
UNIVERSITY OF CALIFORNIA

Los Angeles

Lightweight Opportunistic

Memory Resilience

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical and Computer Engineering

by

Irina Alam

2021

© Copyright by

Irina Alam

2021

ABSTRACT OF THE DISSERTATION

Lightweight Opportunistic

Memory Resilience

by

Irina Alam

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2021

Professor Puneet Gupta, Chair

The reliability of memory subsystems is worsening rapidly and needs to be considered as one of

the primary design objectives when designing today’s computer systems. From on-chip embedded

memories in Internet-of-Things (IoT) devices and on-chip caches to off-chip main memories, they

have become the limiting factor in the reliability of these computing systems. Today’s applications

demand large capacity of on-chip or off-chip memory or both. With aggressive technology scaling,

coupled with the increase in the total area devoted to memory in a chip, memories are becoming

particularly sensitive to manufacturing process variation, environmental operating conditions, and

aging-induced wearout. However, the challenge with memory reliability is that the resiliency

techniques need to be effective but with minimal overhead. Today’s typical error correcting schemes

do not take into consideration the data value that they are protecting and are purely based on

positional errors. This increases their overheads and makes them too expensive, especially for

on-chip memories. Also, the drive for denser off-chip main memories is worsening their reliability.

But strengthening today’s error correction techniques will result in non-negligible increase in

overheads. Hence, this dissertation proposes Lightweight Opportunistic Memory Resilience. We

exploit the following three aspects to make memories more reliable with low overheads: (1)

Underlying memory fault models, (2) Data value behavior of commonly used applications, and (3)

The architecture of the memory itself. We opportunistically exploit these three aspects to provide

stronger protection against memory errors. We design novel error detecting and correcting codes

and develop several other architectural fault tolerance techniques at minimal overheads compared to
ii

the conventional reliability techniques used in today’s memories.

In part 1 of this dissertation, we address the reliability concerns in lightweight on-chip caches or

embedded memories like scratchpads in IoT devices. These memories are becoming larger in size,

but needs to be low power. Using standard error correcting codes or traditional row/column sparing

to recover from faults are too expensive for them. Here, we leverage the fact that manufacturing

defects and aging-induced hard faults usually only affect only a few bits in a memory. These

bits, however, inhibit how low of a voltage these chips can be operated at. Traditional software

fails even when a small number of bits in a memory are faulty. For the first time, we provide

two solutions, FaultLink and SAME-Infer, which help deal with these weak faulty cells in the

memory by generating a custom-tailored fault-aware application binary image for each chip. Next,

we designed Software-Defined Error Localization Code (SDELC) and Parity++ as lightweight

runtime error recovery techniques that leverage the insight that data values have locality in them

and certain ranges of data values occur more frequently than others. Conventional ECC is too

expensive for these lightweight memories. SDELC uses novel ultra-lightweight error-localizing

codes to localize the error to a chunk in the data. It then heuristically recovers from the localized

error by exploiting side information about the application’s memory contents. Parity++ is a novel

unequal message protection scheme that preferentially provides stronger error protection to certain

“special messages”. This protection scheme provides Single Error Detection (SED) for all messages

and Single Error Correction (SEC) for a subset of special messages. Both these novel codes utilize

data value behavior to provide single error correction at 2.5x-4x lower overhead than a conventional

hamming single error correcting code.

In part 2 of this dissertation, we focus on off-chip main memory technologies. We primarily

leverage the details of the memory architecture itself and their dominant fault mechanisms to

effectively design reliability schemes. The need for larger main memory capacity in today’s

workstation or server environments is driving the use of non-volatile memories (NVM) or techniques

to enable high density DRAMs. Due to aggressive scaling, the single-bit error rate in DRAMs is

steadily increasing and DRAM manufacturers are adopting on-die error correction coding (ECC)

schemes, along with within memory controller ECC, to correct single-bit errors in the memory. In

COMET we have shown that today’s standard on-die ECCs can lead to silent data corruption if not

iii

designed correctly. We propose a collaborative on-die and in-controller error correction scheme that

prevents double-bit error induced silent data corruption and corrects 99.9997% of these double-bit

errors at absolutely no additional storage, latency, and area overheads. Not just DRAMs, reliability

is a major concern in most of the emerging NVM technologies. In Compression with Multi-ECC

(CME), we propose a new opportunistic compression-based ECC protection scheme for magnetic

memory-based main memories. CME compresses every memory line and uses the saved bits to add

stronger protection. In some of these NVMs, error rates increase as we try to improve read/write

latencies. In PCM-Duplicate, we propose an enhanced PCM architecture that reduces PCM read

latency by more than 3x and makes it comparable to that of DRAM. We then use ECC to tolerate

the additional errors that arise because of the proposed optimizations.

Overall, we have developed a complementary suite of novel methods for tolerating faults and

correcting errors in different levels of the memory hierarchy. We exploit the memory architecture

and fault mechanisms as well as the application data behavior to tune the proposed solutions to

the particular memory characteristics; lightweight solutions for low-cost embedded memories and

latency-critical on-chip caches while stronger protection for off-chip main memory subsystems.

With memory reliability being a major bottleneck in today’s systems, these novel solutions are

expected to alleviate this problem, help cope with the unique outcomes of hardware variability in

memory systems and provide improved reliability at minimal cost.

iv

The dissertation of Irina Alam is approved.

Tony Nowatzki

Chih-Kong Ken Yang

Lara Dolecek

Puneet Gupta, Committee Chair

University of California, Los Angeles

2021

v

To my parents who inspire me,

and without whom none of this would have been possible.

vi

TABLE OF CONTENTS

1 Introduction : 1

1.1 Memory Reliability is Becoming a Key Concern 2

1.2 Power/Performance Scaling and Fault Tolerance in Lightweight On-Chip SRAM-

based Memories . 4

1.3 Scalability Concerns in DRAM-based Main Memories 5

1.4 Reliability and Performance Challenges of Non-Volatile Main Memory Systems . . 6

1.5 Dissertation Outline . 7

2 FaultLink: Low Cost Fault Tolerance for IoT Devices : : : : : : : : : : : : : : : : 11

2.1 Introduction . 12

2.2 Background . 13

2.2.1 Scratchpad Memories (SPMs) . 13

2.2.2 Program Sections and Memory Segments 14

2.2.3 Tolerating SRAM Faults . 14

2.3 FaultLink . 15

2.3.1 Test Chip Experiments . 17

2.3.2 Toolchain . 18

2.3.3 Fault-Aware Section-Packing . 18

2.4 Evaluation . 21

2.4.1 Voltage Reduction on Real Test Chips . 21

2.4.2 Yield at Min-VDD for Synthetic Test Chips 23

2.5 Related Work . 26

2.5.1 Fault-Tolerant Caches . 26

vii

2.5.2 Fault-Tolerant Scratchpads . 26

2.6 Discussion . 27

2.6.1 Memory Reliability Binning . 27

2.6.2 Coping with Aging and Wearout using FaultLink 27

2.6.3 Directions for Future Work . 28

2.7 Conclusion . 28

3 SAME-Infer: Software Assisted Memory Resilience for Ef�cient Infer ence at the

Edge : 29

3.1 Introduction . 30

3.2 Background . 32

3.2.1 SRAM Faults . 32

3.2.2 Fault Resilient DL networks . 33

3.3 SAME-Infer Methodology . 33

3.3.1 Fault Impact Analysis . 35

3.3.2 Packing Critical and Non-Critical Sections 35

3.3.3 Breaking up monolithic weight sections into smaller kernels 36

3.3.4 Analytical Critical and Non-critical Section Packing Estimation 39

3.4 Experimental Setup . 40

3.5 Results . 42

3.5.1 Reduction in voltage with SAME-Infer 42

3.5.2 Splitting up Weights to Achieve Better Packing 45

3.5.3 Importance of Sensitivity Analysis of Fault Tolerant sections 47

3.5.4 Analytical Model to Estimate for Larger Sized Memories 48

3.5.5 Evaluation for Binarized Dense and Sparse Networks 48

viii

3.5.6 Comparison with Past Works . 51

3.6 Discussion . 54

3.6.1 Fault Injection During Training to Tolerate Soft Errors 54

3.6.2 Improving Packing by Optional Reversing of Non-Critical Sections 54

3.6.3 Universal Packing Solution to Allow Dynamic Voltage Scaling and Tolerate

Aging Induced Faults . 55

3.6.4 Addressing the Code Memory Bottleneck 56

3.6.5 Use of Error Correcting Codes (ECC) . 56

3.6.6 Extending SAME-Infer to Other Approximation Tolerant Applications . . 57

3.7 Conclusion . 58

4 Software-De�ned Error-Localizing Codes (SDELC): Lightweight Recovery from Soft

Faults at Run-Time : 59

4.1 Introduction . 60

4.2 Background . 61

4.2.1 Error-Correcting Codes (ECCs) . 61

4.2.2 Error-Localizing Codes . 62

4.3 Software-De�ned Error-Localizing Codes (SDELC): Recovering Soft Faults at

Run-Time . 62

4.3.1 Architecture . 63

4.3.2 Ultra-Lightweight Error-Localizing Codes (UL-ELC) 64

4.3.3 Recovering SEUs in Instruction Memory 66

4.3.4 Recovering SEUs in Data Memory . 68

4.4 Evaluation - Soft Fault Recovery using SDELC 69

4.4.1 Overall Results . 70

4.4.2 Recovery Policy Analysis . 71

ix

4.4.3 Risk of SDCs from SDELC . 73

4.5 Conclusion . 73

5 Parity++: Lightweight Error Correction for Last Level Caches : : : : : : : : : : : 74

5.1 Introduction . 75

5.2 Background and Related Work . 76

5.2.1 Error Correcting Codes . 76

5.2.2 SRAM Reliability and Error Detection and Correction in Caches 77

5.2.3 Application Characteristics . 77

5.3 Lightweight Error Correction Code . 78

5.3.1 Theory . 78

5.3.2 Error Detection and Correction . 81

5.3.3 Architecture . 82

5.3.4 Coverage and Overheads . 85

5.4 Experimental Methodology . 87

5.5 Results and Discussion . 88

5.6 Conclusion . 92

6 COMET: On-die and In-controller Co llaborative M emory ECC Technique for Stronger

and Safer Correction of DRAM Errors : 93

6.1 Introduction . 94

6.2 Background . 96

6.2.1 DRAM Operation . 97

6.2.2 Linear Hamming Error Correcting Codes 97

6.2.3 SEC vs. SECDED . 98

6.3 Motivation . 99

x

6.3.1 Miscorrections by On-Die ECC . 99

6.3.2 SDC post in-controller SECDED decoding 100

6.4 COMET ECC Design to Eliminate Silent Data Corruption 102

6.4.1 On-die SEC-COMET ECC . 103

6.4.2 In-controller SECDED-COMET ECC . 105

6.5 COMET Double-bit Error Correction . 107

6.5.1 Constructing on-die SEC code to enable Double-bit Error Correction (SEC-

COMET-DBC) . 107

6.5.2 Collaborative DBE Correction . 108

6.5.3 Implementation of COMET command . 115

6.6 Results . 116

6.6.1 Reliability Evaluation . 116

6.6.2 Effectiveness of COMET Double-bit Correction 118

6.6.3 Impact on Encoder/Decoder Area, Energy and Latency 118

6.6.4 Performance Impact of SEC-COMET-DBC 119

6.7 Discussion . 120

6.7.1 Independent design of on-die and in-controller codes 120

6.7.2 Using Stronger On-die Codes . 120

6.7.3 Using Stronger In-controller ECC . 121

6.7.4 Comparison with Past Works . 121

6.7.5 Accommodating Wider Data Widths . 122

6.8 Conclusion . 123

7 Compression with Multi-ECC: Enhanced Error Resiliency for Magnetic Memories 124

7.1 Introduction . 125

xi

7.2 Background . 127

7.2.1 STT-RAM Basics . 128

7.2.2 Previous Work On STT-RAM Reliability 131

7.2.3 Previous Work On Cache Compression 132

7.3 Our scheme - Compression with Multi-ECC (CME) 133

7.3.1 Overall Architecture . 134

7.3.2 Cache Line Compression using modi�ed BPC and an optional Hamming

Weight Aware Inversion Coding . 134

7.3.3 Multi-ECC on Compressed Cache Line 136

7.3.4 Additional Tag Bits and Memory Organization 142

7.4 Evaluation Methodology . 149

7.5 Results . 151

7.5.1 Reduction in Hamming Weight . 151

7.5.2 Reduction in block failure probability . 153

7.5.3 Hardware Overhead of Multi-ECC Scheme 156

7.5.4 System Performance Evaluation . 158

7.6 Discussion . 160

7.6.1 Using an Alternative Compression Scheme 160

7.6.2 Variable Scrubbing Interval . 161

7.6.3 Using STT-RAM as non-ECC DRAM Alternative - Reliability Point of View161

7.7 Conclusion . 163

8 PCM-Duplicate: Achieving DRAM-like PCM By Trading Off Capacity For Latency 164

8.1 Introduction . 165

8.2 Background . 167

xii

8.2.1 PCM Basics . 167

8.2.2 DRAM vs. PCM . 169

8.3 Motivation and Past Work . 170

8.3.1 PCM-ECC Overview: Combination of Previously Proposed Improvements 171

8.3.2 Performance Analysis: PCM-ECC vs. DRAM 172

8.3.3 Motivation to achieve near-DRAM latency 173

8.4 Bridging the Performance Gap Between PCM and DRAM 174

8.4.1 PCM-Duplicate Overview: PCM with DRAM-like read latency 174

8.4.2 PCM-Duplicate Implementation . 175

8.4.3 Reducing Write Time and Energy using ECC and Infrequent Refresh . . . 175

8.4.4 Sneak Current in Crossbar Architecture 176

8.5 Evaluation Methodology . 178

8.6 Results . 179

8.6.1 Using PCM-Duplicate as Main Memory 180

8.6.2 Using PCM-Duplicate as Last Level Cache instead of DRAM 180

8.6.3 Enabling Lightweight Main Memory Based Persistence 182

8.7 Conclusion . 183

9 Conclusion : 184

9.1 Overview of Contributions . 184

9.1.1 FaultLink and SAME-Infer . 184

9.1.2 SDELC . 185

9.1.3 Parity++ . 185

9.1.4 COMET . 186

9.1.5 Compression with Multi-ECC . 186

xiii

9.1.6 PCM-Duplicate . 186

9.2 Directions for Future Work . 187

9.2.1 Extensions Of Techniques Proposed In This Dissertation 187

9.2.2 Asymmetric Error Correction In Non-Volatile Memories 188

9.2.3 Making Neuromorphic Computing Robust 189

9.2.4 Improving Reliability and Endurance in Hybrid Main Memory Systems . . 189

9.2.5 Enabling Shared-Bus Read/Write in Memories for Performance and Energy

Ef�ciency . 190

9.2.6 Combining Memory Reliability with Security 191

References: 192

xiv

LIST OF FIGURES

1.1 Faults in two SRAM based scratchpad memories at different voltages 4

1.2 High level concept of Lightweight Opportunistic Memory Resilience 8

2.1 Our high-level approach to tolerating hard faults in on-chip scratchpad memories. . . . 15

2.2 Test chip and board used to collect hard fault maps for FaultLink. 16

2.3 Measured voltage-induced hard fault maps of the 176 KB data memory for one test

chip. Black pixels represent faulty byte locations. 17

2.4 FaultLink procedure: given program source code and a memory fault map, produce

a per-chip custom binary executable that will work in presence of known hard fault

locations in the SPMs. 18

2.5 FaultLink attempts to pack contiguous program sections into contiguous disjoint seg-

ments of non-faulty memory. Gray memory segments are occupied by mapped sections,

while white segment areas are free space. The depicted gaps between some of the

gray/white boxes indicate faulty memory regions that are not available for section-packing.20

2.6 Result from applying FaultLink to thesha benchmark for two real test chips' 64 KB

instruction memory at 650 mV. 22

2.7 Achievable min-VDD for FaultLink at 99% yield. Bars represent the analytical lower

bound from Equation 2.2 and circles represent our actual results using Monte Carlo

simulation for 100 synthetic fault maps. 24

2.8 Distribution of program section sizes. Packing the largest section into a non-faulty

contiguous memory segment is the most dif�cult constraint for FaultLink to satisfy and

limits min-VDD. 25

3.1 SAME-Infer procedure: given source code of a DL network and a memory fault map,

produce a per-chip custom binary executable that will work in presence of known hard

fault locations in the SPMs. 34

xv

3.2 A sample section packing solution provided by SAME-Infer. The critical sections are

placed in fault free memory segments while the non-critical sections intersect with

faults (grey regions represent fault locations). The stack and heap is placed in the largest

non faulty contiguous memory segment remaining after placing the critical sections. . . 37

3.3 Weight quantization noise gain per �lter - layers 1 and 2 of a nine layer CNN. 38

3.4 Change in inference accuracy with voltage. Dotted lines are results with SAME-Infer

while the solid lines are without SAME-Infer. 43

3.5 Change in three layer CNN-2 inference accuracy as voltage on the test chips is scaled

down. The result shown here is the average accuracy across 10 test chips for each test

case. The test cases are - (1) without SAME-Infer (2) with SAME-Infer and layerwise

monolithic weight sections (3) when the weight sections are split up on per �lter basis

in every layer. 45

3.6 Achievable min-VDD as the smallest non-critical section size is reduced for the three

layer CNN. The min-VDD is obtained using Equation 2.2 while the min-VDD for

critical section is obtained from the test chip results. 46

3.7 Change in nine layer CNN inference accuracy as voltage on the synthetic chips is scaled

down. The result shown here is the average accuracy across 10 synthetic chips for each

test case. The test cases are - (1) with SAME-Infer and layerwise monolithic weight

sections (2) when the weight sections are split up on per �lter basis in every layer. . . . 47

3.8 Change in the three layer CNN-2 inference accuracy as voltage on the test chips is

scaled down. The result shown here is the average accuracy across 5 test chips for

each test case. The test cases are - (1)when the fault tolerant sections are naively

placed (greedy placement) in the memory while the critical text sections are placed in

non-faulty memory regions (2) SAME-Infer with criticality aware placement. 48

3.9 Voltage reduction or BER tolerance estimation by the analytical model for the three

layer CNN-2 on different memory sizes. 49

3.10 Change in dense binarized MLP inference accuracy as voltage on the test chips is scaled

down. 50

xvi

3.11 Change in sparse binarized MLP inference accuracy as voltage on the test chips is

scaled down. 50

3.12 SAME-Infer achieves lower min voltage as compared to FaultLink [1] with negligible

impact on accuracy because SAME-Infer allows intersection with faults in the less

critical LSB bits of non-critical fault tolerant data sections. 51

3.13 MLP (2 layer) with MNIST - average accuracy measured across 10 chips for each test

case - (1) Baseline (2) Curricular Retraining (3) SAME-Infer 52

3.14 Hard Fault Map of the 64KB instruction memory (left) and the 176KB data memory

(right) of a test chip. The black dots represent the faulty byte locations. 53

4.1 Architectural support for SDELC on an microcontroller-class embedded system. 63

4.2 The relative frequencies of static instructions roughly follow power law distributions.

Results shown are for RISC-V with 20 SPEC CPU2006 benchmarks; we observed

similar trends for MIPS and Alpha, as well as dynamic instructions. 67

4.3 Average rate of recovery using SDELC from single-bit soft faults in instruction and

data memory.r is the number of parity bits in the UL-ELC construction. 70

4.4 Sensitivity of SDELC instruction recovery to the actual position of the single-bit fault

with ther = 3 UL-ELC construction. 71

4.5 Sensitivity of SDELC data recovery to the mean candidate Hamming distance score for

two benchmarks andr = 1 parity code. 72

5.1 Conceptual Illustration of Parity++ for 1-bit error . 79

5.2 Flow of read operation in cache with memory speculation and Parity++ protection

schemes . 83

5.3 Cache architecture to implement Parity++ with memory speculation 84

5.4 Storage overhead of different commonly used ECC schemes along with our scheme

Parity++ . 86

xvii

5.5 Comparing Normalized Execution Time of Processor-I with SECDED and Parity++

(with memory speculation) . 90

5.6 Comparing Normalized Execution Time of Processor-II with SECDED and Parity++

(with memory speculation) . 90

5.7 Output quality of AxBench benchmarks for memory with no ECC vs with Parity++ . . 91

6.1 Example showing the difference when a DBE occurs in DRAMs with and without

on-die SEC. Both systems have in-controller SECDED. Assumption: data and parity

bits that get decoded in the controller in one cycle are sent from the same DRAM chip

across multiple beats. 95

6.2 Probability of SDC every 64-bits of SCEDED dataword read from memory when a

double-bit error occurs in a system with (136,128) on-die SEC and (72,64) in-controller

SECDED coding schemes for different bit error rates and data access protocols is shown

here. 101

6.3 Example showing how steering the miscorrected bit to a different beat transfer boundary

during SEC decoding prevents the SECDED decoder from encountering the problematic

triple-bit error within the same 72-bit codeword. 103

6.4 Example showing SDC occurring due to miscorrection introduced by on-die ECC. We

have considered the SEC construction provided in Section 6.3.1 where the sum of

columns 1 and 2 in theHexamplematrix is equal to column 4. 104

6.5 The different scenarios possible when one chip has double-bit error and another chip

has single bit error that aligns in a way leading to multiple DRAM chips modifying

data during DBE correction . 110

6.6 Step-by-step COMET double-bit error correction mechanism. 114

6.7 The impact of on-die ECC induced SDC in the event of double-bit error on the program

behavior when running applications from the AxBench suite. 117

7.1 Schematic of STT-RAM showing the anti-parallel and parallel states 128

xviii

7.2 Read and write mechanisms for STT-RAM is shown here 130

7.3 Processor Memory system architecture with CME . 134

7.4 An overview of the modi�ed Bit-Plane Transformation scheme 135

7.5 Block failure probability is shown for blocks with different Hamming weight (HW) and

ECC schemes. The probability of 1! 0 bit-�ip is considered to be 10� 5 138

7.6 An example of CME scheme where the compressed cache line size is 440 bits 139

7.7 Average hamming weight of each 32-bit word of all cache lines within each bucket.

Uniform bucket size of 64 bits were used for all cache lines whose �nal size lies between

512 bits and 256 bits. 140

7.8 Distribution of cache line length after compression of six benchmarks from the SPEC2006

suite . 141

7.9 CME-Scheme 1 is shown where tag bits are stored in an x1 DRAM chip. One tag bit is

read every cycle in burst. Different colors represent different 72-bit ECC words in a

512-bit cache line. 146

7.10 CME-Scheme 2 where tag bits for ECC scheme used are stored in an x8 DRAM. The

tag bit and it's parity representing compression are stored in an x2 DRAM chip and are

brought in the same burst. Different colors represent different 72-bit ECC words in a

512-bit cache line. 147

7.11 Comparison of average Hamming weight of original cache line, BPC, BDI and DBX

schemes . 153

7.12 Reduction in block failure probability induced due to write/read/retention errors for

the �rst design point [2] is shown. The y-axis is in logarithmic scale (reverse order).

The geometric mean and arithmetic mean of the improvement of CME Schemes over

baseline is shown in plot. 154

xix

7.13 Reduction in block failure probability induced due to write/read/retention errors for the

second design point [3] is shown. The y-axis is in logarithmic scale (reverse order).

The geometric mean and arithmetic mean of the improvement of CME Schemes over

baseline is shown in plot. 155

7.14 Improvement of CME Schemes 1 and 2 over a scheme that provides uniform (72,57)

DECTED for all compressible cache lines and (72,64) SECDED if in-compressible. . . 157

7.15 Comparing Normalized Execution Time of two systems (one with 8 InO cores and

another with a single OoO core), both having three protection schemes: baseline

(72,64)SECDED, CME Scheme-1 and CME Scheme-2. InO and OoO results are

normalized to their respective baselines. 158

7.16 Improvement in Block Failure Probability of BDI and BPC over Baseline [no compres-

sion and (72,64)SECDED]. 160

7.17 MTTF of STT-RAM devices (with different protection schemes and scrubbing intervals)

and non-ECC DRAM devices of different sizes. Note that the y-axis is in log scale. . . 162

8.1 Structure of PCM cell, overview of SET and RESET current pulses and variation in

cell resistance for SET and RESET states. 168

8.2 Organization of a PCM bank . 169

8.3 Normalized Execution Time of SPEC-2017 and GAP workloads comparing DRAM and

PCM-ECC based main memory systems. The execution times are normalized against

the system using DRAM. 172

8.4 Sensing latencies of PCM-ECC vs PCM-Duplicate 175

8.5 The two operation modes in PCM-Duplicate . 176

8.6 Crossbar array structure showing read current and sneak current 177

8.7 Normalized Execution Time of SPEC-2017, GAP and Parsec workloads comparing

DRAM (System-1), Baseline-PCM (System-2) and PCM-ECC (System-3) based main

memory systems. The execution times are normalized against the System-1. 181

xx

8.8 Normalized Execution Time of SPEC-2017, Parsec and GAP workloads comparing

DRAM and PCM-Duplicate as last level caches (System 4 vs. System 5) for slower

PCM main memories. The execution times are normalized against the system using

DRAM-based cache (system 4). 182

xxi

LIST OF TABLES

3.1 DL networks used in our experiments . 41

4.1 Proposed7-Chunk UL-ELC Construction withr = 3 for Instruction Memory (RV64G

ISA v2.0) . 66

5.1 Fraction of Special Messages per Benchmark Within Suite 78

5.2 Error Detection and Correction Coverage for Parity++ along with some widely used

ECC schemes . 85

5.3 Core Micro-architectural Parameters . 89

6.1 COMET DBE Correction Command Sequence in DDR4 and LPDDR4 protocols . . . 115

6.2 Synthesis Results for Different x8 SEC Decoder Implementations in Commercial 28nm

Library . 119

7.1 Frequent Patterns for BPC and DBP/DBX symbol encoding 136

7.2 Choice of Error Correcting Codes for CME . 137

7.3 ECC scheme to be used depending on the compressed cache line size 143

7.4 8-bit Tag per Cache Line for CME . 144

7.5 ECC scheme to be used depending on the compressed cache line size when the tag is

embedded in the cache line (CME-Scheme 2) . 148

7.6 Evaluation setup . 150

7.7 Core Micro-architectural Parameters . 152

8.1 Details of the different memory systems evaluated . 179

xxii

ACKNOWLEDGMENTS

This dissertation is the culmination of many years of hard work, the support and guidance of my

advisor and the doctoral committee, and the love and encouragement of my family and friends. This

journey of �ve years has not always been easy. There were times of joy and satisfaction, along with

phases of struggles and disappointment. But overall this experience has been extremely ful�lling

and I owe gratitude to a number of people without whom my doctoral studies would not have been

possible.

I would �rst like to thank my doctoral committee: Profs. Puneet Gupta (chair and advisor),

Lara Dolecek, Ken Yang, and Tony Nowatzki for their outstanding teaching and research guidance.

Prof. Gupta has been a wonderful advisor and mentor. I am grateful to him for the constant

support, patience, motivation, and guidance. This dissertation would not have been possible without

his excellent help and foresight. He helped me in becoming a successful researcher. I would

like to thank Prof. Dolecek for being an instrumental collaborator who introduced me to the

fundamentals of coding theory. Most of the dissertation stands on the knowledge that I gained from

my collaboration with her. I am grateful to Prof. Yang for his valuable inputs, especially in the

PCM project. He highlighted key issues that were unknown to me and that signi�cantly helped in

improving the project. Prof. Nowatzki introduced me to interesting research topics in computer

architecture through his graduate course. Discussions with him during the course and beyond have

inspired me to broaden my research focus and look at new problems.

I would like to thank Dr. Mark Gottscho (now at Google) for being an excellent mentor and

helping me complete my very �rst project (FaultLink and SDELC) as a Ph.D. student. He held my

hand through my very crucial �rst year of research at UCLA that helped in forming and shaping my

dissertation focus. I would like to thank my collaborator, Dr. Clayton Schoeny (now at Square) for

all the discussions and technical help. We collaborated on most of the projects in the �rst part of my

dissertation (FaultLink, SDELC, and Parity++). Without his novel code construction ideas, these

projects would not have been possible.

I would then like to thank all my internship mentors. At Micron Technology, Inc. I worked under

the guidance of Ameen Akel and Ken Curewitz. The knowledge and insights from this internship

xxiii

immensely helped me with my research in memory architecture and resiliency. At Google LLC.,

I worked with Hema Hariharan and Mark Gottscho to build a framework for developing memory

reliability solutions. This project helped me implement some of my research ideas and gave me

the satisfaction of seeing my hard work become a part of Google's chip building infrastructure. At

Apple, Inc. my manager Seung Lee and mentors Heonjae Ha, Xiaowen Han, and Andrew Chu

introduced me to a completely new area of memory research (not including details because of

con�dentiality concerns). All three internships have been extremely rewarding in terms of the

knowledge that I have gained and have contributed signi�cantly towards my doctoral research.

Thanks also to Dr. Greg Wright from Qualcomm Research for inviting me to present at Qualcomm

Research (San Diego) in 2017. His feedback and comments on my work have added valuable

perspectives.

I would also like to acknowledge the support of my labmates: Dr. Mark Gottscho, Dr. Yasmine

Badr, Dr. Shaodi Wang, Dr. Wei-Che Wang, Saptadeep Pal, Yoojin Chae, Tianmu Li, Wojciech

Romaszkan, Shurui Li, and Alexander Graening. I am thankful for their friendship and their inputs

during technical discussions. Special thanks to all my friends in India, Singapore, and the US for

their support. Thank you Yasmine Badr for helping me settle down and get past my �rst year at

UCLA. I would also like to thank Steven Moran for motivating me to remain �t and reminding me

to take occasional breaks to refresh and recharge. Finally, I will be forever grateful to Saptadeep

Pal for being my biggest support in these �ve years, for always inspiring and motivating me, for

critiquing my work and providing valuable inputs through lengthy discussions, and for proofreading

all my papers.

Lastly and most importantly, I would like to thank my parents, Maksud Alam and Leena Alam,

for their unconditional love, unwavering support, and encouragement. I can never �nd enough

words to express my gratitude towards them for their sacri�ces and for the key role that they played

in shaping my future. None of my accomplishments would have been possible without them.

xxiv

Copyrights and Re-use of Published Material

This dissertation contains signi�cant material that has been previously published or is intended to

be published in the future. Chapters 2 and 4 (FaultLink and SDELC) contain material that were

published in [1,4,5]. Chapter 3 (SAME-Infer) includes material published in [6]. The fundamental

concepts in Chapter 5 (Parity++) appeared in [4,7,8]. Chapters 6 (COMET) and 8 (PCM-Duplicate)

are being prepared for publication. Chapter 7 (CME) includes material published in [9].

Some of the work in my PhD that was conducted in collaboration with other individuals (where

I contributed, but did not lead) are not included in the body of this dissertation.

xxv

VITA

2014 B.Eng., Electrical and Electronic Engineering (Minor in Computing), Nanyang

Technological University, Singapore

2014-2016 Product Engineer, Micron Semiconductor Asia Pte. Ltd., Singapore

2017, 2018 UCLA EE Department Fellowship

2018 M.S., Electrical and Computer Engineering, UCLA

2018 Outstanding Master's Thesis in Circuits and Embedded Systems, ECE, UCLA

2018 PhD Intern, Micron Technology Inc.

2019 Cadence Women in Technology Scholarship

2019 PhD Intern, Google LLC.

2020 PhD Intern, Apple Inc.

PUBLICATIONS

Saptadeep Pal,Irina Alam , Krutikesh Sahoo, Haris Suhail, Rakesh Kumar, Sudhakar Pamarti,

Puneet Gupta, and Subramanian S. Iyer, “I/O Architecture, Substrate Design, and Bonding Pro-

cess for a Heterogeneous Dielet-Assembly based Waferscale Processor”, inIEEE 71st Electronic

Components and Technology Conference (ECTC), June 2021.

Irina Alam , Lara Dolecek, and Puneet Gupta, “Lightweight Software-De�ned Error Correction for

Memories”, inDependable Embedded Systems, Springer, Cham, 2021.

xxvi

Irina Alam , and Puneet Gupta “SAME-Infer: Software Assisted Memory Resilience for Ef�cient

Inference at the Edge”, inInternational Symposium on Memory Systems(MEMSYS), Washington

D.C., USA, September 2020.

Clayton Schoeny, Frederic Sala, Mark Gottscho,Irina Alam , Puneet Gupta, and Lara Dolecek,

“Context-Aware Resiliency: Unequal Message Protection for Random-Access Memories”, inIEEE

Transactions on Information Theory, October 2019.

Irina Alam , Saptadeep Pal, and Puneet Gupta, “Compression with Multi-ECC: Enhanced Error

Resiliency for Magnetic Memories”, inInternational Symposium on Memory Systems(MEMSYS),

Washington D.C., USA, September 2019.

Clayton Schoeny,Irina Alam , Mark Gottscho, Puneet Gupta, and Lara Dolecek, “Error Correction

and Detection for Computing Memories Using System Side Information”, inIEEE Information

Theory Workshop (ITW), Guangzhou, China, November 2018.

Irina Alam , Clayton Schoeny, Lara Dolecek, and Puneet Gupta, “Parity++: Lightweight Error

Correction for Last Level Caches”, inIEEE/IFIP International Conference on Dependable Systems

and Networks Workshops (DSN-W), Luxembourg City, Luxembourg, June 2018.

Clayton Schoeny, Frederic Sala, Mark Gottscho,Irina Alam , Puneet Gupta, and Lara Dolecek,

“Context-Aware Resiliency: Unequal Message Protection for Random-Access Memories”, inIEEE

Information Theory Workshop (ITW), Kaohsiung, Taiwan, November 2017.

Mark Gottscho,Irina Alam , Clayton Schoeny, Lara Dolecek, and Puneet Gupta “Low-Cost

Memory Fault Tolerance for IoT Devices”, inACM/IEEE International Conference on Compilers,

Architecture, and Synthesis for Embedded Systems (CASES), published in ACM Transactions on

Embedded Computing Systems (TECS), Seoul, South Korea, October 2017.

xxvii

CHAPTER 1

Introduction

Memories are one of the key bottlenecks in the performance, reliability, and energy ef�ciency of

most computing systems. As computing systems have scaled over the decades, the need for memory

systems where large amounts of data can be stored and retrieved ef�ciently has also risen rapidly.

To achieve this, memory and storage systems have been scaled for maximum information density.

Moore's Law has been the primary driver behind the phenomenal advances in computing capability

of the past several decades. However, with technology scaling having reached the nanoscale era,

integrated circuits, especially computing memories, are becoming increasingly sensitive to process

variations leading to reliability and yield concerns.

The biggest challenge with memory reliability is that the resiliency techniques are expected to

be effective while incurring minimal overheads. Today's standard error detection and correction

schemes do not take into consideration multiple factors, such as underlying actual fault models

and error mechanisms, application data value behavior as well memory architecture and protocols.

As a result, they are unable to provide maximum protection possible within the area, power, and

performance overhead budgets.Lightweight Opportunistic Memory Resilienceopportunistically

exploits these aspects to provide a complementary suite of novel methods that tackle memory

reliability at different levels of the memory hierarchy while incurring minimal cost.

To contextualize and motivate the research in this dissertation, a brief overview of memory

reliability challenges is provided in Section 1.1. The problems faced in the reliable operation of

on-chip memories are outlined in Section 1.2. Sections 1.3 and 1.4 discuss the challenges faced

in today's off-chip main memory technologies (DRAM as well as alternate emerging non-volatile

memory technologies).Lightweight Opportunistic Memory Resilienceprovides a complementary

suite of novel methods that tackle memory reliability at different levels of the memory hierarchy,

1

and is described in Section 1.5 summarizes all the research projects covered in this dissertation that

provide ef�cient resiliency solutions tailored to the memory type. The overall framework helps

to cope with the reliability and performance challenges that computing memory faces today and

tomorrow.

1.1 Memory Reliability is Becoming a Key Concern

Memories have become the limiting factor in the reliability of computing systems [10] because

they are primarily designed to maximize bit storage density. On one hand, with technology scaling,

the memory cell dimensions are reducing that is allowing memory manufacturers to pack in more

memory cells per unit area. This makes memories particularly sensitive to manufacturing process

variation, environmental operating conditions, and aging-induced wearout [11,12]. On the other

hand, system designers are trying to accommodate as many memory modules as possible to increase

the total memory capacity and improve overall system performance. This is increasing the total

memory array area and the likelihood of defects affecting the memory as well as the number of

memory module components in the overall system that can fail during operation. The combined

effect of these two phenomena is signi�cantly worsening memory subsystem reliability.

In warehouse-scale computers, hard faults in memories manifest as correctable/uncorrectable

errors. These errors have become expensive culprits that cause machine crashes, corrupted data,

security vulnerabilities, service disruption, and costly repairs and hardware servicing [10, 13].

Google has observed 70000 failures in time (FIT)/Mb in commodity on-chip DRAM memory, with

8% of modules affected per year [10], while Facebook has found that 2.5% of their servers have

experienced memory errors per month [14]. The Blue Waters supercomputer had 8.2% of the dual

in-line memory modules (DIMMs) (modules that contain multiple RAM chips) encounter an error

over the course of a 261-day study [15]. These trends are expected to continue rising.

The concern with memory reliability is not limited to high-performance systems. With

IoT/embedded devices increasingly becoming part of critical infrastructure and being deployed in

failure-intolerant modes (e.g., cars), the development of inexpensive fault tolerance schemes for

them has become important [16]. Also, with sensing and data-processing being one of the most

2

important use cases for edge devices, these devices are seeing increasing use of large memories.

SRAM-based scratchpad memories are often the choice of memory architecture used in IoT devices.

As demand for higher memory density increases, memory cells are shrunk using advanced technol-

ogy nodes which, in turn, makes the memory cells more susceptible to both soft and hard faults.

The need for low-power and hence lower operating voltage exacerbates the error rates further.The

weak cells in the memory limit the voltage and energy scaling in these memories. These trends

indicate that memory failures are likewise going to be critical for emerging edge/IoT computing

devices as well.

Techniques adopted to ensure reliability in today's systems incur performance, power, and area

overheads. Error correcting codes (ECC) are typically used to recover from memory errors. However,

they explicitly ignore data values stored in the memory and are purely based on positional errors. As

a result, they add signi�cant overheads. Ideally, we want to ensure reliable memory operation while

incurring negligible overheads. Hence, the solution has to be tailored to the type of memory and its

position in the memory hierarchy. For latency/power critical on-chip caches or embedded memories,

tolerable overhead is much smaller than that for off-chip memories. Hence, conventional ECCs are

too expensive for them. Also, systems running moderately fault-tolerant applications do not require

strong protection techniques that reliability critical systems do. In workstation/server environments,

need for larger amounts of memory is driving use of dense non-volatile memories or techniques to

enable high density DRAMs. These memory technologies have signi�cant reliability concerns and

hence, require much stronger protection. Hence, in this dissertation, we take into account all these

factors and provide a suite of novel memory resiliency techniques for different classes and types of

memory technologies. We exploit data value behavior to design novel ECC solutions with much

reduced overheads as compared to conventional codes. For embedded memories, our lightweight

solutions provide protection against both hard faults discovered pre-deployment and unpredictable

soft faults during runtime. For off-chip dense memories, we exploit the underlying fault models and

memory architecture to improve reliability by providing stronger protection techniques with almost

negligible increase in overheads.

3

1.2 Power/Performance Scaling and Fault Tolerance in Lightweight On-Chip

SRAM-based Memories

Low power density is the key to achieving the vision of both exascale computing and the Internet

of Things (IoT) [17]. To achieve that, systems need to adopt intelligent power-saving techniques.

Memories, both on-chip and off-chip, consume a signi�cant portion of system power. One way

to reduce power consumption in on-chip SRAM-based memories is to reduce the supply voltage

(VDD). However, as shown in Figure 1.1, scaling the VDD down leads to an exponential rise in

hard faults in the memory cells [18]. Not only hard faults, but the memories also become more

susceptible to radiation-induced soft faults at lower voltages, thus degrading yield at low voltage.

Moreover, on-chip embedded memories or caches in high-performance computing systems are

often the largest consumers of chip area. This further increases the likelihood of defects affecting

memory rather than logic and process variations with respect to individual memory cells create a

signi�cant impact.

Figure 1.1: Faults in two SRAM based scratchpad memories at different voltages

To deal with on-chip memory errors due to manufacturing defects designers traditionally include

spare rows and columns in the memory arrays [19] and employ large voltage guardbands [20]

4

to ensure reliable operation. Unfortunately, large guardbands limit the energy proportionality of

memory. For unpredictable runtime bit �ips, the widely used technique to guarantee the reliability

of storage devices is using information redundancy in the form of Error Correcting Codes (ECC). In

typical ECCs, extra redundancy bits are added to every row to detect and correct errors. There are

additional encoding (while writing data) and decoding (while reading data) procedures required as

well. Thus, redundancy in ECC schemes not only incurs area overhead, the encoding and decoding

mechanisms also incur additional overheads in terms of latency and energy. As a result, using

strong ECC to correct errors in these latency/power critical lightweight memories often becomes

overkill and has a non-negligible impact on overall system performance, power, and area. Thus,

designing low overhead resiliency schemes to tolerate hard and soft faults in these memories is often

a challenge. This dissertation proposes a two-step approach to improve the reliability of on-chip

lightweight memories at minimal cost. In step one, we propose techniques to tolerate hard faults

that are detected during deployment. In step two, we propose multiple correction mechanisms that

allow recovery from unpredictable single-bit �ips that occur during runtime. We exploit software

behavior and characteristics to reduce the overall protection overheads.

1.3 Scalability Concerns in DRAM-based Main Memories

Memory reliability is a signi�cant problem not just in on-chip memories, but also in off-chip main

memory systems. Main memories serve a pivotal role, sitting in between the processor cores

and the slow storage devices. With aggressive technology scaling, a large number of processor

cores are being integrated in today's systems. As a result, there is an ever-increasing demand for

main memory capacity in order to be able to exploit the processing power of these multicore and

manycore systems and maintain the performance growth. DRAM is the primary main memory

technology used in today's systems. However, DRAM scaling is, unfortunately, slowing down.

Also, DRAM reliability is worsening with scaling. With increasing rate of scaling induced errors

in DRAM [21–28], the traditional method of row/column sparing used by DRAM vendors to

tolerate manufacturing faults [29] has started to incur large overheads. To improve yields and

provide protection against single-bit failures in the DRAM array, memory manufacturers have

5

started incorporating on-die single error correction (SEC) coding (on-die ECC) [24,26]. The ECC

encoding/decoding happens within the DRAM chip. Only the actual data, post correction, is sent

out of the DRAM, making on-die ECC transparent to the outside world. The on-die ECC, along

with within memory controller Single-Error Correction Double Error Detection (SECDED) ECC, is

used to improve DRAM reliability. However, in the case of multi-bit errors (especially double-bit

errors), using the two disjoint ECC schemes in the data pipeline results in increased chances of

silent data corruption. This is because, for double-bit errors, the on-die SEC ECC has a> 45%

of miscorrecting it to a triple-bit error. The in-controller SECDED then has a� 55% chance of

further miscorrecting the triple-bit error, leading to silent data corruption. This was previously

not an issue with only in-controller ECC as the SECDED decoder in the controller could always

detect the double-bit error and �ag a detectable-but-uncorrectable error (DUE). Thus, on-die SEC

improves DRAM yield by silently correcting SBEs, but signi�cantly reduces memory reliability and

increases chances of SDC in the case of double-bit errors. This dissertation proposes a collaborative

technique that utilizes memory data transfer protocol to not only eliminate double-bit error-induced

SDCs but also correct almost all the double-bit errors that occur within the memory array.

1.4 Reliability and Performance Challenges of Non-Volatile Main Memory

Systems

Though DRAM is still the main memory workhorse, several application contexts need different

properties from the main memory (higher density, non-volatility, higher performance, etc). Hence,

it is becoming increasingly important to consider alternative technologies that can potentially avoid

the problems faced by DRAM and enable new opportunities.

Several emerging non-volatile memory (NVM) technologies are now being considered as

potential replacements for or enhancements to DRAM. Most of these new non-volatile technologies

(Phase Change Memory[PCM], STT-RAM, Resistive RAM[ReRAM], etc.) promise better scaling,

higher density, and reduced cost-per-bit [30]. However, they come with their own set of challenges.

The biggest problem that these emerging technologies face is the high stochastic bit error rate. In

fact, the reliability challenges of NVMs can offset the density and energy advantages that they offer.

6

Increase in demand for memory capacity requires aggressive scaling of area-per-bit of storage. At

higher density, these non-volatile emerging memory technologies tend to be more susceptible to

stochastic bit errors [31]. Due to the random nature of the bit errors, these memory technologies

require strong in-�eld error-correcting code (ECC) [32]. Also, for most of these emerging NVM

technologies, some states show higher error rates than the rest. As a result, the conventional ECC

schemes used in DRAM-based memory need to be extended for providing multi-bit asymmetric

protection to maintain acceptable limits of yield and performance of systems. However, this adds

signi�cant overhead not just in terms of storage but also power and performance.

The other concern with NVMs is the higher read and write latency of most of these memory

technologies. For example, Phase Change Memory (PCM) is considered one of the most promising

scalable DRAM alternatives. However, the read latency of PCM is more than 4x [33] higher than

that of DRAM. This leads to signi�cant overall system performance degradation. One way to deal

with this problem is to use a hybrid main memory system where DRAM is used as a last-level cache

for the slower NVM main memory like PCM. However, there are two problems with this approach.

Firstly, the DRAM cache is transparent to the OS and hence, reduces the overall main memory

capacity by a non-negligible amount. Secondly, using the DRAM as a transparent cache makes the

overall main memory system volatile. Hence, lightweight main memory-based persistence cannot

be achieved even though a non-volatile main memory technology is being used. In most cases,

optimizations to improve read/write latencies result in an increase in read/write error rates.

Overall we see that there are signi�cant performance and reliability challenges in adopting these

alternate emerging non-volatile memory technologies. This dissertation proposes solutions to (1)

provide strong protection against the stochastic read/write errors while minimizing the overheads,

(2) improve performance by trading off some of the density bene�ts as we need to pack in stronger

ECC to tolerate the increased error rates.

1.5 Dissertation Outline

This dissertation,Lightweight Opportunistic Memory Resilience, presents a complementary suite of

novel methods for tolerating faults and correcting errors in different levels of memory hierarchy. The

7

solutions proposed are tuned to particular memory characteristics; lightweight solutions for low-cost

embedded memories and latency critical on-chip caches (Part 1) while stronger protection for

off-chip main memory subsystems (Part 2). The high-level vision is depicted in Figure 1.2. Unlike

conventional error correction schemes, we exploit data value behavior, underlying memory fault

model, and memory architecture to opportunistically provide stronger protection against memory

errors through novel code constructions and fault tolerance techniques at minimal overhead.

The organization and key contributions of this dissertation are as follows:

Figure 1.2: High level concept of Lightweight Opportunistic Memory Resilience

In Part 1, we provide a comprehensive set of solutions that cope with both hard and soft faults

in lightweight on-chip memories at minimal cost.

� In Chapter 2, we develop FaultLink, a fault tolerance technique that tackles the problem

of hard faults that appear at low voltages in software managed/scratchpad memories for

embedded systems at the edge of the Internet-of-Things (IoT). It is a novel lazy link-time

approach that extends the software construction toolchain with new fault-tolerance features

for such memories. This approach builds an application binary that is custom-tailored for

each individual chip based on the chip's memory fault map so that the faulty locations in the

memory are never accessed when it is run at lower voltages.

� In Chapter 3, we extend FaultLink for approximation tolerant Deep Learning (DL) inference

applications. We name the proposed technique SAME-Infer: providing the same inference

accuracy in the presence of memory hard faults. Unlike FaultLink, SAME-Infer �rst deter-

8

mines the fault tolerance capabilities of each program section in the application. Based on

this, it places the absolute critical program sections in non-faulty memory regions and the

fault-tolerant sections in the partially faulty memory regions. This helps us to tolerant higher

fault rates as compared to FaultLink and allows operation at even lower voltages.

� In Chapter 4, we propose Software-De�ned Error Localization Code (SDELC), a hybrid

hardware/software technique that allows the system to heuristically recover from unpredictable

single-bit soft faults in instruction and data memories, which cannot be handled using

FaultLink/SAME-Infer. SDELC �rst localizes the single-bit error to a particular chunk in

the data and then heuristically recovers from it using side-channel information from the

neighboring memory content.

� In Chapter 5, we propose Parity++, a novel unequal message protection scheme for embedded

memories and last level caches that preferentially provides stronger error protection to certain

“special messages”. Like SDELC, Parity++ also helps to recover from single-bit �ips that

occur during runtime. Parity++ sits in between basic Single Error Detecting(SED) parity and

a full single error correcting (SEC) Hamming code. The special messages get SEC protection

while the non-special messages only have SED capability. This code requires only one extra

parity bit over SED code and 4x lesser parity bits compared to a 64-bit SEC Hamming code.

The critical portions of the application or the most frequently used instructions/data can be

annotated as special messages to protect them from single-bit �ips.

In Part 2, we provide solutions that improve the reliability of DRAM-based main memories and

tackle challenges in adopting dense alternate non-volatile main memory technologies.

� In Chapter 6, we propose COMET: A Collaborative on-die and in-controller Memory ECC

Technique that allows safer and stronger protection from DRAM errors. The proposed

ECC construction techniques in COMET completely eliminate silent data corruption when

a double-bit error occurs in the memory array. It also proposes a collaborative mechanism

between the memory dies and the controller that allows correction of the majority (99.9997%)

of the double-bit errors.

9

� In Chapter 7, we propose Compression with Multi-ECC (CME), a technique that opportunis-

tically provides enhanced error resiliency for Magnetic Memories. We �rst compress each

memory line using a compression scheme. Depending on how effective the compression was,

the ECC scheme for that particular memory line is determined. The higher the compression,

the stronger is the protection. This technique is designed such that it is compatible with most

standard memory protocols.

� Chapter 8 presents an optimized PCM architecture that trades off some of the PCM density

advantages over DRAM to bring down the PCM read latency. The proposed PCM-Duplicate

mechanism provides a 2x capacity advantage (at the same cost) over DRAM while having

almost DRAM-like read latency. We propose two possible memory system organizations to

ef�ciently use PCM-Duplicate.

The different solutions discussed throughout this dissertation could be generalized to other

systems and memory technologies. Overall the proposed suite of novel complementary techniques

improves reliability across a broad domain of computing systems – from embedded edge devices in

the IoT to high-performance computing systems – with signi�cant energy ef�ciency and performance

improvements that are critically needed in the nanoscale era. Instead of providing uniform protection

against all errors, this dissertation exploits the behavior of the actual data it is protecting, understands

the error patterns and fault models to identify the most dominant error mechanisms and then proposes

a solution that is stronger and cheaper than the conventional techniques used in today's systems.

10

CHAPTER 2

FaultLink: Low Cost Fault Tolerance for IoT Devices

IoT devices need reliable hardware at low cost and low energy. One way to reduce energy con-

sumption is by scaling down the on-chip memory supply voltage. However, this results in an

exponential increase in the hard fault rate in these SRAM-based embedded scratchpad memories.

It is challenging to ef�ciently cope with these faults. To address this problem, in this chapter, we

proposeFaultLink. FaultLink avoids hard faults found during testing by generating a custom-tailored

application binary image for each individual chip. During software deployment-time, FaultLink

optimally packs small sections of program code and data into fault-free segments of the memory

address space and generates a custom linker script for a lazy-linking procedure. Our FaultLink

approach improves min-VDD at which the scratchpad memories can be run by up to 440 mV as

compared to the nominal VDD. This dramatically reduces energy consumption. Besides, FaultLink

also helps to protect against aging-induced hard faults in memories and provides signi�cant cost

savings by removing the need for hardware replacement when memory faults occur post-deployment.

It also helps to improve manufacturing yield and cost as memories with faults detected during

testing no longer need to be discarded.

Collaborators:

� Dr. Mark Gottscho, UCLA/Google

� Dr. Clayton Schoeny, UCLA/Square

� Prof. Lara Dolecek, UCLA

� Prof. Puneet Gupta, UCLA

11

2.1 Introduction

For embedded systems at the edge of the Internet-of-Things (IoT), hardware design is driven by

the need for the lowest possible cost and energy consumption, which are both strongly affected by

on-chip memories [34]. Memories consume signi�cant chip area and are particularly susceptible

to parameter variations and defects resulting from the manufacturing process [35]. Meanwhile,

much of an embedded system's energy is consumed by on-chip SRAM memory, particularly during

sleep mode. The embedded systems community has thus increasingly turned to software-managed

on-chip memories – also known asscratchpad memories(SPMs) [36] – due to their 40% lower

energy as well as latency and area bene�ts compared to hardware-managed caches [37].

It is challenging to simultaneously achieve low energy, high reliability, and low cost for embed-

ded memory. For example, an effective way to reduce on-chip SRAM power is to reduce the supply

voltage [38]. However, this causes cell hard fault rates to rise exponentially [18] and increases

susceptibility to radiation-induced soft faults, thus degrading yield at low voltage and increasing

cost. Thus, designers traditionally include spare rows and columns in the memory arrays [19] to

deal with manufacturing defects and employ large voltage guardbands [20] to ensure reliable opera-

tion. Unfortunately, large guardbands limit the energy proportionality of memory, thus reducing

battery life for duty-cycled embedded systems [39], a critical consideration for the IoT. Although

many low-voltage solutions have been proposed for caches, fewer have addressed this problem for

scratchpads and embedded main memory.

Our goal in this work is to improve embedded software-managed memory reliability at minimal

cost. We proposeFaultLink that helps to guard applications against known hard faults. The key idea

of this work is to automatically customize an application binary to individually accommodate each

chip's unique hard fault map with no disruptions to source code. The contributions of this chapter

are the following.

� We present FaultLink, a novel lazy link-time approach that extends the software construction

toolchain with new fault-tolerance features for software-managed/scratchpad memories.

FaultLink relies on hard fault maps for each software-controlled physical memory region that

may be generated during manufacturing test or periodically during run-time using built-in-

12

self-test (BIST).

� We detail an algorithm for FaultLink that automatically produces custom hard fault-aware

linker scripts for each individual chip. We �rst compile the embedded program using speci�c

�ags to carve up the typical monolithic sections, e.g.,.text , .data , stack, heap, etc. Fault-

Link then attempts to optimally pack program sections into memory segments that correspond

to contiguous regions of non-faulty addresses.

By experimenting with both real and simulated test chips, we �nd that with no hardware changes,

FaultLink enables applications to run correctly on embedded memories using a min-VDD that can

be lowered by up to 440 mV.Our FaultLink approach could thus enable more reliable IoT devices

while signi�cantly reducing cost and run-time energy.

This chapter is organized as follows. Background material that is necessary to understand

our contributions is presented in Section 2.2. We then describe FaultLink in detail in Section 2.3

and evaluate in Section 2.4. We list some of the related works in Section 2.5. We then discuss

other considerations and opportunities for future work in Section 2.6 and conclude the chapter in

Section 2.7.

2.2 Background

We present the essential background on scratchpad memory, the nature of SRAM faults and sections

and segments used by software construction linkers needed to understand our contributions.

2.2.1 Scratchpad Memories (SPMs)

Scratchpad memories(SPMs) are small on-chip memories that, like caches, can help speed up

memory accesses that exhibit spatial and temporal locality. Unlike caches, which are hardware-

managed and are thus transparent in the address space, data placement in scratchpads must be

orchestrated by software. This requires additional effort from the application programmer, who

must – with the help of tools like the compiler and linker – explicitly partition data into physical

memory regions that are distinct in the address space. Despite the programming dif�culty, SPMs

13

can be more ef�cient than caches. Banakar et al. showed that SPMs have on average 33% lower

area requirements and can reduce energy by 40% compared to equivalently-sized caches [37]. In

energy and cost-conscious embedded systems, SPMs are increasingly being used for this reason

and because they provide more predictable performance. In this work, FaultLink is used to improve

the reliability/min-VDD of SPMs/software-managed main memory.

2.2.2 Program Sections and Memory Segments

The Executable and Linkable Format (ELF) is ubiquitous on Unix-based systems for representing

compiled object �les, static and dynamic shared libraries, as well as program executable images in a

portable manner [40]. ELF �les contain a header that speci�es the Instruction Set Architecture(ISA),

Application Binary Interface(ABI), a list of program sections and memory segments, and various

other metadata.

� A sectionis a contiguous chunk of bytes with an assigned name: sections can contain

instructions, data, or even debug information. For instance, the well-known.text section

typically contains all executable instructions in a program, while the.data section contains

initialized global variables.

� A segmentrepresents a contiguous region of the memory address space (i.e., ROM, instruction

memory, data memory, etc.). When a �nal output binary is produced, the linker maps sections

to segments. Each section may be mapped to at most one segment; each segment can contain

one or more non-overlapping sections.

The toolchain generally takes a section-centric view of a program, while at run-time the segment-

centric view represents the address space layout. Manipulating the mapping between program

sections and segments is the core focus of FaultLink.

2.2.3 Tolerating SRAM Faults

There are several types of SRAM faults. In this chapter, we de�nehard faultsto include all recurring

and/or predictable failure modes that can be characterized via testing at fabrication time or in the

14

Figure 2.1: Our high-level approach to tolerating hard faults in on-chip scratchpad memories.

�eld. These include manufacturing defects, weak cells at low voltage, and in-�eld device/circuit

aging and wearout mechanisms [41]. A common solution to hard faults is to characterize memory,

generate afault map, and then deploy it in a micro-architectural mechanism to hide the effects of

hard faults.

We de�nesoft faultsto be unpredictablesingle-event upsets(SEUs) that do not generally reoccur

at the same memory location and hence cannot be fault-mapped. The most well-known and common

type of soft fault is the radiation-induced bit �ip in memory [42]. Soft faults, if detected and

corrected by anerror-correcting code(ECC), are harmless to the system.

2.3 FaultLink

The high-level concept of FaultLink is illustrated in Figure 2.1. At fabrication time, process

variation and defects may result in hard faults in embedded memories. During test-time, these are

characterized and maintained in a per-chip fault map that is stored in a database for later. When

the system developer later deploys the application software onto the devices, FaultLink is used to

customize the binary for each individual chip in a way that avoids its unique hard fault locations.

Conventional software construction toolchains assume that there is a contiguous memory address

space in which they can place program code and data. For embedded targets, the address space is

often partitioned into a region for instructions and a region for data. On a chip containing hard faults,

15

	Introduction
	Memory Reliability is Becoming a Key Concern
	Power/Performance Scaling and Fault Tolerance in Lightweight On-Chip SRAM-based Memories
	Scalability Concerns in DRAM-based Main Memories
	Reliability and Performance Challenges of Non-Volatile Main Memory Systems
	Dissertation Outline

	FaultLink: Low Cost Fault Tolerance for IoT Devices
	Introduction
	Background
	Scratchpad Memories (SPMs)
	Program Sections and Memory Segments
	Tolerating SRAM Faults

	FaultLink
	Test Chip Experiments
	Toolchain
	Fault-Aware Section-Packing

	Evaluation
	Voltage Reduction on Real Test Chips
	Yield at Min-VDD for Synthetic Test Chips

	Related Work
	Fault-Tolerant Caches
	Fault-Tolerant Scratchpads

	Discussion
	Memory Reliability Binning
	Coping with Aging and Wearout using FaultLink
	Directions for Future Work

	Conclusion

	SAME-Infer: Software Assisted Memory Resilience for Efficient Inference at the Edge
	Introduction
	Background
	SRAM Faults
	Fault Resilient DL networks

	SAME-Infer Methodology
	Fault Impact Analysis
	Packing Critical and Non-Critical Sections
	Breaking up monolithic weight sections into smaller kernels
	Analytical Critical and Non-critical Section Packing Estimation

	Experimental Setup
	Results
	Reduction in voltage with SAME-Infer
	Splitting up Weights to Achieve Better Packing
	Importance of Sensitivity Analysis of Fault Tolerant sections
	Analytical Model to Estimate for Larger Sized Memories
	Evaluation for Binarized Dense and Sparse Networks
	Comparison with Past Works

	Discussion
	Fault Injection During Training to Tolerate Soft Errors
	Improving Packing by Optional Reversing of Non-Critical Sections
	Universal Packing Solution to Allow Dynamic Voltage Scaling and Tolerate Aging Induced Faults
	Addressing the Code Memory Bottleneck
	Use of Error Correcting Codes (ECC)
	Extending SAME-Infer to Other Approximation Tolerant Applications

	Conclusion

	Software-Defined Error-Localizing Codes (SDELC): Lightweight Recovery from Soft Faults at Run-Time
	Introduction
	Background
	Error-Correcting Codes (ECCs)
	Error-Localizing Codes

	Software-Defined Error-Localizing Codes (SDELC): Recovering Soft Faults at Run-Time
	Architecture
	Ultra-Lightweight Error-Localizing Codes (UL-ELC)
	Recovering SEUs in Instruction Memory
	Recovering SEUs in Data Memory

	Evaluation - Soft Fault Recovery using SDELC
	Overall Results
	Recovery Policy Analysis
	Risk of SDCs from SDELC

	Conclusion

	Parity++: Lightweight Error Correction for Last Level Caches
	Introduction
	Background and Related Work
	Error Correcting Codes
	SRAM Reliability and Error Detection and Correction in Caches
	Application Characteristics

	Lightweight Error Correction Code
	Theory
	Error Detection and Correction
	Architecture
	Coverage and Overheads

	Experimental Methodology
	Results and Discussion
	Conclusion

	COMET: On-die and In-controller Collaborative Memory ECC Technique for Stronger and Safer Correction of DRAM Errors
	Introduction
	Background
	DRAM Operation
	Linear Hamming Error Correcting Codes
	SEC vs. SECDED

	Motivation
	Miscorrections by On-Die ECC
	SDC post in-controller SECDED decoding

	COMET ECC Design to Eliminate Silent Data Corruption
	On-die SEC-COMET ECC
	In-controller SECDED-COMET ECC

	COMET Double-bit Error Correction
	Constructing on-die SEC code to enable Double-bit Error Correction (SEC-COMET-DBC)
	Collaborative DBE Correction
	Implementation of COMET command

	Results
	Reliability Evaluation
	Effectiveness of COMET Double-bit Correction
	Impact on Encoder/Decoder Area, Energy and Latency
	Performance Impact of SEC-COMET-DBC

	Discussion
	Independent design of on-die and in-controller codes
	Using Stronger On-die Codes
	Using Stronger In-controller ECC
	Comparison with Past Works
	Accommodating Wider Data Widths

	Conclusion

	Compression with Multi-ECC: Enhanced Error Resiliency for Magnetic Memories
	Introduction
	Background
	STT-RAM Basics
	Previous Work On STT-RAM Reliability
	Previous Work On Cache Compression

	Our scheme - Compression with Multi-ECC (CME)
	Overall Architecture
	Cache Line Compression using modified BPC and an optional Hamming Weight Aware Inversion Coding
	Multi-ECC on Compressed Cache Line
	Additional Tag Bits and Memory Organization

	Evaluation Methodology
	Results
	Reduction in Hamming Weight
	Reduction in block failure probability
	Hardware Overhead of Multi-ECC Scheme
	System Performance Evaluation

	Discussion
	Using an Alternative Compression Scheme
	Variable Scrubbing Interval
	Using STT-RAM as non-ECC DRAM Alternative - Reliability Point of View

	Conclusion

	PCM-Duplicate: Achieving DRAM-like PCM By Trading Off Capacity For Latency
	Introduction
	Background
	PCM Basics
	DRAM vs. PCM

	Motivation and Past Work
	PCM-ECC Overview: Combination of Previously Proposed Improvements
	Performance Analysis: PCM-ECC vs. DRAM
	Motivation to achieve near-DRAM latency

	Bridging the Performance Gap Between PCM and DRAM
	PCM-Duplicate Overview: PCM with DRAM-like read latency
	PCM-Duplicate Implementation
	Reducing Write Time and Energy using ECC and Infrequent Refresh
	Sneak Current in Crossbar Architecture

	Evaluation Methodology
	Results
	Using PCM-Duplicate as Main Memory
	Using PCM-Duplicate as Last Level Cache instead of DRAM
	Enabling Lightweight Main Memory Based Persistence

	Conclusion

	Conclusion
	Overview of Contributions
	FaultLink and SAME-Infer
	SDELC
	Parity++
	COMET
	Compression with Multi-ECC
	PCM-Duplicate

	Directions for Future Work
	Extensions Of Techniques Proposed In This Dissertation
	Asymmetric Error Correction In Non-Volatile Memories
	Making Neuromorphic Computing Robust
	Improving Reliability and Endurance in Hybrid Main Memory Systems
	Enabling Shared-Bus Read/Write in Memories for Performance and Energy Efficiency
	Combining Memory Reliability with Security

	References

