second. The DRAM error FIT rate was obtained from [209]. We only considered

DRAM transient FIT for our analysis. Note that the FIT rates are for DDR2 DRAM technology.

With scaling, the FIT rates for the later DRAM technologies, DDR3/4, are expected to be worse.

The results are shown in Figure 7.17.

With baseline protection, the MTTF of STT-RAM device is much lower than a same sized

DRAM device, even with 64ms scrubbing interval. In fact, CME with one second scrubbing interval

has 2.65x higher MTTF than SECDED based baseline protection with 64ms scrubbing interval.

However, it is still not as good as DRAM. With scrubbing interval of 64ms, STT-RAM with CME

protection achieves almost similar (sim1.07x higher) MTTF as DRAM. Without scrubbing, the
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MTTF per Mbit, with CME, drops from a few years to less than an hour, making it almost unusable.

Thus, CME protection scheme, with scrubbing, allows STT-RAM to be as reliable an alternative as

non-ECC DRAM. The baseline (72,64)SECDED protection scheme requires much lower scrubbing

interval (less than 6ms) as compared to 64ms with CME, to achieve similar MTTF and thus, makes

it almost infeasible energy and performance-wise.

7.7 Conclusion

In this work, we proposed a new ECC protection scheme for STT-RAM based main memories,

compression with multi-ECC (CME). First we try to compress every cache line to reduce its size

and then apply hamming weight aware inversion coding to reduce the hamming weight of each

block. Based on the amount of compression possible, we use the saved additional bits to increase

the protection using stronger ECC codes if possible. Compression with inversion itself reduces the

hamming weight of the cache lines, thus reducing the probability of 1→0 bit-flips. Opportunistically

using stronger ECC codes further helps tolerate multiple bit-flips in a cache line. Our results show

that for STT-RAM based main memories, CME can reduce the block failure probability by up to

240x (average 7x) over using a (72,64) SECDED for each cache line word when using two different

CME schemes proposed in this chapter. The latency and area overheads of CME is minimal with

average performance degradation of less than 1.4%.
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CHAPTER 8

PCM-Duplicate: Achieving DRAM-like PCM By Trading Off

Capacity For Latency

Phase Change Memory (PCM) is considered one of the most promising scalable non-volatile

main memory alternatives to DRAM. It provides ∼4x-5x cost per bit advantage over DRAM, thus

enabling a cost-effective dense main memory solution. However, PCM accesses are slower than

DRAM, which leads to significantly poorer overall system performance (up to 80% higher execution

time for memory-intensive applications based on our analysis). To use PCM as a viable DRAM

replacement, the performance gap between the two memory technologies must be bridged, primarily

by improving PCM read latency.

In this chapter, we propose an optimized PCM architecture, PCM-Duplicate, that trades off

capacity to improve PCM read latency. In PCM-Duplicate, every row in the PCM subarray has a

duplicate row. During a memory read, both the rows are activated simultaneously. As a result, the

bitline discharges through two PCM cells. This reduces the discharge time significantly, bringing

down the overall sensing latency by >3x compared to baseline PCM. While the overall PCM density

benefit over DRAM halves, it still provides 2x more capacity than DRAM while having almost

comparable read latency. PCM-Duplicate can either be used as a low-cost DRAM main memory

alternative or it can be used to replace the DRAM-based last level cache used in today’s hybrid

main memory systems for the slower PCM memories. Both these system options not only improve

main memory capacity but also allow main memory-based persistence by replacing DRAM and

making the entire main memory non-volatile.

• Michael Zixing Wang, UCLA

• Prof. Puneet Gupta, UCLA
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8.1 Introduction

In today’s computing systems, main memories serve a pivotal role, sitting in between the processor

cores and the slow storage devices. As a result, there is an ever-increasing demand for main memory

capacity to fully extract and exploit the processing power of today’s high-performance multicore

and manycore systems. Though DRAM is still the main memory workhorse, DRAM scaling is,

unfortunately, slowing down. Besides, several application contexts need different properties from

the main memory such as higher density, lower cost-per-bit, non-volatility, etc [210]. Hence, it is

becoming increasingly important to consider alternative technologies that can potentially avoid the

problems faced by DRAM and enable new opportunities.

Several emerging non-volatile memory (NVM) technologies are now being considered as

potential replacements for or enhancements to DRAM. Most of these new non-volatile technologies

(Phase Change Memory[PCM], STT-RAM, Resistive RAM[ReRAM], etc.) promise better scaling,

higher density, and reduced cost-per-bit [30]. 3D-XPoint [211, 212] is one such commercially

available PCM-based non-volatile main memory that has gained a lot of attention. Unfortunately,

NVMs have their own set of challenges and cannot simply replace DRAM in their current form.

Compared to DRAM, NVMs have higher read and write latencies and often consume more energy.

Besides, most NVM technologies have limited write endurance and also suffer from high stochastic

bit error rates [31, 174, 213]. Hence, most current NVM-based main memory systems are hybrid in

nature comprising of both DRAM and NVM [212, 214, 215]. A hybrid memory system helps to

increase capacity while reducing the impact on performance.

A hybrid memory system can be configured in two ways [212, 214, 215]. In one configuration

(Memory Mode), the smaller but faster DRAM is used as a hardware-managed cache for the denser

but slower PCM. However, the DRAM cache is transparent to the operating system (OS) and hence,

the total main memory capacity is equal to the total PCM capacity. In the other configuration, the

DRAM and PCM are configured as a flat address space, where the OS is aware of both memories for

page allocation. Hence, the entire memory capacity can be fully utilized. However, the placement

of data between the two memories has to be efficiently managed [215]. The first configuration has

the advantage that it can be easily deployed, with DRAM acting as an additional level of caching
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between the CPU caches and main memory. However, this mode does not ensure non-volatility

as data stored in the DRAM will be lost when power is lost. Besides, the DRAM is transparent

to the OS. This has a non-negligible impact on overall memory capacity. DRAM has 4-5x higher

cost-per-bit as compared to PCM [216–219] and hence, using DRAM as a transparent cache to

mitigate the loss in performance because of the slower PCM increases the overall system cost.

Overall, based on our analysis and past works [33], it seems that improving PCM read latency

can provide significant performance gains. If PCM read latency becomes closer to that of DRAM,

the use of large DRAM-based caches for performance improvement can be avoided. That would

help to increase main memory capacity, reduce memory cost and make the main memory non-

volatile. In this chapter, we propose an optimized PCM architecture (PCM-Duplicate) that helps to

lower the sensing time in a PCM array by activating two wordlines in a PCM array simultaneously.

In this architecture, data is duplicated across two rows in a PCM array. During a read operation,

both rows are activated together. This helps to reduce the overall sensing latency since the bitline

voltage now discharges through two cells instead of one, thus, increasing the rate of discharge. The

overall read latency becomes almost comparable to that of DRAM while the overall PCM capacity

becomes half. Thus, there is a capacity-latency tradeoff. We provide two possible ways of using

this reduced capacity faster PCM in today’s systems. The first option is to use it as a low-cost

alternative to today’s DRAM-based main memory subsystem. It provides 2x higher capacity/lower

cost at ∼6% higher average execution time compared to a system using DRAM memory. The other

option is to use it in a hybrid main memory setup where the PCM-Duplicate acts as the faster cache

(lower cost/higher capacity compared to DRAM cache) for the slower PCM main memory. In this

setup, the increased cache capacity provides up to 38% (average 5.7%) higher performance than

today’s baseline hybrid system with DRAM and PCM. Most importantly, in both system options, the

entire main memory system is non-volatile and hence, allows easy main memory-based persistence

and checkpointing. This reduces a significant overhead that is incurred in today’s systems where

the application state is stored in much slower non-volatile storage devices and each checkpoint

restoration can take as long as 30 minutes [164].
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8.2 Background

This section provides a brief background on two important concepts: details and working of a PCM

cell, and the pros and cons of using PCM-based memories as DRAM replacements.

8.2.1 PCM Basics

Phase change memory (PCM) is a type of non-volatile memory. PCM exploits the unique ability of

chalcogenide glass of switching between high resistance amorphous and low resistance crystalline

states. Figure 8.1 shows the structure of a PCM cell, typically comprising of Germanium-Antimony-

Tellurium or GST. The state of the cell can be changed by heating and the two different states

represent the stored data; high resistance RESET represents ’0’ and low resistance SET represents

’1’. Switching from one state to the other requires two different heat-time profiles. As shown in

Figure 8.1, to program a ’0’, a high power short pulse quickly raises the temperature of the PCM

element above the melting point. The pulse is abruptly terminated, and the small region of melted

material rapidly cools through thermal conduction, locking the material in the amorphous state. To

program a ’1’, the amorphous element needs to be converted into a polycrystalline state. To do that,

a long electric pulse is used to raise the temperature of the PCM element above the crystallization

but below the melting point. The temperature needs to be sustained for a lengthy period so that

most of the material crystallizes and the target cell resistance is achieved. Thus, programming a ’0’

(RESET) requires much lower latency than programming a ’1’ (SET). To read the data stored in the

cell, the cell resistance is sensed without changing the state of the cell.

A PCM memory module is similar to today’s DRAM array and is split up into small independent

banks. As shown in Figure 8.2, each bank consists of multiple subarrays, where each subarray is

made of horizontal wordlines and vertical bitlines. Each bitline is attached to a sense-amplifier

circuitry that senses the bitline voltage and outputs a digital value of ‘0’ or ‘1’ based on that. The

bitline sense amplifiers drive then drive the global amplifiers shared across all sub-arrays in a

bank. The global sense amplifiers boost the voltage and drive the data out of the PCM chips to the

processor over a DDRx-based bus.

During a read operation, the read address selects the target bank and activates the corresponding
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Figure 8.1: Structure of PCM cell, overview of SET and RESET current pulses and variation in

cell resistance for SET and RESET states.

wordline. In voltage-based sensing, which has been commonly used in many industry chips [220,

221], the bitline is precharged to Vrd . Once the target wordline is turned on, the bitline starts

discharging. The rate of discharge depends on the cell resistance. When in SET state, the discharge

is faster and takes lesser time for the bitline voltage to drop below the reference voltage (Vre f ) as

compared to that when the cell is in RESET state. After a pre-determined amount of time (Tsense),

the sense amplifiers compare the bitline voltage with Vre f . If it is higher than Vre f , then the cell is

considered to be in RESET state, if not, then in SET state. The combination of Vre f and Tsense is

decided based on the cell characteristics or the resistance distribution of the cell at each state and

the Vrd voltage used. The sensing time is determined conservatively to account for device variations

and drift. For target SET and RESET resistance values, the wait time before sensing bitline voltage

should be such that the voltage separation is at least 300mV between the worst-case cells of the two

states (shown in Figure 8.1). The sensing latency (Tsense) constitutes the largest fraction of the read

time in a PCM array [33]. Hence, in this chapter, we try to reduce the sensing latency using two

different optimization schemes.
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Figure 8.2: Organization of a PCM bank

8.2.2 DRAM vs. PCM

DRAM scaling is, unfortunately, slowing down [222, 223] while the demand for main memory

capacity is increasing at a very fast rate. Besides, increasing capacity and aggressive technology scal-

ing in modern DRAM chips is significantly impacting manufacturing yield and reliability [24]. With

increasing scaling induced error rates, DRAM manufacturers are resorting to increased row/column

sparing and within-dram error-correcting codes to maintain acceptable DRAM yields [24, 26, 29].

These techniques add significant area, latency, and energy overheads. As a result, DRAMs have over-

all become a large contributor to operational cost. The other major disadvantage with DRAM is that

it is volatile in nature. Several application contexts today, such as persistent database management,

not only demand higher main memory density, but also the ability to store persistent data in main

memories instead of using heavyweight filesystems in today’s slower persistent storage devices.

Phase Change Memory (PCM) has become one of the most promising scalable byte-addressable

main memory alternatives to DRAM. PCM provides a significant 4x-5x [216, 219] cost-per-bit

advantage over DRAM while being non-volatile and amenable to technology scaling. As a result,

it has been studied extensively and manufactured commercially as DRAM replacement towards
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building a low cost, higher capacity main memory system [216].

However, PCM has its own set of disadvantages when compared to DRAM, the most important

being higher read and write latencies, write power, and limited endurance [213, 222]. As a result,

in today’s systems, PCM is typically used in a hybrid main memory setup comprising of both

DRAM and PCM memory modules. DRAM modules have limited capacity but lower read and

write latencies as compared to the denser but slower PCM. Thus, while PCM helps to achieve higher

capacity main memory at a lower cost, DRAM helps to reduce the performance impact by servicing

the more frequent/recent accesses at lower latency and energy overheads. This hybrid memory

can be used in two modes: (1) Memory mode, and (2) App Direct mode. In the memory mode,

DRAM acts as a hardware-managed cache for the slower and denser PCM. This DRAM-based

cache, sitting in between the last level cache (LLC) and the PCM main memory, is transparent to

the OS [212, 214, 215] and, therefore, the overall main memory capacity is equal to only that of

the total PCM. Besides, the main memory is not persistent since data sitting in the volatile DRAM

will be lost if the system loses power. In the app direct mode, the DRAM and PCM modules are

configured as a flat address space and the OS uses both memories for page allocation. This mode

has the advantage of providing higher memory capacity, but faces the challenge of efficient data

placement and swapping of data between the two memories. The frequently accessed hot pages

would need to be identified in the PCM and swapped with the cold data in the DRAM. Since this

data management requires additional hardware/software support, this mode is less frequently used

as compared to the memory mode in today’s systems.

8.3 Motivation and Past Work

There has been significant research in improving latency and limited endurance of PCM [224–228].

However, achieving read latency similar to that of DRAM has not been talked about much. One

of the past works from Nair et. al. [33] focused on improving read latency by either reducing the

reference sensing resistance and using ECC to tolerate the uni-directional sensing errors or by

increasing the read voltage and using ECC to tolerate the read disturb errors. We tried to combine

the two techniques with stronger ECC to achieve the best possible read latency. We describe it in
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detail under PCM-ECC Scheme.

8.3.1 PCM-ECC Overview: Combination of Previously Proposed Improvements

In PCM-ECC, we combine the previously proposed techniques [33] to reduce the read sensing time

by reducing the reference sensing resistance (Rsense) and increasing the read voltage (Vrd). PCM

cells have a variation in cell resistance in both SET and RESET states as shown in Figure 8.1. The

final resistance of the cell depends on the amount of amorphous volume in the cell and how easily

the cell crystallizes in either of the two states. The sensing reference resistance is determined by the

worst-case SET cell and the read voltage is determined by the worst-case RESET cell. Reducing

the sensing resistance leads to lower sensing latency, but also increases sensing circuitry errors.

However, this sensing error is unidirectional, where SET gets classified as RESET. On the other

hand, increasing the read voltage that the bitlines are pre-charged to before it gets discharged through

the cell to the sense amplifier also helps to improve read latency. However, doing so increases error

rates due to read disturb. The read current flowing through the cell can accidentally flip the state of

the cell. In PCM, read disturb errors are also typically unidirectional and result in RESET switching

to SET. Based on prior studies [229], every 30mV increase in sensing voltage increases the read

disturb error rate by 3 orders of magnitude.

From past works and PCM device characterization results [230], using a Rsense of 10kΩ and

Vrd of 0.70V results in a sensing time of 69ns and a bit error rate (BER) of 10−16. As proposed

in [33], in PCM-ECC, we reduce Rsense from 10kΩ to 7kΩ and increase Vrd to 0.82V. The combined

effect of reduced reference resistance and increased read voltage leads to a significant reduction in

sensing time from 69ns to 34ns. But the BER increases exponentially to 10−5, primarily coming

from the reduction in reference sensing resistance. This increase in error rate can, however, be

mitigated using error correcting codes (ECC). We use a default BER target of 10−16, similar to that

in [33]. We show that with a 4-bit rank-level error correcting code (ECC-4) for every 64-bits of

data, the probability that a 512-bit memory line would have 5 errors is 3.9×10−18, well below the

desired target. The parity storage overhead of ECC-4 is 25-bits per 64-bits of data [231, 232] and

incurs a decoding latency of 4 cycles. We assume that the PCM-based memory system will use
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Figure 8.3: Normalized Execution Time of SPEC-2017 and GAP workloads comparing DRAM and

PCM-ECC based main memory systems. The execution times are normalized against the system

using DRAM.

today’s standard DDRx protocol [9]. Thus, the total size of a memory line that is accessed during

each memory READ/WRITE operation is 576-bits (512-bits of data and 64-bits of parity bits for

rank-level within controller ECC). For ECC-4, with 25-bits of parity per 64-bits of data, the size of

the memory line increases to 712-bits. Thus, accessing all the data and parity bits would require

two consecutive READ/WRITE operations when using today’s DDRx protocol. This is expected

to significantly degrade performance. To reduce the impact on performance, we divide the ECC-4

code into two parts: (1) A Single-bit Error Correcting, Multi-bit Error Detecting code (2) A 4-bit

Error Correcting Code. The first part of the code requires 8-bits per 64-bits of data and a single

cycle of decoding. Thus, to achieve single-error correcting, multi-error detecting property, only one

memory access is required. If the decoder detects an uncorrectable error, then the remaining parity

bits are fetched using an additional READ and the decoding with error correction takes 4 cycles.

For a 512-bit memory line and a BER of 10−5, once every 60,000 reads would require additional

access to fetch the extra parity bits.

8.3.2 Performance Analysis: PCM-ECC vs. DRAM

With the modifications in reference sensing resistance and read voltage, the PCM sensing time

decreases by half. While this improvement is significant, a DRAM-based memory system still

achieves higher performance. To understand the difference in performance we simulated a single-
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core system using cycle accurate Gem5 simulator [138]. We ran several workloads from the CPU

SPEC 2017 [161] and GAP [163] suites, where we fast-forwarded 1 billion instructions and ran the

simulation for a total of 3 billion instructions. We used a 2GHz single-core processor with a private

32KB I-cache, 64KB D-cache, 512KB L2 cache, and 2MB L3 cache. On average we see that the

DRAM-based main memory system outperforms the system with the PCM-ECC by an average of

19%. While the sensing latency improvements in the PCM array provide significant benefit (6.7%

average improvement in execution time over baseline PCM-based main memory system), it still lags

behind DRAM-based main memory system. This is primarily because the PCM-ECC read latency

is still more than twice that of DRAM. Thus, PCM-ECC provides ∼3x higher capacity/lower cost

compared to DRAM, but has up to 60% higher execution time for memory intensive workloads.

8.3.3 Motivation to achieve near-DRAM latency

From the performance results we see that PCM-ECC improves system performance as compared to

baseline PCM but it still significantly lags behind DRAM. One way to improve the performance

is to have a hybrid main memory system with a DRAM-based cache for slower PCM. But, as

mentioned before, the two biggest challenges with that are the limited capacity of the DRAM

cache and the lack of non-volatility. Even though the DRAM cache is typically much larger than

the LLC, capacity limited applications do not benefit much because of the frequent misses in the

DRAM cache. As seen in the evaluations in [33], with a DRAM cache that is 16x larger than the

total L3 capacity, the memory-intensive workloads have an average of 20.1 misses per thousand

instructions (MPKI). This significantly impacts overall performance. Besides, users cannot utilize

the non-volatility advantage of PCM since the DRAM cache is volatile and transparent to the OS.

So, even though the OS thinks that it is writing to the non-volatile PCM, the data actually gets

written to the DRAM first. If the system loses power before the data in the DRAM cache could

be written back to the PCM, the data is lost. Hence, persistence is not guaranteed in such a hybrid

memory system. Thus, it is necessary to have a purely PCM-based memory with higher capacity

than DRAM while achieving near-DRAM read latency.
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8.4 Bridging the Performance Gap Between PCM and DRAM

While PCM-ECC provides larger main memory capacity than DRAM, workloads that do not require

the larger capacity and fit within the DRAM suffer because of the larger read/write latencies of

the PCM. As a result, we aim to bridge this performance gap by further trading off PCM capacity

to achieve near-DRAM read latency. Our proposed reduced capacity PCM-Duplicate architecture

has similar read performance as that of DRAM while having ∼2x larger capacity at the same cost

compared to DRAM.

8.4.1 PCM-Duplicate Overview: PCM with DRAM-like read latency

We propose a PCM-Duplicate scheme that helps to significantly improve PCM read latency by

trading off capacity. In this scheme, every row in a PCM subarray will have a duplicate row. The

original row and the duplicate row are activated simultaneously when reading from a particular

address. As a result, the overall resistance of the PCM cells being sensed is halved as they are

connected in parallel. This allows us to reduce the reference resistance (Rsense) from 10kΩ to 5kΩ

without impacting the bit error rate (BER). We can further reduce Rsense and increase read voltage

(Vrd) to get additional improvements in sensing latency. With Rsense = 4kΩ and Vrd = 0.8V , we can

achieve a sensing latency of 21ns and BER of 10−8. With 2-bit error correction (ECC-2) per 512-bits

of data, the probability of having 3 errors is 2.2×10−17, which is well below the desired target of

10−16. The exact ECC protection used is described later in Section 8.4.3. PCM-Duplicate provides

an overall sensing latency reduction of more than 3x compared to the baseline PCM memory and

brings the overall read latency closer to that of DRAM (1.3x of DRAM). However, it halves the

memory capacity. But PCM has more than 4x cost-per-bit benefit over DRAM [216, 218, 219].

Even after halving the capacity, the cost-per-bit benefit of PCM-Duplicate stands at a significant 2x

over DRAM. Keeping the trade-offs of PCM-Duplicate in mind, this reduced capacity PCM with

near-DRAM latency is also a good fit as the last level cache for slower PCM main memories. Using

PCM-Duplicate as the last level cache for the slower PCM main memory instead of DRAM would

provide 2x more cache capacity at the same cost, as well as overall main memory persistence since

both last-level cache and main memory are PCM-based and hence, non-volatile.
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Figure 8.4: Sensing latencies of PCM-ECC vs PCM-Duplicate

8.4.2 PCM-Duplicate Implementation

To activate two rows simultaneously, the row decoder is modified to activate two wordlines using a

single address. So, if row address A is sent, rows A and A’ are activated. Since two PCM cells in

the same state are connected in parallel (as shown in Figure 8.5), the total cell resistance becomes

half. As a result, the 300mV separation between the worst-case SET and RESET states during

discharge can be achieved much faster than in the baseline PCM cell. The PCM can operate in

both normal and duplicate modes. The operation mode can be set by the memory controller during

boot time by setting a PCM mode register. In normal mode, the row decoder decodes using all

row address bits and activates a single row at a time. In duplicate mode, each PCM subarray is

halved in capacity and each row has a corresponding duplicate neighboring row. The row decoder

masks the least significant bit of the row address and activates two neighboring rows that have the

same A[MSB:LSB-1] bits. The original and duplicate rows must be in the same subarray since each

subarray has its own set of local sense amplifiers.

8.4.3 Reducing Write Time and Energy using ECC and Infrequent Refresh

In PCM-Duplicate, the overall write current increases as two PCM cells are being programmed

simultaneously. The increase in total write current translates to an overall increase in write energy.

One way to reduce the write energy consumption is by reducing the write latency. As provided
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Figure 8.5: The two operation modes in PCM-Duplicate

in [222], the SET latency is ∼4x that of RESET latency. Reducing the SET pulse width results in

a smaller volume of crystalline chalcogenide, which increases the resistance of the cell. Besides,

the resistance of these partially SET cells increases further over time [233], eventually resulting

in retention error when the SET cells are sensed as RESET. Based on the characterization results

presented in [228], the resistance drift follows a power-law model [228] and the SET cells begin to

lose data after 4 seconds. If the PCM cells are refreshed every 4 seconds, the retention error rate has

been estimated to be less than 10−8. The overall BER, considering sensing error, read disturb error,

and retention error is < 2×10−8. With (144,128) Double Error Correction, Triple Error Detection

(DECTED) code per 128-bits of data, the probability of a triple-bit error is 2.7×10−18, which is

well below the desired target of 10−16. Hence, to facilitate lower write time for better performance

and energy, we use DECTED code per 128-bits of data and refresh memory lines every 4 seconds.

This allows us to bring down the SET latency of PCM-Duplicate from 1µs to 250ns.

8.4.4 Sneak Current in Crossbar Architecture

Typically, in most non-volatile resistive main memory modules, the wordlines and bitlines are

organized in a crossbar array to achieve maximum density. In such a setup, each PCM element

does not have an individual access transistor. This is because having an access transistor per cell

significantly increases the cell size, thereby, negating most of the density benefits of crossbar
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architecture. Instead, each PCM element is placed at every wordline and bitline intersection. The

bitlines are first precharged to Vrd .

Figure 8.6: Crossbar array structure showing read current and sneak current

In an ideal scenario, based on the row address, during activation, the wordline voltages should

be set such that voltage Vrd is applied across the target cells and zero voltage is applied across

the unselected cells. However, in a crossbar array, while applying the desired voltage across the

cells to be read, adjacent cells get partially selected. This creates parallel ‘sneak’ discharge paths

through the adjacent junctions, as shown in Figure 8.6. The parallel paths usually have higher

resistance since the sneak currents have to pass through multiple resistive cells in series (three cells

in Figure 8.6). But, these parallel circuits can alter the measured output, resulting in a read error.

The impact of sneak current depends on the ratio of the current flowing through the target cells

to the sneak current. Higher the ratio, the smaller the impact. With two wordlines activated at

once in PCM-Duplicate, the number of sneak paths increases. However, the total current flowing

through the target cells being read also increase in PCM-Duplicate due to lower total cell resistance

(duplicate data cells connected in parallel). Thus, the ratio of actual to sneak current does not

increase significantly to worsen the read error. Besides, in crossbar arrays, to tackle the problem

of sneak currents, each PCM cell is placed in series with either a diode or a switching mechanism

such as Ovonic Threshold Switch (OTS) [234] that is much smaller than an access transistor. The
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OTS conducts only when there is enough voltage applied across the cell. The sneak paths consist of

multiple PCM/OTS cells in series. Hence, most of the cells in these paths do not see enough voltage

across their terminals and hence, remain in the off state.

8.5 Evaluation Methodology

We modified cycle-accurate Gem5 simulator to evaluate the performance of PCM-Duplicate. The

details of the simulated systems are provided in Table 8.1. System-1 is a DRAM-based main

memory system. System-2 replaces the DRAM main memory with the baseline PCM memory that

has 4x higher capacity than DRAM, but has 4.6x larger read time. System-3 uses our proposed PCM-

Duplicate memory that provides 2x capacity at the same cost as compared to DRAM while having

comparable read latency. We also simulated hybrid memory systems where the faster memory

(DRAM/PCM-Duplicate) acts as a hardware-managed cache for the slower PCM main memory.

This last level cache is transparent to the OS and, therefore, does not add to the main memory

capacity. In System-4, DRAM acts as the last level cache for the baseline PCM main memory. In

System-5, we replaced the DRAM cache with our proposed 2x higher capacity PCM-Duplicate

cache and the baseline PCM main memory with the PCM-ECC main memory. We simulated

several workloads from SPEC CPU 2017 [161], Parsec [162] and GAP [163] benchmark suites.

We fast-forwarded 1 billion instructions and ran the simulations for a total of 3 billion instructions.

Since most of the larger Parsec and GAP benchmarks either suffer from a timeout or a kernel

panic issue when simulating a multi-core system on Gem5 (similar observations reported in [235]),

we had to be limited to a single core system and scale down the size of the caches. We used a

2GHz out-of-order single-core processor with a private 32KB I-cache, 64KB D-cache, 256KB

L2 cache, and 512KB L3 cache in all six systems. The DRAM cache in System 4 is 8MB and

the PCM-Duplicate cache is 16MB. The three graphs used when running the GAP workloads are

200MB and 500MB sized synthetic kron [163] and 600MB sized wikipedia graphs. Using graphs

larger than this results in unreasonably long runtimes of more than a day. We also had to scale down

the L4 sizes because of the limited-sized SPEC workloads that we used for this analysis. For an L4

size larger than 16MB, the L4 miss rate would be exceptionally low. This means that the number of
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Table 8.1: Details of the different memory systems evaluated

System-1 System-2 System-3 System-4 System-5

Processor

Details OoO, single-core, 2GHz

L1-I/L1-D/L2/L3 32KB/64KB(2-way)/256KB/512KB

LLC transparent to OS

Technology - - - DRAM PCM-Duplicate

Size - - - 8MB 16MB

Latency (Read/Write) - - - 15ns 21ns/250ns

Main Memory

Technology DRAM Baseline PCM PCM-Duplicate Baseline PCM PCM-ECC

Capacity 8GB 32GB 16GB 32GB 24GB

Read Latency 15ns 69ns 21ns 69ns 34ns

Write Latency 15ns 1us 250ns 1us 1us

Bus per Channel DDR4

Ranks per Channel 1

Number of channels 2

memory accesses would be too less for gathering any meaningful main memory performance results.

Many past works have faced similar issues [33, 226] and hence, could only evaluate a limited set of

workloads.

8.6 Results

We evaluate the performance improvements achieved by using our proposed optimized PCM

substrates in two different main memory system configurations: (1) Replacing DRAM-based main

memory system with PCM-Duplicate instead of baseline PCM, (2) Replacing the DRAM cache in

hybrid main memory system with PCM-Duplicate cache for the slower PCM main memory.
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8.6.1 Using PCM-Duplicate as Main Memory

PCM-Duplicate has read latency comparable to that of DRAM while providing 2x higher capacity at

the same cost. In Figure 8.7, we compared PCM-Duplicate based main memory system (System-3)

with DRAM and baseline PCM-based main memory systems (System-1 and System-2, respectively).

Overall, for SPEC workloads, we see an average of 12.27% improvement of System-3 with PCM-

Duplicate main memory over System-2 using baseline PCM-based main memory. For memory

intensive workloads such as mcf and lbm, we see more than 30% speedup with PCM-Duplicate. The

Parsec and GAP workloads are more memory intensive and also require larger memory capacity.

For these workloads, the PCM-Duplicate provides a significant 23.54% average speedup. The

improvement in performance is due to more than 69.5% reduction in read latency. Since the

working set sizes of the workloads fit within the main memory, the reduction in main memory

capacity in System-3 compared to System-2 did not impact the overall performance of System-3.

PCM-Duplicate’s read latency is comparable to that of DRAM. When compared against DRAM

main memory (System-1), System-3 has, on an average, 4.6% higher execution time for SPEC

workloads. This is primarily due to the longer write time of PCM. For larger GAP and Parsec

workloads, this increases to 5.9% higher execution time. However, with only ∼5% slowdown, on

an average, PCM-Duplicate provides 2x more capacity at the same cost or 2x lower cost for the

same main memory capacity. Besides, PCM is non-volatile and, therefore, PCM-Duplicate can be

easily used for main memory based checkpointing instead of having to use much slower storage.

8.6.2 Using PCM-Duplicate as Last Level Cache instead of DRAM

As mentioned before, today’s systems using PCM typically implement a hybrid main memory

system where each memory channel consists of both DRAM and PCM DIMMs. The DRAM

becomes a hardware managed cache that is transparent to the OS. As a result, the total memory

capacity reduces by a non-negligible amount as compared to a full PCM system. Also, the main

memory no longer provides the benefit of persistence that comes with NVM-based main memories.

In order to deal with both these problems, we propose to using optimized PCM-Duplicate as a

smaller but faster cache for the slower PCM main memory. PCM-Duplicate would provide 2x
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Figure 8.7: Normalized Execution Time of SPEC-2017, GAP and Parsec workloads comparing

DRAM (System-1), Baseline-PCM (System-2) and PCM-ECC (System-3) based main memory

systems. The execution times are normalized against the System-1.

more cache capacity as compared to DRAM and the entire cache-main memory system would be

non-volatile. We evaluated this proposed System-5 and compared its performance with today’s

standard hybrid main memory system using DRAM based cache and baseline PCM-based main

memory (System-4). The results are shown in Figure 8.8.

For less memory intensive SPEC 2017 workloads, we found that our proposed system provides

an average of 4.67% speedup (upto 18% speedup for memory intensive workloads like mcf r)

as compared to the baseline hybrid system. For larger, more memory intensive Parsec and GAP

workloads, the improvement in performance is upto 38.7% (average 9.43%). The performance

improvement is due to the increase in the size of the last level cache. Even though PCM-Duplicate

has higher write time than DRAM, the read latency is almost comparable. Since writes do not

mostly fall in the critical path, the decrease in misses per thousand instruction (average 15.8%)

translates to the overall speedup. For example, canneal has a 14.2% speedup while X264 has a

5.07% speedup. Both applications have similar read to write ratio (2.17:1 vs 2.89:1). But the

difference in performance stems from the fact that canneal’s misses per thousand instruction reduces

by 102% while in x264, the reduction is by 29%. Overall, we see that using PCM-Duplicate as last

level cache instead of DRAM helps in improving the overall system performance. This speedup

comes from the larger sized last level cache that has similar read performance as that of the DRAM

cache.
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Figure 8.8: Normalized Execution Time of SPEC-2017, Parsec and GAP workloads comparing

DRAM and PCM-Duplicate as last level caches (System 4 vs. System 5) for slower PCM main

memories. The execution times are normalized against the system using DRAM-based cache

(system 4).

8.6.3 Enabling Lightweight Main Memory Based Persistence

In both main memory system configurations using PCM-Duplicate (System-3 and System-5), the

main memory is non-volatile. Using DRAM as either the main memory (System-1) or the last

level cache for the slower PCM (System-4) in hybrid memory systems makes the overall main

memory system volatile. As a result, to ensure data persistence and enable checkpointing, much

slower storage devices such as solid state drives(SSDs) or hard disk drives (HDDs) are used to

flush and store the application state. During checkpoint recovery, the data is read back from the

storage devices into the main memory before the program resumes. This overhead can be upto 30

minutes [164]. Using PCM-Duplicate as main memory or last level cache for slower PCM makes

the entire main memory system non-volatile. Thus, expensive slow storage based checkpointing

can now be easily replaced by lightweight main memory based checkpointing. Since, the main

memory now falls within the persistence domain, the data in the CPU caches and the write queues

in the memory controller need to be flushed to the main memory. This dramatically reduces the

checkpointing overhead.
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8.7 Conclusion

Phase Change Memory (PCM) is considered one of the most promising scalable non-volatile main

memory alternatives to DRAM. It provides ∼4x-5x cost per bit advantage over DRAM. However,

the PCM has more than4x higher read latency, which leads to significantly poorer overall system

performance (up to 80% for memory-intensive applications based on our analysis). To use PCM as

a viable DRAM replacement, the performance gap between the two memory technologies has to

be bridged, primarily by improving PCM read latency. In this chapter we propose an optimized

PCM architecture, PCM-Duplicate, that trades off capacity to improve PCM read latency. In PCM-

Duplicate, every row in the PCM subarray has a duplicate row. During a memory read, both the rows

are activated simultaneously. As a result, the bitline discharges through two PCM cells. This reduces

the discharge time significantly, bringing down the overall sensing latency by >3x compared to

baseline PCM. While the overall PCM density benefit over DRAM halves, it still provides 2x more

capacity than DRAM while having almost comparable read latency. PCM-Duplicate can either be

used as a low-cost DRAM main memory alternative or can be used to replace DRAM-based last

level cache for slower PCM main memory. Both these system options allow main memory-based

persistence by replacing DRAM and we evaluate both options in this work. The first system using

PCM-Duplicate-based main memory has 2x more memory capacity than DRAM, provides non-

volatility while having only 6% worse overall system performance (average). The second system

provides a fully non-volatile hybrid system with a PCM-Duplicate cache for slower PCM-ECC main

memory. This system has 2x more cache capacity and 75% main memory capacity as compared

to today’s hybrid system with DRAM cache and baseline PCM. Our proposed hybrid system can

provide up to 38.7% (average 7.87%) better overall performance than the baseline hybrid system.

Thus, PCM-Duplicate-based memory systems provide two significant benefits over DRAM - (1)

Higher capacity at lower cost (2) Lightweight main memory-based persistence.
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CHAPTER 9

Conclusion

This chapter reviews the key contributions of this dissertation and outlines directions for future

work.

9.1 Overview of Contributions

A series of techniques were proposed to cope with hardware variability and errors in memory

systems. With increase in memory capacity and decrease in physical dimensions of cells, memory

reliability is becoming a growing concern. The challenge with memory resiliency techniques is that

the fault tolerance mechanisms need to effective but with minimal overhead.

9.1.1 FaultLink and SAME-Infer

FaultLink and SAME-Infer provided a holistic virtualization-free fault tolerance methodology to

deal with hard faults in software managed embedded memories in IoT devices. Hardware design

in most of these IoT devices is driven by the need for low cost and low power. One way to

reduce power consumption is to lower the supply voltage. But as the VDD is lowered, some of

the weak SRAM memory cells begin to fail. Hence, low cost protection against hard faults in

memory is required if these devices have to be run at low voltage. FaultLink does exactly that

with almost no hardware overhead. In software managed memories, data placement in memory is

orchestrated by the software. Thus, application programmers, with the help of tools like compiler

and linker, explicitly partition data into physical memory regions that are distinct in the address

space. FaultLink utilizes exactly that property of software managed memories and makes loading

application in faulty memory plausible. It takes a pre-compiled binary of an application and links
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it to the memory in such a way that the application would not access the bad locations. Thus, the

application is compiled once but the final linked binary image is unique for every chip. SAME-Infer

is an extension of FaultLink for approximation tolerant deep learning inference applications where

some of the program sections can tolerate faults. These program sections are placed in partially

faulty memory segments based on their fault tolerance capability. Doing so allows us to tolerate

higher hard fault rate, which, in turn, allows us to further reduce the operating voltage compared to

FaultLink.

9.1.2 SDELC

SDELC helps to recover from unpredictable single bit flips in the memory that occur during runtime.

It helps to localize the error to a smaller chunk in a 32/64-bit message and then tries to heuristically

recover from it using software defined policies that leverage on the available side information about

memory contents to choose the most likely candidate codeword. Overall, SDELC opportunistically

copes with memory errors in low-cost IoT devices and helps in correcting majority of the single-bit

errors.

9.1.3 Parity++

Parity++, like SDELC, is another lightweight error recovery scheme. But Parity++ tackles the

problem of miscorrections that might occur with SDELC during the heuristic recovery. Instead

of trying to recover from errors heuristically, Parity++ preferentially provides stronger protection

to certain “special messages”. While it provides stronger protection than a basic Single Error

Detection parity, it has lower overhead than a full single error correcting Hamming code. With

just two additional bits of redundancy per message, this code is ideal for last level caches. We also

propose a memory speculation scheme that can be used to further hide the decoding latency that

comes with using any error correcting code. Parity++ can be extended to embedded scratchpad

memories as it has much lower area overhead and can be opportunistically used to reduce the chip

area.
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9.1.4 COMET

DRAM manufacturers are adopting on-die error correction coding (ECC) schemes, along with

within memory controller ECC, to correct SBEs in the memory. Unfortunately, the on-die SEC

can miscorrect double-bit errors (which would have been safely detected but uncorrected errors in

conventional in-controller ECC) resulting in triple bit errors more than 45% of the time which are

then undetectable or miscorrected in the memory controller >55% of the time resulting in silent

data corruption. COMET is a collaborative on-die and in-controller error correction scheme that

completely eliminates all double-bit error induced silent data corruption and corrects 99.9997%

double-bit errors at absolutely no additional storage, latency and area overheads.

9.1.5 Compression with Multi-ECC

Emerging non volatile memories (NVM) have been suggested as potential replacements for DRAM

based main memory systems. However, reliability is the current biggest concern facing these

NVMs that can potentially eclipse the density and energy benefits these technologies promise.

One of the most well researched NVM technologies is magnetic memories, primarily STT-RAMs.

Compression with Multi-ECC (CME) aims to provide stronger protection to magnetic memories

at the same cost as today’s standard ECC solutions. We observed that reading or writing a ‘1’ in

these memories is more error-prone that ‘0’. We use compression to reduce the size of the memory

lines and the number of 1’s in them. Then, based on the total compression, we opportunistically use

the saved space to pack in ECC bits for much stronger protection. Overall, CME reduces memory

block failure probability by upto 240x in magnetic main memory-based systems.

9.1.6 PCM-Duplicate

Phase Change Memory (PCM) is another NVM technology that has become one of the most

promising scalable byte-addressable main memory alternative to DRAM. PCM provides a significant

4x-5x cost-per-bit advantage over DRAM while being non-volatile and amenable to technology

scaling. As a result, it has been studied extensively and manufactured commercially as DRAM

replacement towards building a low cost, higher capacity main memory system. However, PCM
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also has >4x higher read latency than DRAM, significantly impact overall system performance.

Our proposed PCM-Duplicate architecture helps to bring the PCM read latency almost close to that

of DRAM by halving the capacity advantage. PCM-Duplicate, if used as DRAM main memory

replacement provides 2x capacity/cost benefit while having only 6% (average) poorer overall system

performance than DRAM. PCM-Duplicate, if used as replacement for DRAM caches in hybrid main

memory system can provide upto 38% (average 7.87%) performance benefit while making the entire

main memory system non-volatile. Thus, PCM-Duplicate provides significant cost/density benefit

over DRAM with similar or better performance while also allowing lightweight main memory based

persistence.

Overall, the dissertation advocates for adopting strongest memory resiliency scheme possible

within the overhead limitations. The schemes should be tailored to the type of memory and its

position in the memory hierarchy. This dissertation shows how appropriate fault models, software

data value behavior, and the memory architecture itself can be intelligently and opportunistically

exploited to provide higher reliability while incurring minimal area, power, and performance

overheads compared to the conventional reliability schemes used in today’s systems.

9.2 Directions for Future Work

While this dissertation investigates error mechanisms, device characteristics, software behavior,

and memory architecture to enable lightweight opportunistic memory resilience, there are potential

directions and avenues for extending the ideas on memory reliability and improved memory

performance. Some of them are summarized below.

9.2.1 Extensions Of Techniques Proposed In This Dissertation

Firstly a FaultLink-compatible remote software update mechanism for IoT devices in the field need

to be designed and new failure modes with SDELC need to be supported. Also for FaultLink, the

stack and heap in applications were not split. A split stack and heap would lead to smaller program

sections, which, in turn, would allow the user to tolerate more faults and thus run at ever lower
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supply voltages. Parity++ can be extended to server class systems with large sized last level caches

where the chip area savings would be considerable and can be utilized to increase the number of

cores or the size of the memory to improve overall system performance. Also, a stronger version of

Parity++, which can provide double error correcting to certain “special messages” with just one

extra bit as compared to the commonly used SECDED code can be used in off-chip dense main

memories with high bit error rate. While we proposed Compression with Multi-ECC (CME) for

magnetic memories, the technique adheres to today’s DRAM bus protocols. Hence, this technique

can be extended and evaluated for DRAM memories, given the increasing rate of scaling induced

DRAM errors at advanced technology nodes. PCM-Duplicate can also be further improved by

using dynamic sizing of PCM-Duplicate and PCM-ECC during runtime based on memory access

patterns. During runtime, based on parameters like cache miss rate, page faults, etc., portions of

PCM-Duplicate or PCM-ECC memory can be dynamically converted to PCM-Baseline to get higher

main memory capacity instead of better read performance. Dynamic switching between different

modes might help in further improving overall system performance.

9.2.2 Asymmetric Error Correction In Non-Volatile Memories

Our analysis as well as past works have shown that the fault models in most non-volatile memories

are asymmetric in nature. Programming or modifying when reading the cell content is often tougher

in one state than the other. Thus, the probability of an error happening in a cell storing ‘1’ is often

much higher or lower than a cell storing ‘0’. Today’s standard error correcting codes usually provide

uniform protection from errors. The binary codes think that errors in cells storing 0 and 1 are equally

likely, i.e., a 1→0 flip is protected the same way as a 0→1 flip. But if the probability of a flip

happening in one direction is much higher than the other, then providing uniform protection results

in unnecessary waste of parity bits. Instead, those parity bits can be efficiently used to provide

stronger asymmetric protection to only the cells storing data which has much higher likelihood of

errors.
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9.2.3 Making Neuromorphic Computing Robust

Alongside that, these emerging non-volatile memory technologies are also being widely used

for providing hardware solutions for brain inspired neuromorphic computing. Considering the

large number of neurons and synapses required to perform efficient learning and classification,

the reliability of these memory technologies is becoming a major concern in the design of hybrid,

analog-digital-non-volatile heterogeneous architectures. There is scope in developing novel error

detection and correction codes, that, when coupled with the asymmetric error pattern seen in

most NVMs, will enable robust neuromorphic computing at low overheads. One such example

is arithmetic codes (AN codes) [236] that were previously used in computer processors to ensure

the accuracy of its arithmetic operations. Unlike Hamming codes that use hamming weight and

hamming distance, AN codes use arithmetic weight to maximize the arithmetic distance between

codewords.

9.2.4 Improving Reliability and Endurance in Hybrid Main Memory Systems

With rising demand for using hybrid persistent main memory, non-volatile memory (NVM) specific

reliability techniques and opportunistic NVM systems that exploit and cope with variability are

becoming increasingly critical. However, the two major problems in these hybrid persistent main

memory systems are: (1) difference in error rates between DRAM and the NVM, and (2) low

endurance of the non-volatile memory technology. One can look into techniques for coming up

with a single solution that would provide stronger protection for the NVM while providing enough

information to enable intelligent swapping between the DRAM and the NVM that would reduce the

number of NVM program/erase cycles.

When swapping pages between DRAM and NVM, the dirty bit of the top eight candidates that

can be swapped out of DRAM are first read. If any of them is clean it is chosen for the swap since

that would not require any write on the NVM side. If none of them are clean, the ECC bits of those

dirty candidate pages are read. These dirty ECC bits are compared against the old ECC bits of the

corresponding pages in the NVM. The ECC would be designed in such a way that this comparison

would give a fair idea of the number of bit flips between the updated dirty copy sitting in the DRAM
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and the old copy sitting in the NVM. While this can be achieved using a hash, the goal here is to

use a special type of error correcting code so that this code can serve two purposes: (1) provide

stronger protection to the messages stored in the NVM, and (2) help in figuring out the number of

bit flips between the updated and the old copies. The page that would result in the least number of

bit flips would be chosen for eviction from DRAM since that would eventually lead to the smallest

number of bits that would need to be re-programmed in the NVM.

9.2.5 Enabling Shared-Bus Read/Write in Memories for Performance and Energy Efficiency

As we have seen in this dissertation, workloads from several prevailing and emerging application

domains often exhibit significant value locality where same or almost same values get written to

or read from different memory locations within a short interval of time. Thus, consecutive read or

write operations to different memory locations, often load or store very similar values. One such

example can be today’s deep learning workloads where nearby inputs or activations tend to be of

similar values and are accessed in consecutive cycles. Most of the past research has only leveraged

the value locality within the same memory line and did not exploit the value locality across different

memory operations and locations. The concept of shared bus memory operations aims to exploit this

value locality to significantly reduce redundant load/store operations. If two successive load/store

operations are reading/writing almost same values from/to two different locations, the operations

can be done simultaneously, providing dramatic performance and energy gains.

Some early analysis based on workloads from SPEC benchmark suite shows that more than 40%

memory operations can be shared with 85-90% of the data bits (avg.) being identical. However,

efficiently leveraging value locality for shared read/write is not possible in most of today’s memory

technologies. This is because, if the two values are not exactly the same, the bits that are different

would have to be accessed separately using partial read/write. Either today’s memory technologies

or peripheral circuitries do not allow partial accesses, or these partial accesses take up additional

operations (over multiple extra cycles), thus providing no performance or energy benefits. One can

aim to design appropriate structures such as modified sense amplifiers that will sense more than

two values. For example, if two wordlines are read together, then the sense amplifier will have to
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differentiate ‘00’, ‘11’, ‘01’, and ‘10’. This will enable combination of multiple distinct read and

write operations in order to tune performance and/or energy consumption.

9.2.6 Combining Memory Reliability with Security

Memory system security and reliability are both concerned with the confidentiality, integrity, and

availability of systems. Techniques to achieve either of the two typically involve adding extra

information (parity bits or cryptography keys) to the original data that is being protected. However,

security and reliability research have mostly been pursued independently. A reliability problem

can often lead to a security issue and techniques to enhance memory system reliable can also help

in making it secure. For instance, row hammer attacks in DRAMs use the fact that activating one

row multiple times in a bank often lead to bit flips in its neighboring victim rows. The modified

data in the victim rows is then exploited by the attacker to access privileged data. If on-chip or

rank-level error correcting codes are present, these bit flips induced by the attacker will get corrected

before the data is sent out of the memory controller. Thus, simple reliability enhancing techniques

like ECC can prevent security concerning row hammer attacks. One possible scope of extending

Lightweight Opportunistic Memory Resilience framework is by combining memory security and

reliability. One can develop a framework that would take into account attributes used in both

reliability and security research communities and propose solutions that take care of both threats in

today’s memory systems.
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