
University of California
Los Angeles

Statistical Analysis and Optimization for Timing and
Power of VLSI Circuits

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical Engineering

by

Lerong Cheng

2010



c© Copyright by

Lerong Cheng

2010



The dissertation of Lerong Cheng is approved.

Lieven Vandenberghe

Glenn Reinman

Sudhakar Pamarti

Lei He, Committee Co-chair

Puneet Gupta, Committee Co-chair

University of California, Los Angeles

2010

ii



To my family.

iii



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 FPGA Power, Performance, and Area Optimization . . . . . . 6

1.1.2 Statistical Timing Modeling, Analysis, and Optimization . . . 8

1.2 Contributions of the Dissertation . . . . . . . . . . . . . . . . . . . . 9

1.3 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

I Statistical Modeling and Optimization for FPGA Circuits 15

2 Deterministic Device and Architecture Co-Optimization for FPGA Power,

Delay, and Area Minimization . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Conventional FPGA Architecture . . . . . . . . . . . . . . . 20

2.2.2 Vdd Gatable FPGA Architecture . . . . . . . . . . . . . . . . 21

2.2.3 FPGA Architecture Evaluation Flow . . . . . . . . . . . . . . 23

2.3 Trace-Based Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Trace Collection . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Power and Delay Model . . . . . . . . . . . . . . . . . . . . 26

2.3.3 Validation of Ptrace . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Hyper-Architecture Evaluation . . . . . . . . . . . . . . . . . . . . . 32

iv



2.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.2 Necessity of Device and Architecture Co-Optimization . . . . 33

2.4.3 Energy and Delay Tradeoff . . . . . . . . . . . . . . . . . . . 36

2.4.4 ED and Area Tradeoff . . . . . . . . . . . . . . . . . . . . . 38

2.4.5 Impact of Utilization Rate . . . . . . . . . . . . . . . . . . . 40

2.4.6 Impact of Interconnect Structure . . . . . . . . . . . . . . . . 41

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 FPGADevice and Architecture Co-Optimization Considering Process Vari-

ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Delay and Leakage Variation Model . . . . . . . . . . . . . . . . . . 50

3.3 Hyper-Architecture Evaluation Considering Process Variation . . . . 58

3.3.1 Impact of Process Variation . . . . . . . . . . . . . . . . . . 59

3.3.2 Impact of Device and Architecture Tuning . . . . . . . . . . . 60

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 FPGA Concurrent Development of Process and Architecture Considering

Process Variation and Reliability . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Device Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Circuit-Level Delay and Power . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 Delay Model . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.2 Power Model . . . . . . . . . . . . . . . . . . . . . . . . . . 73

v



4.4 Chip-level Delay and Power . . . . . . . . . . . . . . . . . . . . . . 75

4.4.1 Delay Model . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.2 Leakage Power Model . . . . . . . . . . . . . . . . . . . . . 76

4.4.3 Dynamic Power Model . . . . . . . . . . . . . . . . . . . . . 76

4.5 Chip Level Delay and Power Variation . . . . . . . . . . . . . . . . . 78

4.5.1 Variation Models . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5.2 Delay Variation . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5.3 Chip Leakage Power Variation . . . . . . . . . . . . . . . . . 80

4.6 Process Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6.1 Power and Delay Optimization . . . . . . . . . . . . . . . . . 82

4.6.2 Variation Analysis . . . . . . . . . . . . . . . . . . . . . . . 83

4.7 FPGA Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.7.1 Impact of Device Aging . . . . . . . . . . . . . . . . . . . . 86

4.7.2 Permanent Soft Error Rate (SER) . . . . . . . . . . . . . . . 89

4.8 Interaction between Process Variation and Reliability . . . . . . . . . 90

4.8.1 Impact of Device Aging on Power and Delay Variation . . . . 91

4.8.2 Impacts of Device Aging and Process Variation on SER . . . 92

4.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

II Statistical Timing Modeling and Analysis 95

5 Non-Gaussian Statistical Timing Analysis Using Second-Order Polyno-

mial Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

vi



5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Second-Order Polynomial Fitting of Max Operation . . . . . . . . . . 99

5.2.1 Review and Preliminary . . . . . . . . . . . . . . . . . . . . 99

5.2.2 New Fitting Method for Max Operation . . . . . . . . . . . . 100

5.3 Quadratic SSTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3.1 Quadratic Delay Model . . . . . . . . . . . . . . . . . . . . . 107

5.3.2 Max Operation for Quadratic Delay Model . . . . . . . . . . 109

5.3.3 Sum Operation for Quadratic Delay Model . . . . . . . . . . 115

5.3.4 Computational Complexity of Quadratic SSTA . . . . . . . . 115

5.4 Semi-Quadratic SSTA . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4.1 Semi-Quadratic Delay Model . . . . . . . . . . . . . . . . . 115

5.4.2 Max Operation for Semi-Quadratic Delay Model . . . . . . . 116

5.5 Linear SSTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.5.1 Linear Delay Model . . . . . . . . . . . . . . . . . . . . . . 118

5.5.2 Max Operation for Linear Delay Model . . . . . . . . . . . . 119

5.6 Experimental Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 Physically Justifiable Die-Level Modeling of Spatial Variation in View of

Systematic Across-Wafer Variability . . . . . . . . . . . . . . . . . . . . . 128

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2 Physical Origins of Spatial Variation . . . . . . . . . . . . . . . . . . 131

6.3 Analysis of Wafer Level Variation and Spatial Correlation . . . . . . . 133

vii



6.3.1 Variation of Mean and Variance with Location . . . . . . . . 134

6.3.2 Appearance of Spatial Correlation . . . . . . . . . . . . . . . 137

6.3.3 Dependence between Inter-Die and Within-Die Variation . . . 139

6.3.4 When can Spatial Variation be Ignored? . . . . . . . . . . . . 140

6.4 General Across-Wafer Variation Model . . . . . . . . . . . . . . . . 141

6.5 Modeling Spatial Variability . . . . . . . . . . . . . . . . . . . . . . 144

6.5.1 Slope Augmented Across-Wafer Model . . . . . . . . . . . . 145

6.5.2 Quadratic Across-Wafer Model . . . . . . . . . . . . . . . . 145

6.5.3 Location Dependent Across-Wafer Model . . . . . . . . . . . 146

6.6 Application of Spatial Variation Models on Statistical Timing Analysis 146

6.6.1 Delay Model . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.6.2 Experimental Result . . . . . . . . . . . . . . . . . . . . . . 148

6.7 Application of Spatial Variation Models on Statistical Leakage Analysis 156

6.8 Summary of Different Models . . . . . . . . . . . . . . . . . . . . . 158

6.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7 On Confidence in Characterization and Application of Variation Models 162

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.3 Confidence Interval for Variation Sources . . . . . . . . . . . . . . . 167

7.3.1 Mean and Variance . . . . . . . . . . . . . . . . . . . . . . . 167

7.3.2 Simplifying the Large Lot Case . . . . . . . . . . . . . . . . 169

7.3.3 One Production Lot Case . . . . . . . . . . . . . . . . . . . . 170

viii



7.3.4 Experimental Validation for One Lot Case . . . . . . . . . . . 171

7.3.5 Fast/Slow Corner Estimation . . . . . . . . . . . . . . . . . . 172

7.4 Confidence in SPICE Fast/Slow Corner . . . . . . . . . . . . . . . . 177

7.5 Confidence in Statistical Timing Analysis . . . . . . . . . . . . . . . 183

7.6 Practical Questions: Determining Confidence Induced Guardband for

Real Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

ix



LIST OF FIGURES

1.1 Increasing of power density. . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Leakage power and frequency variation. . . . . . . . . . . . . . . . . 3

1.3 Delay yield. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 SSTA flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 (a) Island style routing architecture; (b) Connection block; (c) Switch

block; (d) Routing switches. . . . . . . . . . . . . . . . . . . . . . . 21

2.2 (a)Vdd-gateable switch; (b)Vdd-gateable routing switch; (c)Vdd-gateable

connection block; (d) Vdd-gateable logic block. . . . . . . . . . . . . 22

2.3 Existing FPGA architecture evaluation flow for a given device setting. 24

2.4 New trace-based evaluation flow. We perform the same flow as Fig-

ure 2.3 under one device setting to collect the trace information. . . . 25

2.5 Comparison between Psim and Ptrace. . . . . . . . . . . . . . . . . 31

2.6 hyper-architectures under different device settings. . . . . . . . . . . 35

2.7 Dominant hyper-architectures. (a)Homo-Vth andHetero-Vth; (b)Homo-

Vth+G and Hetero-Vth+G. . . . . . . . . . . . . . . . . . . . . . . . 44

2.8 ED and area trade-off. ED and area are normalized with respect to the

baseline (N = 8, K = 4, Vdd = 0.9V , and Vth = 0.3V ). . . . . . . . . 45

3.1 Leakage and delay of baseline architecture hyper-arch. . . . . . . . . 60

4.1 Trace-based estimation flow. . . . . . . . . . . . . . . . . . . . . . . 65

4.2 The flow for on current, Ion, calculation. . . . . . . . . . . . . . . . . 67

4.3 The flow for sub-threshold leakage current, Io f f , calculation. . . . . . 68

x



4.4 The flow for gate leakage currents Igon and Igo f f calculation. . . . . . 68

4.5 The flow for transistor gate and diffusion capacitances Cg and Cdi f f
calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Voltage and current in an inverter during transition. . . . . . . . . . . 71

4.7 The pull-down delay of a 1X inverter at ITRS 2005 HP 32nm tech-

nology nodes. (a) Input and output voltages, and short circuit current

with a small input slope; (b) Input and output voltages, and short cir-

cuit current with a large input slope; (c) The NMOS IV curves and the

transition of transient current Ids with small and large input slopes. . . 72

4.8 Energy and delay tradeoff. . . . . . . . . . . . . . . . . . . . . . . . 83

4.9 Delay and leakage distribution. (a) Leakage PDF; (b) Delay PDF. . . 85

4.10 The calculation flow for ΔVth due to NBTI and HCI. . . . . . . . . . 87

4.11 Vth increase caused by NBTI and HCI. . . . . . . . . . . . . . . . . . 87

4.12 Impact of device aging. (a) Leakage change; (b) Delay change. . . . 88

4.13 The flow for SRAM SER calculation. . . . . . . . . . . . . . . . . . 90

4.14 Impact of device aging on delay and leakage PDF. (a) Leakage PDF

comparison; (b) Delay PDF comparison. . . . . . . . . . . . . . . . 91

5.1 (a) Comparison of exact computation, linear fitting, and second-order

fitting for max(V,0); (b) PDF comparison of exact computation, linear

fitting, and second-order fitting for max(V,0). . . . . . . . . . . . . . 107

5.2 Algorithm for computing max(D1,D2). . . . . . . . . . . . . . . . . . 110

5.3 PDF comparison for circuit s15850. . . . . . . . . . . . . . . . . . . 123

6.1 Ring oscillator frequency within a wafer. (a) Process 1; (b) Process 2. 133

xi



6.2 Mean and variance for different rd . . . . . . . . . . . . . . . . . . . . 137

6.3 Apparent spatial correlation and covariance as a function of distance. . 138

6.4 Correlation coefficient for within-die spatial variation after inter-die

variation is removed. . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.5 Approximating across-wafer variation. . . . . . . . . . . . . . . . . . 141

6.6 Ring oscillator frequency within a wafer. . . . . . . . . . . . . . . . . 143

6.7 PDF of Sx and Sy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.1 Comparison of S-L, L-S, and L-L case. . . . . . . . . . . . . . . . . . 175
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As CMOS technology scales down, process variation introduces significant uncertainty

in power and performance to VLSI circuits and significantly affects their reliability. If

this uncertainty is not properly handled, it may become the bottleneck of CMOS tech-

nology improvement. This dissertation proposes novel techniques to model, analyze,

and optimize power and performance of FPGAs and ASICs considering process varia-

tion. This dissertation focuses on two aspects: (1) Process and architecture concurrent

optimization for FPGAs; (2) Statistical timing modeling and analysis.

To perform process and architecture concurrent optimization, an efficient and ac-

curate FPGA power, delay, and variation evaluator, Ptrace, is proposed. With Ptrace,

we present the first in-depth study on device and FPGA architecture co-optimization

to minimize power, delay, area, and variation considering hundreds of device and ar-

chitecture combinations. Furthermore, to enable early stage process and architecture

co-optimization without stable device models, we develop transistor level and circuit

level power, delay, and reliability models and incorporate them with Ptrace. With the

extended Ptrace, we perform architecture and process parameters concurrent optimiza-

xxv



tion for FPGA power, delay, variation, and reliability.

To perform statistical timing modeling and analysis, we first present an efficient

and accurate statistical static timing analysis (SSTA) flow for non-linear cell delay

model with non-Gaussian variation sources. All operations in this flow are performed

by analytical equations without any time consuming numerical approach. Then, to

further improve the efficiency and accuracy of statistical timing analysis, we develop a

new die-level spatial variation model which accurately models the across-wafer vari-

ation. Besides modeling spatial variation, mean and variance uncertainty introduced

by limited number of samples is another problem in SSTA. To solve this problem,

we evaluate the confidence for statistical analysis and estimate the guardband value to

ensure a target confidence.

To the best of our knowledge, this dissertation is the first novel study of device,

process, and architecture concurrent co-optimization for FPGA power, delay, variation,

and reliability; and is the first work to model across-wafer variation at die-level and to

consider confidence guardband in statistical analysis.
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CHAPTER 1

Introduction

ComplementaryMetal Oxide Semiconductor (CMOS) manufacturing in nanometer re-

gion has resulted in great achievements in the world of electronics. The performance

and capabilities of Very Large Scale Integration (VLSI) circuits improve rapidly with

the aggressive scaling of transistors in CMOS. However, the increase of leakage power

and process variation have emerged to slow down this trend.

Since leakage power is exponentially related to channel length, it increases rapidly

as CMOS technology scales down. Figure 1.1 [114] illustrates the power density for

different technology nodes in the past thirty years. It can be seen that power density is

increasing at a dramatic rate. Therefore, power consumption becomes a crucial design

constraint for nano-scale VLSI designs.
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Figure 1.1: Increasing of power density.
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In comparison to challenges created by power, process variation is more difficult to

handle in VLSI design. Due to the inevitable manufacturing fluctuations and imperfec-

tions, transistors on different copies of the same design, or even at different locations

on the same chip will vary significantly. Process variation is the uncertainty of physical

process parameters, such as channel length, doping density, oxide thickness, channel

width, metal thickness, metal width, and so on. According to the causes of variation,

process variation can be classified into two types [162]:

• Catastrophic defects are caused by isolated random events (such as particles or

other contaminations) during manufacturing, which render chips non-functional.

• Parametric variations are caused by random fluctuations in process conditions so

that the physical properties of some parameters on a chip differ from the original

design. The fluctuations may include aberrations in stepper lens, doping density,

and manufacturing temperature.

Process variations introduce significant uncertainty for both circuit performance

and leakage power. It has been shown in [25] that even for the 180nm technology,

process variation can lead to 1.3X variation in frequency and 20X variation in leak-

age power, as illustrated in Figure 1.2. Such impact will become even larger in future

technology generations. In recent years, many methods, such as statistical model-

ing, analysis, and optimization for VLSI circuits, have been developed to alleviate

the variation effects. This research is called “Design for Manufacturability ” (DFM).

Internation Technology Roadmap for Semiconductors (ITRS) predicts the DFM tech-

nology requirement for process variation in the near-term future, as shown in Table 1.1

[69]. From the table, it is predicted that leakage power variation will increase to 331%

and performance variation will increase to 88% in the year 2015. Therefore, as CMOS

technology scales down to nano-meter region, process variation will become a poten-

tial show-stopper if it is not appropriately handled.
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Figure 1.2: Leakage power and frequency variation.

Year 2007 2008 2009 2010 2011 2012 2013 2014 2015

% of Vdd variability 10 10 10 10 10 10 10 10 10

% of Vth variability (minimum size) 33 37 42 42 42 58 58 81 81

% of Vth variability (typical size) 16 18 20 20 20 26 26 36 36

% of CD (Lgate) variability 12 12 12 12 12 12 12 12 12

% circuit performance variability 46 48 49 51 60 63 63 63 63

% circuit total power variability 56 57 63 68 72 76 80 84 88

% circuit leakage power variability 124 143 186 229 255 281 287 294 331

Table 1.1: Impact of process variation in near-term future.

There are four common design styles in current VLSI: Application Specific Integrated

Circuit (ASIC), Field-ProgrammableGate Array (FPGA),Application Specific Instruction

set Processor (ASIP), and general purpose processor or microprocessor. Different de-

sign styles may have different power consumption requirement and vulnerability to

process variation. Therefore, different modeling, analysis, and optimization techniques

should be developed for different design styles.

Among the design styles, FPGA is the most flexible one. Since FPGA allows the

same silicon implementation to be programmed or re-programmed for a variety of

applications, it provides low non-recurring engineering (NRE) cost and short time to
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market. Due to this advantage, FPGA industry has grown rapidly since its invention

in 1984. However, in order to achieve programmability, FPGA pays the penalty with

decrease of performance, power, and area. Previous studies [83, 82] have shown a

100X energy difference, a 4.3X delay difference, and a 40X area difference between

FPGA designs and their ASIC counterparts. As discussed before, power consumption

is a crucial design constraint for nano-scale VLSI circuits. The power problem is

more significant for FPGAs than other design styles because FPGA has higher power

consumptions. On the other hand, since FPGAs have lots of regularity, the impact of

process variation on FPGAs are not as significant as other design styles. Nevertheless,

the impact of process variation on FPGAs should not be ignored and should be properly

handled. To solve the above problems, this dissertation focuses on optimizing power

and performance for FPGAs considering process variation. The first objective of this

dissertation is:

Objective 1: Concurrently evaluate FPGA architecture and pro-
cess parameters to optimize power, delay, and area considering pro-
cess variation and reliability.

In comparison to FPGAs, ASICs have higher performance, lower power, and smaller

area. However, due to the increased design complexity, ASICs has higher NRE cost,

design cost, and longer time to market than FPGAs. Due to the above advantages

and disadvantages, ASICs are usually used in high performance or low power applica-

tions, wherein the impact of process variation is very significant. Therefore, variation

modeling and analysis in ASICs are more important than in FPGAs.

Process variation may cause manufacturing yield loss. Manufacturing yield loss is

defined as the ratio between the number of chips that fail to meet the design specifi-

cations and the total number of manufactured chips [112]. There are several reasons

causing chip failure, such as catastrophic defects and parametric variations. Figure 1.3
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illustrates the performance variation caused by parametric variations. It can be seen

that chip delay is spread over a wide range and the delay of some chips is higher than

the specification value. The chips failing to meet the delay specification contribute to

yield loss.

Yield

Delay spe c

Yield Loss

Measured Delay

Figure 1.3: Delay yield.

In order to analyze and optimize performance yield, Statistical Static TimingAnalysis

(SSTA) is proposed. Instead of estimating the chip delay deterministically as in the

traditional Static Timing Analysis (STA), SSTA estimates the chip delay statistically.

SSTA not only estimates the nominal value of chip delay but also provides the de-

lay distribution. Figure 1.4 shows the SSTA flow. In this flow, there are three key

components [122]:

• Modeling of process variation from silicon process characterization.

• Modeling of sensitivities of delay for standard cell libraries with regards to pro-

cess parameter variations (library modeling).

• Statistics aware engines for STA and optimization.

In this dissertation, we mainly focus on modeling of process variation and devel-

oping an accurate SSTA engine. The second objective of this dissertation is:
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Figure 1.4: SSTA flow.

Objective 2: Statistical Timing Modeling and Analysis.

In the following of this chapter, Section 1.1 reviews some related research works;

Section 1.2 discusses the major contributions of this dissertation; and Section 1.3 out-

lines this dissertation.

1.1 Literature Review

1.1.1 FPGA Power, Performance, and Area Optimization

It is well known that architecture, including logic block (or cluster) size, Look-Up

Table (LUT) size, and routing wire segment length, has great impact on FPGA power,

performance, and area. Therefore, architecture evaluation for FPGA optimization at-

tracts lots of concerns. In early 1990s, architecture evaluation mainly focuses on opti-

mizing delay [143] and area [130]. These works showed that for non-clustered FPGAs,

LUT size of 4 achieves the smallest area and LUT size 5 or 6 minimizes delay. After

cluster-based island style FPGA became popular, architecture evaluation for this type

of FPGA was performed. [10] showed that LUT sizes ranging from 4 to 6 and cluster

sizes between 4 and 10 produce the best area-delay product.
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As discussed before, power consumption is one of the most important design con-

straints of FPGA design when technology scales down to nano-meter region. There-

fore, after the year 2000, FPGA power modeling became a hot research topic. [158]

quantified the leakage power of commercial FPGA architecture and [48] introduced a

high level FPGA power estimation methodology. [123, 89, 92] presented power eval-

uation frameworks for generic parameterized FPGAs and showed that leakage power

takes higher portion of total power consumption in FPGAs than in ASICs. It was also

shown that interconnects consume even more power than logic elements in FPGA.

At the same time, FPGA power optimization was also studied. Power aware FPGA

CAD algorithms was proposed in [85]; power driven partition method was presented

in [117]; a leakage power saving routing multiplexer and an input control method were

developed [150]; and a configuration inversion method to save the leakage power was

proposed in [12]. Architecture evaluation for power and delay minimization is then

studied in [93, 123, 92].

Due to programmability, utilization rate of circuit elements in FPGA is very low.

To reduce leakage power consumption of unused circuit elements, body bias [110]

and power gating [59, 102] were applied. To further reduce power on used circuit

elements, programmable dual-Vdd was first applied to logic blocks [93, 90, 98, 91]

and then extended to interconnects [58, 51, 71]. Architecture evaluation considering

power gating and dual-Vdd was performed [101]. Besides leakage power minimization,

a glitch minimization technique [84] was proposed to reduce dynamic power.

Recently, FPGA modeling and optimization considering process variation was

studied. [31, 43, 100, 115, 147, 99, 135, 79, 115, 154, 137, 28] presented techniques to

statistically optimize FPGA performance. [136] performs parametric yield estimation

for FPGA considering within-die variation.
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1.1.2 Statistical Timing Modeling, Analysis, and Optimization

Process Variation Modeling- Process variation introduces significant uncertainty to

circuit power and delay. In order to analyze the power and delay uncertainty, process

variation modeling is needed. An early work was proposed in [25] whereby process

variation is separated into inter-die variation and within-die variation. All transistors

on the same die share the same inter-die variation and different dies may have different

inter-die variation; each transistor has its own within-die variation and the within-die

variation for different transistors are assumed to be independent. Later on, it was

observed that within-die variation is not independent but spatially correlated and the

correlation depends on the distance between two within-die locations. In this case,

spatial variation was modeled as correlated random variables [6, 32] and principle

component analysis was applied to perform statistical timing analysis. In this model, a

chip is divided into several grids and each grid has its own spatial variation. The spatial

variations of different grids are correlated and the correlation coefficients depend on

the distance between two grids. However, obtaining the correlation coefficient between

two grids became a problem for this model. [172, 173, 105] solved this problem by

modeling the spatial variation as a random field [174] and assuming the correlation

coefficient to be a function of distance. After that, several more complicated spatial

variation models were proposed [45, 105, 189, 55, 64].

Statistical Analysis- With the model of process variation, statistical analysis and

optimization are then performed. Statistical static timing [103, 72, 7, 120, 157, 128,

32, 5, 49, 9, 22, 8, 163, 86, 53, 182, 13, 181, 113, 75, 180, 178, 76, 3, 183, 2,

142, 19, 179, 40, 30, 52, 144, 165, 116, 36, 41, 56, 63, 97, 35, 104, 189, 145, 141,

88, 161, 81, 107, 65, 61, 169, 138, 146, 70, 155, 29, 171, 118, 42] and leakage

[26, 111, 21, 37, 176, 140, 109, 15, 156, 33, 95, 62, 73, 44, 119, 151, 188, 20, 133]

analysis are hot research topics in recent years. There are two major approaches in
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Statistical static timing analysis techniques: path-based [103, 72, 7, 120, 157, 128]

and block-based [32, 5, 49, 9, 22, 8, 163, 86, 53, 182, 13, 181, 113, 75, 180, 178, 76,

3, 183, 2, 142, 19, 179, 40, 41, 42] SSTA. Since path-based SSTA is not scalable to

large circuit sizes, block-based SSTA is more commonly used. Since Gaussian random

variables are easy to be handled, the early block-based SSTA flows [32, 163] modeled

the gate delay as linear functions of variation sources and assumed all the variation

sources are mutually independent Gaussian random variables. Later, it was observed

that the linear delay model is no longer accurate when the scale of variation becomes

larger [94] and a higher-order delay model is thus used [180, 178]. Moreover, it was

also observed that some variation sources do not follow a Gaussian distribution. For

example, the via resistance has an asymmetric distribution [13], while dopant concen-

tration is more suitably modeled as a Poisson distribution [142] rather than Gaussian.

The nonlinearity of delay model and non-Gaussian variation sources make SSTAmuch

more difficult. [142] applied independent component analysis to de-correlate the non-

Gaussian random variables, but it was still based on a linear delay model. Some recent

works [76, 13, 19, 179, 40, 41, 42] considered both non-linear delay model and non-

Gaussian variation sources.

Confidence Analysis- In all the statistical modeling and analysis methods dis-

cussed above, the statistical characteristics (such as mean and variance) are assumed to

be given and reliable. However, when the number of production samples is not large,

the production statistical characteristics may significantly deviate from their popula-

tion values. Therefore, uncertainty in the statistics of measured data as well as produc-

tion data should be considered in statistical analysis. [177] modeled the uncertainty

of mean, variance, and correlation coefficients as an interval, and then estimated the

range of mean and variance of circuit performance.
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1.2 Contributions of the Dissertation

The contributions of this dissertation are two-fold:

1. Device and architecture concurrent optimization for FPGAs.

2. Statistical timing modeling and analysis.

For device and architecture concurrent optimization for FPGAs, we have the fol-

lowing contributions:

• We first develop an efficient yet accurate power and delay estimator for FPGAs,

which we refer to as Ptrace. Experimental results show that compared to cycle

accurate power simulator and VPR [18], Ptrace predicts chip level power and

delay within 4% and 5% error, respectively. Based on such framework, we per-

form device and architecture co-optimization for FPGA circuits. Compared to

the baseline, which uses the VPR architecture model [18] with the same LUT

size and cluster size as the commercial FPGAs used by Xilinx Virtex-II [170],

and the device settings from ITRS roadmap[66], our co-optimization reduces

energy-delay product by 18.4% and chip area by 23%. Furthermore, consider-

ing FPGA architecture with power-gating capability, our architecture and device

co-optimization reduces energy-delay product by 55.0% and chip area by 8.2%

compared to the baseline. We also study the impact of utilization rate and inter-

connect structure.

• We then extend Ptrace to estimate power and delay variation of FPGAs. We pro-

posed closed-form models to estimate chip level leakage and timing variations

for FPGA. It has been shown that the mean and standard deviation computed by

our models are within 3% error compared to Monte-Carlo simulation. With the
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extended Ptrace, we perform FPGA device and architecture evaluation consider-

ing process variations. Compared to the baseline, device and architecture tuning

improves leakage yield by 4.8%, timing yield by 12.4%, and leakage and timing

combined yield by 9.2%. We also observe that LUT size of 4 gives the highest

leakage yield, LUT size of 7 gives the highest timing yield, but LUT size of 5

achieves the maximum leakage and timing combined yield.

• We further extend (Ptrace) to consider process parameters directly so that FPGA

circuit and architecture evaluation can be conducted when only the first or-

der process parameters are available. Such evaluation may be used to select

circuits and architectures that are less sensitive to process changes or process

variations. We call the resulting framework as Ptrace2. With Ptrace2, we in-

corporate analytical calculations for two types of FPGA reliability, device ag-

ing (Negative-Bias-Temperature-Instability, NBTI [11, 149, 160, 23] and Hot-

Carrier-Injection, HCI [34, 149, 166]) and permanent soft error rate (SER) [60],

again in the ‘from device to chip’ fashion. We observe that device aging reduces

standard deviation of leakage by 65% over 10 years while it has relatively small

impact on delay variation. Moreover, we also find that neither device aging due

to NBTI and HCI nor process variation has significant impact on SER.

For statistical timing modeling and analysis, we have the following contributions:

• We introduce an efficient and accurate SSTA flow for non-linear SSTA with

non-Gaussian variation sources. All operations in our flow are based on efficient

closed-form formulae. Experimental results show that compared toMonte-Carlo

simulation, our approach predicts the mean, standard deviation, skewness, and

95-percentile point within 1%, 1%, 6%, and 1% error, respectively.

• Our proposed SSTA flow solves the problem of computing the chip delay vari-
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ation, but does not consider modeling of process variation. In order to improve

the accuracy and efficiency of SSTA, we presents an accurate model for across-

wafer variation. Compared to the exact value, the error of the traditional grid-

based spatial variation model is up to 8% while the error of our model is only

2%. Morever, our new model is 6X faster than the traditional model.

• The above SSTA flow also assumes that the statistical variation models are reli-

able. However, due to limited number of samples (especially in the case of lot-to-

lot variation), calibrated models have low degree of confidence. The problem is

further exacerbated when low production volumes cause additional loss of con-

fidence in the statistical analysis (since production only sees a small snapshot

of the entire distribution). We mathematically derive the confidence intervals

for commonly used statistical measures (mean, variance, percentile corner) and

analysis (SPICE corner extraction, statistical timing). Our estimations are within

2% of simulated confidence values. Our experiments indicate that for moderate

characterization volumes (10 lots) and low-to-medium production volumes (15

lots), a significant guardband is needed (e.g., 34.7% of standard deviation for sin-

gle parameter corner, 38.7% of standard deviation for SPICE corner, and 52% of

standard deviation for 95%-tile point of circuit delay are needed) to ensure 95%

confidence in the results. The guardbands are non-negligible for all cases when

either production or characterization volume is not large.

1.3 Dissertation Outline

The remaining of this dissertation is organized as follows:

Part I, including Chapter 2, 3, 4, proposes techniques to statistically model and
optimize FPGA power and delay.
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Chapter 2 first introduces a time efficient trace-based delay and power estimation

framework for FPGA circuits, Ptrace. With Ptrace, we simultaneously optimize de-

vice setting (supply voltage Vdd and threshold voltage Vth) and FPGA architecture

(look-up table size K, cluster size N, and interconnect wire segment lengthW ) to min-

imize power, delay and area.

Chapter 3 extends the architecture and device co-optimization flow in Chapter 2

to considering process variation. We first develop a set of closed-form formulas for

chip level leakage and timing variations considering both die-to-die and within-die

variations. Based on such model, we extend Ptrace to estimate the power and delay

variation of FPGAs. Applying extended Ptrace, we optimize device setting and FPGA

architecture to maximize delay yield, leakage yield, and delay and leakage combine

yield.

Chapter 4 proposes a framework to perform concurrent process and architecture

optimization for FPGAs in early stage without detailed process modeling. We first

implement models to calculate electrical characteristics of advanced CMOS transis-

tors based on the ITRS MASTAR4 (Model for Assessment of cmoS Technologies And

Roadmaps) tool [67, 68, 148], and then develop circuit level models of delay, leakage

power, and input/output capacitance for FPGA basic circuit elements. With this cir-

cuit level model, we further extend Ptrace in Chapter 2 and 3 to evaluate chip level

power, delay, and reliability. We refer to the new trace-based model as Ptrace2. With

Ptrace2, we can conduct FPGA circuit and architecture evaluation when only the first

order process parameters are available. We may also consider reliability issues, such

as device aging and permanent soft error rate, in addition to power and delay during

evaluation.

Part II, including Chapter 5, Chapter 6, and Chapter 7 introduces statistical tim-
ing modeling and analysis.
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Chapter 5 presents an efficient and accurate statistical static timing analysis flow for

non-linear delay model with non-Gaussian variation sources. We first propose a second

order polynomial approximation for the max operation of two random variables. Based

on this approximation, we develop an SSTA flow for three different delay models:

quadratic delay model, quadratic delay model without crossing terms (semi-quadratic

model), and linear delay model.

Chapter 6 studies another key component of SSTA: the modeling of process vari-

ation. We analyze the impact of deterministic across-wafer variation and find that

the spatially correlated within-die variation is mainly caused by deterministic across

wafer variation. Then, we propose an efficient and accurate die-level variation model

to model the across-wafer variation. We apply our proposed variation model to the

SSTA flow in Chapter 5 to verify its efficiency and accuracy.

Chapter 7 studies the confidence interval of statistical characteristics, such as mean

and variance, of statistical timing analysis. We estimates the confidence interval for a

single variation sources, for the fast/slow corner of an inverter chain, and for full chip

timing analysis.

Finally, Chapter 8 concludes this dissertation with discussion of the ongoing work

and future work as well.

In Chapter 9, I briefly summarize the works I have finished in my Ph.D. program

which are not included in this dissertation.
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Part I

Statistical Modeling and Optimization

for FPGA Circuits
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CHAPTER 2

Deterministic Device and Architecture Co-Optimization

for FPGA Power, Delay, and Area Minimization

Device optimization considering supply voltage Vdd and threshold voltage Vth has lit-

tle chip area increase, but a great impact on power and performance in the nanometer

technology. This chapter studies simultaneous evaluation of device and architecture

optimization for FPGAs. We first develop an efficient yet accurate timing and power

evaluation method, called trace-based model. By collecting trace information from

cycle-accurate simulation of placed and routed FPGA benchmark circuits and re-using

the trace for different Vdd and Vth, we enable device and architecture co-optimization

considering hundreds of device and architecture combinations. Compared to the base-

line FPGA architecture, which uses the VPR architecture model and the same LUT

and cluster sizes as those used by the Xilinx Virtex-II, Vdd suggested by ITRS, and Vth
optimized with respect to the above architecture and Vdd , architecture and device co-

optimization can reduce energy-delay product by 20.5% and chip area by 23.3%. Fur-

thermore, considering power-gating of unused logic blocks and interconnect switches

(in this case sleep transistor size is a parameter of device tuning), our co-optimization

reduces energy-delay product by 55.0% and chip area by 8.2% compared to the base-

line FPGA architecture.
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2.1 Introduction

FPGAs allow the same silicon implementation to be programmed or re-programmed

for a variety of applications. It provides low NRE (non-recurring engineering) cost

and short time to market. Due to the large number of transistors required for field pro-

grammability and the low utilization rate of FPGA resources (typically 62.5% [158]),

existing FPGAs consume more power compared to ASICs [83]. As the process ad-

vances to nanometer technologies and low-energy embedded applications are explored

for FPGAs, power consumption becomes a crucial design constraint for FPGAs.

Recent work has studied FPGA power modeling and optimization. The leakage

power of a commercial FPGA architecture was quantified [158], and a high level FPGA

power estimation methodology was presented [48]. Power evaluation frameworks

were introduced for generic parameterized FPGA [123, 89, 92] and it was shown that

both interconnect and leakage power are significant for FPGAs in nanometer technolo-

gies. As to power optimization, the interaction of a suit of power-aware FPGA CAD

algorithms without changing the existing FPGAs was studied in [85]. Power-driven

partition algorithm for mapping applications to FPGAs with different Vdd-levels [117]

was proposed. A configuration inversion method to reduce the leakage power of mul-

tiplexers without any additional hardware [12] was investigated. Besides the power

optimization CAD algorithms, low power FPGA circuits and architectures have also

been studied. Region based power gating for FPGA logic blocks [59] and fine-grained

power-gating for FPGA interconnects [102] were proposed, and Vdd programmability

was applied to both FPGA logic blocks [93, 90, 98, 91] and interconnects [58, 51, 71].

A new type of routingmultiplexer and an input control method were developed [150] to

reduce leakage of unused routing multiplexers, and a circuitry combining gate biasing,

body biasing and multi-threshold techniques was designed [110] to reduce intercon-

nect leakage. Besides leakage power reduction, a glitch minimization technique [84]
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was proposed to reduce dynamic power.

Architecture evaluation has been performed first for area and delay. For non-

clustered FPGAs, it was shown that an LUT size of 4 achieves the smallest area [130]

and an LUT size of 5 or 6 leads to the best performance [143]. Later on, the cluster-

based island style FPGA was studied to optimize area-delay product and it showed

that LUT sizes ranging from 4 to 6 and cluster sizes between 4 and 10 can produce the

best area-delay product [10]. Besides area and delay, FPGA architecture evaluation

considering energy was studied recently [93, 123, 92]. It was shown that in 0.35µm

technology, an LUT size of 3 consumes the smallest energy [123]. In 100nm tech-

nology, an LUT size of 4 consumes the smallest energy [92]. [101] further evaluated

FPGA architectures with field programmable dual-Vdd and power gating, and consid-

ering area, delay, and energy.

However, all the aforementioned architecture evaluation assumed fixed supply volt-

ageVdd and threshold voltageVth, and sleep transistor size (if power gating is applied),

and have not conducted simultaneous evaluation of device optimization such as Vdd
and Vth tuning and architecture optimization such as tuning LUT and cluster sizes.

Architecture and device co-optimization may obtain a better power and performance

tradeoff compared to architecture tuning alone. We define hyper-architecture as the

combination of device and architectural parameters. The co-optimization requires the

exploration of the following dimensions: cluster sizeN, LUT sizeK,Vdd ,Vth, and sleep

transistor size if power gating is applied. The total number of hyper-architecture com-

binations can be easily over a few hundreds considering the interaction between these

dimensions. In the existing power evaluation frameworks, such as cycle-accurate sim-

ulation [89] and transition density based estimation [123], timing and power are cal-

culated for each circuit element. Therefore, it is time-consuming to explore the huge

hyper-architecture solution space using methods from [89, 123]. In order to perform
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device and architecture co-optimization, an accurate yet extremely efficient timing and

power evaluation method is required.

The first contribution of this chapter is that we develop a trace-based estimator

(called Ptrace) for FPGA power, delay, and area. We profile placed and routed bench-

mark circuits and collect statistical information (called trace) on switching activity,

short circuit power, near-critical path structure, and circuit element utilization rate for

a given set of benchmark circuits (MCNC [175] benchmark set in this chapter). We

show that the trace is independent of device tuning and it can be used to calculate

FPGA chip-level performance and power for a number of device designs. Compared

to performing placement-and-routing by VPR [18] followed by cycle-accurate simula-

tion (called Psim) from [89], Ptrace has a high fidelity and an average error of 1.3% for

energy and of 0.8% for delay. The trace collecting has the same runtime as evaluating

FPGA architecture for one combination ofVdd ,Vth and sleep transistor size using VPR

and Psim. It took one week to collect the trace for the MCNC benchmark set using

eight 1.2GHz Intel Xeon servers while all the hyper-architecture evaluation reported

in this chapter with over hundreds of hyper-architecture combinations took only a few

minutes on one server.

The second contribution is that we perform the architecture and device co-optimization

for conventional FPGAs and FPGAs with power gating capability. We explore differ-

ent Vdd , Vth, and sleep transistor size combinations in addition to cluster size and LUT

size combinations. For comparison, we obtain the baseline FPGA hyper-architecture

which uses the VPR architecture model [18] and the same LUT size and cluster size as

the commercial FPGAs used by Xilinx Virtex-II [170], and Vdd suggested by ITRS

[66], but Vth optimized by our device optimization. Such baseline is significantly

better than the ones with no device optimization. Compared to the baseline hyper-

architecture, architecture and device co-optimization can reduce energy-delay product
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(product of energy per clock cycle and critical path delay, in short, ED) by 18.4% and

chip area by 23.3%. Furthermore, considering FPGA architecture with power-gating

capability, our architecture and device co-optimization reduces ED by 55.0% and chip

area by 8.2% compared to the baseline. We also study the impact of utilization rate

and interconnect structure.

The rest of the chapter is organized as follows. Section 2.2 presents the background

of FPGA architecture and existing FPGA architecture evaluation flow. Section 2.3

introduces our trace-based estimation models. Section 2.4 applies the new estimation

models to architecture and device co-optimization. Section 2.5 concludes this chapter.

2.2 Preliminaries

2.2.1 Conventional FPGA Architecture

We assume cluster-based island style FPGA architecture such as that in [18] for all

classes of FPGAs studied in this chapter. A cluster-based logic block (see Figure 2.1)

includes N fully connected Basic Logic Elements (BLEs). Each BLE includes one

K-input lookup table (LUT) and one flip-flop (DFF). The combination of cluster size

N and LUT size K is the architectural issue we evaluate in this chapter. The logic

blocks are surrounded by routing channels consisting of wire segments. The input and

output pins of a logic block can be connected to the wire segments in routing chan-

nels via a connection block (see Figure 2.1 (b)). A routing switch block is located at

the intersection of a horizontal channel and a vertical channel. Figure 2.1 (c) shows a

subset switch block [87], where the incoming track can be connected to the outgoing

tracks with the same track number.1 The connections in a switch block (represented by

the dashed lines in Figure 2.1 (c)) are programmable routing switches. We implement
1Without loss of generality, we assume subset switch block in this chapter.
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routing switches by tri-state buffers and use two tri-state buffers for each connection

so that it can be programmed independently for either direction. We define an inter-

connect segment as a wire segment driven by a tri-state buffer or a buffer.2 In this

chapter, we investigate both uniform length-4 interconnect wire segments and mixed-

length interconnects. We decide the routing channel widthCW in the same way as the

architecture study in [18], i.e., CW = 1.2CWmin where CWmin is the minimum channel

width required to route the given circuit successfully.
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Figure 2.1: (a) Island style routing architecture; (b) Connection block; (c) Switch

block; (d) Routing switches.

2We interchangeably use the terms of switch and buffer/tri-state buffer.
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2.2.2 Vdd Gatable FPGA Architecture

Power gating can be applied to interconnects and logic blocks to reduce FPGA power.

Figure 2.2 illustrates the circuit design of the Vdd-gateable interconnect switch and

logic block from [101]. We insert a PMOS transistor (called a sleep transistor) between

the power rail and the buffer (or logic block) to provide the power-gating capability.

When a buffer or logic block is not used, the sleep transistor is turned off by the

configuration cell. SPICE simulation shows that power-gating can reduce the leakage

power of an unused buffer or a logic block by a factor of over 300.
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connection block; (d) Vdd-gateable logic block.
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There is power and delay overhead associated with the sleep transistor insertion.

The dynamic power overhead is almost negligible. This is due to the fact that the sleep

transistors stay either ON or OFF after configuration and there is no charging and

discharging at their source/drain capacitors. The delay overhead associated with the

sleep transistor insertion can be bounded when the sleep transistor is properly sized.

Moreover, the connection box with power gating is different from that in the con-

ventional architecture. For the conventional FPGA, an inputMUX, which is effectively

an implicit decoder [18], is used in the connection box as illustrated in Figure 2.1(b).

However, for the power gating architecture, an explicit decoder is used in the con-

nection box to enable both the signal path and power supply for the single input, as

illustrated in Figure 2.2(c) [101]. Because the decoder is no longer in the critical path,

the delay of connection box in Figure 2.2(c) is smaller than that in Figure 2.1(b). The

connection box in Figure 2.2(c) also has a much smaller leakage power but a larger

area and a slightly larger dynamic power compared to the conventional architecture.

2.2.3 FPGA Architecture Evaluation Flow

The existing FPGA architecture evaluation flow considering area, delay, and power

[92] is illustrated in Figure 2.3. For a given benchmark set, we first optimized the

logic then map the circuit to a given LUT size. TV-Pack is used to pack the mapped

circuit to a given cluster size. After packing, we place and route the circuit using VPR

[18] and obtain the chip level delay and area. Finally, cycle-accurate power simulator

[89] (in short Psim) is used to estimate the chip level power consumption.

The architecture evaluation flow discussed above is time consuming because we

need to place and route every circuit under different architectures and a large number

of randomly generated input vectors need to be simulated for each circuit. However,

the device and architecture co-optimization requires the exploration of the following
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Figure 2.3: Existing FPGA architecture evaluation flow for a given device setting.

dimensions: cluster size N, LUT size K, supply voltageVdd , threshold voltageVth, and

sleep transistor size if power gating is applied. The total number of hyper-architecture

combinations can be easily over a few hundreds considering the interaction between

these dimensions. Therefore, the conventional evaluation flow is not practical for de-

vice and architecture co-optimization due to its time inefficiency. In order to perform

device and architecture co-optimization, a fast yet accurate FPGA power and delay

estimator is required. Such estimator is just the one we are going to introduce in Sec-

tion 2.3, the trace-based estimator.

2.3 Trace-Based Estimation

In this section, we will introduce the efficient power and delay estimation model, trace-

based estimation method (Ptrace). We speculate that during hyper-architecture evalu-

ation, there are following two classes of information as summarized in Table 2.1. The

first class only depends on architecture and is called trace of the architecture. The sec-

ond class only depends on device setting and circuit design. The basic idea of Ptrace is
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as follows: For a given benchmark set, we profile placed and routed benchmark circuits

and collect trace information under one device setting and for one FPGA architecture.

We then obtain chip-level performance and power for a set of device for a given archi-

tecture parameter values based on the trace information. Figure 2.4 illustrates the flow

of trace-based evaluation.

Arch
Spec

Trace-Based
Estimation

Trace
Collection

 Chip Level Area,
Delay, and Power

Circuit Level
Area, Delay,
and Power

Figure 2.4: New trace-based evaluation flow. We perform the same flow as Figure 2.3

under one device setting to collect the trace information.

2.3.1 Trace Collection

As mentioned before, the trace information only depends on architecture and remains

the same when device setting changes. For a given benchmark set and a given FPGA

architecture, the trace includes number of used type i circuit elements (Nu
i ), total num-

ber of type i circuit elements (Nti ), average switching activity of used type i circuit

elements (Sui ), short circuit power ratio (αsc), and near-critical path structure (see Ta-

ble 2.1). Near-critical path structure is the number of each type of circuit elements

(N p
i ) on the near-critical path. Device parameters includeVdd andVt , which depend on

technology scale, and average leakage power of type i circuit elements (Psi ), average

load capacitance of type i circuit elements (Cui ), and average delay of type i circuit
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elements (Di), which depend on circuit design. The device parameters, such as cir-

cuit level delay and power, can be collected by SPICE simulation or by measurement.

After collecting the trace and device level delay and power, we can perform Ptrace

to estimate the chip level delay, power, and area. Below, we will show that the trace

information is insensitive to the device parameters and discuss our trace-based models.

Trace Parameters (depend on architecture)

Nui # of used type i circuit elements

Nti total # of type i circuit elements

Sui avg. switching activity for used type i circuit elements

N p
i # of type i circuit elements on the near-critical path

αsc ratio between short circuit power and switch power

Device Parameters

(depend on processing technology and circuit design)

Vdd power supply voltage

Vth threshold voltage

Psi avg. leakage power for type i circuit elements

Cui avg. load capacitance of type i circuit elements

Di avg. delay of type i circuit elements

Table 2.1: Trace information, device and circuit parameters.

2.3.2 Power and Delay Model

2.3.2.1 Dynamic Power Model

Dynamic power includes switch power and short-circuit power. A circuit implemented

on an FPGA cannot utilize all circuit elements. Dynamic power is only consumed by

the used FPGA resources. Our trace-based switch power model distinguishes different

types of used FPGA resources and applies the following formula:

Psw =∑
i

1
2N

u
i · f ·V 2dd ·C

sw
i (2.1)

The summation is over different types of circuit elements, i.e., LUTs, buffers, input

pins and output pins. For type i circuit elements,Cswi is the average switch capacitance
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and Nui is the number of used circuit elements, f is the operating frequency. In this

chapter, we assume that the circuit works at its maximum frequency, i.e., the reciprocal

of the near-critical path delay. The switch capacitance is further calculated as:

Cswi = ( ∑
j∈Eli

Ci, j/Nui ) ·Sui

= Cui ·Sui (2.2)

For type i circuit elements,Cui is the average load capacitance of used circuit elements,

which is averaged overCi, j, the local load capacitance for used circuit element j. Eli is

the set of used type i circuit elements, and Sui is the average switching activity of used

type i circuit elements. We assume that the average switching activity of the circuit

elements is determined by the circuit logic functionality and FPGA architecture. The

device parameters ofVdd andVth have a limited effect on switching activity. We verify

this assumption in Table 2.2 by demonstrating the average switching activity of five

benchmarks at different technology nodes, and Vdd and Vth levels.

benchmark 70nm Vdd=1.1 100nm Vdd=1.3 70nm Vdd=1.0

Vth=0.25 Vth=0.32 Vth=0.20

logic inter- logic inter- logic inter-

connect connect connect

alu4 2.06 0.55 2.01 0.54 2.03 0.59

apex2 1.73 0.47 1.75 0.47 1.70 0.47

apex4 1.23 0.27 1.19 0.26 1.16 0.29

bigkey 1.75 0.56 1.96 0.59 1.71 0.55

clma 0.90 0.21 0.87 0.21 0.91 0.23

Table 2.2: switching activities for different technology nodes, Vdd and Vth. Architec-

ture setting: N = 10,K = 4. Unit: switch per clock cycle.

The short circuit power is related to signal transition time, which is difficult to

obtain without detailed simulation using a real delay model. In our trace-based model,

we model the short circuit power as:

Psc = Psw ·αsc (2.3)
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Where αsc is the ratio between short circuit power and switch power. Although this

ratio value at the circuit level depends on FPGA circuit design and architecture, we

assume that αsc does not depend on device and technology at the chip level. We ver-

ify this assumption in Table 2.33 by showing the average short circuit power ratio at

different technology nodes, Vdd, and Vth levels.

benchmark 70nm Vdd=1.1 100nm Vdd=1.3 70nm Vdd=1.0

Vth=0.25 Vth=0.32 Vth=0.20

logic inter- logic inter- logic inter-

connect connect connect

alu4 1.43 1.12 1.44 1.16 1.46 1.15

apex2 1.44 0.89 1.42 0.93 1.48 0.92

apex4 1.08 0.86 1.15 0.79 1.18 0.82

bigkey 0.74 1.64 0.76 1.71 0.72 1.68

clma 1.11 1.72 1.21 1.62 1.16 1.63

Table 2.3: Short circuit power ratios for different technology nodes, Vdd and Vth. Ar-

chitecture setting: N = 10,K = 4.

2.3.2.2 Leakage Power Model

The leakage power is modeled as follows,

Pstatic =∑
i
NtiPsi (2.4)

For resource type i, Nti is the total number of circuit elements, and Psi is the leakage

power for a type i element. Notice that usuallyNti >Nui because the resource utilization

rate is low in FPGAs (typically 62.5% [158]). For an FPGA architecture with power-

gating capability, an unused circuit element can be power-gated to reduce leakage
3Because the delay between buffers is usually large for FPGA circuits, the short circuit power ratio

could be big.
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power.4 In this case, the total leakage power is modeled by the following formula:

Pstatic =∑
i
Nui Pi+αgating ·∑

i
(Nti −Nui )Pi (2.5)

where αgating is the average leakage ratio between a power-gated circuit element and a

circuit element in normal operation. SPICE simulation shows that sleep transistors can

reduce leakage power by a factor of 300 and αgating = 0.003 is used in this chapter.

2.3.2.3 Delay Model

To avoid the static timing analysis for the entire circuit implemented on a given FPGA

fabric, we obtain the structure of the ten longest circuit paths including the near-critical

path for each circuit. The path structure is the number of elements of different resource

types, i.e., LUT, wire segment and interconnect switch, on one circuit path. We assume

that the new near-critical path due to different Vdd and Vth levels is among these ten

longest paths found by our benchmark profiling. When Vdd and Vth change, we can

calculate delay values for the ten longest paths under new Vdd and Vth levels, and

choose the largest one as the new near-critical path delay. Therefore, the FPGA delay

can be calculated as follows:

D=∑
i
N p
i Di (2.6)

For resource type i, N p
i is the number of circuit elements that the near-critical path

goes through, and Di is the delay of such a circuit element. Di is a circuit parameter

depending on Vdd, Vth, process technology, and FPGA architecture.5 To get the path
4In this chapter, we assume the wire segment length change introduce by power gating can be ig-

nored. In our experiment, wire length is calculated as 4×√areatile [18], where areatile is the area of
a logic block with the interconnect surrounding it. The area overhead introduced by power gating is
less than 30%. Therefore, the change of wire segment length is less than 14%. Moreover the load ca-
pacitance of a routing buffer is mainly determined by the input and output capacitances of buffers. The
wire capacitance is a small portion (about 20%) of the load capacitance. Therefore, the area increase
introduced by power gating will have small impact on the delay and power estimation.
5Delay of each circuit element is measured with the worst case switch. When power gating is

applied, a single gating transistor is used for the entire logic block. In order to measure the delay of
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statistical information N p
i , we only need to place and route the circuit once for a given

FPGA architecture.

2.3.3 Validation of Ptrace

2.3.3.1 Verification of Deterministic Model

To validate Ptrace, we compare it to the conventional architecture evaluation flow

for ITRS [66] 70nm technologies. We assume Vdd=1.0V and Vth=0.2V and map 20

MCNC benchmarks, as illustrated in Table 2.4, to two architectures: {N = 8, K = 4}

and {N = 6, K = 7}. In Table 2.4, the number of LUTs and flip flops are counted under

the architecture N=8 and K=4. Notice that we can map the benchmarks to different

LUT and cluster sizes. We collect trace using the conventional architecture evaluation

flow in 70nm technology, Vdd=1.0V and Vth=0.2V. Figure 2.5 compares energy and

delay between the conventional evaluation flow and Ptrace for each benchmark. The

average energy error of Ptrace is 1.3% and average delay error is 0.8%. From the fig-

ure, the Ptrace has the same trends for energy as Psim does and for delay as VPR does.

Therefore, Ptrace has a high fidelity. Moreover, the run time of Ptrace is 2s, while that

of the conventional evaluation flow is 120 hours.

each circuit element in a logic block with gating transistor, a series of randomly generated vectors are
used as the inputs to the block and the worst case delay is measured for each circuit element under such
random input vectors.
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benchmark # LUTs # Flip flops benchmark # LUTs # Flip flops

alu4 1607 0 ex5p 1201 0

apex2 2118 0 frisc 5926 900

apex4 1291 0 misex3 1501 0

bigkey 2935 224 pdc 5608 0

clma 13537 33 s298 2548 8

des 2172 0 s38417 8458 1463

diffeq 1933 377 s38584 7040 1260

dsip 1619 224 seq 1953 0

elliptic 4185 1138 spla 3938 0

ex1010 4721 0 tseng 1299 382

Table 2.4: MCNC benchmark list. The number of LUTs and flip flops are counted

under the architecture N=8 and K=4.
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Figure 2.5: Comparison between Psim and Ptrace.
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2.4 Hyper-Architecture Evaluation

2.4.1 Overview

In this section, we use Ptrace to perform device and architecture evaluation. We

consider 70nm ITRS technology and evaluate four FPGA hyper-architecture classes:

Homo-Vth, Hetero-Vth, Homo-Vth+G and Hetero-Vth+G. Homo-Vth is the conventional

FPGA using homogeneous Vth for interconnects and logic blocks. Hetero-Vth applies

different Vth to logic blocks and interconnects. Homo-Vth+G and Hetero-Vth+G are

the same as Homo-Vth and Hetero-Vth, respectively, except that unused logic blocks

and interconnects are power-gated [101]. We compare them with the baseline hyper-

architecture, which uses the VPR architecture model [18] and has the same LUT size

and cluster size as those used by the Xilinx Virtex-II [170] (cluster size of 8, LUT

size of 4),Vdd suggested by ITRS [66] (0.9v), andVth of 0.3v that is optimized with re-

spect to the above architecture andVdd . The baseline hyper-architecture and evaluation

ranges for device and architecture are presented in Table 2.5. Note that a high Vth is

applied to all SRAM cells for configuration to reduce their leakage power as suggested

by [93].

In the subsections 2.4.2 to 2.4.4, we assume the following:

• The utilization rate (defined as the utilization rate of logic blocks, i.e., number

of used logic blocks over the number of total available logic blocks) is 0.5.

• All interconnect wire segments span 4 logic blocks with fully buffered routing

switches.

• The routing channel width is 1.2 times of the minimum channel width that allows

the FPGA circuit being routed.

• All benchmark circuits work at their highest frequency (1/critical path delay).
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The impact of utilization rate and interconnect architecture will be discussed in sub-

sections 2.4.5 and 2.4.6, respectively. For each hyper-architecture, we compute the

energy, delay and area as the geometric mean of 20 MCNC benchmarks in Table 2.4.

Moreover, in the rest of this chapter, we use CVt for Vth of logic blocks and IVth for

Vth for global interconnects. Note that CVt = IVth in Homo-Vth and Homo-Vth+G. To

illustrate the tradeoff between energy and delay, we introduce the concept of dominant

hyper-architecture: If hyper-architecture A has less energy consumption and a smaller

delay than hyper-architecture B, then we say that B is inferior to A. We define the dom-

inant hyper-architectures as the set of hyper-architectures that are not inferior to any

other hyper-architectures.

We organize the rest of this section as follows: First, Section 2.4.2 illustrates the

necessity of device and architecture co-optimization. Then Section 2.4.3 presents the

energy and delay tradeoff and ED reduction achieved by device and architecture co-

optimization. Section 2.4.4 discusses the device and architecture co-optimization con-

sidering area. Finally, Sections 2.4.5 and 2.4.6 analyze the impact of utilization rate

and compare the evaluation result of different routing architectures, respectively.

Baseline FPGA device/arch parameter values

Vdd Vth N K

0.9v 0.3v 8 4

Value range for device/arch optimization

Vdd Vth N K

0.8v-1.1v 0.2v-0.4v 6-12 3-7

Table 2.5: Baseline hyper-architecture and evaluation ranges.

2.4.2 Necessity of Device and Architecture Co-Optimization

In this section, we show the necessity of device and architecture co-optimization. We

first discuss the need of device tuning, then compare the results of optimizing device
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and architecture separately and simultaneously.

Architecture evaluation has been studied in previous research [131, 80, 10, 89, 123,

101]. However, device tuning has not been reported in the literature. Our experiments

show that device tuning has a much greater impact on delay and energy than archi-

tecture tuning does, which is demonstrated in Figure 2.6 and Table 2.6. Each set of

data points in Figure 2.6 is the dominant hyper-architectures for a given device set-

ting.6 For example, set D4 is the dominant hyper-architectures under Vdd=1.0V and

Vth=0.25V. From the figure, we observe that a change on the device leads to a more

significant change in energy and delay than architecture change does. For example,

for device setting Vdd = 0.9V and Vth=0.25v, energy for different architectures ranges

from 1.82nJ to 2.11nJ, and delay ranges from 13.68ns to 16.46ns. However, if we

increase Vth by 0.05v, i.e., Vdd = 0.9V and Vth = 0.3V , the energy ranges from 1.17nJ

to 1.32nJ and the delay ranges from 18.99ns to 23.24ns. Therefore, it is important to

evaluate both device and architecture instead of evaluating architecture only.

Set Vdd Vth Min energy Max energy Min delay Max delay

(V) (V) (nJ) (nJ) (ns) (ns)

D1 0.9 0.25 1.82 2.11 13.68 16.46

D2 0.9 0.30 1.17 1.32 18.99 23.24

D3 0.9 0.35 0.97 1.05 31.01 36.40

D4 1.0 0.25 2.30 3.17 11.90 14.06

D5 1.0 0.30 1.37 1.95 15.60 17.50

D6 1.0 0.35 1.11 1.30 21.31 24.66

D7 1.1 0.25 5.58 17.01 10.60 12.43

D8 1.1 0.30 3.10 9.03 13.05 15.40

D9 1.1 0.35 1.95 4.73 17.01 19.92

Table 2.6: Power and delay ranges for different device settings.

There are three methods to perform device and architecture optimization. In the

first method, we first optimize device using one architecture then optimize the ar-
6Dominant hyper-architectures for a given device setting are the hyper-architectures that are not

inferior to any other hyper-architectures under such device setting.
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Figure 2.6: hyper-architectures under different device settings.

chitecture under the optimized device setting and call it device-arch method. In the

second method, we first optimize the architecture within one device setting then opti-

mize the device setting according to the optimized architecture and call it arch-device

method. In the third method, we optimize architecture and device simultaneously and

call it simultaneous method. Both methods arch-device and device-arch cannot guar-

antee the optimal solution. Table 2.7 compares the min-ED hyper-architectures for

Homo-Vth found by three different methods. For both arch-device and device-arch,

we start search from the baseline case {N = 8, K = 4, Vdd = 0.9V , and Vth = 0.3V}.

In our experiment, we find that there are two local optimal hyper-architectures in the

whole solution space: {N = 6, K = 7, Vdd = 0.9V , Vth = 0.3V} and {N = 10, K = 4,

Vdd = 1.0V , Vth = 0.3V} which is also the global optimal. In this particular example,

both arch-device and device-arch achieve the same local optimal hyper-architecture

{N = 6, K = 7, Vdd = 0.9V , Vth = 0.3V}. If we start search from some other hyper-
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architectures, arch-device and device-arch may achieve other local optimum but there

is no guarantee of the global optimum. In order to obtain the global optimal solution,

we have to perform simultaneous method. From Table 2.7, we observe that simul-

taneous method can reduce ED by 13.3% compared to arch-device and device-arch.

We also see that the runtime of arch-device and device-arch is shorter than that of

simultaneous method. However, due to the time efficiency of Ptrace, the runtime of

simultaneous method is also small (only 34.1s). Therefore, it is still worthwhile per-

forming simultaneous device and architecture optimization.

Vdd (V) CVt (V) IVth (V) (N, k) Energy (nJ) Delay (ns) ED (nJ· ns) runtime (s)

arch-device 0.9 0.30 0.30 (6,7) 1.38 19.8 27.3 5.1

device-arch 0.9 0.30 0.30 (6,7) 1.38 19.8 27.3 3.4

simultaneous 1.0 0.30 0.30 (10,4) 1.37 17.5 24.1 (-13.3%) 34.1

Table 2.7: Min-ED hyper-architecture of optimizing device and architecture separately

and simultaneously.

2.4.3 Energy and Delay Tradeoff

In this section, we first compare the impact of device tuning and architecture tuning,

then present min-energy and min-delay hyper-architectures, and finally discuss the

energy and delay tradeoff. For the classesHomo-Vth+G andHetero-Vth+Gwith power-

gating, we assume the following fixed sleep transistor size: 210X PMOS for a logic

block, 10X PMOS for a switch buffer, and 1X PMOS for a connection buffer. We then

discuss the sleep transistor tuning in Section 2.4.4.

Table 2.8 summarizes the minimum delay and minimum energy hyper-architectures

for each class. The minimum delay hyper-architectures have cluster size of 6 and LUT

size of 7 which are the same for all classes. The minimum energy hyper-architectures

have LUT size of 4 for all classes. This is similar to the previous evaluation result

[101, 89]. As expected, the min-delay hyper-architectures have the highest Vdd and
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lowest Vth. However, the min-energy hyper-architectures have the lowest Vdd but not

the highest Vth. This is because we assume that each circuit works at its highest pos-

sible frequency (1/critical path delay). The energy is calculated as E = delay · power.

When Vth is too high, the delay is so large that the energy per clock cycle increases.

Hyper- Minimum delay hyper-architecture Minimum energy hyper-architecture

Arch Vdd CVt IVth (N,K) E D Vdd CVt IVth (N,K) E D

Class (V) (V) (V) (nJ) (ns) (V) (V) (V) (nJ) (ns)

Homo-Vth 1.1 0.20 0.20 (6,7) 31.22 8.86 0.8 0.35 0.35 (10,4) 0.942 59.2

Hetero-Vth 1.1 0.20 0.20 (6,7) 31.22 8.86 0.8 0.30 0.35 (12,4) 0.920 43.6

Homo-Vth+G 1.1 0.20 0.20 (6,7) 15.98 9.45 0.8 0.30 0.30 (12,4) 0.550 30.5

Hetero-Vth+G 1.1 0.20 0.20 (6,7) 15.98 9.45 0.8 0.30 0.25 (10,4) 0.549 24.3

Table 2.8: Minimum delay and minimum energy hyper-architectures.

Usually, higher performance hyper-architectures consume more energy. To illus-

trate the energy and delay tradeoff, we present the dominant hyper-architectures of

Homo-Vth and Hetero-Vth in Figure 2.7 (a) and those of Homo-Vth+G and Hetero-

Vth+G in Figure 2.7 (b). From the figure, we find that the energy difference between

Homo-Vth+G and Hetero-Vth+G is smaller than that between Homo-Vth and Hetero-

Vth. This is because leakage power is significantly reduced by power-gating and there-

fore more detailed Vth tuning such as heterogeneous-Vth has a smaller impact. We also

see that dominant hyper-architectures of Homo-Vth+G and Hetero-Vth+G have smaller

delay than that of Homo-Vth and Hetero-Vth. This is due to the fact that the connection

box with power gating has smaller delay than that without power gating as discussed

in Section 2.2.2. Moreover, with the dominant hyper-architecture figure, we can obtain

the minimum energy solution for a given performance range. For example, if we want

to find the minimum energy solution forHomo-Vth with delay limit 15ns, we only need

to pick the dominant hyper-architecture whose delay is closest to 15ns.

In order to achieve the best energy and delay tradeoff, we find the hyper-architectures

with the minimum energy delay product (in short min-ED) in Table 2.9. Compared to
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the baseline, ED reduction is 14.5% and 18.4% for Homo-Vth and Hetero-Vth, respec-

tively. If power gating is applied, ED can be reduced by about 60% for both Homo-

Vth+G and Hetero-Vth+G. The similar ED reduction for power gating classes is due to

the fact that leakage power is greatly reduced by power-gating and therefore the more

detailed Vth tuning such as heterogeneous-Vth has a small impact on power reduction

as discussed before. We also see that, compared to the min-ED hyper-architectures

without power gating, the min-ED hyper-architectures with power gating has a lower

Vth. This is because leakage power is greatly reduced when power gating is applied,

therefore a lowerVth can improve performance without much penalty on leakage.

hyper-architecture.Class Vdd (V) CVt (V) IVth (V) (N, k) E(nJ) D (ns) ED (nJ· ns) Area %

Baseline 0.9 0.30 0.30 (8,4) 1.20 23.5 28.2 100.00

Homo-Vth 1.0 0.30 0.30 (10,4) 1.37 17.5 24.1 (-14.5%) 81.90

Hetero-Vth 0.9 0.25 0.30 (12,4) 1.27 18.1 23.0 (-18.4%) 79.52

Homo-Vth+G 0.9 0.25 0.25 (12,4) 0.74 16.10 11.9 (-57.8%) 127.43

Hetero-Vth+G 0.8 0.25 0.20 (10,4) 0.65 17.30 11.2 (-60.3%) 126.19

Table 2.9: Comparison between baseline and min-ED hyper-architecture in Homo-Vth,

Hetero-Vth, Homo-Vth+G, and Hetero-Vth+G.

2.4.4 ED and Area Tradeoff

In the previous sections, we assume fixed sleep transistor sizes for Homo-Vth and

Hetero-Vth+G and discuss hyper-architecture evaluation to minimize ED without con-

sidering area. However, area is important for FPGA design. Power-gating using sleep

transistors may change delay and area tradeoff for FPGA architecture. Usually, the

larger the sleep transistor size, the smaller the delay is. In this section, we perform

device and architecture co-optimization to achieve the best ED and area tradeoff. Al-

though dual-Vth may change the layout area due to extra diffusion well area, such

change depends on technology and is often very small. Therefore, in this section, we
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assume that Vdd and Vth change does not affect area.

For Homo-Vth and Hetero-Vth, because no power gating is applied, we do not need

to tune sleep transistor size. To achieve the best ED-area tradeoff, we find out the

hyper-architectures with minimum product of energy, delay, and area (in short AED),

which are summarized in Table 2.10. Compared to the baseline, the min-AED hyper-

architecture of Homo-Vth reduces ED by 14.7% and area by 18.3%,7 and the min-AED

hyper-architecture of Hetero-Vth reduces ED by 18.4% and area by 23.3%. Figure 2.8

presents the chip-level ED and area tradeoff. We prune inferior solutions with both

ED and area larger than any alternative solutions. From the figure, we see that, for the

classes without power gating, the min-ED hyper-architecture is exactly the min-AED

hyper-architecture. This is because that when no power gating is applied, the larger the

area, the more leakage power is consumed. Therefore, the min-ED hyper-architectures

use less area than other hyper-architectures.

Vdd (V) CVt (V) IVth (V) (N,K) S ED Area AED AED reduction %

Baseline 0.9 0.30 0.30 (8,4) - 1 1 - -

Homo-Vth 1.0 0.30 0.30 (10,4) - 0.853 0.817 0.697 30.3

Hetero-Vth 0.9 0.25 0.30 (12,4) - 0.816 0.767 0.626 37.4

Homo-Vth+G 0.9 0.25 0.25 (12,4) 2 0.470 0.918 0.432 56.9

Hetero-Vth+G 0.9 0.25 0.20 (12,4) 2 0.450 0.918 0.413 58.7

Table 2.10: Minimum ED-area product hyper-architectures for different classes. ED,

Area, and ED-area product are normalized with respect to the baseline.

For Homo-Vth+G and Hetero-Vth+G with power gating, the sleep transistor size

has to be considered. Because only one sleep transistor is used for one logic block,

as illustrated in Figure 2.2(d), we assume the 210X PMOS for the sleep transistor

with negligible area overhead. Moreover, we observe that a 1X PMOS as the sleep
7In our evluation, we assume that the area depends only on architecture and but not device setting.

Our experimental result shows that N = 12, K = 4 is most area efficient architecture, this architecture
reduces area by 23.6% compared to the baseline (N = 8, K = 4). The architecture N = 10, K = 4 is the
second area efficient architecture which reduces area by 18.3% compared to the baseline.
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transistor for one switch in connection box (see the circuit in Figure 2.2(c)) provides

good performance, and any further increase of the sleep transistor size cannot improve

the performance much.

The sleep transistors for the switches in the routing box, however, may affect delay

greatly. We consider four sleep transistor sizes: 2X, 4X, 7X, and 10X PMOS for a rout-

ing switch. From the Figure 2.8, we find that device and architecture co-optimization

can reduce ED and area simultaneously even when power gating is applied. This

is due to the fact that tuning device setting and architecture offers a bigger solution

space to explore in chip level. 8 Table 2.10 summarizes the minimum AED prod-

uct hyper-architectures. Compared to the baseline case, the minimum AED product

hyper-architecture of Homo-Vth+G reduces ED by 53.0% and area by 8.2% and the

minimumAED product hyper-architecture in Hetero-Vth+G reduces ED by 55.0% and

area by 8.2%.

2.4.5 Impact of Utilization Rate

In the previous part of this section, we assume fixed utilization rate (0.5). In this

subsection, we will further discuss the impact of utilization rate on FPGA architec-

ture evaluation. We compare the min-ED and min-AED hyper-architectures under

three different utilization rates: 0.3, 0.5, and 0.8 in Tables 2.11 and 2.12. We see that

the min-ED and min-AED hyper-architectures under different utilization rates are the

same. Therefore, we conclude that utilization rate in practice does not affect hyper-

architecture evaluation. We guess that the reason why the utilization rate does not

affect hyper-architecture evaluation is as follows: In our models the performance and
8As discussed before, the most area efficient architectures (N = 12 and K = 4) reduces area by

about 20% compared to the baseline. The area increase introduced by power gating leads to only about
15% area increase. Therefore, for the minimum AED hyper-architecture of the power gating classes
consumes less area compared to the baseline.
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dynamic power of the circuit under different utilization rate is the same, 9 and the only

difference is leakage power. For the classes with power gating, the leakage power is de-

termined by the active elements and the leakage power of the unused circuit elements is

negligible (as we can see from Table 2.11, in classes Homo-Vth+G and Hetero-Vth+G,

ED under different utilization rate is very close). When no power gating is applied,

for given benchmark circuits, leakage power is the dominant power component and

changes inversely proportional to the utilization rate. Therefore the relationship be-

tween the leakage power of different hyper-architectures does not change with respect

to the change of the utilization rate.

Utilization 0.3 0.5 0.8

rate Vdd CVth IVth (N, k) ED Vdd CVth IVth (N, k) ED Vdd CVth IVth (N, k) ED

Homo-Vth 1.0 0.30 0.30 (10,4) 32.0 1.0 0.30 0.30 (10,4) 24.1 1.0 0.30 0.30 (10,4) 19.4

Hetero-Vth 0.9 0.25 0.30 (12,4) 31.5 0.9 0.25 0.30 (12,4) 23.0 0.9 0.25 0.30 (12,4) 18.1

Homo-Vth+G 0.9 0.25 0.25 (12,4) 12.3 0.9 0.25 0.25 (12,4) 11.9 0.9 0.25 0.25 (12,4) 11.8

Hetero-Vth+G 0.8 0.25 0.20 (10,4) 11.6 0.8 0.25 0.20 (10,4) 11.2 0.8 0.25 0.20 (10,4) 11.0

Table 2.11: Min-ED hyper-architecture under different utilization rates.

Utilization 0.3 0.5 0.8

rate Vdd CVth IVth (N, k) S AED Vdd CVth IVth (N, k) S AED Vdd CVth IVth (N, k) S AED

Homo-Vth 1.0 0.30 0.30 (10,4) - 0.649 1.0 0.30 0.30 (10,4) - 0.697 1.0 0.30 0.30 (10,4) - 0.698

Hetero-Vth 0.9 0.25 0.30 (12,4) - 0.637 0.9 0.25 0.30 (12,4) - 0.626 0.9 0.25 0.30 (12,4) - 0.617

Homo-Vth+G 0.9 0.25 0.25 (12,4) 2 0.330 0.9 0.25 0.25 (12,4) 2 0.432 0.9 0.25 0.25 (12,4) 2 0.533

Hetero-Vth+G 0.8 0.25 0.20 (10,4) 2 0.324 0.8 0.25 0.20 (10,4) 2 0.413 0.8 0.25 0.20 (10,4) 2 0.510

Table 2.12: Min-AED hyper-architecture under different utilization rates. Note: AED

is normalized with respect to the baseline.

2.4.6 Impact of Interconnect Structure

In the previous discussion, we always assume all the wire segments span four logic

blocks (i.e. length-4 interconnect wires). In this section, we will compare two routing
9We assume the placement and route is the same for different utilization rate.
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structures to show the impact of routing structure on delay and power. We compare a

structure with uniform length-4 wire segments (in short uniform-interconnect) and a

routing structure with 60% length-4 wire segments and 40% length-8 wire segments

(in shortmixed-interconnect). Themixed-interconnect is optimal for minimizing delay

[47]. Tables 2.13, 2.14, and 2.15 compare the min delay, min energy and min ED

hyper-architectures between the two routing structures, respectively. We see that the

min-delay hyper-architectures for both interconnect structures are same. The min-

energy and min-ED hyper-architectures for the two routing structure have the same the

device setting and LUT size, but mixed-interconnect tends to use smaller cluster size

as the interconnect delay is reduced in mixed-interconnect. We also see that uniform-

interconnect has lower energy but higher delay than mixed-interconnect. This is due to

the fact that mixed-interconnect applies length-8 wire-segments and therefore a buffer

with a larger size is used, which reduces delay but increases power.

uniform-interconnect

hyper-architecture Vdd CVth IVth (N,K) Energy Delay

Class (V) (V) (V) (nJ) (ns)

Homo-Vth 1.1 0.20 0.20 (6,7) 31.22 8.86

Hetero-Vth 1.1 0.20 0.20 (6,7) 31.22 8.86

Homo-Vth+G 1.1 0.20 0.20 (6,7) 15.98 9.45

Hetero-Vth+G 1.1 0.20 0.20 (6,7) 15.98 9.45

mixed-interconnect

Homo-Vth 1.1 0.20 0.20 (6,7) 35.56 8.42

Hetero-Vth 1.1 0.20 0.20 (6,7) 35.56 8.42

Homo-Vth+G 1.1 0.20 0.20 (6,7) 16.25 9.13

Hetero-Vth+G 1.1 0.20 0.20 (6,7) 16.25 9.13

Table 2.13: Min-delay hyper-architecture under different routing structures.
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uniform-interconnect

hyper-architecture Vdd CVth IVth (N,K) Energy Delay

Class (V) (V) (V) (nJ) (ns)

Homo-Vth 0.8 0.35 0.35 (10,4) 0.942 59.2

Hetero-Vth 0.8 0.30 0.35 (12,4) 0.920 43.6

Homo-Vth+G 0.8 0.30 0.30 (12,4) 0.550 30.5

Hetero-Vth+G 0.8 0.30 0.25 (10,4) 0.549 24.3

mixed-interconnect

Homo-Vth 0.8 0.35 0.35 (8,4) 1.052 55.6

Hetero-Vth 0.8 0.35 0.35 (8,4) 1.052 55.6

Homo-Vth+G 0.8 0.30 0.30 (12,4) 0.610 29.3

Hetero-Vth+G 0.8 0.30 0.25 (8,4) 0.602 22.8

Table 2.14: Min-energy hyper-architecture under different routing structures.

uniform interconnect

hyper-architecture Vdd CVth IVth (N,K) Energy Delay ED

Class (V) (V) (V) (nJ) (ns) (nJ·ns)

Homo-Vth 1.0 0.30 0.30 (10,4) 1.37 17.50 24.1

Hetero-Vth 0.9 0.25 0.30 (12,4) 1.27 18.10 23.0

Homo-Vth+G 0.9 0.25 0.25 (12,4) 0.74 16.10 11.9

Hetero-Vth+G 0.8 0.25 0.20 (10,4) 0.65 17.30 11.2

mixed-interconnect

Homo-Vth 1.0 0.30 0.30 (8,4) 1.51 17.00 25.7

Hetero-Vth 0.9 0.25 0.30 (12,4) 1.39 18.40 25.6

Homo-Vth+G 0.9 0.25 0.25 (8,4) 0.82 16.40 13.4

Hetero-Vth+G 0.8 0.25 0.20 (8,4) 0.74 16.67 12.3

Table 2.15: Min-ED hyper-architecture under different routing structures.
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Figure 2.7: Dominant hyper-architectures. (a) Homo-Vth and Hetero-Vth; (b)

Homo-Vth+G and Hetero-Vth+G.
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2.5 Conclusions

In this chapter, we have developed trace-based power and performance evaluation

(Ptrace) for FPGA. The one-time use of placement, routing and cycle-accurate power

simulation is applied to collect the timing and power trace for a given benchmark set

and a given FPGA architecture. The trace can then be re-used to calculate timing and

power via closed-form formulae for different device parameters and technology scal-

ing. Ptrace is much faster, yet accurate compared to the conventional evaluation based

on placement and routing by VPR [18] followed by cycle-accurate simulation (Psim)

[89].

Using the trace-based estimation, we have performed device (Vdd , Vth and sleep

transistor size if power gating is applied) and architecture (cluster and LUT size) co-

optimizations for low power FPGAs. We assume the ITRS [66] 70nm technology

and use the following baseline for comparison: Cluster size of 8 and LUT size of 4

as in the Xilinx Virtex-II [170], Vdd of 0.9v suggested by ITRS, Vth of 0.3v which is

optimized for min-ED (i.e., minimum energy delay product) with respect to the above

architecture and Vdd . Compared to the baseline case, simultaneous optimization of

FPGA architecture and device reduces the min-ED by 14.7% and area by 18.3% for

FPGA using homogeneous-Vth for the logic blocks and interconnects without power

gating. Optimizing Vth separately (i.e., heterogeneous-Vth) for the logic block and

interconnect reduces min-ED by 18.4% and area by 23.3%. Furthermore, power gating

unused logic and interconnect reduces the min-ED by up to 55.0% and reduces area by

8.2%. Compared to the classes without power gating, the min-ED hyper-architectures

of the classes with power gating have lower Vth. This is due to the fact that, when

power gating is applied, leakage power is significantly reduced and therefore a lower

Vth can be applied to reduce delay.

We observe that min-ED hyper-architectures and min-AED hyper-architectures for
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different utilization rate (between 30% and 80%) are the same. Therefore, the utiliza-

tion rate in practice does not affect the device and architecture co-optimization result.

Moreover, we also test two different routing structures, one with uniform length 4 wire

segments (uniform-interconnect) and the other with 60% length 4 wire segments and

40% length 8 wire segments (mixed-interconnect). We observe that the min-ED, min-

energy and min-delay hyper-architectures under two different interconnect structures

are similar, except that mix-interconnect tends to use slightly smaller cluster size due

to the reduced interconnect delay.
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CHAPTER 3

FPGA Device and Architecture Co-Optimization

Considering Process Variation

Process variations in nanometer technologies are becoming an important issue for

cutting-edge FPGAs with a multi-million gate capacity. In this chapter, we extend

Ptrace to handle process variation. We first develop closed-form models of chip level

FPGA leakage and timing variations considering both die-to-die and within-die varia-

tions in effective channel length, threshold voltage, and gate oxide thickness. Experi-

ments show that the mean and standard deviation computed by our models are within

3% from those computed by Monte Carlo simulation. We also observe that the leakage

and delay variations can be up to 5.5X and 1.9X, respectively. We then derive analyti-

cal yield models considering both leakage and timing variations, and use such models

to evaluate FPGA device and architecture considering process variations. Compared to

the baseline, which uses the VPR architecture and device setting from ITRS roadmap,

device and architecture tuning improves leakage yield by 10.4%, timing yield by 5.7%,

and leakage and timing combined yield by 9.4%. We also observe that LUT size of 4

gives the highest leakage yield, LUT size of 7 gives the highest timing yield, but LUT

size of 5 achieves the maximum leakage and timing combined yield.
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3.1 Introduction

In the previous chapter, we have introduced a time efficient trace-based power and

delay estimator for FPGA circuit. However, such estimator is only for determinis-

tic values and does not consider process variation. Modern VLSI designs see a large

impact from process variation as devices scale down to nanometer technologies. Vari-

ability in effective channel length, threshold voltage, and gate oxide thickness incurs

uncertainties in both chip performance and power consumption. For example, mea-

sured variation in chip-level leakage can be as high as 20X compared to the nominal

value for high performance microprocessors [25]. In addition to meeting the perfor-

mance constraint under timing variation, dice with excessively large leakage due to

such a high variation have to be rejected to meet the given power budget.

Recent work has studied parametric yield estimation for both timing and leakage

power. Statistical timing analysis considering path correlation was studied in [120]

[86, 178] and [180, 33] further introduced non-Gaussian variation and non-linear vari-

ation models. Timing yield estimation was discussed in [57, 53] and [127] purposed a

methodology to improve timing yield. As device scale down, leakage power becomes a

significant component of total power consumption and it is greatly affected by process

variation. [129, 187, 152] studied the parametric yield considering both leakage and

timing variations. Power minimization by gate sizing and threshold voltage assign-

ment under timing yield constrains were studied in [114]. However, all these studies

only focus on ASIC and do not consider FPGA.

FPGA has a great deal of regularity, therefore process variation may have smaller

impact on FPGAs than on ASICs. Yet the parametric yield for FPGAs still should be

studied. Some recent works [43, 100, 115, 136] has studied the impact of process vari-

ation and presented various statistical optimization methods. However, architecture

and device co-optimization considering process variation has not be studied yet.
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In this chapter,we first develop closed-form formulas of chip level leakage and

timing variations considering both die-to-die and within-die variations. Based on such

model, we extend the Ptrace discussed in Chapter 2 to estimate the power and delay

variation of FPGAs. Experiments show that the mean and standard deviation computed

by our models are within 3% from those copmuted by Monte Carlo simulation. We

also observe that the leakage and delay variations can be up to 5.5X and 1.5X, respec-

tively. With the extended Ptrace, we perform FPGA device and architecture evaluation

considering process variations. The evaluation requires the exploration of the follow-

ing dimensions: cluster size N, LUT size K, 1 supply voltage Vdd , and threshold volt-

age Vt . We defined the combinations of the above parameters as hyper-architecture.

For comparison, we obtain the baseline FPGA hyper-architecture which uses the VPR

architecture model [18] and the same LUT size and Cluster size as the commercial

FPGAs used by Xilinx Virtex-II [170], and device setting from ITRS roadmap[66].

Compared to the baseline, device and architecture tuning improves leakage yield by

4.8%, timing yield by 12.4%, and leakage and timing combined yield by 9.2%. We

also observe that LUT size of 4 gives the highest leakage yield, LUT size of 7 gives

the highest timing yield, but LUT size of 5 achieves the maximum leakage and timing

combined yield.

The rest of the chapter is organized as follows: Section 3.2 derives closed-form

models for leakage and delay variations and develops the leakage and timing yield

models. Section 3.3 perform device and architecture evaluation to improve yield rate.

Finally, Section 3.4 concludes the chapter.
1In this chapter, N refers to cluster size and K refers to LUT size
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3.2 Delay and Leakage Variation Model

In this chapter, we consider the variation in gate channel length (Lgate), threshold volt-

age (Vth), and gate oxide thickness (Tox). According to [190], spatial correlation is not

significant. Therefore, in this chapter, we assume each variation source is decomposed

into global (inter-die) variation and local (intra-die) variation as follows:

L= Lg+Ll (3.1)

V =Vg+Vl (3.2)

T = Tg+Tl (3.3)

where L, V , and T are variations of Lgate, Vth, and Tox respectively, Lg, Vg, and Tg are

inter-die variations, and Ll ,Vl, and Tl are intra-die variations. In the rest of this chapter,

we assume both inter-die (Lg, Vg, and Tg) and intra-die (Ll , Vl, and Tl) variations are

normal random variables. And we also assume that inter-die variation and intra-die

variation are independent, and all variation sources are also independent.

3.2.0.1 Leakage under Variation

We extend the leakage model in FPGA power and delay estimation framework Ptrace

[38] to consider variations. In Ptrace, the total leakage current of an FPGA chip is

calculated as follows:

Ichip =∑
i
Nti · Ii (3.4)

where Nti is the number of FPGA circuit elements of resource type i, i.e., an intercon-

nect switch, buffer, LUT, configuration SRAM cell, or flip-flop, and Ii is the leakage

current of a type i circuit element. Different sizes of interconnect switches and buffers

are considered as different circuit elements.

The leakage current Ii of a type i circuit element is the sum of the sub-threshold
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and gate leakages:

Ii = Isub+ Igate (3.5)

Variation in Isub mainly sources from variation in Lgate andVth. Variation in Igate mainly

sources from variation in Tox.

Different from [129] which models sub-threshold leakage and gate leakage sepa-

rately, we model the total leakage current Ii of circuit element in resource type i as

follows:

Ii = In(i) · e fLi(L) · e fVi(V ) · e fTi(T ) (3.6)

where In(i) is the nominal value of the leakage current of type i circuit element and f

is the function that represents the impact of each type of process variation on leakage.

The dependency between these functions has been shown to be negligible in [129].

From MASTAR4 model [68], we find that it is sufficient to express these functions as

simple linear functions as follows:

fLi(L) = −ci1 ·L (3.7)

fVi(V ) = −ci2 ·V (3.8)

fTi(T ) = −ci3 ·T (3.9)

where ci1,ci2,ci3 are fitting parameters obtained fromMASTAR4 model. The negative

sign in the exponent indicates that the transistors with shorter channel length, lower

threshold voltage, and smaller oxide thickness lead to higher leakage current. We

rewrite (3.6) as follows by decomposing L, V and T in to intra-die (Ll ,Vl,Tl) and inter-

die (Lg,Vg,Tg) components.

Ii = In(i) · e−(ci1Lg+ci2Vg+ci3Tg) · e−(ci1Ll+ci2Vl+ci3Tl) (3.10)

To extend the leakage model (3.4) under variations, we assume that each element

has unique intra-die variations but all elements in one die share the same inter-die
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variations. Both inter-die and intra-die variations are modeled as normal random vari-

ables. The leakage distribution of a circuit element is a lognormal distribution. The

total leakage is the sum of all lognormals. The state-of-the-art FPGA chip usually has

a large number of circuit elements, therefore the relative random variance of the total

leakage due to intra-die variation approaches zero. Similar to [129], for given inter-die

variations, we apply the Central Limit Theorem and use the sum of mean to approx-

imate the total leakage current. After integration, we can write the expression of the

chip-level leakage as the follows:

Ichip ≈ ∑
i
Nti ·E[Ii|Lg,Vg,Tg]

= ∑
i
Nti SiILg,Vg,Tg(i) (3.11)

Si = e(ci1σLl
2+ci2σVl

2+ci3σTl
2)/2 (3.12)

ILg,Vg,Tg(i) = In(i)e−(ci1Lg+ci2Vg+ci3Tg) (3.13)

where Si is the scale factor introduced by intra-die variability in L,V , and T . ILg,Vg,Tg(i)

is the leakage as a function of inter-die variations. σLl , σVl and σTl are the variances of

Ll , Vl , and Tl , respectively.

3.2.0.2 Leakage Yield

From (3.11), (3.12), and (3.13), we can see that the chip leakage current is a sum of

log-normal random variables and it can be expressed as follows,

Ichip =∑
i
Xi (3.14)

Xi ∼ Lognormal(log(Ai),((ci1σLg)
2+(ci2σVg)

2+(ci3σTg)
2)) (3.15)

Ai = NiIn(i) (3.16)

Same as [129], we model Ichip, the sum of the lognormal variables Xi, as another log-

normal random variable. The lognormal variable Xi shares the same random variables
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σLg , σVg , and σTg , and therefore these variables are dependent of each other. Consider-

ing the dependency, we calculate the mean and variance of the new lognormal Ichip as

follows,

µIchip = ∑
i
{exp[log(Ai)+

(ci1σLg)
2

2 +
(ci2σVg)

2

2 +
(ci3σTg)

2

2 ]} (3.17)

σ2Ichip = ∑
i
{exp[2log(Ai)+(ci1σLg)

2+(ci2σVg)
2+(ci3σTg)

2]

·[exp(cii2σ2Lg + ci22σ2Vg + c2i3σ2Tg)−1]}+∑
i, j
2COV (Xi,X j) (3.18)

where the mean of Ichip, µIchip , is the sum of means of Xi and the variance of Ichip, σIchip ,

is the sum of variance of Xi and the covariance of each pair of Xi. The covariance is

calculated as follows,

COV (Xi,X j) = E[XiX j]−E[Xi]E[X j] (3.19)

E[XiX j] = exp[log(AiA j)+
(ci1+ c j2)2σLg2

2 +

(ci2+ c j2)2σVg2

2 +
(ci3+ c j3)2σTg2

2 ] (3.20)

E[Xi] = exp[log(Ai)+
(ci1σLg)

2

2 +
(ci2σVg)

2

2 +
(ci3σTg)

2

2 ] (3.21)

We then use the method from [129] to obtain the mean and variance (µN,Ichip ,σN,Ichip
2)

of the normal random variable corresponding to the lognormal Ichip. As the exponential

function that relates the lognormal variable Ichip with the normal variable IN,chip is a

monotone increasing function, the CDF of Ichip can be expressed as follows using the

standard expression for the CDF of a lognormal random variable,

µN,Ichip =
log[µIchip4/(µIchip2+σIchip

2)]

2 (3.22)

σN,Ichip
2 = log[1+(σIchip

2/µIchip
2)] (3.23)

CDF(Ichip) =
1
2 [1+ er f (

log(Ichip)−µN,Ichip√
2σN,Ichip

)] (3.24)

where er f (·) is the error function. Given a leakage limit Icut for Ichip,

Yleak =CDF(Icut)×100% (3.25)
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gives the leakage yield rate Yleak(Icut |Lg), i.e., the percentage of FPGA chips that is

smaller than Icut .

3.2.0.3 Timing under Variation

The performance depends on Lgate, Vth, and Tox, but its variation is primarily affected

by Lgate andVth variation [129]. Belowwe extend the delay model in Ptrace to consider

inter-die and intra-die variations of Lgate. In Ptrace, the path delay is calculated as

follows:

D=∑
i
di (3.26)

where di is the delay of the ith circuit element in the path. Considering process varia-

tion,the path delay is calculated as follows:

D=∑
i
di(Lg,Ll,Vg,Vl) (3.27)

For circuit element i in the path, di(Lg,Ll,VG,Vl) is the delay considering inter-die

variation Lg, Vg and intra-die variation Ll , Vl. Lg and Vg the same for all the circuit

elements in the critical path. Given Lg and Vg, we evenly sample a few (eleven in this

chapter) points within range of [Lg−3σLl ,Lg+3σLl ]. We then use circuit level delay

model in [39] to obtain the delay for each circuit element with these variations. As

the delay monotonically decreases when Lgate and Vth increase, we can directly map

the probability of a channel length to the probability of a delay and obtain the delay

distribution of a circuit element. We assume that the intra-die channel length and

threshold voltage variation of each element is independent from each other. Therefore,

we can obtain the PDF (probability density function) of the critical path delay for a

given Lg and Vg as follows by convolution operation,

PDF(D|Lg,Vg) = PDF(d1|Lg,Vg)⊗PDF(d2|Lg,Vg)⊗·· ·

⊗PDF(di|Lg,Vg)⊗·· ·⊗PDF(dn|Lg,Vg) (3.28)
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3.2.0.4 Timing Yield

The timing yield is calculated on a bin-by-bin basis where each bin corresponds to a

specific value Lg and Vg. We further consider intra-die variation of channel length in

timing yield analysis. Given the inter-die channel length variation Lg, and threshold

voltage variationVg, (3.28) gives the PDF of the critical path delayD of the circuit. We

can obtain the CDF of delay, CDF(D|Lg,Vg), by integrating PDF(D|Lg,Vg). Given a

cutoff delay (Dcut), CDF(Dcut |Lg) gives the probability that the path delay is smaller

than Dcut considering Lgate and Vth variations. However, it is not sufficient to only

analyze the original critical path in the absence of process variations. The close-to-be

critical paths may become critical considering variations and an FPGA chip that meets

the performance requirement should have the delay of all paths no greater than Dcut .

We assume that for a given Lg the delay of each path is independent and we can

calculate the timing yield as follows,

Yper f (Dcut |Lg,Vg) =
n

∏
i=1

CDFi(Dcut |Lg,Vg) (3.29)

where CDFi(Dcut |Lg,Vg) gives the probability that the delay of the ith longest path

is no greater than Dcut . In this chapter, we only consider the ten longest paths, i.e.,

n = 10 because the simulation result shows that the ten longest paths have already

covered all the paths with a delay larger than 75% of the critical path delay under the

nominal condition. We then integrate Yper f (Dcut |Lg,Vg) over Lg andVg to calculate the

performance yield Yper f as follows,

Yper f =
Z Z +∞

−∞
PDF(Lg)PDF(Vg) ·Yper f (Dcut |Lg,Vg) ·dLgdVg (3.30)

3.2.0.5 Leakage and Timing Combined Yield

To analyze the yield of a lot, we need to consider both leakage and delay limit. In order

to compute the leakage and delay combined yield, we first need to calculate the leakage
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yield for a given inter-die variation of gate channel length Lg and threshold voltage

Vg, Yleak|Lg,Vg . Similar to Section 3.2.0.2, we first calculate the mean and variance of

leakage current for given Lg and Vg,

µIchip|Lg ,Vg
= ∑

i
{exp[log(Āi|Lg,Vg)+

(ci3σTg)
2

2 ]} (3.31)

σ2Ichip|Lg ,Vg
= ∑

i
{exp[2log(Āi|Lg,Vg)+(ci3σTg)

2]

·[exp(c2i3σ2Tg)−1]}+∑
i, j
2COV (X̄i|Lg,Vg , X̄ j|Lg,Vg) (3.32)

where

Āi|Lg,Vg = Ai · exp(−ci1Lg− ci2Vg) (3.33)

X̄i|Lg,Vg ∼ Lognormal(Āi|Lg,Vg,(ci3σTg)
2) (3.34)

Similar to Xi’s, the covariance between X̄i|Lg,Vg’s are computed as:

COV (X̄i|Lg,Vg, X̄ j|Lg,Vg) = E[X̄i|Lg,Vg · X̄ j|Lg,Vg ]−E[X̄i|Lg,Vg]E[X̄ j|Lg,Vg] (3.35)

E[X̄i|Lg,Vg · X̄ j|Lg,Vg] = exp[log(Āi|Lg,Vg · Ā j|Lg,Vg)+
(ci3+ c j3)2σTg2

2 ] (3.36)

E[Xi] = exp[log(Āi|Lg,Vg)+
(ci3σTg)

2

2 ] (3.37)

Finally, the CDF of leakage current for given Lg and Vg, Ileak|Lg,Vg , is calculated as:

µN,Ichip|Lg ,Vg
=

log[µ4Ichip|Lg,Vg/(µ2Ichip|Lg ,Vg
+σ2Ichip|Lg ,Vg

)]

2 (3.38)

σN,Ichip|Lg ,Vg
2 = log[1+(σ2Ichip|Lg,Vg/µ

2
Ichip|Lg ,Vg

)] (3.39)

CDF(Ichip|Lg,Vg) =
1
2 [1+ er f (

log(Ichip)−µN,Ichip|Lg ,Vg√
2σN,Ichip

)] (3.40)

With the CDF of Ileak|Lg,Vg , it is easy to compute the leakage yield for given Lg and

Vg,

Yleak|Lg,Vg =CDF(Icut |Lg,Vg)×100% (3.41)
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MC sim Our model

Yleak % Yper f % Ycom % Yleak % Yper f % Ycom %

90.2 74.1 64.4 89.3 (-0.9) 72.6 (-1.5) 62.1 (-2.1)

Table 3.1: Verification of yield model.

Because for given a specific inter-die variation of channel length Lg and threshold

voltage variation Vg, the leakage variability only depends on the variability of random

variable Tg as shown in (3.31), and the timing variability only depends on the variabil-

ity of random variable Ll and Vl as shown in (3.29). Therefore, we assume that the

leakage yield and timing yield are independent of each other for given Lg and Vg. The

yield considering the imposed leakage and timing limit can be calculated as follows,

Ycom =
Z Z +∞

−∞
PDF(Lg)PDF(Vg)Yleak(Icut |Lg,Vg)Yper f (Dcut |Lg,Vg) ·dLgdVg (3.42)

3.2.0.6 Verification of Yield Model

In this section, we verify our yield model by comparing it to 10,000 sample Monte-

Carlo simulation. In our experiment, we assume 70nm ITRS technology and use de-

vice and architecture same as the baseline hyper-architecture as in Section 2.4. We also

assume that all 20 MCNC benchmarks are put into one FPGA chip. The cut of leak-

age power is 2X of the nominal value and the cut of delay is 1.1X of nominal value.

Table 3.1 compares the yield estimated from our model and that from the Monte-Carlo

simulation. From the table, we see that our yield model is within 3% error compared

to the Monte-Carlo simulation.

3.3 Hyper-Architecture Evaluation Considering Process Variation

In this section, we use our yield model to perform device and architecture evaluation

for leakage and delay yield optimization. We consider ITRS 70nm technology and
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N K W Vth (V) Vdd (V)

Evaluation range 4,5,6,7 6,8,10,12 4 0.2 0.4 0.8 1.1

Baseline 8 4 4 0.3 0.9

Source Distribution 3σg 3σl
Lgate Normal 5.0% 3.0%

Vth Normal 2.5% 1.9%

Tox Normal 2.5% 1.9%

Table 3.2: Experimental setting.

changeVdd andVth around such setting. For architecture, we consider LUT sizeK from

4 to 7, and cluster size N from 6 to 12. For interconnect, we assume that all the global

routing track (W ) span 4 logic blocks with all buffer switch box. In the experiment, we

assume that all 20 MCNC benchmarks are put into one chip and obtain the longest 10

critical paths from them. For comparison, we use the same baseline hyper-architecture

as in Section 2.4. For process variation, we assume that all the variation sources has

normal distribution. For all variation sources, we assume that the 3σ value of the inter-

die variation is 10% of nominal value, and the 3σ value of the intra-die variation is 5%

of nominal value.

3.3.1 Impact of Process Variation

In this section, we analyze the impact of process variation on FPGA leakage power

and delay. Figure 3.1 illustrates the leakage and delay variation from Monte-Carlo

simulation for the baseline hyper-arch. In the figure, each dot is sample of Monte-

Carlo simulation. From the figure, we can see with process variation, the range of

leakage power is up to 5.5X and the range of delay variation is up to 1.5X.
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Figure 3.1: Leakage and delay of baseline architecture hyper-arch.

3.3.2 Impact of Device and Architecture Tuning

In this section, we perform device and architecture evaluation to optimize the delay

and leakage power yield for two FPGA classes, Homo-Vth and Hetero-Vth as defined

in in Section 2.4. In the rest of this section, we assume that the cutoff leakage power

is 2X of the nominal value and the cutoff delay is 1.1X of the nominal value, as shown

in Figure 3.1.

3.3.2.1 Leakage Yield

We first optimize leakage yield. Table 3.3 illustrates the hyper-archs with maximum

leakage yield for both two classes.

In the table, CVth refers to the Vth of logic blocks and IVth refers to the Vth of

interconnect. Notice that for Homo-Vth, CVth = IVth. From the table, we see that

Homo-Lgate and Hetero-Lgate give the same maximum leakage yield result. That is,

the optimum Lgate for logic blocks and interconnect is the same.

This is because the larger Lgate gives better leakage yield, both logic block and

interconnect using largest Lgate (33nm) results in optimum leakage yield. Moreover,
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N K CVth (V) IVth (V) Vdd (V) Yleak % Yper f % Ycom %

Baseline 8 4 0.3 0.3 0.9 89.5 85.5 67.1

Homo-Vth 10 4 0.4 0.4 0.9 94.3(+4.8) 79.3 69.1

Hetero-Vth 10 4 0.4 0.4 0.9 94.3(+4.8) 79.3 69.1

Table 3.3: Optimum leakage yield hyper-architecture.

N K CVth (V) IVth (V) Vdd (V) Yleak % Yper f % Ycom %

Baseline 8 4 0.3 0.3 0.9 89.5 85.5 67.1

Homo-Vth 6 7 0.2 0.2 1.1 63.5 97.9(+12.4) 57.9

Hetero-Vth 6 7 0.2 0.2 1.1 67.6 97.9(+12.4) 57.9

Table 3.4: Optimum Timing yield hyper-architecture.

we can also find that K = 4 gives the optimum leakage yield, which improve leakage

yield by 4.8% compared to the baseline.

3.3.2.2 Timing Yield

Secondly, we analyze the timing yield. For timing yield analysis, we only analyze the

delay of the largest MCNC benchmark clma. Similarly, the timing yield is often stud-

ied using selected test circuit such as ring oscillator for ASIC in the literature. Table 3.4

illustrates the optimum timing yield hyper-arch. Similar to leakage yield analysis, both

Homo-Lgate and Hetero-Lgate achieve the same hyper-arch for optimum timing yield.

The reason is similar to the leakage yield. That is the smaller Vth gives better timing

yield, therefore both logic block and interconnect using smallest Vth (0.2V) results in

optimum timing yield. From the table, we can also find that the optimum timing yield

hyper-arch has K = 7 and improve timing yield by 12.4% compared to the baseline.

3.3.2.3 Leakage and Timing Combined Yield

Finally, we discuss about leakage and timing combined yield. Table 3.5 illustrates the

optimum leakage and timing combined yield hyper-arch. From the table, we see that
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N K CVth (V) IVth (V) Vdd (V) Yleak % Yper f % Ycom %

Baseline 8 4 0.3 0.3 0.9 89.5 85.5 67.1

Homo-Vth 10 5 0.3 0.3 1.0 87.6 86.5 75.2 (+8.1)

Hetero-Vth 8 5 0.35 0.3 1.0 91.6 84.1 76.3 (+9.2)

Table 3.5: Optimum leakage and timing combined yield hyper-architecture.

compared to the baseline, the optimum hyper-arch for Homo-Vth improves combined

yield by 8.1% and the optimum hyper-arch forHetero-Vth improves the combined yield

by 9.2%. Unlike the leakage yield and timing yield analysis, Homo-Vth and Hetero-Vth
give different result for combined yield optimization. This is because both leakage and

timing should be considered to optimize combined yield, the largest (or smallest) Vth
not necessary gives the optimum combined yield. We also find that Hetero-Vth gives

better result than Homo-Vth. This is because Hetero-Vth provides larger search space.

But for both Homo-Vth and Hetero-Vth, K = 5 gives the best combined yield.

3.4 Conclusions

In this chapter, we have developed efficient models for chip-level leakage variation

and system timing variation in FPGAs. Experiments show that our models are within

3% from Monte Carlo simulation, and the FPGA chip level leakage and delay varia-

tions can be up to 5.5X and 1.5X, respectively. We have shown that architecture and

device tuning has a significant impact on FPGA parametric yield rate. Compared to

the baseline, the optimum hyper-architecture (combination of architecture and device

parameters) improves leakage and timing combined yield by 9.2%. In addition, LUT

size 4 has the highest leakage yield, 7 has the highest timing yield, but LUT size 5

achieves the maximum combined leakage and timing yield.
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CHAPTER 4

FPGA Concurrent Development of Process and

Architecture Considering Process Variation and

Reliability

In Chapter 2 and Chapter 3, we develop a trace-based framework (Ptrace) to perform

device and architecture co-optimization. In this chapter, we further improve the trace-

based framework (Ptrace2) to enable concurrent process and FPGA architecture co-

development. Applying the new trace-based framework (Ptrace2), the user can tune

eight parameters for bulk CMOS processes and obtain the chip level performance and

power distribution and soft error rate (SER) considering process variations and device

aging. The Ptrace2 framework is efficient as it is based on closed-form formulas. It

is also flexible as process parameters can be customized for different FPGA elements

and no SPICE models and simulations are needed for these elements. Therefore, this

framework is suitable for early stage process and FPGA architecture co-development.

The chapter further presents a few examples to utilize the framework. We show that

applying heterogeneous gate lengths to logic and interconnect may lead to 1.3X delay

difference, 3.1X energy difference, and reduce standard deviation of leakage variation

by 87%. This offers a large room for power and delay tradeoff. We further show that

the device aging has a knee point over time, and device burn-in to reach the point

could reduce the performance change over 10 years from 8.5% to 5.5% and reduce die

to die leakage significantly. In addition, we also study the interaction between process
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variation, device aging and SER. We observe that device aging reduces standard de-

viation of leakage by 65% over 10 years while it has relatively small impact on delay

variation. Moreover, we also find that neither device aging due to NBTI and HCI nor

process variation have significant impact on SER.

4.1 Introduction

In Chapter 2 and Chapter 3, we proposed a time efficient FPGA power and delay

evaluator Ptrace. However, Ptrace assumes that the processes are mature and stable

device models are available so that SPICE simulations can be carried out to obtain

circuit level power and delay. The assumption that FPGA architecture development

starts only after the process technology is stable may be valid in the past, but it no

longer holds as we begin to develop process and architecture concurrently in order to

shorten the time to market.

In this chapter we further extend the trace-based architecture framework (Ptrace)

discussed in the previous section to consider process parameters directly, therefore we

can conduct FPGA circuit and architecture evaluation when only the first order process

parameters are available. Such evaluation may be used to select circuits and architec-

tures less sensitive to process changes or process variations. It may further provide

inputs for process tuning, given that the FPGA is a large volume product and an FPGA

company may convince a foundry to tune process when there are large enough ben-

efits. We call the resulting framework as ptrace2. As illustrated in Figure 4.1, for

performance and power, ptrace2 calculates first electrical characteristics of advanced

CMOS transistors, then delay, leakage power, input/output capacitance for FPGA ba-

sic circuit elements, and finally the chip level performance and power based on trace

similar to that in Chapter 2 and Chapter 3. The new process variation analysis can

handle non-Gaussian variation sources which is ignored by Ptrace.

64



Trace

Transistor
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Input OutputPTrace2

Figure 4.1: Trace-based estimation flow.

With ptrace2, we incorporate analytical calculations for two types of FPGA relia-

bility, device aging (Negative-Bias-Temperature-Instability, NBTI [11, 149] [160, 23]

and Hot-Carrier-Injection, HCI [34, 149, 166]) and permanent soft error rate (SER)

[60], again in the from device to chip fashion. Furthermore, we illustrate how to use

this framework to improve power and performance by process and FPGA concurrent

development, and to study the interaction between process variation, device aging and

SER.

The rest of this chapter is organized as follows: Section 4.2 presents our imple-

mentation of ITRS device model. Sections 4.3, 4.4 and 4.5 introduce the circuit-

and chip-level power and delay models and chip-level variation models, respectively.

Section 4.6 presents device tuning for power and delay optimization, and Section 4.7

analyzes the reliability for FPGA. Finally, Section 4.8 studies the interaction between

reliability and process variation, and Section 4.9 concludes this chapter.
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4.2 Device Models

In this chapter, we implement the bulk transistor device model from ITRS 2005 MAS-

TAR4 (Model for Assessment of cmoS Technologies And Roadmaps) tool [67, 68,

148]. MASTAR4 is a computing tool which calculates the electrical characteristics

of advance CMOS transistors 1. It can handle different technologies including planar

bulk, double gate and silicon on isolator (SOI) while we only consider traditional bulk

transistor in this work. We briefly review the calculation flow in MASTAR4 below.

The calculation in MASTAR4 is based on analytical equations, which directly de-

pends on various major technological parameters including gate length (Lgate), gate

oxide thickness (Tox), channel doping density (Nbulk), channel width (W ), extension

depth (X jext) and the total series resistance for source and drain (Racc). The output

electrical characteristics include the on current (Ion), the sub-threshold leakage current

(off current, Io f f ), the gate leakage current when the channel is on/off (Igon/Igo f f ), the

gate capacitance (Cg) and the drain/source diffusion capacitance (Cdi f f ). Temperature

(T ) and the supply voltage (Vdd) also have a significant impact on these output char-

acteristics. There are also other inputs related to mobility, velocity and gate stack etc.,

as well as some intermediate outputs such as effective mobility ue f f which are used

for the final output calculation. We follow MASTAR4 tool and only tune the major

process inputs while all the other inputs can be tuned as well if needed.

Figure 4.2 shows the calculation flow for the on current Ion. Ion depends on all the

main inputs, i.e. Lgate, Tox, Nbulk, X jext , W , Racc, T and Vdd . The feature intermedi-

ate parameters, the electrical (or effective) gate length (Lelec) and the electrical gate

oxide thickness (Tox elec), are first calculated. The saturated threshold voltage (Vth)

is then calculated considering the short channel effect (SCE) and drain induced bar-
1The device model in MASTAR4 tool is a predicted model for advanced processes and there is no correspondent SPICE

models for these technologies.
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Inputs: Lgate Tox Nbulk Xjext W Racc T Vdd

Output: Ion

Intermediate variables: Lelec Tox_elec

Intermediate variables: Vth

Intermediate variables: u_eff

Figure 4.2: The flow for on current, Ion, calculation.

rier lowering (DIBL). The effective mobility (ue f f ) is also calculated. With the main

input parameters, main intermediate parameters and all other parameters, Ion is then

calculated as,

Vgt = Vgs−Vth (4.1)

Idsat0 = 0.5ue f f ·Cox elec ·
W
Lelec

·Vgt ·Vdsat (4.2)

Ion =
Idsat0

1+ 2RaccIdsat0Vgt − RaccIdsat0
Vgt+LelecEc(1+d)

(4.3)

where Idsat0 is the on current without considering the series resistance (Racc), Vgs is

the difference between the gate and source voltage levels, Vdsat is the velocity satura-

tion voltage, Ec is the critical electrical field and d is an intermediate parameter. The

derivation of these intermediate parameters are provided in the ITRS device model

[68].

Figure 4.3 shows the calculation flow for the sub-threshold leakage current Io f f .

Io f f depends on all the main inputs except for Racc. Similar to Ion calculation, the
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Inputs: Lgate Tox Nbulk Xjext W Racc T Vdd

Output: Ioff

Intermediate variables: Lelec Tox_elec

Intermediate variables: Vth Slope

Figure 4.3: The flow for sub-threshold leakage current, Io f f , calculation.

intermediate feature parameters Lelec and Tox elec, and the saturated threshold voltage

Vth are first calculated. In order to calculate Io f f , the sub-threshold slope (Slope) is

also calculated as,

Slope=
kT
q
ln10(1+

εs ·Tox elec
εox ·Tdep

) (4.4)

where k is the Boltzmann constant, T is the temperature, q is electric unit, εs and εox
are the dielectric permittivities of silicon and oxide, respectively. With Slope, Vth and

other parameters, we can then calculate Io f f as,

Io f f = Ith
W
Lelec

e−Vth/Slope (4.5)

where Ith = 0.5uA.

Inputs: Lgate Tox Nbulk Xjext W Racc T Vdd

Outputs: Igon Igoff

Figure 4.4: The flow for gate leakage currents Igon and Igo f f calculation.

Figure 4.4 shows the calculation flow for the gate leakage currents when the chan-

nel is on (Igon) and off (Igo f f ), respectively. Igon and Igo f f depend on Lgate, Tox, X jext ,W
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Outputs: Cg Cdiff

Inputs: Lgate Tox Nbulk Xjext W Racc T Vdd

Intermediate variables: Tox_elec

Figure 4.5: The flow for transistor gate and diffusion capacitancesCg and Cdi f f calcu-

lation.

and Vdd . In order to calculate Igon and Igo f f , we first calculate the gate leakage current

density Jg as,

Jg = a1ea2V
2
g +a3Vge−a4Tox (4.6)

where a1 = 1.44E5A/cm2, a2 = −4.02V−2, a3 = 13.05V−1 and a4 = 1/(1.17E −

10m). With Jg, Igon and Igo f f are then calculated as,

Igon = Lgate ·W · Jg (4.7)

ΔL = Lgate−Lelec (4.8)

Igo f f = 0.5ΔL ·W · Jg (4.9)

where ΔL is the difference between Lgate and Lelec.

Figure 4.5 shows the calculation flow for transistor gate and drain/source capaci-

tances, Cg and Cdi f f , respectively. The capacitances depend on Lgate, Tox, W , T and

Vdd . The intermediate feature parameter Tox elec is first calculated for capacitance cal-

culation. Cg and Cdi f f are calculated as,

Cg = (
εox

Tox elec
Lgate+Ctotal f ringing+Coverlap)W (4.10)

Cdi f f =Coverlap+C junc (4.11)

where theCg calculation considers gate oxide capacitance, fringing capacitanceCtotal f ringing
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and overlap capacitanceCoverlap, and Cdi f f calculation considersCoverlap and junction

capacitance C junc.

4.3 Circuit-Level Delay and Power

In this section, we present basic circuit models for delay and power characteristics us-

ing the device model in Section 4.2. We consider buffers, LUT, SRAM, pass transistor

gate, flip-flop (FF) and multiplexer [18] for the FPGA circuits, where the multiplexer

is implemented as an NMOS pass transistor tree. Essentially, these FPGA circuits can

be further decomposed into net-lists containing the most basic circuit elements, i.e.

inverters and pass transistors. We therefore mainly discuss the power and delay for

these basic circuit elements as below.

4.3.1 Delay Model

The pass transistor and multiplexer tree are modeled as a lumped capacitance, which

is treated as part of the loading capacitance of an inverter. We calculate the inverter

delay based on numerical integration through the transistor IV curves. In MASTAR4

tool, only the calculation for the maximum on current Ion, i.e. the current in velocity

saturation region, is provided. We use the equations from [74] to calculate the drain-

source current Ids in different working regions, i.e. sub-threshold, linear, and saturation

regions. Ids is calculated as a function of drain, source, gate and body voltage levels as

following. In the sub-threshold region, i.e. Vgs <Vth, Ids is calculated as,

Ids = Ith · (W/Lelec) · e((Vgs−Vth)/Slope) (4.12)
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where Ith is 0.5uA, Vgs is the gate source voltage difference. In linear region, i.e.

Vgs >Vth and Vds <Vgs−Vth, Ids is calculated as,

Ids =
W
Lelec

·ue f f ·
Cox elec

1+Vds/(Ec ·Lelec)
· (Vgs−Vth−Vds/2) ·Vds (4.13)

where Cox elec is the gate oxide capacitance, Vds is the drain source voltage difference

and Ec is the critical electrical field. Cox elec and Ec are both calculated using equations

in the ITRS MARSTAR4 model. In the saturation region, i.e. Vgs > Vth and Vds >

Vgs−Vth, Ids is calculated as,

Ids = 0.5 · W
Lelec

·ue f f ·
Cox elec

1+Vds/(Ec ·Lelec)
·V 2ds (4.14)

In velocity saturation region, i.e. Vgs >Vth andVds >Vdsat , Ids is equal to the on current

Ion calculated by (4.3), where the velocity saturation voltage Vdsat is calculated using

equations in the MASTAR4 tool. Vth in the above equations is calculated considering

body-bias, short channel effect (SCE) and drain-induced barrier lowering (DIBL). Us-

ing these equations, Figure 4.7(c) shows the IV curves for an NMOS transistor under

ITRS 2005 HP 32nm technology node.

Vg = Vin Vd = Vout

Vs = GND

CIds(N)

Vb = GND

Vs = Vdd

Vb = Vdd

Ids(P)

Figure 4.6: Voltage and current in an inverter during transition.
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Given an inverter (see Figure 4.6), its loading capacitance C and the input voltage

waveform, we can then calculate the inverter delay. At time t, we can obtain the

transient PMOS and NMOS drain-source current ids(P) and ids(N), respectively. We

can then perform numerical integration to obtain the output voltage waveform based

on the following equation,

dV (out) = (ids(P)− ids(N)) ·dt/C (4.15)

The delay is the time difference between when the output and input voltages reach

0.5Vdd . We calculate the pull-down and pull-up delay for an inverter and then obtain

the worst case delay as the inverter delay. Note that the input slew rate is automatically

considered in this delay model. The output voltage waveform can be propagated for

delay calculation of the next stage.

ITRS05 HP (32nm) 1X INV, Cload =1fF

0

0.2

0.4

0.6

0.8

1

1.2

0 0.01 0.02 0.03 0.04
time (ns)

vo
lta

ge
 (v

)

0
2
4
6
8
10
12
14

dr
ai

n 
cu

rr
en

t (
uA

)Vin
Vout (NMOS)
Vout (Inv)
PMOS current

ITRS05 HP (32nm) 1X INV, Cload =1fF

0

0.2

0.4

0.6

0.8

1

1.2

0 0.02 0.04 0.06 0.08 0.1 0.12
time (ns)

vo
lta

ge
 (v

)

0
2
4
6
8
10
12
14

dr
ai

n 
cu

rr
en

t (
uA

)Vin
Vout (NMOS)
Vout (Inv)
PMOS current

(a) (b) (c)

ITRS05 HP NMOS (32nm) IV curves

0

200

400

600

800

1000

1200

0 0.2 0.4 0.6 0.8 1 1.2Vds (v)

Id
s (

uA
/u

m
)

transient
transient IIVgs=0.42v

Vgs=0.52v

Vgs=1.1v

Vgs=0.61v
Vgs=0.71v

Vgs=0.81v
Vgs=0.91v

Vgs=1.0v small input
slope

large input
slope

Figure 4.7: The pull-down delay of a 1X inverter at ITRS 2005 HP 32nm technology

nodes. (a) Input and output voltages, and short circuit current with a small input slope;

(b) Input and output voltages, and short circuit current with a large input slope; (c) The

NMOS IV curves and the transition of transient current Ids with small and large input

slopes.

Figure 4.7 (a) shows the transient voltage transition of a 1X inverter with 1 f F as

loading capacitance C at ITRS 2005 HP 32nm technology node. The input voltage

transition is from 0 to Vdd . The input slew rate is defined as the transition time from
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0.1Vdd (or 0.9Vdd) to 0.9Vdd (or 0.1Vdd). The short circuit current, i.e. the PMOS

drain-source transient current is also shown in this figure. If this short circuit current

is ignored, the output voltage waveform (Vout(NMOS) in the figure) is almost over-

lapped the the waveform (Vout(Inv) in the figure) considering the short circuit current.

Figure 4.7 (b) shows the transient voltage transition of this inverter with a larger input

slope, i.e. 5X large as the that in Figure 4.7 (a). The short circuit current becomes more

significant due to a larger input slope and can no longer be ignored, i.e. the output volt-

age waveform without considering short circuit current differs the waveform consider-

ing short circuit current which results in a 20% delay difference. In FPGAs, the input

voltage slope may be large due to a large loading capacitance. Therefore, the short

circuit current is necessary to be considered for delay calculation. Figure 4.7(c) shows

the NMOS transient drain-source current ids transitions with the two input slopes. With

a larger input slope, the transition is slower with a larger delay. While not presented

here, a similar trend for pull-up transition, i.e. input voltage transition is from Vdd

down to 0, is observed.

ITRS MASTAR4 tool uses CVdd/Ion to predict transistor delay. As shown in Fig-

ure 4.7, the input slope has a significant impact on the inverter delay. Since the FPGA

circuit element usually has a large loading capacitance and a large input slope, our

delay model is more accurate than that in MASTAR4. In addition, our delay model is

flexible and can be extended to other complex gates easily.

For other FPGA circuit elements with loading capacitance, e.g. LUTs, FFs and

buffers, we first breakdown them into the netlist of inverters and pass transistors. The

delay of each circuit element is then calculated using the above method, e.g. the LUT

delay is decomposed into the delay from LUT input passing through input buffers

to the multiplexer control inputs and the delay from the SRAM passing through the

multiplexer and the output buffer.
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4.3.2 Power Model

In this section, we first discuss leakage power including sub-threshold and gate leakage

power and then discuss dynamic power including switching power and short circuit

power for basic circuit elements.

An inverter consumes both sub-threshold and gate leakage power, which depends

on the input logic value. We calculate the average leakage power for an inverter,

Pleak(inv), as,

Pleak(inv) = Vdd · (Io f f (inv)+ Igate(inv)) (4.16)

Io f f (inv) = (Io f f (P)+ Io f f (N))/2 (4.17)

Igate(inv) =
Igon(P)+ Igo f f (P)+ Igon(N)+ Igo f f (N)

2 (4.18)

where Io f f (P) and Io f f (N) are the PMOS and NMOS sub-threshold leakage currents,

respectively, Igon(P), Igo f f (P), Igon(N) and Igo f f (N) are the PMOS and NMOS gate

leakage currents when the channel is on and off, respectively. The two inverters in

an SRAM cell are identical with one input as Vdd and one input as 0. Therefore, the

average leakage calculation of an inverter can be applied to SRAM leakage calculation.

For an NMOS pass transistor, only gate leakage power is consumed, which can be

either Vdd · Igon(N) or Vdd · Igo f f (N) depending on if the channel of this pass transistor

is on or off. The pass transistor in a used/unused routing switch implemented by a

tri-state buffer is on/off. For a multiplexer containing N NMOS pass transistors, N/2

of them are on while the other half are off. Based on the leakage model for inverters

and pass transistors/muxes, we can calculate the leakage power for other FPGA circuit

elements.

We consider switching and short circuit power for inverter dynamic power con-

sumption. For switching power, we calculate the gate (Cg(inv)) and self-loading ca-
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pacitances (Cdi f f ) for an inverter as,

Cg(inv) = Cg(P)+Cg(N) (4.19)

Cdi f f (inv) = Cdi f f (P)+Cdi f f (N) (4.20)

where Cg(P) and Cg(N) are the PMOS and NMOS gate capacitances, respectively,

Cdi f f (P) andCdi f f (N) are the PMOS and NMOS diffusion capacitances, respectively.

The input capacitance, internal capacitance and self-loading capacitance can then be

easily extracted for each FPGA circuit element for switching power calculation pur-

pose.

As shown in Figure 4.7 (a) and (b), short circuit current depends on input slew

rate. The transient short circuit current has been calculated during delay calculation.

We can simply perform a numerical integration on the transient short circuit current

and obtain the short circuit energy per switch SC(Sl), where Sl is the input slew rate.

4.4 Chip-level Delay and Power

With the delay and power model for basic circuits discussed in Section 4.3, we in-

troduce the chip level delay and power estimation model in this section. In order to

perform chip level estimation, we apply the similar idea as the trace-based estimation

in Chapter 2. We collect the tract information in the same way as in Section 2.3, then

calculate the chip level power and delay.

4.4.1 Delay Model

Similar to Section 2.3.2.3, we compute the critical path delay by adding the delay of

all circuit elements in the critical path, i.e., LUT, wire segment, interconnect switch
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buffer, and MUX:

Dcrit =∑
i∈P

Di (4.21)

where Di is the delay of the ith circuit element in the critical path, which can be cal-

culated by the circuit level delay model as discussed in Section 4.3.1. For each circuit

element, the loading capacitance can be calculated from the in/out capacitance of the

basic circuit elements as introduced in Section 4.3.2. For an interconnect wire seg-

ment, we use the Elmore delay model with resistance and capacitance suggested by

ITRS [67].

4.4.2 Leakage Power Model

In the same way as in Section 2.3.2.2, the chip leakage power is modeled as the sum

of the leakage power of all circuit elements:

Pleak = ∑
i∈T

NtiPsi (4.22)

where Psi is the leakage power for type i circuit element, which can be computed by

circuit level leakage power model as discussed in Section 4.3.2.

4.4.3 Dynamic Power Model

Dynamic power includes switch power and short-circuit power. A circuit implemented

on an FPGA cannot utilize all circuit elements. Dynamic power is only consumed by

the used FPGA resources. Our switch power model distinguishes different types of

used FPGA circuit elements and applies the following expression:

Psw =
1
2 · f ·V

2
dd ·SW ·∑

i∈T
Nui ·Ci (4.23)

where f is the operating frequency,Vdd is the supply voltage, SW is the average switch-

ing activity, and Ci is the total capacitance per switch of type i circuit elements. The
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total capacitance per switchCi can be computed from the in/out capacitance of a basic

circuit element as discussed in Section 4.3.2. The switching activity is related to the

input vector and logic, which is difficult to obtained without detailed simulation using

a large set of input vectors. In our model, the average switching activity SW can be set

by the users. We also assume that the operating frequency to be 5/6 of the maximum

frequency, that is f = 1/(1.2 ·Dcrit). We do not set the operating frequency to maxi-

mum frequency since the actual critical path delay of some chips may increase due to

process variation.

The short circuit power is related to the input slew rate. Here we model the chip

short circuit power as:

Psc = f ·SW ·∑
i∈T

∑
1≤ j≤Nui

SCi(Sli, j) (4.24)

where SCi(·) is the function to compute short circuit energy per switch for type i circuit

element and Sli, j is the input slew rate of the jth type i circuit element. The short circuit

energy function SCi(·) can be obtained from the short circuit power model of basic

circuit elements as discussed in Section 4.3.2. Because of the regularity of FPGAs, the

input slew rate for the same type of circuit elements is very close. Therefore, the chip

short circuit power can be further simplified as:

Psc = f ·SW ·∑
i∈T

SCi(Sli) (4.25)

where Sli is the input slew rate of type i circuit element, which is computed as the

output slew rate of the element driving type i element. For example, a connection box

buffer is driven by a global interconnect buffer, then the input slew rate of a connec-

tion box buffer is the output slew rate of the global interconnect buffer. Such output

slew rate can be computed from the basic circuit element delay model discussed in

Section 4.3.1.
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With the switch power and short circuit power, the total dynamic power is com-

puted as:

Pdynamic = Psw+Psc (4.26)

Notice that dynamic power model in this chapter is different from that in Sec-

tion 2.3.2.1. In Section 2.3.2.1, short circuit power is calculated as a ratio to switching

power, while in this chapter, we calculate the circuit level short circuit power directly

from transistor model. Therefore, the short circuit power model introduced in this

section is more accurate than that in Section 2.3.2.1.

4.5 Chip Level Delay and Power Variation

Based on the chip-level power and delay model introduced in Section 4.4, we study

the impact of process variation on power and delay in this section. First we introduce

the variation model as below.

4.5.1 Variation Models

In general, delay and leakage power of a circuit element are functions of the underlying

process parameters and they can be described as:

Dt = FDt (X1,X2, ...) (4.27)

Pt = FLt (X1,X2, ...) (4.28)

where FLt and FDt are functions of process parameters to calculate leakage power and

delay for type t circuit element, respectively, and the process variation sources (such

as gate change length and dopant density) are modeled as a random variable X . To

evaluate the chip-level leakage power and delay considering process variation, we first
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apply randomly generated process parameters to the device model as in Section 4.2 and

then calculate the leakage power and delay for basic circuit elements as in Section 4.3.

The sensitivity functions FLi and FDi can be obtained from the leakage power and delay

model of basic circuit elements discussed in Section 4.3.

For each variation source X , all inter-die, intra-die spatial, and intra-die random

variation is considered. That is:

X = Xg+Xs+Xr (4.29)

where Xg, Xs and Xr are the inter-die, intra-die spatial, and intra-die random variation

for variation source X . We assume that Xg, Xs, and Xr are independent from each

other. Each circuit element has its own random variation Xr, and all circuit element

of the whole chip share the same inter-die variation Xg. We use the grid based model

in [173] to model the spatial variation. A chip is divided into several grids, all circuit

elements in the same grid share the same spatial variation Xs and the spatial variation

between different grids are correlated. The correlation coefficient decreases when the

distance between two grids increases.

4.5.2 Delay Variation

With process variation, some close-to-be critical path may become critical path. There-

fore, in order to analyze delay variation, circuit delay is calculated as the maximum of

a set of near critical paths:

Dvar =max
j∈C

D j (4.30)

whereC is the set of close-to-be critical paths and D j is the delay of the jth close-to-be

critical path, which is calculated as:

D j = ∑
i∈Pj

FDji (X
ji
1 ,X ji

2 , ...) (4.31)
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where Pj is the set of path elements of the jth path and FDji (·) is the delay variation

function for the ith circuit element in Pj. Because there is no closed-form formula for

the delay variation function FDji (·), we do not have closed-form formula to compute

the chip delay distribution. In this chapter, we use the Monte-Carlo simulation to

obtain the chip delay distribution. We first generate M samples of variation sources

(X ji
1 ,X ji

2 , ...) for all i, and then compute the the path delay under such samples to

obtain M samples of path delay. Finally we can get the delay distribution from those

M samples of path delay. The Monte-Carlo simulation allows us to consider non-

Gaussian variation sources and spatial correlation, which is ignored in the previous

Ptrace [167].

4.5.3 Chip Leakage Power Variation

The chip leakage power with process variation is modeled as the sum of leakage power

of all circuit elements:

Pleak = ∑
i∈T

Nti
∑
j=1

P ji = ∑
i∈T

Nti
∑
j=1

FLi (X i j1 ,X i j2 , ...) (4.32)

where P j
i is the leakage power of the jth type i circuit element, and X i j is the variation

of the jth type i circuit element.

Similar to the chip delay variation model, we use Monte-Carlo simulation to com-

pute chip leakage distribution. We first generate M samples of variation sources and

then compute the M samples of chip leakage power. However, because the random

variation is unique for each circuit element, when the circuit size becomes large, a

large number of random variation samples need to be computed. This makes the sim-

ulation very inefficient. In order to solve such problem, we simplify the chip leakage

power variation model by applying central limit theorem similar to [25, 168].

Given the inter-die and within-die spatial variation, the total leakage power for all
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type i circuit elements in the lth grid can be calculated as:

Pileak =
Ntli
∑
j=1

FLi (Xg1+X ls1+X il jr1 ,Xg2+X il jr2 , ...) (4.33)

where Xg is the inter-die variation, X ls is the spatial variation in the lth grid, X
il j
r is

the random variation for the jth type i circuit elements in the lth grid, Ntli is the number

of type i circuit element in the lth grid. Usually, Ntli is a very large number. Therefore,

by applying the central limit theorem, we have:

Ntli
∑
j=1

FLi (Xg1+X ls1+X il jr1 ,Xg2+X il jr2 , ...)≈ Nti ·µi(Xg1+X ls1,Xg2+X ls2, ...) (4.34)

where

µil(Xg1+X ls1,Xg2+X ls2, ...)

= E[FLi (X ig1+X i jr1,X
i
g2+X i jr2, ...)|Xg1,X

l
s1,Xg2,X

l
s2, ...] (4.35)

In order to compute µil(·), we first generate Mr samples of random variations, and

then compute the mean of leakage power under such samples. That is:

µil(Xg1+X ls1,Xg2+X ls2, ...)

=
1
Mr

Mr

∑
k=1

FLj (Xg1+X ls1+X kr1,Xg2+X ls1+X kr2, ...) (4.36)

where xkr is the kth sample of random variation. Here, notice that usually Mr is much

smaller than Ntli and does not depend on circuit size. Therefore such method is scalable

to large circuit size. Then the chip leakage power can be modeled as:

Pleak = ∑
i∈T

G

∑
l=1

Ntli ·µil(Xg1+X ls1,Xg2+X ls2, ...) (4.37)

where G is the number of grids. With the above equation, we may generateM samples

of inter-die and within-die spatial variations to compute the distribution of leakage

power.
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Notice that the variation model introduced in this section may handle non-Gaussian

variation sources and spatial correlation, which are ignored in the variation model in

Section 3.2.

4.6 Process Evaluation

Based on the chip level power and delay model presented in Section 4.4 and 4.5, we

perform device tuning to minimize power and delay.

4.6.1 Power and Delay Optimization

First we discuss the optimization for nominal value of power and delay. In this chapter,

we consider two device parameters, supply voltage Vdd and the physical gate length

Lgate. In our experiment, we start from the device setting of ITRS High Performance

32nm technology (HP32) [67] (with Vdd=1.1V, Lgate=32nm), and then change Vdd

and Lgate around such setting. Moreover, we assume that the FPGA has cluster size

N=6, LUT size K=7, and the global interconnect wire length W=4, which is opti-

mized for high performance [91]. For dynamic power estimation, we assume that the

switching activity SW=0.5. In addition, we also consider heterogeneous Lgate for logic

blocks (Lc) and interconnects (Li). Because SRAMs have little impact on FPGA delay,

we assume that all SRAMs use high Vth (1.5X dopant density compared to the other

circuit elements) and fix Lgate=32nm. During our evaluation, Vdd is tuned from 1.0V

to 1.1V, Lgate (both Lc and Lc) is tuned from 31nm to 33nm. The experimental setting

is summarized in Table 5.1. In our experiment, we assumed that 20 MCNC bench-

marks [175] are put in one FPGA chip. Therefore, the power is computed as the sum

of all 20 benchmarks and delay is computed as the longest critical path delay of 20

benchmarks.
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N K W SW Vdd (V) Lc (nm) Li (nm)

6 7 4 0.5 1.0, 1.05, 1.1 31, 32, 33 31, 32, 33

Table 4.1: Experimental setting.

Figure 4.8 shows the energy per clock cycle and delay tradeoff between different

device settings. From the figure, we find that there is a 3X energy span and a 1.3X

delay span within our search space. We also find that that the knee point in the energy

delay tradeoff figure is exactly HP32, which has high performance without paying too

much power penalty. On the other hand, we also optimize device setting by minimizing

energy and delay product (ED). We show the top 2 minimum ED device settings in the

figure, which we refer to as min-ED1 and min-ED2.
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Figure 4.8: Energy and delay tradeoff.

Table 4.2 shows the power (P), delay (D), energy per clock cycle (E) , and energy

delay product (ED) for HP32 and min-ED device settings. From the table, we see that

by applying device tuning, ED can be reduced by up to 29.4% (min-ED1) compared to

HP32. We also find that it is worthwhile to apply heterogeneous Lgate. The optimum

heterogeneous Lgate device setting (min-ED1) has lower ED (0.7nJ·ns lower) than the

83



optimum homogeneous Lgate device setting (min-ED2).

Device Vdd Lc Li P D E ED

(V) (nm) (nm) (W) (ns) (nJ) (nJ·ns)

HP32 1.1 32 32 1.19 3.90 1.88 22.6

min-ED1 1.0 32 33 0.77 4.55 3.50 15.9(-29.4%)

min-ED2 1.0 33 33 0.74 4.73 3.50 16.5(-26.8%)

Table 4.2: Power, delay, energy, and ED comparison for different device settings.

4.6.2 Variation Analysis

In this section, we apply the chip level variation model as introduced in Section 4.5

to analyze the chip level leakage and delay variation. In our experiment, we consider

four types of variation sources, dopant density (Nbulk), channel gate length (Lgate),

oxide thickness (Tox), and mobility (µe f f ) [190]. Moreover, because for technology

under 65nm, the spatially correlated intra-die variation is small compared to the intra-

die random variation [190], therefore, we ignore spatial variation in this chapter. For

all variation sources, we assume that they follow normal distribution. Notice that our

process variation model is based on Monte-Carlo simulation, therefore it can handle

any non-Gaussian variation sources. The 3-sigma value of inter-die (3σg), intra-die

spatial 3σs, and intra-die random (3σr) variation for all types of variation sources are

summarized in Table 4.3. In the table, the 3-sigma values are the represented as the

percentage of nominal value. Moreover, for spatial variation, we assume that the cor-

relation coefficient decreases to 1% when distance is 1cm (Dcorr = 1cm). In our ex-

periment, we consider two different variation settings, low variation (LV) and high

variation (HV). We generateM = 10,000 samples for Monte-Carlo simulation and use

Mr = 100 samples to compute the leakage mean µi(·).

Figure 4.9 illustrates the probability density function (PDF) of delay and leakage

power for min-ED1 and HP32 under variation setting LV. From the figure, we see that
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M = 10,000 Mr = 100 Dcorr = 1cm

Source Distribution LV HV

3σg 3σs 3σr 3σg 3σs 3σr
Nbulk Normal 4.0% 4.0% 2.0% 6.0% 6.0% 4.0%

Lgate Normal 2.0% 2.0% 1.5 3.0% 3.0% 2.2%

Txo Normal 2.0% 2.0% 1.5 3.0% 3.0% 2.2%

µe f f Normal 4.0% 4.0% 2.0% 6.0% 6.0% 4.0%

Table 4.3: Experimental setting for process variation.

min-ED1 has much less leakage variation compared to HP32 while its delay variation

is only a little bit larger than HP32. We also observe that the leakage roughly has a

log-normal distribution and delay roughly has a normal distribution. This is because

leakage power is almost exponential to the variation sources while delay is almost

linear to the variation sources.
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Figure 4.9: Delay and leakage distribution. (a) Leakage PDF; (b) Delay PDF.

Table 4.4 summarizes the nominal value (nom), mean (µ), and standard deviation

(σ) of leakage power and delay for the min-ED device settings and HP32. From the

table, we observe that compared to HP32 the min-ED device settings greatly reduce

leakage variation (reduce standard deviation by up to 92%) with only a small increase

of delay variation (increase standard deviation by up to 37%). From the table, we also

see that HP32 is more sensitive to process variation than the min-ED device settings.
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Device Leakage (mW) Delay (ns)

nom LV HV nom LV HV

µ σ µ σ µ σ µ σ

HP32 854 982 348 1120 575 3.90 3.95 0.122 3.99 0.185

min-ED1 328 359 51 (-86%) 398.2 68 (-88%) 4.55 4.55 0.162(+33%) 4.58 0.244(+32%)

min-ED2 315 328 32 (-89%) 375.2 48 (-92%) 4.73 4.779 0.164(+37%) 4.782 0.245(+32%)

Table 4.4: Nominal value, mean, and standard deviation comparison for leakage power

and delay.

4.7 FPGA Reliability

As technology scales down to nanometer, reliability issues such as device aging with

Vth degradation and soft error rate (SER) due to high-energy particle or cosmic rays be-

come more and more significant. In this section we study these two types of reliability

for FPGA, i.e. device aging and permanent soft error rate (SER).

4.7.1 Impact of Device Aging

First, we introduce the impact of device aging effect on FPGA power and delay. It

has been shown that negative-bias-temperature-instability (NBTI) effect increases the

threshold voltage of PMOS transistor [11][160][149][23], and hot-carrier-injection

(HCI) increases the threshold voltage (Vth)of NMOS transistor [34][149][166]. Due

to the effect of NBTI, PMOS Vth increases during stress mode, i.e. with input 0, and

recovers during recovery mode, i.e. with inputVdd . (4.38) and (4.39) are the equations

for PMOS ΔVth over time in the stress and recovery modes, respectively.

ΔVth = (Kv(t− t0)0.5+(ΔVth0)(1/2n))2n (4.38)

ΔVth = −ΔVth0(1−
2ξ1te+

√
ξ2C(t− t0)

2tox+
√
Ct

) (4.39)
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(4.40) is the equation for NMOS ΔVth over time due to HCI.

ΔVth =
q
Cox

K2
√
Qie

Eox
Eo2 e−

φit
qλEm tn

′ (4.40)

The key parameters that determine the degradation rate include the inversion charge,

Qi, electrical field, Eox, temperature, supply voltageVdd and nominal threshold voltage

Vth. Due to the space limit, we do not include detailed explanation for each parameters.

Interested readers please refer to [23] for more details. Figure 4.10 shows the calcu-

lation flow for ΔVth due to NBTI and HCI. We first calculate the effective gate length

Lelec and oxide thickness Tox elec and then calculate Vth. With these intermediate pa-

rameters, we can obtain ΔVth due to device aging over time. A higher Vdd or lower Vth
leads to largerVth increase. TheVth degradation due to device aging results in increase

of critical path delay and decrease of leakage power.

Inputs: Lgate Tox Nbulk Xjext W Racc T Vdd

Output: HCI HBTI

Intermediate variables: Lelec Tox_elec

Intermediate variables: Vth

Figure 4.10: The calculation flow for ΔVth due to NBTI and HCI.

Figure 4.11 illustrates the Vth increase (ΔV ) for PMOS and NMOS transistors of

both min-ED1 and HP32 within 10 years. From the figure, we see that HP32 is much

more sensitive to NBTI and HCI than min-ED1. This is due to the fact that HP32 uses

higher Vdd and lower Vth (due to smaller Lgate) than min-ED1. Hence HP32 has larger

ΔVth for both NMOS and PMOS than min-ED1.
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Figure 4.11: Vth increase caused by NBTI and HCI.

Figure 4.12 illustrates the critical path delay increase and chip leakage power de-

crease within 10 years for min-ED1 and HP32. It is interesting to see in the figure that

the leakage and delay change is most significant at the first one year. Therefore, device

burn-in [96] that has been used for microprocessors but not FPGAs yet could be used

to reduce leakage and delay change over time after product shipment.

Table 4.5 illustrates the current value, value after 1 year, and value after 10 years of

leakage power (L) and delay (D). In the table, we also compare the change percentage

with and without burn-in (burn to 1 year). The change percentage without burn-in is

computed as the percentage of the difference between the 10 year value and current

value, and that with burn-in is computed as the percentage of the difference between

the 10 year value and the 1 year value. From the figure and table, we find that the

min-ED device settings is less sensitive to device aging compared to HP32. This is be-

cause HP32 has higherVdd and smaller Lgate compared to the min-ED device settings.

Therefore it has larger Vth degradation, hence more sensitive to device aging. We may

see that compare to HP32, min-ED device settings can not only reduce ED but also
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Device Current 1 Year 10 Year Change

L D L D L D w/o burn-in w/ burn-in

(mW) (ns) (mW) (ns) (mW) (ns) L D L D

HP32 854 3.90 711 4.01 640 4.23 -25.1% +8.5% -10.0% +5.5%

min-ED1 328 4.55 317 4.59 311 4.64 -5.2% +2.0% -1.9% +1.1%

min-ED2 315 4.73 307 4.76 302 4.82 -2.5% +1.9% -1.6% +1.3%

Table 4.5: Delay and leakage change due to device aging.

increase aging reliability of FPGAs. Moreover, by applying burn-in, we can greatly

reduce the delay degradation. For example, for HP32, burn-in reduces 10 year delay

degradation from 8.5% to 5.5%.
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Figure 4.12: Impact of device aging. (a) Leakage change; (b) Delay change.

4.7.2 Permanent Soft Error Rate (SER)

We use the model in [60] to calculate the soft error rate (SER) for configuration

SRAMs in our study. The SER in SRAMs is permanent in FPGAs, which cannot

be recovered unless re-writing those affected configuration bits [14][17]. The SER for

one SRAM cell is shown in (4.41),

SER(SRAM) = F ·A ·K · e−Qcrit/Qs (4.41)
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where F is the neutron flux, A is the transistor drain area, K is a technology independent

constant and is same for all device settings, Qcrit is the critical charge to incur an error,

and Qs is the charge collection slope. Figure 4.13 shows the flow to calculate the

SRAM SER. We first calculate intermediate parameters including Lelec, Tox elec and

Vth. Qs, Qcrit and A are then calculated. With all these intermediate parameters, we can

obtain the SRAM SER. A transistor with a larger Qcrit needs more energy to incur an

error and has a smaller SER. Qcrit mainly depends on supply voltage Vdd and loading

capacitanceC, and slightly depends onVth. On the other hand, a transistor with a larger

Qs is more effective in collecting charge and has a larger SER. Qs depends on channel

doping density Nbulk and Vdd . We use the models in [60] with linear interpolation to

calculate Qcrit and Qs under different device settings, i.e. different Vdd and Vth, and

then calculate the SER of an SRAM cell correspondingly using (4.41). The chip-level

permanent SER can be calculated as,

SER= Num SRAM ·SER(SRAM) (4.42)

where Num SRAM is the total number of SRAM cells.

Inputs: Lgate Tox Nbulk Xjext W Racc T Vdd

Output: SER

Intermediate variables: Lelec Tox_elec

Intermediate variables: Vth

Intermediate variables: Qs Qcrit A

Figure 4.13: The flow for SRAM SER calculation.

Table 4.6 compares the SER for HP32, and the two min-ED device settings. For

90



the min-ED device settings, Lgate for SRAM cells is still 32nm. Therefor onlyVdd may

affect SER. In the table, SER is measured as number of failures in billion hours (FIT).

The supply voltageVdd in HP32 is higher, hence the critical charge, Qcrit , is larger and

may result in a smaller SER. Formin-ED1/2withVdd of 1.0v, SER is 1.6% higher than

that of HP32. It is worthwhile to use Min-ED device settings to obtain a significant

ED reduction with virtually no impact on SER.

Device Vdd (V) # SRAMs SER (FIT)

HP32 1.1 12438596 362.45

min-ED1/2 1.0 12438596 368.25 (+1.6%)

Table 4.6: Soft error rate comparison.

4.8 Interaction between Process Variation and Reliability

In this section, we study the impact of device aging on process variation and the impact

of device aging and process variation on SER.

4.8.1 Impact of Device Aging on Power and Delay Variation

First, we discuss the impact of device aging on process variation induced leakage and

delay variation. Figure 4.14 compares the PDF of delay and leakage between current

value and the value after 10 years for the device setting min-ED1. From the figure,

we find that device aging actually reduce the leakage variation. But device aging only

increase delay but has no significant impact on delay variation.

Table 4.7 summarizes the mean and standard deviation of leakage and delay for

different device settings. The table compares both the current value and the value after

10 years in both low and high variation cases. From the table, we find that device

aging has great impact of leakage power variation. For HP32 device setting under low
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Figure 4.14: Impact of device aging on delay and leakage PDF. (a) Leakage PDF

comparison; (b) Delay PDF comparison.

variation case (LV), device aging reduces mean by 28.8% and standard deviation by

65.2%. However, the impact of device aging on delay variation is relatively small. For

HP32 device setting, device aging only increases standard deviation by 1.7%. This

is because leakage power is rough exponential to Vth while delay is roughly linear to

Vth. Moreover, we observe that compared to HP32 device setting, device aging has

less impact on power and delay variation for min-ED settings. This is because HP32

is more sensitive to device aging as discussed in Section 4.7. From the result, we also

find that in high variation case, the impact of device aging on delay variation is similar

to that of the regular variation case (min-ED1). However, when variation is high, the

impact of device aging on leakage variation is much larger than that in the regular

variation case. That is, when variation scale becomes larger, there is a larger impact of

device aging on leakage variation.

4.8.2 Impacts of Device Aging and Process Variation on SER

As shown in Figure 4.13, the SRAM SER depends onVdd , loading capacitance,Vth and

channel doping density Nbulk while Vth and Nbulk may be affected by device aging and
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Device Leakage (mW) Delay (ns)

current 10 years current 10 years

µ σ µ σ µ σ µ σ

HP32 LV 982 348 678 (-28.8%) 118 (-65.2%) 3.95 0.122 4.23 (+8.4%) 0.121 (+1.67%)

min-ED1 LV 359 51.0 321 (-6.2%) 31.2 (-32.7%) 4.55 0.162 4.65 (+2.0%) 0.162 (+0.16%)

min-ED2 LV 328 32.0 309 (-4.6%) 22.4 (-30.4%) 4.78 0.164 4.83 (+1.9%) 0.164 (+0.25%)

HP32 HV 1120 575 712 (-36.4%) 158 (-72.5%) 3.99 1.85 4.09 (+2.6%) 1.86 (+0.54%)

min-ED1 HV 398.2 68 345.1 (-13.3%) 38.1 (-44.0%) 4.55 0.318 4.66 (+2.1%) 0.319 (+0.28%)

min-ED2 HV 375.2 48 332 (-12.4%) 25 (-47.9%) 4.78 0.245 4.79 (+0.21%) 0.245 (+0.21%)

Table 4.7: Impact of device aging on process variation.

process variation. We perform the study on the impacts of device aging and process

variation on SER as below.

Vth may increase with device aging due to NBTI and HCI. For ITRS HP 32nm

technology (see Figure 4.11, Vth may degrade (or increase) by around 10% (or 20mV)

for PMOS due to NBTI and by around 25% (or 50mV) for NMOS due to HCI after 10

years. A larger Vth may result in a slightly smaller critical charge Qcrit for an SRAM

and therefore a larger SER. Table 4.8 presents the impact of device aging on SER.

After 10 years, the SRAM SER may increase by 0.3% due to degraded Vth. Even if

Vth degrades by 100mv for both NMOS and PMOS, the SRAM SER only increases by

0.9%.

0 year 10 3σ=6% variation

or nominal years in Nbulk
SRAM SER (FIT) 2.914E-5 +0.3% -0.18% to +0.17%

Table 4.8: The impact of device aging and process variation on SER of one SRAM

under ITRS HP 32nm technology.

With process variation, Nbulk and channel gate length Lgate become random vari-

ables. Nbulk variation directly affects charge collection slope Qs and therefore affects

SER. Lgate variation may affect Vth and therefore implicitly affect SER. For ITRS HP

32nm technology, a variation in Lgate from 31nm to 33 nm may result in a variation
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in Vth from -25% to 21% [68]. It has been shown that Vth variation does not have a

significant impact on SER. Table 4.8 presents the impact of Nbulk variation on SER. A

variation of 3σ as 6% in Nbulk only results in a variation in SER from -0.18% to 0.17%.

A larger Nbulk may result in a larger charge collection slope Qs and therefor a smaller

SER. On the other hand, a larger Nbulk may result in a higher Vth and a smaller critical

charge Qcrit , therefore a larger SER. These two effects compensate with each other and

therefore Nbulk does not have a significant impact on SER either. It is clear that neither

device aging due to NBTI and HCI nor process variation have any significant impact

on SER.

4.9 Conclusions

In this chapter, we have developed a trace-based framework to enable concurrent pro-

cess and FPGA architecture co-development. Same as the MASTAR4 model used by

the 2005 ITRS [67][68][148], the user can tune eight parameters for bulk CMOS pro-

cesses and obtain the chip level performance and power distribution and soft error rate

(SER) considering process variations and device aging. The framework is efficient as it

is based on closed-form formulas. It is also flexible as process parameters can be cus-

tomized for different FPGA elements and no SPICE models and simulation are needed

for these elements. Therefore, this framework is suitable for early stage process and

FPGA architecture co-development.

A few examples of using this framework have been presented. We show that ap-

plying heterogeneous gate lengths to logic and interconnect may lead to 1.3X delay

difference, 3.1X energy difference, and reduce standard deviation of leakage variation

by 87%. This offers a large room for power and delay tradeoff. We further show that

the device aging has a knee point over time, and device burn-in to reach the point

could reduce the performance change over 10 years from 8.5% to 5.5% and reduce die

94



to die leakage significantly. In addition, we also study the interaction between process

variation, device aging and SER. We observe that device aging reduces standard de-

viation of leakage by 65% over 10 years while it has relatively small impact on delay

variation. Moreover, we also find that neither device aging due to NBTI and HCI nor

process variation have significant impact on SER.
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Part II

Statistical Timing Modeling and

Analysis
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CHAPTER 5

Non-Gaussian Statistical Timing Analysis Using

Second-Order Polynomial Fitting

In Part I, we have discussed statistical modeling and optimization for FPGAs. In Part

II of this dissertation, we study statistical modeling and analysis for ASICs. In this

chapter, we focus on statistical static timing analysis (SSTA). Lots of research works

on SSTA have been published in recent years. However, most of the existing SSTA

techniques have difficulty in handling the non-Gaussian variation distribution and non-

linear dependency of delay on variation sources. To solve this problem, we first pro-

pose a new method to approximate the max operation of two non-Gaussian random

variables through second-order polynomial fitting. Applying the approximation, we

present present new non-Gaussian SSTA algorithms for three delay models: quadratic

model, quadratic model without crossing terms (semi-quadratic model), and linear

model. All the atomic operations (max and sum) of our algorithms are performed by

closed-form formulas, hence they scale well for large designs. Experimental results

show that compared to the Monte-Carlo simulation, our approach predicts the mean,

standard deviation, skewness, and 95-percentile point within 1%, 1%, 6%, and 1%

error, respectively.
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5.1 Introduction

Process variation introduces significant uncertainty to circuit delay as discussed

in Chapter 1. In Part I, we have studied statistical optimization for FPGA circuits.

Compared to FPGA, ASIC has higher performance, lower power, and smaller area.

Therefore, ASICs are widely used in high performance or low power applications,

where the impact of process variation is significant.

To analyze the impact of process variation on circuit delay, statistical static timing

analysis (SSTA) is developed for full chip timing analysis under process variation. By

performing SSTA, designers can obtain the timing distribution and its sensitivity to

various process parameters.

In recent years, two types of SSTA techniques are proposed, the path-based [103,

72, 7, 120, 157, 128] and the block-based [32, 5, 49, 9, 22, 8, 163, 86, 53, 182, 13, 181,

113, 75, 180, 178, 76, 3, 183, 2, 142, 19, 179, 40] SSTA. Since the number of paths

is exponential with respect to the circuit size, the path-based SSTA is not scalable to

large circuits. The block-based SSTA was proposed to solve this problem. The goal

of block-based SSTA is to parameterize timing characteristics of the timing graph as a

function of the underlying sources of process parameters which are modeled as random

variables.

The early SSTA methods [32, 163] modeled the gate delay as linear functions

of variation sources and assumed all the variation sources are mutually independent

Gaussian random variables. Based on such assumption, [163] presented time efficient

methods with closed-form formulas [46] for all atomic operations (max and sum).

However, when the amount of variation becomes larger, the linear delay model is no

longer accurate [94]. In order to capture the non-linear dependence of delay on the

variation sources, a higher-order delay model is thus needed [180, 178].
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As more complicated or large-scale variation sources are taken into account, the

assumption of Gaussian variation sources is also not valid. For example, the via resis-

tance has an asymmetric distribution [13], while dopant concentration is more suitably

modeled as a Poisson distribution [142] than Gaussian. Some of the most recent works

on SSTA [76, 142, 13, 19, 179, 40] started to take non-Gaussian variation sources into

account. For example, [142] applied independent component analysis to de-correlate

the non-Gaussian random variables, but it was still based on a linear delay model.

[76, 13, 19, 179] considered both non-linear delay model and non-Gaussian variation

sources, but the computation cost of these techniques is too high to be applicable for

large designs. For example, [76] proposed to compute the max operation by a regres-

sion based on Monte-Carlo simulation, which is slow. [13] computed the max opera-

tion through tightness probability while [179] applied moment matching to reconstruct

the max. However, to do so, both had to resort to expensive multi-dimension numer-

ical integration techniques. [19] handled the atomic operations by approximating the

gate delay using a set of orthogonal polynomials, which needs to be constructed for

different variation distributions. [40] proposed to approximate the probability density

function (PDF) of max results as a Fourier Series, but it lacks the capability to handle

the crossing term effects on timing.

In this chapter, we introduce a time efficient non-linear SSTA for arbitrary non-

Gaussian variation sources. The major contribution of this work is two-fold. (1) We

propose a new method to approximate the max of two non-Gaussian random vari-

ables as a second-order polynomial function based on least-square-error curve fitting.

Experimental results shows that such approximation is much more accurate than the

linear approximation based on tightness probability [163, 180, 13]. (2) Based on the

new approximation of the max operation, we present our SSTA technique for three

different delay models: quadratic delay model, quadratic delay model without cross-

ing terms (semi-quadratic model), and linear delay model. In our method, only the
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first few moments are required for different distributions and no extra effort is needed,

while [19] needs to obtain different sets of orthogonal polynomials for different vari-

ation distributions. Moreover, all the atomic operations are performed by closed-form

formulas, hence they are very time efficient. For the linear and semi-quadratic delay

model, the computational complexity of our method is linear in both the number of

variation sources and circuit size. For the quadratic delay model, the computational

complexity is cubic (third-order) to the number of variation sources and linear to the

circuit size. Experimental results show that for the semi-quadratic delay model, our

approach is 70 times faster than the non-linear SSTA in [40], and indicates less than

1% error in mean, 1% error in standard deviation, 30% error in skewness, and 1% er-

ror in 95-percentile point. Moreover, for the more accurate quadratic delay model, our

approach incurs less than 1% error in mean, 1% error in standard deviation, 6% error

in skewness, and 1% error in 95-percentile point.

The rest of the chapter is organized as follows: Section 5.2 introduces the approx-

imation of the max operation using second-order polynomial fitting; with the approxi-

mation of max, Section 5.3 presents a novel SSTA algorithm for quadratic delay model

with non-Gaussian variation sources; we further apply this technique to handle both

semi-quadratic and linear delay model in Section 5.4 and Section 5.5, respectively;

experimental results are presented in Section 5.6; Section 5.7 concludes this chapter.

5.2 Second-Order Polynomial Fitting of Max Operation

5.2.1 Review and Preliminary

According to [163], given two random variables, A and B, the tightness probability is

defined as the probability of A greater than B, i.e., TA = P{A > B} = P{A−B > 0}.
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Then the max operation is approximated as:

max(A,B) ≈ TA ·A+(1−TA) ·B+ c, (5.1)

where c is a term used to match the mean and variance of max(A,B). Because (5.1)

can be further written as max(A,B) =max(A−B,0)+B, we arrive at:

max(A−B,0) ≈ TA · (A−B)+ c. (5.2)

According to (5.2), we can see that the max operation in [163] is in fact approximated

by a linear function subject to certain conditions (such as matching the exact mean

and variance). Such a linear approximation is efficient and reasonably accurate when

both A and B are Gaussian. As shown in [163, 164], the PDF predicted by such linear

approximation is very close the Monte Carlo simulation. Moreover, in this case the

coefficients can be computed easily, as both TA and E[max(A,B)] can be obtained by

closed-form formulas when A and B are Gaussian [163]. However, when A and B are

non-Gaussian random variables, the tightness probability TA and E[max(A,B)] are hard

to obtain. For example, TA in [13] has to be computed via expensive multi-dimensional

numerical integration, thus preventing its scalability to large designs. Moreover, be-

cause the max operation is an inherently non-linear function, linear approximation

would become less and less accurate, particularly when the amount of variation in-

creases and the number of non-Gaussian variation sources increases. To overcome

these difficulties, we develop a more efficient and accurate approximation method in

the next section.

5.2.2 New Fitting Method for Max Operation

In this section, we introduce a new fitting method to approximate the max operation.

Instead of using the linear function, we propose to use a second-order polynomial
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function to approximate the max operation, i.e.,

max(V,0) ≈ h(V,Θ) = θ2V 2+θ1V +θ0, (5.3)

where Θ= (θ0,θ1,θ2)T are three coefficients of the second-order polynomial h(v,Θ).

The problem thus becomes how to obtain the fitting parameters of Θ. Different from

the linear fitting method through tightness probability, we compute Θ by matching

the mean of the max operation while minimizing the square error (SE) between

h(V,P) and max(V,0) within the ±ε range of V . Mathematically, this problem can be

formulated as the following optimization problem:

Θ= arg min
E[h(V,Θ)]=µm

Z µv+ε

µv−ε

(
h(v,Θ)−max(v,0)

)2dv (5.4)

where µv, σ2v , and γv are the mean, variance, and skewness of random variable of

V , respectively; while µm and E[h(V,Θ)] are the exact and approximated mean of

max(V,0), respectively. In other words,

µm = E[max(V,0)] (5.5)

E[h(V,Θ)] = θ2(σ
2
v +µ2v)+θ1µv+θ0. (5.6)

In (5.4), ε is the approximation range. The value of ε may affect the accuracy of the

second order approximation. Intuitively, when ε is large, the probability that V lies

outside the ±ε range is low. Then the impact of ignoring the difference in the low

probability region is justified. However, when ε is too large, we may unnecessarily

fitting the curve in a wide range without focusing on the high probability region. In

this chapter, we find that assuming:

ε= 3σv (5.7)

provides a good approximation of max. This can be explained by the fact that, although

the circuit delay is not Gaussian, it would still be more or less Gaussian like. That is,
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its PDF would be most likely centering around the±3σ range of the mean. In practice,

the users can choose the range ε according to the delay distributions.

In order to solve (5.4), we first need to compute µm. When V is a non-Gaussian

random variable, exact computation of µm is difficult in general. Therefore, we propose

to use the following two-step procedure to approximately compute µm. In the first

step, we approximate the non-Gaussian random variableV as a quadratic function of a

standard Gaussian random variableW similar to [184], i.e.,

V ≈ P(W ) = c2 ·W 2+ c1 ·W + c0. (5.8)

The coefficients c2, c1, and c0 can be obtained by matching P(W ) and V ’s mean,

variance and skewness simultaneously, i.e.,

E[c2 ·W 2+ c1 ·W + c0] = µv (5.9)

E[(c2 ·W2+ c1 ·W + c0−µv)2] = σ2v (5.10)

E[(c2 ·W2+ c1 ·W + c0−µv)3] = γv ·σ3v (5.11)

As shown in [184], solving the above equations, c2 will be one of the following values:

c2,1 = −
2σ2v +Δ2/3

2Δ1/3
(5.12)

c2,2 =
2(1+ j

√
3)σ2v +(1− j

√
3)Δ2/3

4Δ1/3
(5.13)

c2,3 =
2(1− j

√
3)σ2v +(1+ j

√
3)Δ2/3

4Δ1/3
(5.14)

where Δ = γv ·σ3v + j
√
8σ6v− γ2v ·σ6v , with j =

√
−1. It is proved in [184] that, when

|γv| < 2
√
2 there exists one and only one of the above three values in the range |c2| <

σv/
√
2. We will pick such value for c2. When |γv| > 2

√
2, we may let:

c2 =





σv/

√
2 γv > 2

√
2

−σv/
√
2 γv < −2

√
2

(5.15)
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It is proved in [19] that the above equations gives P(W ) which matches the mean and

variance of V and has the skewness closest to γv. With c2, c1 and c0 can be computed

as:

c1 =
√
σ2v−2c22 (5.16)

c0 = µv− c2 (5.17)

After obtaining the coefficients c2, c1, and c0 in the second step, we approximate

the exact mean of max(V,0) by the exact mean of max(P(W),0), i.e.,

µm ≈ E[max(P(W ),0)] =
Z

P(w)>0
P(w)φ(w)dw (5.18)

where φ(·) is the PDF of the standard normal distribution. In the above equation, the

integration range P(w) > 0 can be computed in four different cases:

Case 1: c2 > 0

P(w) > 0⇔ w< t1∨w> t2 (5.19)

where

t1 = (−c1−
√
c21−4c2c0)/2c2 (5.20)

t2 = (−c1+
√
c21−4c2c0)/2c2 (5.21)

Case 2: c2 < 0

P(w) > 0⇔ t2 < w< t1 (5.22)

Case 3: c2 = 0∧ c1 > 0

P(w) > 0⇔ w> −c0/c1 (5.23)

Case 4: c2 = 0∧ c1 < 0

P(w) > 0⇔ w< −c0/c1 (5.24)
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Knowing the integration range, we can compute E[max(P(W ),0)] under such four

cases:

E[max(P(W ),0)] = (5.25)





(c2+ c0)
(
1+Φ(t1)−Φ(t2)

)
+(c1+ t1)

(
φ(t2)−φ(t1)

)
c2 > 0

(c2+ c0)
(
Φ(t1)−Φ(t2)

)
+(c1+ t1)

(
φ(t2)−φ(t1)

)
c2 < 0

c0 ·Φ(c0/c1)+ c1 ·φ(c0/c1) c2 = 0∧ c1 > 0

c0 ·
(
1−Φ(c0/c1)

)
− c1 ·φ(c0/c1) c2 = 0∧ c1 < 0

where Φ(·) is the cumulative density function (CDF) of the standard normal distribu-

tion. According to (5.25), we can compute µm easily through analytical formulas.

In practice, the above approximation of µm is accurate only when the distribution

ofV is close to the normal distribution. WhenV is not close to the normal distribution,

for example, V is uniform distribution, the above approximation of µm is no longer

accurate. Fortunately, in practice, the circuit delay has close-to-normal distribution as

discussed above. Therefore, such approximation is accurate for SSTA.

After obtaining µm, we need to findΘ in (5.3) by solving the constrained optimiza-

tion problem of (5.4). In the following, we show that (5.4) can be solved analytically

as well. We first write the constraint in (5.4) as follows:

θ0 = µm−θ2(µ2v +σ2v)−θ1µv. (5.26)

Replacing θ0 in (5.4) by (5.26), the square error in (5.4) can be written as:

SE =

0
Z

µv−3σv

h2(v,Θ)dv+

µv+3σv
Z

0

(
h(v,Θ)dv− v

)2dv

=
Z 0

l1

(
θ2(v2−µ2v−σ2v)+θ1(v−µv)+µm

)2dv+

Z l2

0

(
θ2(v2−µ2v−σ2v)+θ1(v−µv)+µm− v

)2dv, (5.27)
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where l1 = µv− 3σv and l2 = µv + 3σv. By expanding the square and integral, we

can transform the constrained optimization of (5.4) to the following unconstrained

optimization problem, which is a quadratic form of Θ′ = (θ1,θ2)T :

Θ′ = argminSE (5.28)

SE = Θ′TSΘ′+QΘ′ + t, (5.29)

where S = (si j) is a 2×2 matrix, Q = (qi) is a 1×2 vector, and t is a constant. The

parameters of S, Q, and t can be computed as:

s11 = (l32− l31)/3+(l2− l1)µ2v− (l22− l21)µv (5.30)

s22 = (l52− l51)/5+(l22− l21)(µ2v +σ2v)
2−2(l32− l31)(µ

2
v +σ2v)/3 (5.31)

s12 = s21 = (l42− l41)/4+(l2− l1)µv(µ2v +σ2v)+

(l32− l31)µv/3− (l22− l21)(µ2v +σ2v)/2 (5.32)

q1 = l22µv+(l22− l21)µm−2l32/3−2(l2− l1)µvµm (5.33)

q2 = l22(µ2v +σ2v)+2(l32− l31)µm/3− (5.34)

2l32/3−2(l2− l1)(µ2v +σ2v)µv

t = l32/3+(l2− l1)µ2m− l22µm (5.35)

Because the square error is always positive no matter what value the Θ′ is, S is a pos-

itive definite matrix. Therefore, (5.29) is to minimize a second-order convex function

of Θ′ without constraints. Then the optimum of Θ′ can be obtained by setting the

derivative of (5.29) to zero, resulting a 2×2 system of linear equations:

∂SE
∂θ1

= 2s11 ·θ1+2s12 ·θ2+q1 = 0 (5.36)

∂SE
∂θ2

= 2s22 ·θ2+2s12 ·θ1+q2 = 0 (5.37)
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Such a system of linear equations can be solved efficiently:

θ1 =
s12 ·q2− s22 ·q1
2s11 · s22−2s212

(5.38)

θ2 =
s12 ·q1− s11 ·q2
2s11 · s22−2s212

(5.39)

With θ1 and θ2, we can compute θ0 from (5.26).

From the above discussion, we see that for a random variable V with any distribu-

tion, if we know its mean µv, variance σ2v , and skewness γv, we can obtain the fitting

parameters Θ for max(V,0) through closed-form formulas.

Notice that in (5.4) we try to minimize the mean square error within the±3σ range.

If µv > 3σv,V is always larger than zero within the±3σ range. That is: max(V,0) =V

when V ∈ (µv− 3σv,µv + 3σv). From (5.4), it is easy to find that in this case, Θ =

(0,1,0). That means:

max(V,0) ≈V when µv > 3σv (5.40)

To show the accuracy of our second-order fitting approach to the max approxima-

tion, we compare the results obtain from our approach, the linear fitting method, and

the exact (or Monte Carlo) computation. For example, by assumingV ∼ N(0.7,1), the

exact max operation max(V,0), linear fitting through through tightness probability, and

our second-order fitting can be obtained as shown in Fig. 5.2.2, where the x-axis is V ,

and y-axis is the results of max(V,0). The corresponding PDFs of the three approaches

are shown in Fig. 5.2.2. From the figures, we see that our proposed second-order fitting

method is more accurate than the linear fitting method. In particular, the PDF of our

second-order fitting method has a sharp peak which approximates the impulse of exact

PDF well as shown in Fig. 5.2.2. In contrast, the linear fitting method can only give a

smooth PDF, which is far away from the exact max result.
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Figure 5.1: (a) Comparison of exact computation, linear fitting, and second-order fit-

ting for max(V,0); (b) PDF comparison of exact computation, linear fitting, and sec-

ond-order fitting for max(V,0).

5.3 Quadratic SSTA

5.3.1 Quadratic Delay Model

In Section 5.2, we introduce the second-order fitting of max operation. Here we will

apply such fitting in SSTA.

We first discuss the delay model. In practice, the circuit delay is a complicate

function of variation sources:

D= f (X1,X2, . . .Xn,R) (5.41)

where X = (X1,X2, . . .Xn)T are global variation sources, R is local random variation, n

is the number of global variation sources. Here, we assume that Xi’s and R are mutually

independent. Without loss of generality, we assume all Xi’s and R have zero mean

and unit variance. In order to simplify the above delay model, we apply the Taylor

expansion to approximate it. Considering that the scale of local random variation is
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usually smaller than that of global variation, we use second order Taylor expansion to

approximate Xi’s and use first order expansion to approximate R:

D ≈ d0+
n

∑
i, j=1

bi jXiX j+
n

∑
i=1

aiXi+ rR

= d0+AX+XTBX+ rR (5.42)

where d0 is the nominal delay, A = (a1,a2, . . .an) are the linear delay sensitivity co-

efficients of the global variation sources, B = (bi j) are the second-order sensitivity

coefficients, which is an n×n matrix, and r is the linear delay sensitivity coefficient of

the local random variation. A, B, and r are calculated in the similar way as [180]:

ai =
∂ f
∂Xi

(5.43)

bi j =
∂2 f

∂Xi∂X j
(5.44)

r =
∂ f
∂R

(5.45)

In practice, f is a complex function and can not be expressed as closed-form formula.

In this case, the coefficients A, B, and r can be obtained by measurement or SPICE

simulation. Moreover, in practice, the local random variation is caused by several

independent factors; therefore, the local random variation R is the sum of several in-

dependent random variables. According to the central limit theorem, R will be close

to a Gaussian random variable. In this chapter, for simplicity, we assume that R is a

random variable with standard normal distribution. Finally, we obtain our quadratic

delay model as follows:

D= d0+AX+XTBX+ rR (5.46)

In the rest of this chapter, we use mi,k and mr,k to represent the kth central moment

for Xi and the kth moment for R, respectively. Notice that all Xi’s and R are with zero

mean, that means their central moments and raw moments are the same. Moreover,
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we also assume that the moments of the variation sources, mi,k and mr,k, are known. In

practice, such moments can be computed from the samples of variation sources.

To compute the arrival time in a block-based SSTA framework, two atomic opera-

tions, max and sum, are needed. That is, given D1 and D2 with the quadratic form of

(5.46):

D1 = d01+A1X+XTB1X+ r1R1, (5.47)

D2 = d02+A2X+XTB2X+ r2R2, (5.48)

we want to compute

Dm = max(D1,D2)

= dm0+AmX+XTBmX+ rmRm, (5.49)

Ds = D1+D2 = ds0+AsX +XTBsX+ rsRs. (5.50)

We will present how these two operations are handled in the rest of this section.

5.3.2 Max Operation for Quadratic Delay Model

The max operation is the most difficult operation for block-based SSTA. Based on the

second-order polynomial fitting method as discussed in Section 5.2.2, we propose a

novel technique to compute the max of two random variables. The overall flow of the

max operation is illustrated in Figure 5.2. Considering

Dm =max(D1,D2) =max(D1−D2,0)+D2, (5.51)

let Dp =D1−D2. Without loss of generality, we assume E[Dp] > 0. We first compute

the mean and variance of Dp, if µDp > 3σDp , then Dm = D1, otherwise, we compute

the joint moments between Dp and Xi’s and the skewness of Dp. Knowing the mean,

variance, and skewness of Dp, we apply the method as shown in Section 5.2.2 to find
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the fitting coefficients Θ = (θ0,θ1,θ2) for max(Dp,0). Finally, we use the moment

matching method to reconstruct the quadratic form of Dm.

Input: Quadratic form of D1 and D2
Output: Quadratic form of Dm

1. Let Dp =D1−D2, compute µDp and σDp
if µDp ≥ 3σDp {

2. Dm= D1

}

else {

3. Compute joint moments between D2p and Xi
4. Compute γDp
5. Get fitting coefficients Θ

6. Compute joint moments between Dm and Xi
7. Reconstruct the quadratic form of Dm

}

Figure 5.2: Algorithm for computing max(D1,D2).

5.3.2.1 Mean and Variance of Dp

In order to compute the mean and variance, we first obtain the quadratic form of Dp as

follows:

Dp = D1−D2

= dp0+Ap ·X+XTBpX+ r1 ·R1− r2 ·R2 (5.52)

dp0 = d01−d02 (5.53)

Ap = A1−A2 (5.54)

Bp = B1−B2 (5.55)

Because Xi’s, R1, and R2 are mutually independent random variables with mean 0
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and variance 1, the mean and variance of Dp can be computed as:

µDp = E[Dp] = dp0+
n

∑
i=1

bpii (5.56)

σ2Dp = E[(Dp−µDp)
2]

= r21+ r22+
n

∑
i=1

(a2pi+bpiimi,4+2apibpiimi,3)+

∑
1≤i< j≤n

2(b2pi j+bpiibp j j)− (
n

∑
i=1

bpii)2 (5.57)

5.3.2.2 Joint Moments and Skewness of Dp

From the definition of Dp as shown in (5.52), the joint moments between D2p and Xi,

X2i , and R can be computed as:

E[XiD2p] = 2dp0api+(a2pi+2dp0bpii)mi,3+2apibpiimi,4+b2piimi,5+

2 · ∑
1≤ j≤n
j #=i

(
apibp j j+2ap jbpi j+

(bpiibp j j+2b2pi j)mi,3+2bpi jbp j jm j,3
)

(5.58)

E[R1D2p] = r21mr,3+2r1µDp (5.59)

E[R2D2p] = r22mr,3−2r1µDp (5.60)

E[X2i D2p] = d2p0+ r21+ r22+2dp0apimi,3+2apibpiimi,5+

(a2pi+2dp0bpii) ·mi,4+b2piimi,6+

∑
1≤ j≤n
j #=i

(
a2p j +2dp0bp j j +2(apibp j j+2ap jbpi j)mi,3+2ap jbp j jm j,3+

2(bpiibp j j+4b2pi j) ·mi,4+b2p j jm j,4+4bp j jbpi jmi,3m j,3
)
+

2 · ∑
1≤ j<k≤n
j,k #=i

(bp j jbpkk+2b2p jk) (5.61)
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E[XiX jD2p] = 2apiap j +4dp0bpi j +2 · (2apibpi j +ap jbpii)mi,3+

4bpiibpi jmi,4+2 · (2ap jbpi j+apibp j j)m j,3+4bp j jbpi jm j,4+

2 · (2b2pi j+bpiibp j j)mi,3m j,3+4 · ∑
1≤k≤n
k #=i, j

bpi jbpkk (5.62)

With the joint moments computed above, the raw moments, central moments, and

skewness of Dp is computed as:

E[D2p] = µ2Dp +σ2Dp (5.63)

E[D3p] = E[Dp ·D2p]

= E[(dp0+ApX+XTBpX+ r1R1− r2R2)D2p]

= dp0 ·E[D2p]+ r1 ·E[R1D2p]− r2 ·E[R2D2p]+
n

∑
i=1

(
api ·E[XiD2p]+bpii ·E[X2i D2p]

)
+

∑
0≤i< j≤n

bpi jE[XiX j ·D2p] (5.64)

mDp(3) = E[(D−µD)3]

= E[D3p]−3µDp ·E[D2p]+2µ3Dp (5.65)

γDp = mDp(3)/σ3Dp (5.66)

5.3.2.3 Reconstruct the Quadratic Form of Dm

Knowing µDp , σDp , and γDp , we apply the second-order fitting method to compute the

fitting parameters Θ= (θ0,θ1,θ2) for max(Dp,0). Then Dm can be represented as:

Dm = max(D1,D2) =max(Dp,0)+D2

≈ θ2 ·D2p+θ1 ·Dp+θ0+D2

= θ2 ·D2p+Dq+θ0 (5.67)

Dq = θ1 ·Dp+D2 (5.68)
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The above equation gives the closed- form formula of Dm. However, because Dp and

Dq are in quadratic form as (5.46), the representation of Dm in (5.67) is a 4th order

polynomial of Xi’s. In order to reconstruct the quadratic form for Dm, we first compute

the the mean of Dm, and joint moments between Dm and variation sources:

E[Dm] = θ2 ·E[D2p]+E[Dq]+θ0 (5.69)

E[XiDm] = θ2 ·E[XiD2p]+E[XiDq] (5.70)

E[X2i Dm] = θ2 ·E[X2i D2p]+E[X2i Dq]+θ0 (5.71)

E[XiX jDm] = θ2 ·E[XiX jD2p]+E[XiX jDq] (5.72)

E[R1Dm] = θ2 ·E[R1D2p]+E[R1Dq] (5.73)

E[R2Dm] = θ2 ·E[R2D2p]+E[R2Dq] (5.74)

The joint moments between D2p and Xi’s are computed in (5.58)-(5.62). The joint

moments between Dq and variation sources are:

E[Dq] = dq0+
n

∑
i=1

bqii (5.75)

E[XiDq] = aqimi,2+bqiimi,3 (5.76)

E[X2i Dq] = dq0+aqimi,3+bqiimi,4+ ∑
1≤ j≤n
j #=i

bq j j (5.77)

E[XiX jDq] = 2bqi j (5.78)

E[R1Dq] = θ1 · r1 (5.79)

E[R2Dq] = (1−θ1) · r2 (5.80)
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Because we want to reconstruct Dm in the quadratic form, as shown in (5.49), by

applying the moment matching technique similar to [178], we have:

E[Dm] =
n

∑
i=1

bmii+dm0 (5.81)

E[XiDm] = ami+bmii ·mi,3 (5.82)

E[X2i Dm] = ami ·mi,3+bnii ·mi,4+ ∑
1≤ j≤n
j #=i

bmj j (5.83)

E[XiX jDm] = 2bmi j (5.84)

With E[Dm], E[XiDm], E[X2i Dm], and E[XiX jDm] computed in (5.69)-(5.72), the sen-

sitivity coefficients Am = (ami) and Bm = (bmi j) can be obtained by solving the linear

equations above:

bmii =
E[X2i Dm]−E[Dm]−E[XiDm]mi,3

mi,4−m2i,3−1
(5.85)

bmi j = E[XiX jDm] (5.86)

ami = E[XiDm]−bmii ·mi,3 (5.87)

dm0 = E[Dm]−
n

∑
i=1

bmii (5.88)

Finally, we consider the random term of Dm. Because the random term in Dm

comes from the random terms in D1 and D2, we assume that rmRm = rm1R1+ rm2R2.

Because the random variation sources Rm, R1, and R2 are Gaussian random variables,

by applying the moment matching technique similar to (5.84), we have:

rm1 = E[R1 ·Dm] (5.89)

rm2 = E[R2 ·Dm] (5.90)

rm =
√
r2m1+ r2m2 (5.91)

Where E[R1 ·Dm] and E[R2 ·Dm] are computed in (5.73) and (5.74).

115



5.3.3 Sum Operation for Quadratic Delay Model

The sum operation is straight forward. The coefficients of Ds can be computed by

adding the correspondent coefficients of D1 and D2:

ds0 = d01+d02 (5.92)

As = A1+A2 (5.93)

Bs = B1+B2 (5.94)

rs =
√
r21+ r22 (5.95)

5.3.4 Computational Complexity of Quadratic SSTA

For each max operation in SSTA based on a quadratic delay model, we need to cal-

culate n2 joint moments between Dp and XiX js; for each joint moment, we need to

compute the sum of n numbers; hence the computational complexity is O{n3}, where
n is the number of variation sources. For the sum operation, we need to compute the

sum of two n×n metric; hence the computational complexity is O{n2}. Because the
total number of max and sum operations is linear with respect to circuit sizes N, the

total complexity is O{n3N}.

5.4 Semi-Quadratic SSTA

5.4.1 Semi-Quadratic Delay Model

In Section 5.3, we introduce the SSTA for quadratic delay model. However, in practice,

the impact of the crossing terms are usually very weak [178, 19]. Therefore, if we

ignore the crossing terms, we may speed up the SSTA process without affecting the

accuracy too much. Ignoring the crossing terms, the quadratic delay model in (5.46) is
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re-written as:

D= d0+AX+BX2+ rR (5.96)

where d0, A, r, and R are defined in the similar way as the quadratic delay model in

(5.46), X2=(X21 ,X22 , . . . ,X2n )T are the square of variation sources, and B=(b1,b2, . . . ,bn)

are the second order sensitivity coefficients for the square terms. We defined such

quadratic model without crossing terms as Semi-Quadratic Delay Model. We will in-

troduce the atomic operations, max and sum, for the semi-quadratic delay model in the

rest of this section.

5.4.2 Max Operation for Semi-Quadratic Delay Model

The overall flow of the max operation of semi-quadratic delay model is similar to that

of quadratic delay model as illustrated in Figure 5.2. The only difference is that we do

not need to compute the joint moments between the crossing terms and Dm.

5.4.2.1 Moments of Dp

We defined Dp = D1−D2 in a similar way as (5.52). In order to compute the central

moments of Dp, we first rewrite Dp to the following form:

Dp = d′p0+
n

∑
i=1

Ypi+ r1R1− r2R2 (5.97)

d′p0 = dp0+
n

∑
i=1

bpi (5.98)

Ypi = apiXi+bpiX2i −bpi (5.99)

with api = a1i−a2i and bpi = b1i−b2i. Because Xis are mutually independent random

variables with mean 0 and variance 1, Ypis are independent random variables with zero
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mean. Therefore, the first 3 central moments of Dp are:

µDp = d′p0 (5.100)

σ2Dp = r21+ r22+
n

∑
i=1

E[Y 2pi] (5.101)

mDp(3) = E[(Dp−µDp)
3] = r31+ r32+

n

∑
i=1

E[Y 3pi] (5.102)

where

E[Y 2pi] = b2pi(mi,4−1)+2apibpimi,3+a2pi (5.103)

E[Y 3pi] = 3apib2pi
(
mi,5−2mi,3

)
+3a2pibpi

(
mi,4−1

)
+

a3pimi,3+b3pi
(
mi,6−3mi,4+2

)
(5.104)

With the central moments of Dp, the raw moments and skewness can be computed

easily.

5.4.2.2 Reconstruct the Semi-Quadratic Form of Dm

Similar to the quadratic SSTA, by knowing the mean, variance and skewness of Dp,

the fitting coefficients Θ can be obtained. Then the joint moments between Xis and Dm

can be computed in the similar ways as (5.69)-(5.74). Here the joint moments between

Xis and D2p, Dq are:

E[XiD2p] = E[XiY 2pi]+2d′0E[XiYpi] (5.105)

E[X2i D2p] = E[X2i Y 2pi]+2d′0E[X2i Ypi]+E[X2i ]E[(Dp−Ypi)2] (5.106)

E[XiDq] = E[XiYqi] (5.107)

E[X2i Dq] = E[X2Yqi] (5.108)

where E[Y 2pi] are computed in (5.102), E[(Dp−Ypi)2] = σ2Dp
− E[Y 2pi], and Yqis are

defined in the similar way as Ypis:

Yqi = aqiXi+bqiX2i −bqi (5.109)
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with aqi = θ1(a1− a2)+ a2 and bqi = θ1(b1− b2)+ b2. The joint moments between

Xis and Ypis are:

E[X2i Y 2pi] =
(
a2pi−22pi

)
mi,4+b2pi

(
mi,6−1

)
+2apibpi

(
mi,5−mi,3

)
(5.110)

E[X2i Ypi] = apimi,3+bpi
(
mi,4−1

)
(5.111)

E[XiY 2pi] = b2pimi,5+2apibpi
(
mi,4−1

)
+

(
a2pi−2b2pi

)
mi,3 (5.112)

E[XiYpi] = api+bpimi,3 (5.113)

The joint moments between Xis and Yqis can be computed in the same way.

Knowing the joint moments between Xis and Dm, by applying the moment match-

ing technique, we will have similar equations as (5.84). And then Am and Bm can be

obtained by solving such equations. Finally, we can compute the random term of Dm

in the same way as the quadratic model, as shown in (5.91).

The sum operation of the semi-quadratic delay model is similar to that of the

quadratic delay model. We can compute Ds = D1+D2 by summing up the corre-

spondent coefficients.

From the discussion above, it is easy to see that for the semi-quadratic SSTA, the

computational complexity for both max and sum operation is O{n}, where n is the
number of variation sources. The number of max and sum operations is linear to the

circuit size.

5.5 Linear SSTA

5.5.1 Linear Delay Model

In the previous sections, we introduce the SSTA for non-linear delay model. In prac-

tice, when the variation scale is small, the circuit delay can be approximated as a linear
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function of variation sources:

D= d0+A ·X+ r ·R (5.114)

where X , d0, A, r, and R are defined in the similar way as the quadratic delay model

in (5.46). The difference is that there are no second order terms. Hence the atomic

operations of the linear delay model are much simpler than those of quadratic delay

model. We will introduce such operations in the rest of this section.

5.5.2 Max Operation for Linear Delay Model

The overall flow of the max operation of linear delay model is similar to that of

quadratic delay model as illustrated in Figure 5.2 except that we do not need to com-

pute the high order joint moments between Dm and Xis.

5.5.2.1 Mean and Variance of Dp

The linear form of Dp = D1−D2 can be computed in the similar way as (5.52). Then

the mean and variance of Dp can be computed as:

µDp = E[Dp] = dp0; (5.115)

σ2Dp = E[(D−µD)2] =
n

∑
i=1

a2pi+ r21+ r22 (5.116)

5.5.2.2 Joint Moments and Skewness of Dp

The joint moments between D2p and the variation sources and random variation can be

computed as:

E[Xi ·D2p] = a2pi ·mi,3+2api ·dp0 (5.117)
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With the joint moments computed above, the third order raw momentsDp is computed

as:

E[D3p] =
n

∑
i=1

aiE[Xi ·D2p]+ r1E[R1 ·D2p]+ r2E[R2 ·D2p] (5.118)

The second order rawmoment, central moments, and skewness ofDp can be computed

in the same way as the quadratic SSTA in (5.66).

5.5.2.3 Reconstruct the Linear Canonical Form of Dm

Knowing the mean, variance, and skewness of Dp, we may apply the method in Sec-

tion 5.2.2 to compute the fitting parameters Θ for max(Dp,0), and then represent Dm

in the form of:

Dm ≈ θ2 ·D2p+Dq+ p0 (5.119)

where Dq is defined in the similar way as (5.67). The above equation gives the closed-

form formula of Dm, however, such formula is not in the linear canonical form. We

still apply moment matching technique to reconstruct Dm to the linear form. First, the

mean of Dm and the joint moments between Dm and variation sources are:

E[Dm] = θ2 ·E[D2p]+E[Dq]+ p0 (5.120)

E[Xi ·Dm] = θ2 ·E[Xi ·D2p]+E[Xi ·Dq] (5.121)

Where E[D2p] is computed in (5.118). The joint moments between Dq and variation

sources are computed as:

E[Dq] = ds0 (5.122)

E[Xi ·Dq] = aqi (5.123)

121



With the joint moments, by applying the moment matching technique in [178], we

have:

ami = E[Xi ·Dm] (5.124)

dm0 = E[Dm] (5.125)

Finally, the random term rm can be computed in the same way as the quadratic model

in (5.91).

For the linear SSTA we discussed above, the computational complexity for both

max and sum operation is O{n}. Similar to the quadratic SSTA, the number of max
and sum operations is linear to the circuit size.

5.6 Experimental Result

We have implemented our SSTA algorithm in C for all three delay models we discussed

before: quadratic delay model (Quad SSTA), semi-quadratic delay model (Semi-Quad

SSTA), and linear delay model (Lin SSTA). We also define three comparison cases:

(1) our implementation of the linear SSTA for Gaussian variation sources in [163],

which we refer to as Lin Gau; (2) the non-linear SSTA using Fourier Series approxi-

mation for non-Gaussian variation sources in [40] (Fourier SSTA); (3) 100,000-sample

Monte-Carlo simulation (MC). We apply all the above methods to the ISCAS89 suite

of benchmarks in TSMC 90nm technology.

In our experiment, we consider two types of variation sources gate channel length

Lgate and threshold voltage Vth. For each type of variation source, inter-die, intra-die

spatial, and intra-die random variation are considered. We use the grid-based model

in [172, 173] to model the spatial variation. The number of grids (the number of

spatial variation sources) is determined by the circuit size and larger circuits have more

variation sources. We also assume that the 3σ value of the inter-die (σg), intra-die
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spatial (σs), and intra-die random (σr) variation are 10%, 10%, and 5% of the nominal

value, respectively. In the following, we perform the experiments for two variation

setting: (1) both Lgate and Vth have skew-normal distributions [16]; and (2) Lgate has

a normal distribution and Vth has a Poisson distribution. The experimental setting is

shown in Table 5.1.

Setting Lgate dist Vth dist 3σg 3σs 3σr
(1) Skewnormal Skewnormal 10% 10% 5%

(2) Normal Poisson 10% 10% 5%

Table 5.1: Experiment setting. The 3σ value is the normalized with respect to the

nominal value.

Fig. 5.3 illustrates the PDF comparison for circuit s15850 under variation setting

(1). In the figure, delay is normalized with respect to the nominal value. From the fig-

ure, we find that, compared to the Monte-Carlo simulation, the Quad SSTA is the most

accurate, the next is Semi-Quad SSTA, and Lin SSTA is least accurate. Such result is

expected, because theQuad SSTA captures all the second-order effects; the Semi-Quad

SSTA captures only partial second order effects; while the Lin SSTA captures only lin-

ear effects and ignores all non-linear effects. Moreover, Fourier SSTA [40] has similar

accuracy as Semi-Quad SSTA because they both apply semi-quadratic delay model. In

addition, we also find that all these three non-Gaussian SSTA is more accurate than

Lin Gau [163].

Table 5.2 compares the run time in second (T ), and the error percentage of mean

(µ), standard deviation (σ), and skewness (γ) under variation setting (1). In the table,

the error percentage of mean (µ), standard deviation (σ), and 95-percentile point (95%)

is computed as 100× (MC value− SSTA value)/σMC, and the error percentage of

skewness γ is computed as 100× (γMC − γSSTA)/γMC. Moreover, the average error

in the table is average of the absolute value; and the average runtime is the average

runtime ratio between SSTA and Monte-Carlo simulation. For each benchmark, G
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Figure 5.3: PDF comparison for circuit s15850.

refers to the number of gates; and N refers to the total number of variation sources.

For fair comparison, when we perform Lin Gau on non-Gaussian variation sources, we

first approximate the non-Gaussian random variables to the Gaussian random variables

by matching the mean and variance, then use Lin Gau to obtain the linear canonical

form of the circuit delay, finally, we still use the non-Gaussian variation sources to

reconstruct the PDF of the circuit delay. From the table, we see that for the Quad

SSTA, the error of mean, standard deviation, and 95-percentile point is within 0.3%,

and the error of skewness is within 5%. Semi-Quad SSTA, Lin SSTA result similar

mean and standard deviation error, but the error of skewness and 95-percentile point

is much larger, especially for the Lin SSTA, the error of skewness is up to 30% and

the error of 95-percentile point is up to 2%. This is because the Lin SSTA ignores all

non-linear effects which significantly affect the skewness, and the inaccurate skewness

results larger error of 95-percentile point. Compared to Lin Gau, all the three non-

Gaussian SSTA methods predict more accurate mean values and 95-percentile points,

which is the most important timing characteristic, and the non-linear SSTA methods,
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Quad SSTA and Semi-Quad SSTA also give much more accurate skewness. Moreover,

we also find that both Semi-Quad SSTA and Lin SSTA have similar run time as Lin

Gau, but the run time of Quad SSTA is longer especially when the number of variation

sources is large. This is because the computational complexity of Semi-Quad SSTA,

Lin SSTA, and Lin Gau is the same, but Quad SSTA has higher complexity than the

other two SSTA methods. We also observe that compared to Fourier SSTA, Semi-

Quad SSTA has similar accuracy with almost 70X speed up. This is due to the fact

that Semi-Quad SSTA uses the same semi-quadratic delay model as Fourier SSTA,

while the computational complexity of Semi-Quad SSTA (O{n}) is lower than that
of Fourier SSTA (O{nk2}), where n is the number of variation sources, and k is the
maximum number of orders of Fourier Series [40]. After all, the run time of all the

SSTA methods is significantly shorter than the Monte-Carlo simulation.

Table 5.3 illustrates the results under variation setting (2). From this table, we

can find the similar trend as Table 5.2. Moreover, we also find that our methods are

still highly accurate under such variation setting. For Quad SSTA, the error of mean,

standard deviation, and 95-percentile point is within 1%, and the error of skewness is

within 6%. This shows that our approach works well for different distributions.
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bench G N Quad SSTA Semi-Quad SSTA Lin SSTA Lin Gau Fourier SSTA MC

name µ σ γ 95% T µ σ γ 95% T µ σ γ 95% T µ σ γ 95% T µ σ γ 95% T T

s208 61 12 -0.02 0.04 1.03 -0.03 0.01 -0.02 0.04 -10.7 -0.23 0.01 -0.02 -0.32 -22.8 -1.1 0.01 -0.02 -0.32 -22.8 -2.99 0.01 -0.04 -0.07 -9.5 -0.4 1.01 15.3

s386 118 18 -0.08 0.01 2.52 -0.03 0.01 -0.05 -0.05 -9.45 -0.36 0.01 -0.06 -0.4 -22.5 -1.23 0.01 -0.04 -0.36 -23 -2.96 0.01 0.02 -0.02 -10.9 0.36 1.17 33.6

s400 106 25 0.23 -0.06 -0.88 0.13 0.03 0.3 -0.12 -15.2 -0.21 0.01 0.29 -0.65 -31.4 -1.51 0.01 0.35 -0.66 -31.7 -3.56 0.01 -0.17 -0.24 -10 -0.2 1.28 38.7

s444 119 25 -0.1 -0.12 2.92 -0.17 0.04 -0.09 -0.15 -12.2 -0.51 0.01 -0.09 -0.56 -26.8 -1.56 0.01 -0.07 -0.5 -27.1 -3.37 0.01 -0.02 -0.22 -9.95 -0.57 1.38 41.9

s832 262 33 -0.06 -0.04 -0.11 -0.17 0.16 -0.06 -0.05 -12.1 -0.4 0.01 -0.06 -0.5 -27.6 -1.53 0.01 -0.06 -0.5 -27.6 -3.5 0.01 -0.1 -0.25 -14 -0.32 1.91 103

s953 311 43 -0.09 -0.11 2.03 -0.32 0.17 -0.15 -0.24 -9.87 -0.86 0.01 -0.17 -0.68 -27.7 -1.98 0.01 -0.01 -0.67 -28.1 -3.7 0.01 -0.02 -0.14 -7.23 -0.59 1.99 122

s1238 428 55 0.12 0.01 0.59 0.15 0.43 0.22 -0.04 -10.4 -0.04 0.01 0.21 -0.47 -26.5 -1.12 0.01 0.28 -0.45 -26.6 -2.98 0.01 -0.16 -0.04 -6.59 -0.63 2.17 201

s1423 490 68 -0.01 -0.08 -1.25 0.06 0.75 -0.01 -0.08 -10.2 -0.14 0.01 -0.01 -0.49 -25.2 -1.18 0.01 -0.01 -0.47 -25.3 -3.12 0.01 -0.21 -0.01 -4.15 -0.3 2.18 288

s1494 588 68 -0.08 -0.08 3.63 0.08 1.06 -0.07 -0.16 -6.02 -0.24 0.01 -0.08 -0.52 -20.6 -1.14 0.01 -0.01 -0.44 -21.4 -2.85 0.01 -0.2 -0.12 -4.41 -0.22 2.28 320

s5378 1004 82 0.06 -0.12 4.71 -0.16 4.95 0.09 -0.2 -6.72 -0.49 0.05 0.08 -0.66 -26.7 -1.65 0.02 0.18 -0.56 -27.4 -3.31 0.02 -0.07 -0.11 -5.68 -0.6 5.42 1238

s9234 2027 99 0.01 -0.11 0.98 -0.24 10.4 0.04 -0.23 -8.74 -0.61 0.09 0.02 -0.71 -28.4 -1.82 0.04 0.29 -0.66 -28.7 -3.43 0.03 0.04 -0.07 -13.7 0.61 6.89 2801

s13207 2573 115 -0.01 -0.01 3.04 -0.06 25.9 0.02 -0.09 -4.4 -0.33 0.15 0.01 -0.49 -22.2 -1.34 0.07 0.16 -0.49 -22.2 -3.09 0.06 0.09 -0.19 -13.3 0.54 9.04 4717

s15850 3448 135 0.18 -0.02 2.66 0.27 38.9 0.23 -0.07 -4.85 0.06 0.19 0.22 -0.52 -24.6 -1.11 0.08 0.51 -0.53 -24.7 -2.92 0.08 0.18 -0.09 -4.38 0.64 11.5 6484

s38417 8709 176 0.11 -0.01 2.22 0.07 202 0.13 -0.04 -3.8 -0.07 0.62 0.13 -0.49 -23.1 -1.21 0.26 0.24 -0.47 -23.2 -3.16 0.24 0.08 -0.19 -10.5 0.79 23.2 19116

s38584 11448 176 -0.05 -0.02 0.1 0.01 218 -0.04 -0.12 -6.37 -0.29 0.68 -0.06 -0.57 -25.1 -1.44 0.29 0.11 -0.57 -25.2 -3.31 0.25 -0.11 -0.19 -14.4 -0.53 25.1 19459

Ave - - 0.08 0.06 1.91 0.13 1/720 0.1 0.11 8.74 0.32 1/19814 0.1 0.54 25.4 1.39 1/35819 0.15 0.51 25.7 3.22 1/39248 0.1 0.13 9.25 0.49 1/260 -

Table 5.2: Error percentage of mean, standard deviation, skewness, and 95-percentile point for variation setting

(1). Note:the error percentage of mean (µ), standard deviation (σ), and 95-percentile point (95%) is computed as

100× (MC value−SSTA value)/σMC, and the error percentage of skewness γ is computed as 100× (γMC− γSSTA)/γMC.
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bench G N Quad SSTA Semi-Quad SSTA Lin SSTA Lin Gau Fourier SSTA MC

name µ σ γ 95% T µ σ γ 95% T µ σ γ 95% T µ σ γ 95% T µ σ γ 95% T T

s208 61 12 -0.03 0.05 1.64 -0.05 0.01 -0.03 0.04 -20 -0.35 0.01 -0.05 -0.07 -58.9 -0.81 0.01 -0.05 -0.07 -58.9 -1.17 0.01 0.02 -0.25 -15 0.63 0.99 15.4

s386 118 18 -0.07 0.01 5.54 -0.05 0.02 -0.05 -0.04 -16.5 -0.4 0.01 -0.08 -0.16 -58.2 -0.91 0.01 -0.08 -0.11 -58.8 -1.15 0.01 -0.01 -0.02 -16.5 -0.34 1.2 33.9

s400 106 25 0.25 -0.07 -2.48 0.25 0.02 0.32 -0.13 -25.7 -0.18 0.01 0.29 -0.3 -71.3 -0.93 0.01 0.35 -0.3 -71.9 -1.21 0.01 -0.15 -0.27 -20.8 -0.36 1.27 39

s444 119 25 -0.09 -0.12 3.27 -0.23 0.03 -0.08 -0.14 -22.4 -0.62 0.01 -0.1 -0.28 -65 -1.22 0.01 -0.09 -0.19 -65.1 -1.43 0.01 0.01 -0.09 -13.6 0.3 1.38 42.1

s832 262 33 -0.05 -0.04 -3.26 -0.14 0.14 -0.05 -0.05 -23.5 -0.48 0.01 -0.08 -0.19 -66.9 -1.1 0.01 -0.08 -0.19 -66.9 -1.45 0.01 -0.01 -0.18 -13.4 -0.38 1.93 103

s953 311 43 -0.09 -0.11 3.96 -0.44 0.18 -0.15 -0.23 -16.6 -1 0.01 -0.19 -0.38 -66.9 -1.67 0.01 -0.02 -0.35 -67.4 -1.75 0.01 -0.12 -0.22 -16.5 -0.38 1.95 122

s1238 428 55 0.11 -0.02 -3.92 0.09 0.43 0.21 -0.05 -22 -0.13 0.01 0.18 -0.19 -69.8 -0.76 0.01 0.24 -0.16 -70.2 -1 0.01 -0.17 -0.05 -16.1 -0.58 2.15 201

s1423 490 68 -0.01 -0.08 -4.96 0.01 0.75 -0.01 -0.09 -20.2 -0.22 0.01 -0.03 -0.22 -64.1 -0.82 0.01 -0.02 -0.2 -64 -1.2 0.01 0.16 -0.26 -16.9 0.59 2.19 288

s1494 588 68 -0.08 -0.11 1.71 0.03 1.05 -0.07 -0.18 -16.9 -0.32 0.01 -0.1 -0.3 -59 -0.85 0.01 -0.04 -0.21 -58.3 -1.05 0.01 0.17 -0.15 -16.7 0.6 2.29 322

s5378 1004 82 0.05 -0.17 1.26 -0.14 4.95 0.08 -0.25 -16.1 -0.54 0.04 0.04 -0.41 -68.3 -1.23 0.02 0.12 -0.27 -68.5 -1.24 0.01 -0.02 -0.1 -19.4 -0.39 5.44 1238

s9234 2027 99 0.01 -0.13 2.52 -0.22 10.4 0.04 -0.25 -12.5 -0.65 0.08 0.01 -0.42 -68.6 -1.39 0.03 0.25 -0.34 -69 -1.27 0.04 -0.1 -0.2 -15.3 -0.41 6.76 2795

s13207 2573 115 0.01 -0.02 5.21 0.01 25.7 0.04 -0.09 -7.95 -0.27 0.15 0.01 -0.23 -62.3 -0.89 0.06 0.14 -0.21 -62.4 -1.01 0.06 -0.11 -0.04 -13.2 -0.28 9.11 4720

s15850 3448 135 0.18 -0.07 0.4 0.18 38.8 0.22 -0.12 -12.1 -0.02 0.19 0.18 -0.27 -66.4 -0.77 0.08 0.47 -0.25 -66.5 -0.84 0.07 0.18 -0.16 -19.9 0.4 11.3 6477

s38417 8709 176 0.1 -0.03 4.59 0.05 202 0.12 -0.06 -6.09 -0.14 0.62 0.09 -0.2 -63.8 -0.84 0.27 0.2 -0.17 -63.9 -1.07 0.24 0.13 -0.27 -17.4 0.6 23.6 19097

s38584 11448 176 -0.06 -0.08 -3.38 -0.04 218 -0.05 -0.16 -14.7 -0.32 0.68 -0.09 -0.31 -65.2 -1.03 0.29 0.08 -0.3 -65.3 -1.22 0.26 -0.07 -0.07 -19.8 -0.6 25.2 19460

Ave - - 0.08 0.07 3.21 0.13 1/681 0.1 0.13 16.9 0.38 1/20497 0.1 0.26 65 1.01 1/37942 0.15 0.22 65.1 1.2 1/42392 0.09 0.16 16.7 0.46 1/260 -

Table 5.3: Mean, standard deviation, and skewness comparison for variation setting (2).
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5.7 Conclusions

In this chapter, we have proposed a new method to approximate the max operation of

two non-Gaussian random variables using second-order polynomial fitting. It has been

shown that such approximation is more accurate than the approximation using lin-

ear fitting through tightness probability. By applying such approximation, we present

new SSTA algorithms for three different delay models, i.e., quadratic model, quadratic

model without crossing terms (semi-quadratic model), and linear model. All atomic

operations of these algorithms are performed by closed-form formulas, hence they are

very time efficient. The computational complexity of both the linear delay model and

the semi-quadratic delay model is linear to the number of variation sources, and that

of the quadratic delay model is cubic (third-order) to the number of variation sources.

Moreover, the computational complexity is linear to the circuit size for all three delay

models. The SSTA with semi-quadratic delay model results similar error as the SSTA

using Fourier Series [40] with almost 70X speed up. Moreover, compared to Monte-

Carlo simulation for non-Gaussian variation sources, the SSTA with quadratic delay

model results the error of mean, standard deviation, skewness, and 95-percentile point

is within 1%, 1%, 6%, and 1%, respectively.
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CHAPTER 6

Physically Justifi able Die-Level Modeling of Spatial

Variation in View of Systematic Across-Wafer

Variability

Modeling spatial variation is important for statistical analysis. Most existing works

model spatial variation as spatially correlated random variables. We discuss process

origins of spatial variability, all of which indicate that spatial variation comes from

deterministic across-wafer variation, and purely random spatial variation is not signifi-

cant. We analytically study the impact of across-wafer variation and show how it gives

an appearance of correlation. We have developed a new die-level variation model

considering deterministic across-wafer variation and derived the range of conditions

under which ignoring spatial variation altogether may be acceptable. Experimental

results show that for statistical timing and leakage analysis, our model is within 2%

and 5% error from exact simulation result, respectively, while the error of the existing

distance-based spatial variation model is up to 6.5% and 17%, respectively. Moreover,

our new model is also 6X faster than the spatial variation model for statistical timing

analysis and 7X faster for statistical leakage analysis.
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6.1 Introduction

In Chapter 5, we developed an efficient and accurate SSTA flow in which process

variation is modeled as inter-die, within-die spatial, and within-die random variations.

However, new measurement results show that the variation model in Chapter 5 is not

accurate. Therefore, we developed a more accurate and efficient variation model and

applied it on the SSTA flow presented in Chapter 5.

There are several existing works that focus on analyzing and modeling process

variation [6, 32, 172, 106, 108, 134, 24, 25, 173]. The simplest method models pro-

cess variation as the sum of inter-die (global) variation and independent within-die

(local random) variation [25]. Later, it was observed that within-die variation is spa-

tially correlated and the correlation depends on the distance between two within-die

locations. [6, 32] model spatial variation as correlated random variables, and principle

component analysis is applied to perform statistical timing analysis. In this model, a

chip is divided into several grids and each grid has its own spatial variation. The spatial

variations of different grids are correlated and the correlation coefficient depends on

the distance between two grids. [172, 173] focuses on the extraction of spatial corre-

lation and it models the correlation coefficient as a function of distance. Several more

complex spatial correlation models have been proposed in [45, 105, 189, 55, 64].

In contrast to the spatial correlation models, process oriented modeling has con-

cluded that within-die spatial variation is caused by deterministic across wafer and

across-field variation while purely random within-die spatial variation is not signif-

icant [190, 54, 50]. However, in practical design flow, designers do not know the

within-wafer location or within-field location of each die; therefore, we need to ana-

lyze the impact of across-wafer variation and across-field variation on die-scale. Since

silicon measurements cited in this chapter indicate that across-wafer variation is much

more significant than the across-field variation, we consider only across-wafer varia-
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tion in this chapter, but the approach can be easily extended to account for across-field

variation.

In this chapter, we first analyze the impact of deterministic across-wafer variation

on spatial correlation. We observe that when quadratic across-wafer variation model

is used as in [54, 186, 125]:

1. Different locations of the chip may have different mean and variance. Such

differences increase when the chip size increases.

2. When chip size is small, the correlation coefficients for a certain Euclidean dis-

tance are within a narrow range. This explains why most existing works find that

spatial correlation is a function of distance.

3. Within-die spatial variation is NOT spatially correlated when across-wafer sys-

tematic variation is removed.

4. Within-die spatial variation is NOT independent from inter-die variation.

5. If chip size is not large, the two-level inter-/within-die decomposition of process

variation is still very accurate.

Based on our analysis, we propose three accurate and efficient spatial variation

models considering across-wafer variation. We then apply our new model to the SSTA

flow introduced in Chapter 5. Experimental results show that our model is more accu-

rate and efficient compared to the distance-based spatial variation model in [172, 173].

Compared to the exact simulation, the error of our model for statistical timing anal-

ysis is within 2% and the error for statistical leakage analysis is within 5%. On the

other hand, the error of the distance-based spatial correlation model is up to 6.5% for

statistical timing analysis and up to 17% for statistical leakage analysis. Moreover,
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our model is 6X faster than the distance-based spatial correlation model for statistical

timing analysis and 7X faster for statistical leakage analysis.

The rest of this chapter is organized as follows: Section 6.2 discusses the physical

causes for across-wafer variation; Section 6.3 analyzes the impact of across-wafer

variation on die-scale; Section 6.4 discusses the case when the across-wafer variation

is not a perfect parabola; Section 6.5 introduces the new variation models; the new

models are applied to statistical timing analysis in Section 6.6 and statistical leakage

analysis in Section 6.7; Section 6.8 summarizes the advantages and disadvantages of

different variation models; and finally Section 6.9 concludes this chapter.

6.2 Physical Origins of Spatial Variation

In silicon manufacturing, there are many steps that cause non-uniformity in devices

across the wafer. Interestingly, most of these processes by the very nature of the equip-

ment follow a radially varying trend across the wafer. Most processes are “center-fed”

or “edge-fed” with the boundary conditions at the edge of wafer being substantially

different. Moreover, wafers are often rotated to increase process uniformity across

them which further leads to radial behavior of non-uniformity. This is further exacer-

bated by advent of single-wafer processing for 300mm wafers.

For example, overlay error includes errors in the position and rotation of the wafer

stage during exposure, wafer stage vibration, and the distortion of the wafer with re-

spect to the exposure pattern [139]. Magnification and rotation components of overlay

error increase from center of the wafer outwards.1 During chemical vapor deposition

(CVD) step, species depletion and temperature non-uniformity on the wafer at lower

temperatures may cause thickness non-uniformity [159, 132]. Redeposition effect in
1Overlay error can directly impact critical dimension in double patterning.
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physical vapor deposition (PVD) [27] may cause non-uniformity. Moreover, center

peak shape of the RF electric field distribution [77] also leads to a center peak shape of

etch rate, and chamber wall conditions [78] also cause etch rate non-uniformity. In real

processes, the wafers are rotated to improve uniformity. [78, 27] show that the etch

rate varies radially across the wafer: the etch rate is high at the center of the wafer and

decreases toward the edges. Post-exposure bake (PEB) temperatures are higher at the

center of the wafer and decrease outwards [185]. Similarly, other processes ranging

from resist coat to wafer deformation due to vacuum chuck holding it follow a bowl-

shaped trend across the wafer. All these processes cause a systematic across-wafer

variation in physical dimensions.

Across-wafer variation of gate length observed in several recent silicon measure-

ments [153, 54, 186, 125] validates our arguments. [126] also shows that ring oscillator

frequency and leakage current decrease from the center to the edge of the wafer. Fig-

ure 6.1 shows industry data of ring oscillator frequency for wafers from two different

industry processes. Process 1 is with 45nm technology and process 2 is with 65nm

technology. From the figure, we see that for both process, ring oscillator frequency

decreases from the center to the edge of the wafer. Moreover, it has also been shown

that there is no spatial correlation for threshold voltage variation [190]. Therefore, the

across-wafer frequency and leakage variation is mainly caused by gate length varia-

tion.

It has been shown that for process 1, the across-wafer frequency variation can be

approximated as a quadratic function (a parabola) [126]. For process 2, the across-

wafer variation is not a perfect parabola as process 1. However, it follows a systematic

trend and the ring oscillator frequency decreases from the center to the edge of the

wafer. Since the amount measurement data of for process 2 (more than 300 wafers)

is much more than process 1, in the rest of this chapter, all of our simulation and
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Figure 6.1: Ring oscillator frequency within a wafer. (a) Process 1; (b) Process 2.

experiments are based on the measurement result of process 2.

Besides across-wafer variation, lithography-induced effects such as lens aberra-

tions can lead to systematic across-field variation and across-die variation. Across-die

variation can be modeled as within-die deterministic mean shift and will not cause

within-die spatial correlation. Moreover, silicon measurements cited in this chapter in-

dicate that across-wafer variation is much more significant (probably due to advance-

ments in resolution enhancement and lithographic equipment) than across-field and

across-die variation. Hence, for simplicity, we consider only across-wafer variation in

this chapter.

6.3 Analysis of Wafer Level Variation and Spatial Correlation

To analyze the impact of across-wafer variation on die-scale, we assume the across-

wafer variation to be a quadratic function as in[24, 54, 186, 125]:

vp = ax2w+by2w+ cxw+dyw+mw+m f +md +mr (6.1)
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where vp is a variation source, such as Le f f , a, b, c, and d are function coefficients,

which are obtained from fitting the measurement data from industry process as shown

in Figure 6.1, mw comprises inter-die random, inter-wafer, inter-lot variation and the

fitting error of quadratic fitting as in (6.1); m f and md are the across-field and across-

die variation, respectively, as discussed in Section 6.2, we consider only across-wafer

variation and ignore these two types of variations (m f and md) in this chapter; mr is

the random noise, and (xw,yw) is across-wafer location. In the rest of this section, we

will analyze the spatial variation based on the above model. Table 7.3 summarizes the

mathematical notations used in this section.

We obtain the coefficients of the above across-wafer variation model by fitting the

industrial 65nm process measured ring oscillator delay with 300 wafers from 23 lots.

In the rest of this section, all simulations are based-on this extracted model.

6.3.1 Variation of Mean and Variance with Location

According to (6.1), it is easy to find that for a die, whose center lies on (xc,yc) wafer

coordinates, the variation at location (x,y) in a die (assuming the coordinate of the

center of the die to be (0,0)) is:

vp(x,y) = a(xc+ x′)2+b(yc+ y′)2+ c(xc+ x′)+d(yc+ y′)+mw+mr(x,y) (6.2)

The definitions of (xc,yc) and (x′,y′) are in Table 7.3. In this section, we assume that

a, b, c, and d are fixed for a process. In practice, these coefficients may vary slightly

for wafer-to-wafer or lot-to-lot. We will further discuss this in Section 6.4.

In real design flow, the die location in the wafer (xc,yc) is not known to designers.

We can convert the wafer-level systematic variation model to a die-level model by

noting that the dies are always distributed evenly on the wafer. Therefore, we may

model xc and yc as random variables which are evenly distributed in the center at (0,0)
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Symbols Description

(xc,yc) Location of the center of the die in the wafer

rw wafer radius

mw Inter-die variation

mr Within-die random variation

σ2m Variance of mw

σ2r Variance of mr

a,b,c,d Across-wafer variation coefficients

(lx, ly) x and y dimension die size

(xw,yw) Within-wafer location

(x,y) Within-die location

ω Angle between the die and wafer coordinate

vp(x,y) Variation of within-die location (x,y)

x′ x′ = xcosω+ ysinω

y′ y′ = xsinω− ycosω

l′x l′x = lx cosω+ ly sinω

l′y l′y = lx sinω− ly cosω

x′′ x′′ = ax′ + c/2

y′′ y′′ = by′ +d/2

l′′x l′′x = ax′ + c/2

l′′y l′′y = by′ +d/2

rdµ rdµ =
√
x′′2/a+ y′′2/b

rdσ rdσ =
√
x′′2+ y′′2

δ Euclidean distance between (x′′1 ,y′′1 ) and (x′′2 ,y′′2)

δ=
√

(x′′1 − x′′2)2+(y′′1 − y′′2)2

rm rm =
√
l2x + l2y

r′m r′m =
√
l′2x + l′2y

r′′m r′′m =
√
l′′2x + l′′2y

k0 k0 = r2w(a+b)/4− c2/4a−d2/4b

k1 k1 = r4w(a2+b2)/16− r4wab/24+σ2m

k2 k2 = k1/r2w
α α= x′′1x′′2 + y′′1y′′2
β β= σ2r/r2w

in the wafer s0 s0 = cos2ω(al2x +bl2y )+ sin2ω(bl2x +al2y )

vg Inter-die variation

vs Within-die spatial variation

vl Within-die random variation

Table 6.1: Notations.
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with radius rw (radius of the wafer). It is easy to see that xc and yc are identical and

their PDF is 2:

PDF(xc) = 2
√
r2w− x2c/(πrw) −rw < xc < rw (6.3)

In this case, the variation at location (x,y), vp(x,y), is expressed as a function of

four random variables: xc, yc, mw, and mr(x,y). We may easily calculate the mean and

variance of vp(x,y):

µvp(x,y) = k0+ x′′2/a+ y′′2/b= k0+ r2dµ (6.4)

σ2vp(x,y) = k1+ r2w(x′′2+ y′′2) = k1+σ2r + r2wr2dσ (6.5)

where x′′, y′′, rdµ, rdσ, k0, and k1 are defined in Table 7.3.

From (6.4) and (6.5), it is interesting to note that different die locations may have

different means and variances3. The location (x0,y0) having the smallest mean and

variance is given by:

x0 = −ccosω/2a−d sinω/2b (6.6)

y0 = d cosω/2b− csinω/2a (6.7)

The locations farther off from (x0,y0)will have larger mean and variance. Figures 6.2(a)

and 6.2(b) illustrate the mean and variance of ring oscillator delay for different rdµ (or

rdσ).
2xc and yc are not independent. In order to generate samples of xc and yc, we may assume xc = rs cosθ

and yc = rs sinθ, where rs and θ are independent. rs follows triangle distribution ranging from 0 to rw,
θ follows uniform distribution ranging from 0 to 2π
3Such difference is caused by the nonlinearity of the across-wafer variation function (we assume

quadratic function as in Equation(6.1)). If the across wafer variation function is a piecewise linear
function, the mean and variance will be the same for all locations on a die.
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Figure 6.2: Mean and variance for different rd .

6.3.2 Appearance of Spatial Correlation

Besides mean and variance, we are also interested in the covariance between two loca-

tions (x1,y1) and (x2,y2). From (6.2), we may calculate the covariance as:

Cov= k1+ r2w(x′′1x′′2+ y′′1y′′2) (6.8)

With covariance and variance calculated as above, we may obtain the correlation coef-

ficient as:

ρ=

√
k22+2k2α+α2

(k2+β)2+(r2dσ1+ r2dσ2)(k2+β)+ r2dσ1r
2
dσ2

(6.9)

where α, β, and k2 are defined in Table 7.3. From (6.9), we obtain the upper bound

and lower bound of the correlation coefficient for a certain Euclidean distance:

ρ≤ ρu =

√

1− δ2k2+δβ/2+2βk2+β2

(k2+β)2+2r′′2m (k2+β)+ r′′4m
(6.10)

ρ≥ ρl =

√

1− δ2(k2+ r′′2m −δ2/4+β)+β(2k2+ r′′2m )

(k2+β)2+δ2(k2+β)/2+δ4/16 (6.11)

where δ is the Euclidean distance between (x′′1,y′′1) and (x′′2 ,y′′2), l′′x , l′′y , and r′′m are

defined in Table 7.3. From the upper bound and lower bound, we may also calculate
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the range of correlation coefficient:

ρu−ρl ≤
√
r2m/(r2m+ k2+β) (6.12)

Notice that usually the wafer size is much larger than the die size, that is k2. r2m, there-

fore, the range of correlation coefficient for a certain distance is very small. Moreover,

from the above equation, we also find that when the variances of the inter-die residual

and within-die random variation increase, the range decreases. This explains why most

existing works [172, 173, 45] find that spatial correlation is a function of distance.

Figure 6.3(a) illustrates the exact data for 40 locations, the upper bound and the

lower bound. From the figure, we find that the range of ρ for a certain distance is very

small. Although the correlation coefficient is within a narrow range, covariance is not,

as shown in Figure 6.3(b). This is because of the differences of variance across the die.
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Figure 6.3: Apparent spatial correlation and covariance as a function of distance.

Figure 6.4 shows the correlation coefficient for within-die variation after subtract-

ing the mean variation of the die (mainly caused by across wafer variation) 4. We
4In the figure, the correlation coefficient can be a negative number when distance is large. This is

because after subtracting the mean, when the within-die variation of one corner increases, the within-
die variation of the opposite corner must decrease. That means, the within-die variations of opposite
corners are negative correlated. Moreover even when two locations are very close, if they lie on the
opposite side of the center, their correlation is still near zero.
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observe that the within-die spatial variation is almost NOT spatially correlated, as em-

pirically observed in [172, 173]. This further validates that the spatial variation is

caused by systematic across-wafer variation.
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−0.5
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0.5

1
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Figure 6.4: Correlation coefficient for within-die spatial variation after inter-die varia-

tion is removed.

6.3.3 Dependence between Inter-Die and Within-Die Variation

In most existing variation models, process variation is decomposed into inter-die,

within-die spatial, and within-die random variation:

vp = vg+ vs+ vl (6.13)

where vg is the inter-die variation, vs is the within-die spatial variation, and vl is the

within-die variation. Usually vg is modeled as the variation of the chip mean, vl is the

pure random local variation, and vs is the residual. vg, vs, and vl are assumed to be

independent.

With the variation model in (6.2), we may also calculate the inter-die, within-die

spatial, and within-die random variation. Inter die variation is calculated as the varia-
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tion of the chip mean:

vg =
1
lxly

ZZ

|x|<lx/2
|y|<ly/2

vp(x,y)dxdy

= ax2c +by2c + cxc+dyc+mw+ s0 (6.14)

where s0 is defined in Table 7.3.

Within-die random variation is the local random variation: vl = R, and within-die

spatial variation is calculated as the remaining variation:

vs(x,y) = vp(x,y)− vg− vl

= r2dµ+2ax′xc+2by′yc− s1 (6.15)

where s1 is defined in Table 7.3. From the above equations, we find that both inter-die

and within-die spatial variations are functions of random variables xc and yc. Hence,

we may not decompose process variation into independent inter-die and within-die

spatial variation.

6.3.4 When can Spatial Variation be Ignored?

In this section, we analyze the accuracy of the simple two-level inter-/within-die vari-

ation model for different chip sizes. If we only consider inter-/within-die variation,

we may lump the across-wafer variation into inter-die variation, that is, approximate

the across-wafer variation as a piecewise constant function, as shown in Figure 6.5(a).

To evaluate the impact of the approximation error, we may treat such approximation

error as noise and the process variation as signal; and then evaluate the signal to noise

ratio. In order to do this, we calculate the mean square approximation error and the

total variance of variation. The signal to noise ratio when ignoring the spatial variation
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is given as:

SNR = σ2total/MSE

≈
6abr4w+6(c+d)r2w+σ2M +σ2R
abr2w(l2x + l2y )+2(c+d)lxly

(6.16)

It can be seen that MSE depends on chip size. When chip size is small, MSE is

small. This is because we approximate the across-wafer variation as a piecewise con-

stant function with small steps, hence such approximation is accurate. Figure 6.5(b)

illustrates the SNR for different die sizes. It can be seen that the SNR decreases when

die size increases as expected. We also observe that when chip size (lx and ly) is

smaller than 1cm, the SNR is up to 100. That means, two-level inter-/within-die vari-

ation model is accurate.

Exact
Piecewise

(a) Piecewise constant

0 1 2 3 4 5100
101
102
103
104
105

Chip size (cm)

SN
R

(b) SNR V.S. chip size.

Figure 6.5: Approximating across-wafer variation.

6.4 General Across-Wafer Variation Model

In the previous section, we assumed that the across-wafer variation is a quadratic func-

tion as shown in Equation 6.2. In practice, across-wafer variation may not be an exact
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parabola. Moreover, the across-wafer variation may be slightly different for different

wafers. Therefore, there will be some fitting residual after subtracting the across-wafer

parabola:

v(x,y) = vp+ vr (6.17)

where vp is the quadratic across-wafer variation model as shown in (6.2) and Vr is fit-

ting residual. In the previous section, we assume that the fitting residual is lumped into

inter-die random variation. However, the fitting residual contains not only inter-die

random variation but a systematic trend of within-die variation. Figure 6.6(a) illus-

trates the original delay variation across the wafer, and Figure 6.6(b) illustrates the

fitting residual of a wafer delay variation after subtracting the quadratic across-wafer

variation function. From the figure, we observe that for each die, there is a systematic

trend: If one corner of the die is faster, then the opposite corner is slower. From the

die point of view, such trend will also introduce some spatial correlation. In order to

model this trend, we approximate the fitting residual as a linear function of within-die

location:

vr(x′,y′) = sxx+ syy+m′
w (6.18)

where sx and sy are x-dimension and y-dimension slope of within-die trend, respec-

tively, and m′
w is inter-die part of the residual, which can be lumped into inter-die

random variation. We also find that the trends of within-die variation for each die are

different for different dies. In this case, we may model sx and sy as random variables.

Figure 6.7 illustrates the distribution of sx and sy obtained from measurement data of

process 2. From the figure, we find that both sx and sy are almost uncorrelated and they

both follow Gaussian distribution.

Notice that when we model the fitting residual as a linear within-die variation trend,

two more random variables sx and sy are introduced. This makes the variation model

143



more complicated. When the across-wafer variation is a perfect parabola and the fitting

residual is not significant, we may just lump the fitting residual in to inter-die and

random variation.
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(a) Original delay variation.
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(b) Residual after subtracting

Equation(6.2).
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(c) Residual after subtracting (6.18).

Figure 6.6: Ring oscillator frequency within a wafer.

In addition, we also observe that after subtracting the model of fitting residual in

(6.18), the remaining variation is almost uncorrelated, as illustrated in Figure 6.6(b) 5.
5It seems that there is a systematic within-die variation pattern. In this chapter, we assume that all

this within-die pattern to be independent random variation. In practice, such within-die variation pattern
can be modeled as mean shift.

144



−2 0 2 4 6 8 10 12 14
x 10−4

0

200

400

600

800

1000

1200

1400

1600

1800

 

 

Sx PDF

Gaussian Approx

(a) PDF of Sx

−5 −4 −3 −2 −1 0 1 2 3 4 5
x 10−4

0

500

1000

1500

2000

2500

 

 

Sy PDF

Gaussian Approx

(b) PDF of Sy

Figure 6.7: PDF of Sx and Sy.

Combining (6.18) and (6.2) we obtain a general die-level across-wafer variation

model:

vp(x,y) = a(xc+ x′)2+b(yc+ y′)2+ c(xc+ x′)+

d(yc+ y′)+ sxx+ syy+mw+mr(x,y) (6.19)

6.5 Modeling Spatial Variability

As discussed in Section 6.1, spatial variation largely comes from the deterministic

across-wafer variation. Hence, modeling the within-die variation as spatial-correlated

random variable is not accurate as discussed in Section 6.3.

In this section, we introduce three new spatial variation models considering across-

wafer variation:

• Slop Augmented Across-Wafer variation model (SAAW).

• Quadratic Across-Wafer variation model (QAW).
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• Location Dependent Across-Wafer variation model (LDAW).

In the following of this section, we will discuss these models in detail:

6.5.1 Slope Augmented Across-Wafer Model

(6.19) calculates the variation for a given location (x,y). In the equation, the die lo-

cation (xc,yc) are modeled as random variables and their PDF is shown in Equation

(6.3). (6.19) provides a new spatial variation model. We refer to this new model as

Slope Augmented Across-Wafer variation model (SAAW) .

Notice that in SAAW model, there are only six random variables, inter-die random

variation mw, within-die random variation mr, die location within the wafer xc and yc,

and slope of fitting residual sx and sy. However, for the traditional distance-based spa-

tial variation model, the number of spatial variation sources depends on the number

of grids. Larger chip needs more variables. Therefore, our new model not only mod-

els the across-wafer variation accurately but also is more efficient than the traditional

spatial correlation model.

6.5.2 Quadratic Across-Wafer Model

As discussed in Section 6.4, when the across-wafer variation is a perfect parabola, the

fitting residual is not significant6, we may just lump the fitting residual into inter-die

random variation and simplify (6.19) to (6.2). In this case, there are only four random

variables, xc and yc, mw, and mr. We refer to this model as Quadratic Across-Wafer

variation model (QAW). Since QAW does not consider fitting residual, it is not as

accurate as SAAW.
6For example, process 1 as discussed in Section 6.2.

146



6.5.3 Location Dependent Across-Wafer Model

As discussed in Section 6.3.4, when die size is small enough, applying the two-level

inter-/within-die variationmodel does not introduce much error. However, inter-/within-

die variation model still does not consider the mean and variance difference at different

locations of a chip, as discussed in Section 6.3.1. To further improve the accuracy of

inter-/within-die variation model, we account for this:

v(x,y) ≈m′
d +µvp(x,y)+σvp(x,y)m

′
r(x,y) (6.20)

where m′
d is inter-die variation including inter-lot random, inter-wafer random, inter-

die random, and across-wafer variation;m′
r(x,y) is within-die variation includingwithin-

die random variation and residual of across-wafer variation; µvp(x,y) and σvp are mean

and variance difference at different locations of a chip, which can be calculated from

(6.4) and (6.5). We refer to the above model as Location Dependent Across-Wafer

variation model (LDAW). Notice that in Equation 6.20, µvp(x,y) and σvp(x,y) are de-

terministic value for a certain within-die location (x,y). Therefore, LDAW model has

only two random variables: m′
d and m′

r which is the same as two level inter-/within-

die model. Hence compared to inter-/within-die model, LDAW has similar efficiency

but higher accuracy because LDAW considers mean and variance difference across the

chip while inter-/within-die model does not.

6.6 Application of Spatial Variation Models on Statistical Timing

Analysis

In this section, we apply our across-wafer variation models to statistical static timing

analysis.
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6.6.1 Delay Model

As discussed in Chapter 5, cell delay can be modeled as a quadratic function of vari-

ation sources, as shown in (5.46). For SAAW in (6.19) and QAW (6.2), each variation

source is a quadratic function of random variables. Therefore, by applying SAAW or

QAW on quadratic cell delay model, the cell delay becomes a 4th order function of

random variables. However, our SSTA flow in Chapter 5 can only handle a quadratic

function of random variables. Therefore, we apply the moment matching technique

in the way as Section 5.3 to match the 4th function to a quadratic function of ran-

dom variables by matching the mean and first two order joint moments. And then,

we may apply the quadratic SSTA flow in Section 5.3 to estimate the chip delay vari-

ation. Notice that moment matching approximation is performed only once for all

cells and does not increase the run time of SSTA. LDAW is a linear function of vari-

ation sources. Therefore, when applying LDAW, cell delay is a quadratic function of

random variables, hence quadratic-SSTA can be applied. Moreover, as discussed in

Section 5.6, Semi-quadratic SSTA greatly improves the speed with only a little ac-

curacy loss compared to quadratic SSTA. Therefore, in this application, we may also

ignore the crossing terms and apply semi-quadratic SSTA to improve efficiency.

Sometimes, cell delay model can be simplified as a linear function of variation

sources, as shown in (5.114). In this case, applying SAAW or QAW results in a

quadratic function of random variable and hence quadratic SSTA or semi-quadratic

SSTA can be applied; and applying LDAW results in a linear function of random vari-

ables where linear SSTA can be applied.
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6.6.2 Experimental Result

We have applied our new model to the SSTA flow introduced in Chapter 5. In order

to verify the efficiency and accuracy, three comparison cases are defined: 1) Monte-

Carlo simulation with the exact deterministic across-wafer variation model 7, which

is the golden case for comparison; 2) distance-based spatial correlation model from

[172, 173], which is referred to as SPatial Correlation model (SPC); 3) two-level inter-

/within-die variation model, which is referred to as Inter-/Within-die variation model

(IW).

We apply all the above methods to the ISCAS85 suite of benchmarks in PTM

45nm technology[124]. We assume random placement for ISCAS85 circuits. Since

process variation has smaller impact on interconnect delay than on logic cell delay,

we only consider logic cell delay when calculating the full chip delay variation. In

the experiment, we consider the gate length variation obtained from minimum square

error fitting on the ring oscillator delay from industrial 65nm process (Process 2 as

discussed in Section 6.2) measurement from the model as shown in (6.19). We ob-

tain the across-wafer coefficients a, b, c, and d 8, fitting residual coefficients sx and

sy 9, standard deviation of random inter-wafer, inter-die, and within-die variation as

percentage with respect to the nominal value. Then we assume that the percentages of

all the above coefficients to nominal value are the same at 45nm technology node and

65nm technology node.
7In the simulation, each wafer may have different across-wafer variation which is obtained from

measurement data of process 2. We have simulated 318 wafers correspondent to 318 measured wafers.
8We apply quadratic function to fit the across-wafer variation for each wafer to obtain the fitting

coefficients for each wafer, then use average coefficients of all wafers for our experiment.
9We obtain the slope of fitting residual sx and sy for each chip, and then calculate the mean and

variance of sx and sy for all chips. In the experiment, we assume sx and sy to be Gaussian random
variables with mean and variance obtained from the measurement data.
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6.6.2.1 Full Chip Delay

In the experiment, we assume that the chip size is 2cm×2cm and the wafer radius is

15cm. Since ISCAS85 benchmarks are very small, the impact of spatial variation on

delay is not significant within the circuit. In order to show such impact,we assume the

benchmarks are stretched on a 2cm×2cm chip. In our experiment, for the SPC model,

we divide the chip to 10× 10 = 100 grids. Table 6.2 illustrates the percentage error

of mean (µ), standard deviation (σ), and 95-percentile point (95%) and run time (T) of

different variation models. In the table, we also compared the result of using quadratic

cell delay model (Quad) and linear cell delay model (Lin). We only use quadratic

cell delay model for golden case simulation (exact). The error is calculated as error

of different variation models compared to the golden case simulation. For SAAW and

QAW, we also compare the results of applying quadratic SSTA with crossing terms

(SAAW Quad and QAW Quad) and applying SSTA without crossing terms (SAAW S-

Quad and QAW S-Quad). From the table, we have the following observations:

• Compared to full quadratic SSTA, semi-quadratic SSTA (SSTAwithout crossing

terms) achieves up to 8X speed up with less than 1% accuracy loss.

• SAAW is more accurate than QAW. This is because the fitting residual is signif-

icant for the measurement data, QAW ignores fitting residual and hence intro-

duces more error.

• The error of SAAW using semi-quadratic SSTA is within 2% while the error of

spatial correlation model is up to 6.5%.

• Compared to quadratic cell delay model, linear cell delay has less than 2% ac-

curacy loss. This is because in our experiment, the cell delay variation is well

approximated by a linear function.
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• For linear cell delay model, SAAW achieves about 6X speed up compared to

SPC. This is because there are 100 grids in the spatial correlation model, result-

ing in 37 spatial random variables10, while SAAW has only 6 random variables.

• LDAW and IW are very efficient. However, both model has much larger error

than others. This is because both model ignore correlation. LDAW is signifi-

cantly more accurate than IW with no runtime penalty.

Since linear cell delay model and semi-quadratic SSTA are accurate. In the rest of

this subsection, we assume linear cell delay and apply semi-quadratic SSTA for all

experiments. Moreover, since SAAW is more accurate than QAW with only a small run

time overhead, in the following experiment, we do not consider the QAW model in the

following experiments.

10There are 100 correlated spatial random variables, we apply PCA to truncate some insignificant
principle components and there remains 37 significant principle components.
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In the above experiment, we only considered big chips. As discussed in Sec-

tion 6.3.4, when the chip size is small, the impact on across-wafer variation at die

level is not significant. In order to verify this, we perform delay estimation of IS-

CAS85 benchmarks stretching on different size chips. Table 6.3 shows the percentage

error for different models under different chip size. From the table, we find that when

chip size is small, LDAW and IW are accurate. Considering that LDAW has similar run

time but is more accurate (although when chip size is small, the accuracy improvement

is limited) compared to IW, LDAW is always better than IW.

6.6.2.2 Delay of Blocks on Different Locations on a Chip

The above experiment assumes that the benchmarks are stretched on a chip. How-

ever, in real design, especially for big chips, the design is separated into several blocks

and each block only occupies a small region of a chip. In this case, the critical path

is within a small region instead of spanning all over the chip. As discussed in Sec-

tion 6.3.1, different chip locations may have different mean and variance. Therefore,

when a block is placed at different locations on a chip, its delay variation may be dif-

ferent. In order to show such effect, we assume that the ISCAS85 benchmark circuit

is placed (no stretched) in different locations on a chip: center (C), lower left corner

(LL), lower right corner (LR), upper left corner (UL), and upper right corner (UR),

and then calculate the delay variation with location. Since ISCAS85 benchmarks are

very small, the impact of spatial variation on delay is not significant within the circuit.

Therefore, in this experiment, we only compare two models LDAW and IW11.

Table 6.4 compares the percentage error of LDAW and IW for ISCAS85 bench-

marks placing on different locations on a 2cm×2cm chip. From the table, we find that
11When the circuit is in a small region, SAAW and QAW will give similar result as LDAW, and SPC

will give similar result as IW.
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Bench- delay Exact SAAW Quad SAAW S-Quad QAW Quad QAW S-Quad LDAW∗ SPC∗ IW∗

mark model µ σ 95% µ σ 95% T µ σ 95% T µ σ 95% T µ σ 95% T µ σ 95% T µ σ 95% T µ σ 95% T

c1908 Quad 17.6 2.27 24.5 -0.4 -0.9 -1.0 146 -0.9 -1.7 -1.7 27 -0.8 -1.9 -2.3 54 -1.3 -2.5 -3.2 19 -2.1 -7.5 -6.9 9 -1.5 -4.2 -3.8 1450 -2.6 -10.2 -8.9 8

Lin - - - -0.8 -1.5 -1.4 150 -1.4 -1.8 -2.0 26 -0.9 -3.6 -3.1 53 -1.2 -3.4 -3.9 18 -2.6 -7.5 -8.1 10 -2.1 -4.4 -4.0 135 -3.0 -11.5 -10.3 10

c3540 Quad 25.7 3.43 34.5 +0.4 +0.9 +0.7 212 -0.4 -1.3 -1.1 36 +0.4 -1.8 -1.2 76 -0.9 -2.1 -1.9 25 +0.4 -5.8 -4.6 13 -1.2 -4.8 -4.0 4210 -1.4 -7.3 -6.5 12

Lin - - - -0.6 -1.2 -1.2 209 -1.1 -1.9 -1.6 35 -0.9 -3.6 -3.1 77 -1.2 -5.1 -3.9 27 -1.8 -6.5 -6.0 9 -2.0 -6.5 -5.7 202 -2.9 -9.3 -8.8 10

c7552 Quad 48.9 6.47 64.7 -0.6 +0.3 +0.2 435 -0.8 -0.2 -0.9 67 -0.8 -1.6 -1.4 115 -1.6 -1.5 -1.7 48 -2.7 -3.6 -4.0 20 -1.0 -2.3 -2.9 8182 -2.1 -6.7 -6.5 22

Lin - - - -0.6 -0.5 -0.6 430 -1.5 -1.4 -1.6 101 -1.1 -1.3 -1.4 109 -1.9 -2.2 -2.8 79 -3.3 -4.6 -4.9 16 -3.3 -3.5 -4.3 433 -3.9 -8.9 -8.2 15

Table 6.2: Delay percentage error for different variation models. Note: the µ, σ, and 95-percentile point for exact simulation

is in ns. Run time (T) is in ms. ∗ for LDAW, SPC, and IW, linear SSTA is applied when assuming linear cell delay model.
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Bench- Chip Exact SAAW LDAW SPC IW

mark size µ σ 95% µ σ 95% µ σ 95% µ σ 95% µ σ 95%

c1908 10 17.4 2.24 24.2 -1.2 -1.8 -1.9 -2.2 -5.5 -5.9 -1.7 -3.5 -3.3 -2.5 -6.8 -7.1

6 17.5 2.23 24.3 -1.1 -1.5 -1.6 -2.2 -4.1 -4.2 -1.2 -2.6 -2.4 -2.2 -4.5 -4.3

3 17.6 2.22 24.4 -0.9 -1.2 -1.1 -1.1 -1.8 -1.6 -1.0 -1.5 -1.5 -1.9 -2.1 -2.5

c3540 10 25.6 3.42 34.6 -1.0 -2.2 -1.6 -1.4 -6.2 -4.9 -1.8 -5.4 -4.8 -2.2 -7.5 -6.9

6 25.8 3.45 34.3 -0.8 -1.2 -1.0 -1.2 -3.8 -3.3 -1.5 -3.4 -3.0 -1.3 -4.2 -3.7

3 25.8 3.44 34.4 -0.5 -1.0 -1.0 -1.1 -2.1 -2.0 -1.0 -1.9 -1.9 -1.1 -2.2 -2.3

c7552 10 48.9 6.47 64.7 -1.2 -1.1 -1.4 -2.8 -3.5 -3.7 -2.5 -2.2 -2.7 -3.2 -5.6 -6.3

6 48.9 6.47 64.7 -1.0 -1.1 -1.3 -1.4 -2.5 -2.3 -2.2 -2.1 -2.5 -2.9 -3.1 -3.3

3 48.9 6.47 64.7 -0.6 -0.9 -1.0 -1.0 -1.1 -1.2 -0.9 -1.3 -1.4 -1.3 -1.4 -1.6

Table 6.3: percentage error for ISCAS85 benchmark stretching on a chip with different

chip size. Note: We assume square chips and chip size means edge length in mm. The

values of exact simulation are in ns.

the estimation of LDAW is within 1% error from the exact simulation and the error of

IW is up to 8%. This is because LDAW predicts different mean and variance for dif-

ferent location correctly, as discussed in Section 6.5 while IW can only give the same

mean and variance for all locations.

Table 6.5, 6.6, and 6.7 shows percentage error of LDAW and IW for ISCAS85

benchmarks placing on different locations on a 1cm×1cm, 6mm×6mm, and 3mm×3mm

chip, respectively. From the tables, we find that the error of IW becomes smaller when

chip size is small.
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bench loca- Exact LDAW IW

mark tion µ σ 95% µ σ 95% µ σ 95%

c3540 C 25.4 3.29 32.2 +0.4 +0.3 +0.3 +1.1 +2.4 +2.8

LL 24.8 3.22 31.9 +0.8 +0.6 +0.3 +3.5 +1.4 +1.9

LR 26.2 3.35 33.1 -0.7 +0.6 -0.6 -1.9 -2.4 -1.8

UL 26.5 3.36 33.3 -0.2 +0.3 +0.3 -3.3 -3.0 -4.4

UR 27.1 3.41 34.1 -0.3 -0.3 -0.6 -6.1 -4.1 -5.2

c7552 C 48.2 6.37 60.2 +0.8 +0.3 +0.2 +1.0 +0.9 +0.9

LL 47.2 6.11 58.5 +0.4 +0.3 +0.7 +3.6 +4.6 +3.1

LR 49.4 6.51 62.3 -0.2 +0.3 +0.3 -0.8 -1.9 -3.0

UL 49.5 6.65 63.1 -0.2 +0.1 +0.1 -1.0 -4.0 -4.1

UR 50.1 6.91 65.3 -0.4 +0.3 +0.1 -1.0 -7.4 -7.4

Table 6.4: Delay percentage error at different locations in a 2cm× 2cm chip. Note:

The values of exact simulation are in ns.

bench loca- Exact LDAW IW

mark tion µ σ 95% µ σ 95% µ σ 95%

c3540 C 25.4 3.26 31.9 +0.5 +0.4 +0.2 +1.3 +1.6 +1.9

LL 25.0 3.25 31.6 +0.5 +0.3 +0.3 +2.4 +1.3 +2.4

LR 25.8 3.30 32.4 -0.4 -0.4 -0.4 -1.1 -0.9 -0.8

UL 26.1 3.32 32.6 -0.4 +0.3 -0.2 -2.0 -1.5 -1.4

UR 26.2 3.34 33.0 -0.3 -0.3 -0.6 -2.6 -1.8 -2.2

c7552 C 48.6 6.38 60.4 +0.2 -0.1 -0.2 +1.0 +0.5 +0.6

LL 48.2 6.35 60.3 -0.2 -0.2 +0.2 +1.7 +1.0 +1.1

LR 48.9 6.42 60.4 +0.2 -0.2 +0.2 -0.2 -0.7 -0.5

UL 49.1 6.43 61.0 -0.2 -0.2 -0.2 -0.9 +1.0 -1.3

UR 49.2 6.45 61.2 -0.3 -0.4 -0.5 -1.1 -1.4 -1.8

Table 6.5: Delay comparison for ISCAS85 benchmark in 1cm×1cm chip. Note: The

values of exact simulation are in ns.
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bench loca- Exact LDAW IW

mark tion µ σ 95% µ σ 95% µ σ 95%

c3540 C 25.5 3.27 32.0 +0.4 +0.2 +0.3 +0.9 +0.7 +1.4

LL 25.1 3.25 31.7 +0.5 +0.3 +0.3 +2.4 +1.3 +2.4

LR 26.0 3.32 32.6 -0.4 -0.4 -0.4 -1.1 -0.9 -0.8

UL 26.2 3.34 32.8 -0.4 +0.3 -0.2 -2.0 -1.5 -1.4

UR 26.3 3.35 33.1 -0.3 -0.3 -0.6 -2.6 -1.8 -2.2

c7552 C 48.4 6.37 60.1 +0.2 -0.1 -0.2 +1.0 +0.5 +0.6

LL 48.1 6.34 59.9 -0.2 -0.2 +0.2 +1.7 +1.0 +1.1

LR 49.0 6.43 60.7 +0.2 -0.2 +0.2 -0.2 -0.7 -0.5

UL 49.3 6.46 61.3 -0.2 -0.2 -0.2 -0.9 +1.0 -1.3

UR 49.4 6.48 61.5 -0.3 -0.4 -0.5 -1.1 -1.4 -1.8

Table 6.6: Delay comparison for ISCAS85 benchmark in 6mm×6mm chip. Note: The

values of exact simulation are in ns.

bench loca- Exact LDAW IW

mark tion µ σ 95% µ σ 95% µ σ 95%

c3540 C 25.6 3.28 32.2 +0.4 +0.2 +0.3 +0.5 +0.3 +0.8

LL 25.4 3.26 320 +0.5 +0.6 +0.3 +1.2 +1.0 +1.2

LR 25.8 3.31 32.4 -0.2 -0.4 -0.6 -0.5 -0.7 -0.7

UL 25.9 3.22 32.5 -0.2 +0.3 -0.2 -1.0 -1.1 -0.9

UR 26.0 3.31 32.7 -0.2 -0.2 -0.3 -0.7 -0.8 -1.1

c7552 C 48.6 6.38 60.3 +0.2 -0.3 +0.7 +0.2 +0.5 +1.1

LL 48.4 6.37 60.1 -0.2 0.1 +0.2 +0.4 +0.3 +0.7

LR 48.8 6.42 60.6 +0.2 -0.3 +0.3 -0.6 -0.9 -0.5

UL 48.9 6.43 60.9 -0.2 +0.2 -0.2 -0.4 +0.0 -0.6

UR 49.2 6.45 61.2 -0.2 -0.2 -0.3 -0.7 -0.8 -1.1

Table 6.7: Delay comparison for ISCAS85 benchmark in 3mm×3mm chip. Note: The

values of exact simulation are in ns.
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6.7 Application of Spatial VariationModels on Statistical Leakage

Analysis

Besides SSTA, we also apply our variation model to statistical leakage power analysis.

Usually, cell leakage power variation is modeled as exponential function of variation

sources:

Pleak = P0 · e∑ciVi (6.21)

where P0 is the nominal leakage power and ci’s are sensitivity coefficients. The full

chip leakage power is calculated as the sum of leakage power of all cells:

Pchip = ∑
i∈Cell

Pi,leak (6.22)

where Cell is the set of all cells in the chip and Pi,leak is leakage power of the ith

cell. Since each variation source is a quadratic function as in (6.19), the cell leakage

power is an exponential of a quadratic function of random variables. Considering

that the random variables may be non-Gaussian, there is no closed-form equation to

calculate the full chip leakage power. Therefore, in this chapter, we apply Monte-Carlo

simulation to obtain the full chip leakage power variation.

We have implemented leakage variation analysis with different models in Matlab.

In the experiment, we use the same setting and comparison cases as the SSTA exper-

iment in Section 6.6. For each variation model, we use 100,000 sample Monte-Carlo

simulation to obtain the full chip leakage power for all variation models. For the leak-

age analysis, we assume that 900 copies of ISCAS benchmark circuits are placed in

a 30× 30 array on a 2cm×2cm chip. Table 6.8 compares the leakage variation for

ISCAS85 benchmarks. From the table, we observe that:

• Error of SAAW is within 5% while error of SPC is up to 17%. Moreover, SAAW

is 7X faster than SPC because there are fewer random variables for SAAW.
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Bench- Exact SAAW QAW LDAW SPC IW

mark µ σ 95% µ σ 95% T µ σ 95% T µ σ 95% T µ σ 95% T µ σ 95% T

c1355 62.1 14.5 92.5 +1.5 +3.3 +3.2 16.3 +3.4 +6.5 +5.4 9.8 -5.5 -15.6 -16.9 2.5 +5.3 +10.4 +12.2 123 -7.9 -19.6 -20.9 2.7

c1908 95.6 20.3 144 +0.9 +4.4 +3.7 15.5 +2.3 +7.8 +6.3 9.7 -6.5 -17.8 -19.6 2.6 +5.7 +14.8 +14.3 122 -8.6 -19.2 -23.5 2.9

c2670 131 22.9 181 +1.4 +2.7 +1.7 15.7 +2.9 +8.5 +4.7 9.5 -7.9 -16.9 -22.0 2.8 +6.8 +12.2 +9.4 122 -9.2 -20.3 -25.5 2.4

c3540 201 37.4 282 +1.5 +2.3 +1.8 15.4 +3.1 +5.8 +4.4 10.4 -5.6 -16.5 -20.2 2.6 +4.9 +11.2 +8.2 123 -8.3 -18.2 -23.5 2.7

c7552 403 73.2 562 +1.6 +2.7 +1.9 15.3 +3.7 +6.0 +5.0 10.1 -7.3 -12.6 -16.9 2.6 +7.1 +13.8 +10.7 122 -9.2 -20.3 -24.5 2.5

Table 6.8: Leakage error percentage for different models in 2cm× 2cm chip. Note:

The exact values are in mW . Run time (T) is in s.

• SAAW is more accurate than QAW, but is about 50% slower.

• Both LDAW and IW are not accurate. This is because both these models do not

consider correlation and hence under estimate the leakage power variation.

Similar to SSTA, for leakage variation analysis, we also perform leakage esti-

mation in different size chips: 1cm×1cm, 6mm×6mm, and 3mm×3mm. For the

1cm×1cm chip, we assume that 225 copies of ISCAS85 benchmark circuits are placed

in a 15×15 array, for the 6mm×6mm chip, we assume 100 copies of ISCAS85 bench-

mark circuits are placed in a 10×10 array, and for the 3mm×3mm chip, we assume

25 copies of ISCAS benchmark circuits are placed in a 5× 5 array. Table 6.9 shows

the error percentage for different model on different size chips. From the table, we

find that the error of LDAW, SPC, and IW reduces when chip size becomes smaller as

expected.
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Bench- Chip Exact SAAW LDAW SPC IW

mark size µ σ 95% µ σ 95% µ σ 95% µ σ 95% µ σ 95%

c1355 10 15.4 3.52 23.2 +1.2 +3.1 +3.0 -4.7 -10.6 -11.2 +4.8 +7.5 +9.2 -5.4 -12.3 -13.8

6 5.92 1.62 10.3 +1.0 +2.7 +2.9 -3.5 -7.5 -8.3 +2.7 +6.2 +6.7 -3.9 -8.1 -9.2

3 1.48 0.40 2.58 +0.6 +1.8 +2.0 -1.8 -3.5 -3.7 +1.6 +2.9 +3.1 -2.0 -3.5 -4.0

c1908 10 23.9 5.7 36.1 +1.0 +2.7 +2.9 -4.2 -12.3 -14.1 +3.7 +8.5 +9.2 -5.5 -13.9 -15.1

6 10.6 2.25 16.1 +0.9 +2.0 +2.1 -3.4 -7.3 -8.2 +1.9 +5.6 +6.8 -3.5 -7.3 -9.0

3 2.65 0.57 4.03 +1.0 +2.2 +2.2 -1.3 -3.5 -4.0 +1.2 +2.9 +3.1 -1.9 -4.0 -4.4

c2670 10 32.8 5.72 45.2 +1.2 +2.8 +2.9 -5.3 -11.1 -14.0 +4.2 +8.2 +9.1 -6.5 -12.3 -17.1

6 14.6 2.55 20.1 +1.0 +1.8 +1.9 -3.5 -6.2 -7.1 +2.4 +4.3 +6.0 -4.3 -7.1 -8.3

3 3.65 0.65 5.03 +0.8 +1.4 +1.7 -1.9 -3.2 -3.7 +2.0 +3.6 +3.5 -2.2 -4.5 -5.1

c3540 10 50.5 9.37 71.1 +1.2 +1.8 +2.1 -3.9 -7.8 -10.5 +2.9 +5.3 +6.2 -5.0 -9.6 -14.5

6 22.3 4.16 30.2 +1.0 +1.4 +1.7 -2.3 -4.5 -5.5 +1.8 +3.5 +3.6 -3.4 -6.1 -8.5

3 5.58 1.05 7.55 +0.9 +1.2 +1.4 -1.2 -3.1 -3.0 +1.0 +1.4 +2.0 -1.4 -3.4 -3.9

c7552 10 102 18.5 141 +1.4 +2.3 +2.4 -4.6 -7.3 -9.9 +4.0 +6.2 +8.6 -6.3 -8.2 -12.5

6 45.0 8.19 6.26 +1.2 +1.9 +1.9 -3.0 -5.2 -7.3 +2.7 +4.2 +5.1 -3.5 -6.0 -8.2

3 11.4 2.06 1.58 +0.9 +0.7 +1.3 -1.2 -1.8 -2.0 +1.5 +1.6 +1.6 -2.3 -2.9 -3.4

Table 6.9: Leakage error for different variation model on different size chips. Note:

exact values are in mW .

6.8 Summary of Different Models

In previous sections, we compared the accuracy and efficiency of different models.

Table 6.10 summarizes the advantages and disadvantages of our proposed spatial vari-

ation models (SAAW, QAW, and LDAW), and the traditional variation models (SPC

and IW). Our proposed across-wafer variation models exactly model the across-wafer

variation and the number of random variables does not depend on chip size. Therefore

they are accurate and efficient. SAAW has six random variables and it can be applied to

any across-wafer variation models. QAW has four random variables, hence it is more

efficient than SAAW. However, it can be applied only when the across-wafer variation

is a perfect parabola. LDAW is the most efficient, ignores correlation and only works

for small chips. Moreover, SAAW and QAW need to know the across-wafer variation,

therefore, one needs to track the die locations within the wafer to build up the model.
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On the other hand, the traditional variation models (as well as LDAW) only require

measurement on a die without tracking die locations. Therefore, they are somewhat

easier to build. However, such models are not accurate compared to our proposed

models. Moreover, for SPC, since the number of random variables depends on number

of grids, it is not as efficient as our proposed models.
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Model Type Advantages Disadvantages Models # of RVs Case to Apply

Across- Accurate Need die tracking SAAW Equ(6.19) 6 large chip, non-parabola across-wafer variation

wafer Efficient to extract QAW Equ (6.2) 4 large chip, parabola across-wafer variation

models LDAW Equ (6.20) 2 small chip

Traditional Easy to Not SPC Depend on # of grids large chip

models extract accurate IW 2 small chip

Table 6.10: Summary of different variation models.
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6.9 Conclusions

In this chapter, we analytically study the impact of systematic across-wafer variation

on within-die spatial variation. For simplicity, we assume that across-wafer variation is

a quadratic function. We first observe that different locations of a chip may have differ-

ent means and variances and such difference becomes more significant when chip size

increases. Secondly, we find that spatial correlation is visible only when the across

wafer systematic is not taken into account. When it is taken into account, we show

that within-die random variability does not exhibit a strong or useful pattern of spatial

correlation. We exploited these observations in order to create a much more accurate

and efficient model for performance variability prediction. Thirdly, we find that the

within-die spatial variation is NOT independent of the inter-die variation. However,

when chip size is small enough, such dependence is weak and the across-wafer varia-

tion can be lumped in to inter-die variation. In this case, the two level inter-/within-die

variation model is still accurate. Later, we also analyze the case when the across-wafer

is not a perfect quadratic function. Based on the above analysis, we have proposed

an accurate and efficient variation model for deterministic across wafer variation. We

further apply our new variation model to two applications: statistical static timing anal-

ysis and statistical leakage analysis. Experimental result shows that compared to the

distance-based spatial variation model, our new model reduces the error from 6.5%

to 2% for statistical timing analysis and reduces error from 17% to 5% for statistical

leakage analysis. Our model also improves the run time by 6X for statistical timing

analysis and by 7X for statistical leakage analysis.
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CHAPTER 7

On Confi dence in Characterization and Application of

Variation Models

In this chapter we study statistics of statistics. Statistical modeling and analysis have

become the mainstay of modern design-manufacturing flows. Most analysis tech-

niques assume that the statistical variation models are reliable. However, due to limited

number of samples (especially in the case of lot-to-lot variation), calibrated models

have low degree of confidence. The problem is further exacerbated when production

volumes are low (≤ 65 lots) causing additional loss of confidence in statistical analysis

(since production only sees a small snapshot of the entire distribution). The problem

of confidence in statistical analysis is going to be further worsened with advent of

450mm wafers. We mathematically derive confidence intervals for commonly used

statistical measures (mean, variance, percentile corner) and analysis (SPICE corner

extraction, statistical timing). Our estimates are within 2% of simulated confidence

values. Our experiments (with variability assumptions derived from test silicon data

from a 45nm industrial process) indicate that for moderate characterization volumes

(10 lots) and low-to-medium production volumes (15 lots), a significant guardband

(e.g., 34.7% of standard deviation for single parameter corner, 38.7% of standard de-

viation for SPICE corner, and 52% of standard deviation for 95-percentile point of

circuit delay are needed) to ensure 95% confidence in the results. The guardbands are

non-negligible for all cases when either production or characterization volume is not
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large. We also study the interesting one production lot case which may be common for

prototyping as well as for academic designs. The proposed methods are not runtime-

intensive (always within 10s) as they require Monte-Carlo simulations on closed form

expressions.

7.1 Introduction

In process variation modeling, analysis or optimization, statistical characteristics of

variation sources, such as mean, variance, and skewness, are often assumed to be

known and reliable.

In practice, the statistical characteristics of the variation sources are obtained from

measurement of a set of samples. Due to limited number of measurements, the mea-

sured statistical characteristics may be unreliable. This is especially true for lot-to-lot

variation, since the number of lots measured for characterization is usually small.

Moreover, the existing statistical analysis, implicitly assume that the production

chips have the same statistical characteristics as the corresponding population values1.

When the number of production samples is not small, the production statistical char-

acteristics may significantly deviate from their population values. Therefore, the un-

certainty in statistics of measured data as well as production data should be considered

in statistical analysis. [177] models the uncertainty of mean, variance, and correlation

coefficients as an interval, and then estimates the range of mean and variance of circuit

performance. However, this work only models the uncertainty as an interval, ignoring

their true distributions. It also ignores the uncertainty introduced by limited number of

production lots.

Before we move further, it is important to briefly review the concept of confidence
1Here by “population”, we mean the statistical values in the case of infinite measured as well as

production samples.
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intervals in statistical analysis. Consider a standard normal random variable X , we

choose n samples of it (X1,X2, . . . ,Xn). Once the samples are chosen, the sample mean

µ̂ and variance σ̂2 are fixed. However, if we repeatedly choose n samples for 1,000

times, and calculate the sample mean and variance for each time, the results may dif-

fer. When the sample mean is smaller than a certain value µcon f in 900 out of the 1000

runs, we say that we have 90% confidence that the sample mean is smaller than µcon f .

Notice that the confidence is not yield but the probability that certain statistical char-

acteristic is within a given interval. Once chips are produced, the distribution of (say)

circuit delay is fixed. But due to the uncertainty of the statistical model, we do not

know exactly the production mean and variance prior. For a given confidence, one can

estimate the distribution of mean and variance (of course the actual mean and variance

are going to be just one sample out of these distributions).

In this chapter, we study the uncertainty of statistical models and analyze the im-

pact of such uncertainty on statistical analysis. The contributions of this chapter are:

1. Given the number of measured lots and the number of production lots,we esti-

mate the distribution of the production mean and variance of variation sources.

2. For a given confidence level, we estimate the worst case fast/slow corner (µ±kσ

corner) for variation sources.

3. We extend the ideas to extract SPICE corners depending on desired confidence

level as well as number of measured/produced silicon lots.

4. We estimate the confidence interval of mean, variance and quantile for statistical

timing analysis.

Experimental results show that the required guardband (to reach desired confidence)

estimated by our method is very close to the exact simulation value. We also observe
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that the guardband value increases dramatically when confidence level increases. We

need to introduce up to 30% guardband value to achieve 95% confidence.

The rest of this chapter is organized as follows: Section 7.2 gives the problem

formulation; then Section 7.3 studies the confidence interval estimation for variation

sources; Section 7.4 presents the estimation of worst case delay for SPICE corner

estimation and Section 7.5 analyzes the impact of mean and variance uncertainty on

statistical timing analysis; Section 7.6 discusses how to choose confidence level in real

circuit design; and finally Section 7.7 concludes this chapter.

7.2 Problem Formulation

Process variation is decomposed into inter-lot (Vl), inter-wafer(Vw), inter-die (Vd), and

within-die (Vr) variation:

V =Vl +Vw+Vd +Vr (7.1)

µV = µl +µw+µd +µr (7.2)

σ2V = σ2l +σ2w+σ2d +σ2r (7.3)

where µl (σ2l ), µw (σ2w), µd (σ2d), and µr (σ2r ) are means (variances) of inter-lot, inter-

wafer, inter-die, and within-die variations, respectively. It has been shown that in case

of finite number of samples the sample mean follows Gaussian distribution and the

sample variance follow χ2 distribution [4]. The variances of the means and variances

are:

σ2µl = σ2l /Nl (7.4)

σ2σ2l
= σ2l /Nl (7.5)

σ2µw = σ2w/Nw (7.6)

σ2σ2w = σ2w/Nw (7.7)
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σ2µd = σ2d/Nd (7.8)

σ2σ2d
= σ2d/Nd (7.9)

σ2µr = σ2r/Nr (7.10)

σ2σ2r = σ2r/Nr (7.11)

where Nl , Nw, Nd , and Nr are total number of lots, wafers, dies, and circuit el-

ements. There are usually 20 to 50 wafers per lot, more than one hundred dies per

wafer, and tens of measured circuit elements within each die2. Therefore, Nr . Nd .

Nw . Nl. Hence σ2µl . σ2µw . σ2µd . σ2µr, σ2σ2l . σ2σ2w
. σ2

σ2d
. σ2σ2r

. Therefore, the

uncertainty of mean and variance comes largely from lot-to-lot variation. Hence in this

chapter, we focus our attention on lot-to-lot variation.

Table 7.1 illustrates five cases of number of measured lots and number of produc-

tion lots.When the number of measured lots or production lots is small, the confidence

interval is large and hence statistical analysis is not reliable. In this case, we may want

to guardband statistical analysis to ensure a certain degree of confidence. Example use

models for these different scenarios can be: commodity process/high volume part (L-

L); niche process/high column part (S-L); commodity process/niche part (L-S); niche

process/niche part (S-S); and commodity (or niche) process/prototyping (L-1).

In practice, only the measured as opposed to the population value is known. There-

fore, our the problem is:

Given the number of measured lots and production lots and the measured

values of mean and variance of variation sources, estimate the distribution of

statistical measures of production lots.

In rest of the chapter, we assume that the lot-to-lot variation of all the variation

sources follows Gaussian distribution.
2Note that 85 lots of 25 300mmwafers each with die-size of 100mm2 amounts to production volume

of 1.5 million chips.

167



Case # Measured # Production Confidence Reliability of

lots lots interval Statistical analysis

L-L Large Large Small High

S-L Small Large Large Low

L-S Large Small Large Low

S-S Small Small Large Low

L-1 Any 1 Large Low

Table 7.1: Reliability of statistical analysis for different number of measured and pro-

duction lots.

7.3 Confi dence Interval for Variation Sources

In this section, we will discuss confidence interval estimation for a single variation

source. Table 7.3 summarizes the notation used in the rest of the chapter.

7.3.1 Mean and Variance

Let’s first discuss the mean and variance. From (7.1), we calculate the total mean and

variance of measured value as:

µ̂t = µ̂l +µo (7.12)

σ̂2t = σ̂2l +σ2o (7.13)

As discussed in Section 7.2, the uncertainty of mean and variance comes largely from

lot-to-lot variation. Therefore, we assume the mean µo and variance σ2o of all other

variation are reliable. In the same way as above, we calculate the total mean and

variance of the production as:

µ̃t = µ̃l +µo (7.14)

σ̃2t = σ̃2l +σ2o (7.15)

In the rest of this subsection, we will focus on analyzing confidence interval for lot-to-

lot variation.
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n number of lots

µ, σ2 mean and variance

cn f/s fast/slow corner

no hat population value (µ, σ2 and so on)

ˆ value obtain from measured lots (n̂, µ̂, and so on)

˜ value of production lots (ñ, µ̃, and so on)

!t total value including inter-lot, inter-wafer, inter-die and

within-die variation (µt , σ2t , and so on)

!l inter-lot variation value (µl , σ2l , and so on)

!w inter-wafer variation value (µw, σ2w, and so on)

!d inter-die variation value (µd , σ2d , and so on)

!r within-die variation value (µr , σ2r , and so on)

!o total value except inter-lot variation (µo, σ2o, and so on)

µo = µw +µd +µr, σ2o = σ2w +σ2d +σ2r

Table 7.2: Notations.

In order to estimate the confidence interval, we first estimate the population values

of mean and variance from measurement data [4]:

µl = µ̂l + σ̂l ·M1 ·

√
n̂−1
n̂Q1

(7.16)

σ2l = (n̂−1)σ̂2l /Q1 (7.17)

whereM1 ∼ N(0,1) is a random variable with standard normal distribution, and Q1 ∼

χ2n̂−1 is a random variable with χ2 distribution with n̂− 1 degrees of freedom [4].

Then, we estimate the production mean and variance with respect to population mean

and variance:

µ̃l = µl +σl ·M2/
√
ñ (7.18)

σ̃2l = σ2l ·Q2/(ñ−1) (7.19)

where M2 ∼ N(0,1) is a random variable with standard normal distribution and Q2 ∼

χ2ñ−1 is a random variable with χ2 distribution with ñ−1 degrees of freedom. Finally,
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we obtain the production mean and variance as:

µ̃l = µ̂l + σ̂l ·

√
n̂−1
Q1

(M1√
n̂

+
M2√
ñ
)

= µ̂l + σ̂lηT (7.20)

σ̃2l = σ̂2l ·
Q2(n̂−1)
Q1(ñ−1)

= σ̂2l ·ζ
2 ·U (7.21)

where

η =

√
n̂+ ñ
n̂ñ

(7.22)

ζ =

√
n̂−1
ñ−1 (7.23)

T =

√
n̂−1(

√
ñM1+

√
n̂M2)√

(n̂+ ñ)Q1
(7.24)

U =
Q2
Q1

(7.25)

It is easy to find that:
√
ñM1+

√
n̂M2√

n̂+ñ ∼ N(0,1), hence, T is the ratio between a standard

normal random variable and square root of a χ2 random variable. Therefore, T is a

random variable with t-distribution with n̂ degrees of freedom [4]. Moreover,U is the

ratio of two χ2 random variables. The PDF ofU is [4]:

PDFU(u) =
Γ( n̂+ñ2 −1)u n̂

2−1

Γ( n̂2)Γ( ñ2)(u+1) n̂+ñ2
(7.26)

where Γ(·) is Gamma function [4] which is calculated as:

Γ(x) =
Z ∞

0
tx−1e−tdt (7.27)

7.3.2 Simplifying the Large Lot Case

In the previous subsection, we analyzed the case when both n̂ and ñ are small (S-S

case). We may simplify our model when either n̂ or ñ is large.

When the number of measured lots n̂ is large (L-S case), we can approximate the
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population mean and variance as measured mean and variance:

µl ≈ µ̂l (7.28)

σ2l ≈ σ̂2l (7.29)

In this case, (7.20) and (7.21) can be simplified to:

µ̃l = µ̂l + σ̂l ·M2/
√
ñ (7.30)

σ̃2l = σ̂2l ·Q2/(ñ−1) (7.31)

In the other case when the number of production lots ñ is large (L-S case), the

production values of mean and variance are very close to the population value, i.e.:

µ̃l ≈ µl (7.32)

σ̃2l ≈ σ2l (7.33)

Therefore, (7.20) and (7.21) can be simplified to:

µ̃l = µ̂l + σ̂lM1 ·

√
n̂−1
n̂Q1

(7.34)

σ̃2l = (n̂−1)σ̂2l /Q1 (7.35)

7.3.3 One Production Lot Case

Besides S-S, L-S, and S-L cases, we also consider the special case of one production

lot (L-1 case), that is ñ = 1. In this case, production mean still follows the same

distribution as shown in (7.20) and (7.21). However, since there is only one lot, lot-to-

lot variation has no impact on variance. Uncertainty of variance estimation is mainly

caused by wafer-to-wafer variation. Hence, in this case, the production variance is

calculated as:

σ̃2t = σ̂2w ·Q′
2/(ñ′−1)+σ2d +σ2r (7.36)
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Targeted conf.% 50 60 70 80 90

Measured conf.% 51.72 60.34 72.41 81.03 93.10

Table 7.3: Experimental validation of estimation of confidence interval for mean for

n̂= 5 and ñ= 1.

where ñ′ is number of production wafers, Q′
2 is a χ2 random variable with ñ′−1 free-

dom, and σ̂2w is the measured variance of wafer-to-wafer variation.

7.3.4 Experimental Validation for One Lot Case

The problems in validation of the confidence-based guardband models proposed in this

work should be obvious by now. We need exceedingly large amounts of data spread

out over hundreds of lots preferably over multiple independent designs. Fortunately,

the mathematical derivations in this work make very few approximations if any. Nev-

ertheless, in this section we try to validate the theory above for the case with small

number of measured lots and one production lot. To get over the hurdle of huge data

requirement, we use wafer-to-wafer variation instead of lot-to-lot variation.

We obtain wafer-to-wafer ring oscillator delay variation data from an industrial

65nm process with 348 wafers spread over 23 lots. We randomly divide these wafers

into 58 sets with 6 wafers per set. We model each set as a design and assume that 5 of

the wafers are used to generate the statistical model (n̂= 5) and the other wafer is the

production wafer (ñ = 1). For each set we apply (7.20) to estimate the distribution of

production mean and calculate the confidence interval for a targeted confidence level.

We obtain the measured confidence by counting the number of sets that production

value is within the confidence interval: Measured Conf = Number of match sets/ Total

number of sets.

Table 7.3 compares the targeted confidence level and the measured confidence

level. The small error (≤ 4%) is due to limited data.
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7.3.5 Fast/Slow Corner Estimation

The next statistical characteristics we consider are fast and slow corners c̃n f /s for vari-

ation sources.

Usually, the fast/slow corner is expressed as:

c̃n f /s = µ̃t± k f /sσ̃t (7.37)

From (7.20) and (7.21), we have:

c̃n f = µ̂l +µo+ σ̂lηT − k f
√
σ̂2ζ2U+σ2o (7.38)

c̃ns = µ̂l +µo+ σ̂lηT + ks
√
σ̂2ζ2U+σ2o (7.39)

For a given confidence level, we want to estimate the worst case fast/slow corner,

cnwf /s. However, fast corner and slow corners are dependent on each other. Therefore,

we need to handle them together. Assuming that hold time violation is harder to fix,

higher confidence may be needed on fast corner. We estimate the worst case fast/slow

corner such that there is c f f confidence that the fast corner is larger than cnwf and there

is c ft confidence that the fast corner is larger than cnwf and the slow corner is smaller

than cnws , that is: 3

P{c̃n f > cnwf } = c f f (7.40)

P{c̃n f > cnwf , c̃ns < cnws } = c ft (7.41)

Due to the complexity of (7.38), we use Monte-Carlo simulations to obtain the distri-

butions of the fast/slow corners. Then the worst case fast corner is calculated as:

cnwf =CDF−1
c̃n f (c f f ) (7.42)

With the worst case fast corner value, from the samples, we may also obtain the con-

ditional CDF of c̃ns given c̃n f > cnwf ,CDFc̃ns|c̃n f<cnwf . Then the worst case slow corner

3Without loss of generality, we assume fast implies smaller parameter value (e.g. channel width).
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is calculated as:

cnws =CDF−1
c̃ns|c̃n f<cnwf

(c ft/c f f ) (7.43)

We then express the worst case corner value as:

cnwf /s = µ̂± k′f /sσ̂ (7.44)

When the worst case corner values are known, we can easily obtain the value of k′f /s.

Table 7.4 shows the value of k′f /s under different confidence levels. In the table, the

guardband percentage is calculated as: 100×(k′f /s−k f /s)/k f /s. In the experiment, we

let n̂= 10, ñ = 15, k f = ks = 3 and we assume that the variance of inter-lot variation

is 18% of the total variance (derived from the data described in section 7.3.4). We

also assume that the variation source is with standard normal distribution 4. In the

experiment, we perform the estimation for 1000 runs. For each run, we generate n̂

measured samples to obtain the measured mean µ̂ and variance σ̂2, and then apply the

method above to calculate the worst case value of k′f /s. Notice that the k′f /s depends on

the measured values µ̂ and σ̂2, hence each run may result in a different k′f /s value. In

the table, the k′f /s values are calculated as the average of 1000 runs. From the table, we

can find that to ensure high confidence, k′f /s needs to be 30% over k f /s, i.e., we need a

large guardband.

As discussed in Section 7.3.2, when the number of measured lots is large (L-S), the

mean and variance can be simplified as (7.30). Hence the corner model can be also

simplified as:

c̃n f = µ̂l + σ̂l
M2√
ñ
− k f

√
σ̂2l ·Q2
(ñ−1) +σ2o (7.45)

c̃ns = µ̂l + σ̂l
M2√
ñ

+ ks

√
σ̂2l ·Q2
(ñ−1) +σ2o (7.46)

4The nominal mean and variance of variation sources does not affect the value of k′f /s.
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c ft % c f f % k′f k′s
50 60 3.080 (2.67%) 3.246 (8.20%)

60 70 3.155 (5.13%) 3.275 (9.13%)

70 80 3.255 (8.50%) 3.307 (10.2%)

80 90 3.422 (14.7%) 3.345 (11.5%)

90 95 3.594 (19.8%) 3.518 (17.2%)

95 99 4.042 (34.7%) 3.619 (20.6%)

Table 7.4: Guardband of fast/slow corner for different degrees of confidence assuming

n̂= 10, ñ= 15.

c ft % c f f % k′f k′s
50 60 3.035 (1.17%) 3.103 (3.43%)

60 70 3.112 (3.73%) 3.121 (4.03%)

70 80 3.124 (4.14%) 3.138 (4.60%)

80 90 3.236 (7.87%) 3.215 (7.17%)

90 95 3.401 (13.4%) 3.342 (11.4%)

95 99 3.625 (20.8%) 3.502 (16.7%)

Table 7.5: Guardband of fast/slow corner for different degrees of confidence assuming

large n̂ and ñ= 15.

Table 7.5 shows the average k′f /s value for the L-S case. As expected, the guardband

in this case is smaller than the S-S case.

Similarly, when the number of production lots is large (S-L), corner model can be

simplified to:

c̃n f = µ̂l + σ̂l ·M1 ·

√
n̂−1
n̂Q1 − k f

√
(n̂−1)σ̂2l

Q1
+σ2o (7.47)

c̃ns = µ̂l + σ̂l ·M1 ·

√
n̂−1
n̂Q1 + ks

√
(n̂−1)σ̂2l

Q1
+σ2o (7.48)

Table 7.6 shows the average k′f /s value for the S-L case. From the table, it is evident

that the guardband is smaller than that of the S-S case.

Figure 7.1 compares the 90% confidence value of k′f between the L-S (or S-L) and

L-L. We observe that when ñ ≥ 60 (or n̂ ≥ 85), L-S (or S-L) can be treated as L-L.
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c ft % c f f % k′f k′s
50 60 3.052 (1.73%) 3.132 (4.40%)

60 70 3.134 (4.47%) 3.155 (5.17%)

70 80 3.165 (5.50%) 3.193 (6.43%)

80 90 3.272 (9.07%) 3.267 (8.90%)

90 95 3.431 (14.4%) 3.370 (12.3%)

95 99 3.690 (23.0%) 3.523 (17.4%)

Table 7.6: Guardband of fast/slow corner for different confidence levels assuming

n̂= 10 and large ñ.

That is, the statistical analysis is reliable and we do not need to perform guardband

estimation. In the experiment, when error of k′f value between L-L and L-S (or S-L)

cases is within 3%, we consider n̂ (or ñ) value is large.

50 100 1503.05

3.1

3.15

3.2

3.25

3.3

n~ (n)^

k’
f

 

 

L−S
S−L

n̂ =80

n~ =60

k’f=3.09

Figure 7.1: Comparison of S-L, L-S, and L-L case.

Note that increasing lot-to-lot variation will increase the value of n̂ and ñ that can be

considered large as shown in Figure 7.2. This is because when the lot-to-lot variation

increase, the uncertainty of mean and variance increases. Therefore, we need a larger

number of measured lots (or production lots) to be considered as large.

As discussed in Section 7.3.2, in the special case when there is only one production

lot (L-1), lot-to-lot variation has no impact on the variance. Instead, the uncertainty of
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Figure 7.2: Number of n̂ or ñ which can be considered as large for different fraction of

lot-to-lot variation assuming maximum 3% error at 90% confidence.

the variance comes from wafer-to-wafer variation. From (7.36), we can calculate the

fast/slow corners as:

c̃n f = µ̂l +µo+ σ̂lηT − k f
√
σ̂2wQ′

2/(ñ′−1)+σ2o (7.49)

c̃ns = µ̂l +µo+ σ̂lηT + ks
√
σ̂2wQ′

2/(ñ′−1)+σ2o (7.50)

Table 7.7 shows the k′f /s for the L-1 case. In the experiment, we assume that there

are 25 wafers per lot, ñ′ = 25. From the table, we see that the guardband is smaller

than that of the L-S and S-L cases. This somewhat surprising result is explained by

the fact that lot-to-lot variation has no impact on variance (but still affects the mean),

hence the uncertainty of the corner is smaller.
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c ft % c f f % k′f k′s
50 60 3.051 (1.70%) 3.261 (8.70%)

60 70 3.116 (3.87%) 3.278 (9.27%)

70 80 3.197 (6.57%) 3.293 (9.77%)

80 90 3.320 (10.7%) 3.307 (10.2%)

90 95 3.438 (14.6%) 3.432 (14.4%)

95 99 3.574 (19.1%) 3.475 (15.8%)

Table 7.7: Guardband of fast/slow corner for different confidence levels assuming

n̂= 10, ñ= 1, and ñ′ = 25.

7.4 Confi dence in SPICE Fast/Slow Corner

Fast/slow corners for circuit simulation is the major interface between design and pro-

cess. A common approach to derive the corners is to use measured values from canon-

ical circuits such as an inverter chain. Variation source values corresponding to the

corner delay Dw
f /s are then calculated.

We assume that the inverter chain delay is a linear function of variation sources:

D= d0+
m

∑
i=1

ciXi (7.51)

where m is the number of variation sources, d0 is the nominal delay, Xi’s are variation

sources, and ci’s are sensitivity coefficients of inverter chain delay to variation sources.

Considering all variation sources to be independent, the mean and variance of the

product inverter chain delay can be calculated as:

µ̃D = d0+
m

∑
i=1

ci(µoi+ µ̃li) (7.52)

σ̃2D =
m

∑
i=1

c2i (σ2oi+ σ̃2li) (7.53)

where µoi and σ2oi are the mean and variance of other variation for the ith variation

source, respectively, µ̃li and σ̃2li are the mean and variance of lot-to-lot variation for

the ith variation source, respectively. µ̃li and σ̃2li can be calculated as shown in Sec-

tion 7.3.1.
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Usually, the delay corner is expressed as

D̃ f /s = µ̃D± k f /sσ̃D (7.54)

As in Section 7.3.5 we use Monte-Carlo simulation to obtain the PDF of the fast and

slow delay corners. One sided confidence interval is then used to obtain the worst case

fast and slow delay corners Dw
f /s. Corresponding corner values of variation sources

are calculated by solving the following [121]:

Dwf /s = d0+
m

∑
i=1

ciXwi (7.55)

Xw1 f /s− µ̂1
c1σ̂1

=
Xw2 f /s− µ̂2
c2σ̂2

. . . =
Xwm f /s− µ̂m
cmσ̂m

(7.56)

Table 7.8 illustrates the guardband percentage for the worst case delay and the cor-

responding variation source values under different confidence levels. In the table, the

guardband percentage is calculated as: 100×|worst case value - nominal value|/nominal value.

In the experiment, we use PTM bulk low power SPICE model for 45nm technology

[1]. We assume three variation sources, gate length L, threshold voltage for NMOSVtn
and PMOS Vt p. For gate length variation, we assume 3σ= 3nm, for threshold voltage

variation, we assume that the 3σ value is 20% of the nominal value. We also assume

that the inter-lot variation is 18% as in previous sections. In the experiment, we let

n̂ = 10 and ñ = 15. Since measured corner values affect production corners,we show

the average of 1000 runs.

From the table, we observe that under the same confidence level, the guardband

percentage of delay corner is less than that of k′f value of variation sources as shown

in Table 7.4. This is because the k′f value of variation sources does not depend on

the nominal mean and variance. However, for the worst case delay, the guard band

percentage does depend on nominal mean. When the nominal mean increases, the

guardband percentage decreases.
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c ft c f f Dwf Lwf Vwtn f Vw
tp f Dws Lws Vw

tns Vwtps
50 60 0.29 0 07 0.21 0.20 0.52 0.13 0.39 0.36

60 70 0.57 0 14 0.43 0.40 0.77 0.19 0.58 0.55

70 80 1.15 0 29 0.86 0.81 1.29 0.32 0.97 0.91

80 90 2.01 0 50 1.50 1.41 1.80 0.45 1.35 1.27

90 95 3.15 0 79 2.36 2.22 2.84 0.71 2.13 2.00

95 99 4.58 1 15 3.44 3.23 3.61 0.90 2.71 2.54

Nominal 349 42.62 0.558 0.603 388 47.41 0.612 0.643

Table 7.8: Percentage guardband of worst case delay corner and corresponding varia-

tion source corners under different confidence levels assuming n̂ = 10, ñ = 15. Note:

delay value is in ps, Lgate value is in nm, and Vth value is in V .

Targeted Con f Simulated Con f

c ft c f f c ft c f f

50 60 51.9 61.6

60 70 61.7 72.4

70 80 71.6 81.4

80 90 81.1 91.3

90 95 90.8 95.7

95 99 95.5 99.2

Table 7.9: Confidence comparison for inverter chain based corner assuming n̂ = 10,

ñ= 15.

In Table 7.9, we also compare the targeted confidence and the exact confidence of

the estimated worst case corner value. The flow to obtain the simulated confidence is

shown in Figure 7.3. In the experiment, we let nrun = 1,000. From the table, we find

that the exact simulated confidence is a little bit higher than the target value. Such

error largely comes from the fitting of the linear delay model to SPICE.

Table 7.10 and 7.11 show the average guardband percentage for the L-S and S-L

cases, respectively. Note that the guardband, though appears to be small, is significant

when compared to variation itself (e.g. σ for Vt p variation is only 6.7% of nominal

value, while the guardband of fast corner is up to 2.58% of nominal value. That is, the
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1. n f = 0, nt = 0

2. for i=1 to nrun
3. Generate n̂ samples of measured lots /* calculate estimated value */

4. Calculate µ̂ and σ̂2 for each variation sources from samples

5. Perform 10,000-sample MC simulation on (7.54)

according to µ̂ and σ̂2.

6. Obtain worst case corners: Dw
f , Dws .

7. Generate ñ samples of production lots /* calculate simulated value */

8. Calculate µ̃ and σ̃2 for each variation source from samples.

9. Perform 10,000-sample SPICE MC simulation on inverter

chain delay based on µ̃ and σ̃2.

10. Calculate mean µD and variance σ2D of SPICE MC samples.

11. Calculate simulated corners: D f = µD− k f σD, Ds = µD+ ksσD.

12. if D f > Dwf /* compare simulated value and estimated value */

13. n f =n f +1.

14. if Ds <Dws
15. nt = nt +1

16. c f f = n f /nrun , c ft = nt/nrun

Figure 7.3: Flow to simulate confidence.

guardband value is up to 38.7% of standard deviation).

Figure 7.1 compares the 90% confidence value of Dw
f between the L-S (or S-L) and

L-L. In the figure, Dw
f is normalized with respect to the nominal value. From the figure,

We observe that ñ≥ 30 (or n̂≥ 45), can be considered as “large”. Similar to the single

source case, when error of k′f value between L-L and L-S (or S-L) case are within 3%,

we consider n̂ (or ñ) value is large. We also find that for the worst case delay corner,

the value of n̂ (or ñ) to be considered as large is smaller than that of the single variation

source as in Figure 7.1. This is because the guardband of worst case delay is smaller

than that of single variation source as discussed above. Hence, we need fewer lots to

achieve the same model reliability.

Table 7.12 shows the average guardband percentage for the L-1 case. The guard-

band percentage of this case is smaller that of S-S, L-S, or S-L cases. As discussed in

Section 7.3.5, this is because lot-to-lot variation has no impact on variance. Therefore,
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c ft c f f Dwf Lwf Vw
tn f Vw

tp f Dws Lws Vwtns Vw
tps

50 60 0.21 0.05 0.16 0.15 0.39 0.10 0.29 0.27

60 70 0.43 0.11 0.32 0.30 0.58 0.14 0.43 0.41

70 80 0.86 0.21 0.64 0.61 0.97 0.24 0.72 0.68

80 90 1.50 0.38 1.13 1.06 1.35 0.34 1.01 0.95

90 95 2.36 0.59 1.77 1.67 2.13 0.53 1.59 1.50

95 99 3.44 0.86 2.58 2.42 2.71 0.68 2.03 1.91

Table 7.10: Percentage guardband of worst case delay corner and corresponding vari-

ation sources corners under different confidence levels assuming large and ñ= 15.

c ft c f f Dwf Lwf Vw
tn f Vw

tp f Dws Lws Vwtns Vw
tps

50 60 0.24 0.06 0.18 0.17 0.44 0.11 0.33 0.31

60 70 0.49 0.12 0.37 0.34 0.66 0.16 0.49 0.46

70 80 0.97 0.24 0.73 0.69 1.10 0.27 0.82 0.77

80 90 1.70 0.43 1.28 1.20 1.53 0.38 1.15 1.08

90 95 2.68 0.67 2.01 1.89 2.41 0.60 1.81 1.70

95 99 3.90 0.97 2.92 2.75 3.07 0.77 2.30 2.16

Table 7.11: Percentage guardband of worst case delay corner and corresponding vari-

ation source corners under different confidence levels assuming n̂= 10 and large ñ.
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c ft c f f Dwf Lwf Vw
tn f Vw

tp f Dws Lws Vwtns Vw
tps

50 60 0.23 0.06 0.17 0.16 0.42 0.11 0.32 0.30

60 70 0.38 0.10 0.29 0.27 0.53 0.13 0.40 0.37

70 80 0.69 0.17 0.52 0.49 0.71 0.18 0.53 0.50

80 90 0.95 0.24 0.71 0.67 0.90 0.23 0.68 0.63

90 95 1.46 0.37 1.10 1.03 1.21 0.30 0.91 0.85

95 99 2.05 0.51 1.54 1.45 1.87 0.47 1.40 1.32

Table 7.12: Percentage guardband of worst case delay corner and corresponding vari-

ation source corners under different confidence levels assuming n̂ = 10, ñ = 1, and

ñ′ = 25.

we need lower guardband to achieve the same confidence.

In this section, we illustrated the extra guardband required in corners (which ironi-

cally are themselves guardbands by definition) to ensure confidence in statistical anal-

ysis when the number of lots used to characterize variation or number of production

silicon lots are small. Next we discuss the impact of limited characterization or pro-

duction data on one of the most talked about chip-level statistical analysis methods,

namely, statistical timing analysis.
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7.5 Confi dence in Statistical Timing Analysis

In this section, we will discuss about confidence estimation for statistical static timing

analysis (SSTA). Since quadratic SSTA with non-Gaussian variation sources is very

complicated, we only analyze linear SSTA with Gaussian variation sources in this

section.

By performing linear SSTA in Section 5.5, the chip delay is expressed as a linear

canonical form of variation sources:

D= d0+
m

∑
i=1

ciXi (7.57)

Since circuit delay has a linear canonical form, its mean and variance can be cal-

culated in the same way as shown in (7.52). We again use Monte-Carlo simulation

on the linear equation to obtain the CDF of the output mean (CDFµD(·)) and variance

(CDFσ2D(·)). Then for a given confidence levelCon f , it is easy to obtain the worst case

mean and variance: 5

µw = CDF−1
µD (Con f ) (7.58)

σw2 = CDF−1
σ2D

(Con f ) σw =
√
σw2 (7.59)

Another quantity of interest is a certain percentile point. Since we assumeGaussian

variation sources and apply linear canonical form to approximate circuit delay, the

circuit delay also follows Gaussian distribution. Therefore, the percentile pointC(p%)

can be calculated as:

C(p%) = µ+ kσ (7.60)

k =Φ−1(p%) (7.61)
5Notice that we have known the distribution of mean and variance, it is easy for us to obtain any

interval of mean and variance under a certain confidence.
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whereΦ(·) is the CDF of standard normal distribution. In this way, the percentile point

is converted to a µ+ kσ corner. We may apply the same method as in Section 7.4 to

obtain the CDF of the percentile point, and then calculate its worst case value.

Figure 7.5 illustrates the worst case mean, standard deviation, and 95% percentile

point for ISCAS85 benchmarks. In the experiment, we apply the same experimental

setting as that for the inverter chain as in Section 7.4. As discussed before, the worst

case value depends on the measured values of mean and variance. Hence, different

runs may result in different worst case values. In the figure, the worst case value is

averaged over 1,000 runs and normalized with respect to the nominal value. From the

figure, we observe that the guardband of chip delay is lower than that of single varia-

tion source and inverter chain delay. This is because chip delay has a larger nominal

mean to variance ratio than inverter chain. However, although the guardband value

seems not large, it is very significant compared to the scale of variation. For exam-

ple, for the 95-percentile point, the nominal value is 6.9X of standard deviation and

the guardband value is up to 7.6% of nominal value to ensure 95% confidence. That

means the guardband value is up to 52% of standard deviation.

In Table 7.13, we compare the targeted confidence and the simulated confidence of

the estimated confidence interval. The simulated confidence is obtained in Figure 7.3.

The only difference is that instead of running SPICE Monte-Carlo simulation, we ap-

ply SSTA [41] to obtain the chip delay distribution. Due to our simplifying assumption

that the linear canonical form is independent of small changes in mean and variance,

there is a small error between targeted and simulated confidence.

Figure 7.6 illustrates the mean, standard deviation, and 95-percentile point of IS-

CAS85 benchmarks under different confidence level for S-L case. We ignore L-S and

L-1 cases where the need of SSTA is not well motivated.

Figure 7.7 compares the 90% confidence value of 95-percentile point for C7552
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Figure 7.5: Worst case mean, standard deviation, and 95-percentile point normalized

with respect to the nominal value for ISCAS85 benchmarks, assuming n̂ = 10 and

ñ= 15.

Targeted Simulated con f

con f µ σ2 95%

50 51.3 51.4 51.3

60 60.8 60.9 61.2

70 70.1 70.7 70.8

80 80.9 81.0 80.3

90 90.5 90.4 90.2

95 95.5 95.2 95.3

Table 7.13: Confidence comparison for ISCAS85 benchmark 95-percentile point delay

assuming n̂= 10, ñ= 15.
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Figure 7.6: Normalized worst case mean, standard deviation, and 95-percentile point

for ISCAS85 benchmarks, assuming n̂= 10 and ñ is large.
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Figure 7.7: 90% confidence worst case 95-percentile point with varying n̂ for C7552.

Percentile point is normalized with respect to the nominal value.

between S-L and L-L. In the figure, percentile point is normalized with respect to the

nominal value. From the figure, we observe that the guardband of chip delay is lower

than that of single variation source and inverter chain delay. We find that we only need

a small number of lots (n̂≥ 24) to bound the error between S-L and L-L under 3%. If

we want to bound the error to 2% or 1%, we need n̂≥ 40 and n̂≥ 80, respectively.

Again, we see that limited data can lead to significantly large guardbanding to en-

sure good confidence in analysis results. The method discussed in this section is fairly

straightforward, fast (essentially Monte Carlo on a linear expression, runtime is within

10s) and accurate to estimate confidence in results of statistical timing analysis espe-

cially when the variability models are known to suffer from limited lot-to-lot variation

data.
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7.6 Practical Questions: Determining Confi dence Induced Guard-

band for Real Designs

So far in the chapter, we have proposed techniques to quantify the confidence in sta-

tistical circuit analysis and estimate guardband required to attain a desired level of

confidence. The answer to “what is the desired level of confidence” is not an easy

one especially given the steep increase in guardband to ensure higher levels of confi-

dence. Besides quality of models (n̂) and production volume (ñ), two issues influence

the choice of confidence level:

1. Risk (in terms of schedule, performance, power, etc) tolerable for the design.

A lower confidence does not necessarily translate to lower yield but it implies

that the probability of the statistical analysis actually matching real silicon is

smaller. Therefore, confidence level is directly related to risk. For designs where

power/performance constraints are flexible or time to volume is not critical (i.e.,

if yield is lower than expectation, running more lots is acceptable), a lower confi-

dence is acceptable. Confidence levels provide a tradeoff between risk of higher

manufacturing cost (due to low yield) and higher upfront design cost (due to

guardbanding).

2. Extent of post-silicon tuning options available. Ability to change design char-

acteristics during or post-manufacturing mitigates the need for high confidence

in models. If the silicon foundry can extensively adjust the process (which es-

sentially shifts the mean) for the design6, the silicon can be made to match the

analysis and ensuring high confidence in design-side estimates is not essential.

Similarly, tunability using knobs such as adaptive body biasing, adaptive voltage

scaling can also alleviate downside of low confidence.
6This is usually possible only for high-volume, high-value designs.
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In the end, the choice of confidence will be as much a business decision as a techni-

cal decision as it quantifies the desire for predictability of statistics of manufacturing.

7.7 Conclusions

In this chapter, we have studied impact of characterization and production silicon vol-

umes on believability of statistical variation models and analysis. We have developed

methods to estimate the distribution of production silicon statistical characteristics

(e.g., mean, variance, percentile corners, etc) in terms of (unreliable) measured sta-

tistical characteristics, measured data volume, and intended production volume. The

loss of reliability largely stems from lot-to-lot variation. Our experiments and results

indicate the following.

1. For small characterization or production volumes, best/worst corners for a vari-

ation source may need as much as 30 % guardband to attain 95% confidence.

Our estimates show strong agreement with confidence measured from a set of

real silicon data (maximum error ≤ 4%).

2. For a typical SPICE corner extraction methodology, the guardband needed for

95% confidence is about 14% of the nominal uncertainty (difference between

best/worst corners) for low-to-medium volume production (n̂= 10, ñ= 15).

3. Finally, the 95th percentile delay as estimated using statistical timing analysis

needs a guardband of 5%-7%.

Predicted statistics are reliable for number of measured lots larger than 85 and

number of production lots larger than 60. We assumed lot-to-lot variation to be 18%

of total variance for our experiments. The required guardband will increase if lot-

to-lot variation increases as a fraction of total variation. We believe that confidence-
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level induced guardband should be considered for all low-to-medium volume designs.

Moreover, the problem is likely to become more severe when 450mm wafer sizes are

adopted by the industry (since less number of lots would be required to meet the same

production volume).
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CHAPTER 8

Conclusions

In modernVery Large Scale Integration (VLSI) circuit industry, the scaling ofComplementary

Metal Oxide Semiconductor (CMOS) technology enables the ever growing number of

transistors on a chip, hence improves the chip functionality and reduces the manu-

facturing cost. However, the process variation caused by inevitable manufacturing

fluctuations and imperfections also increases when technology scales down. Process

variation introduces significant power and performance uncertainty to VLSI circuits

and becomes a potential stopper for further technology scaling.

In this dissertation, we consider two types of the most common VLSI circuits:

Field-Programmable Gate Array (FPGA) and Application Specific Integrated Circuit

(ASIC). We have modeled, analyzed, and optimized power and delay for both FPGAs

and ASICs.

In Part I, including Chapter 2, 3, 4, we have studied modeling, analysis, and
optimization of FPGA power and performance with existence of process variation.

In Chapter 2, we have developed a trace-based power and performance evalua-

tion framework(Ptrace) for FPGA. Then we performed device and architecture co-

evaluation on hundreds of device and architecture combinations to optimize power,

delay, and area. Compared to the baseline, our optimization reduces the energy-delay

product by 18.4% and area by 23.3%.

In Chapter 3, we have extended Ptrace to consider process variation. Then we per-
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formed device and architecture co-optimization to maximize power and delay yield.

Compared to the baseline, our optimization improves leakage power and timing com-

bined yield by 9.4%.

In Chapter 4, we have developed transistor level voltage and current model based

on ITRS MASTAR4 (Model for Assessment of cmoS Technologies And Roadmaps),

and then developed circuit level power, delay, and reliability model. Combining the

circuit level model with Ptrace, we have developed a framework to evaluate FPGA

power, delay, and reliability simultaneously. We have shown that applying heteroge-

neous gate lengths to logic and interconnect may lead to 1.3X delay difference, 3.1X

energy difference. This offers a large room for power and delay tradeoff. We have fur-

ther shown that the device aging has a knee point over time and device burn-in to reach

the point could reduce the performance change over 10 years from 8.5% to 5.5% and

significantly reduce leakage variation. In addition, we have also studied the interaction

between process variation, device aging, and SER. We observe that device aging re-

duces standard deviation of leakage by 65% over 10 years while it has relatively small

impact on delay variation. Moreover, we also find that neither device aging due to

NBTI and HCI nor process variation have significant impact on SER.

In Part II, including Chapter 5, Chapter 6, and Chapter 7, we have studied sta-
tistical timing modeling and analysis for ASICs.

In Chapter 5, we have proposed a new method to approximate the max opera-

tion of two non-Gaussian random variables using second-order polynomial fitting. By

applying such approximation, we have presented new SSTA algorithms for three dif-

ferent delay models: quadratic model, quadratic model without crossing terms (semi-

quadratic model), and linear model. All atomic operations of these algorithms are

performed by closed-form formulas, hence they are very time efficient. Experimental

results show that compared to Monte-Carlo simulation, our SSTA flow predicts the
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mean, standard deviation, skewness, and 95-percentile point within 1%, 1%, 6%, and

1% error, respectively.

In Chapter 6, we have studied the impact of systematic across-wafer variation on

within-die variation. Based on the analysis, we have developed an efficient and ac-

curate spatial variation model to model across-wafer variation at die level. We then

implemented the new model to the SSTA flow in Chapter 5. Experimental results

show that our new model reduces error from 6.5% to 2% and improve run time by 6X

compared to the traditional spatial variation model.

In Chapter 7, we have studied impact of characterization and production silicon

volumes on believability of statistical variation models and analysis. We mathemati-

cally derived the confidence intervals for commonly used statistical measures (mean,

variance, percentile corner) and analysis (SPICE corner extraction, statistical timing).

Our estimates are within 2% of simulated confidence values. Our experiments indicate

that for moderate characterization volumes (10 lots) and low-to-medium production

volumes (15 lots), a significant guardband (e.g., 34.7% of standard deviation for single

parameter corner, 38.7% of standard deviation for SPICE corner, and 52% of standard

deviation for 95%-tile point of circuit delay are needed) to ensure 95% confidence in

the results. The guardbands are non-negligible for all cases when either production or

characterization volume is not large.

This dissertation makes contributions to statistical modeling, analysis, and opti-

mization for FPGAs and ASICs. However, there are still lots of research works need

to be done in this field. In practice, the statistical modeling and analysis techniques

presented in Part II can not only be applied to ASICs, but also to FPGAs. The
SSTA method introduced in Chapter 5 can be applied to FPGA delay variation for

more accurate and efficient delay variation estimation; the model of spatial correlation

in Chapter 6 can also be applied to FPGA power and delay variation estimation to im-
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prove the accuracy and efficiency; and we may also apply the method in Chapter 7 to

estimate the confidence for FPGA power and delay variation analysis. In the future,

applying the statistical analysis techniques for ASICs to FPGAs is one of our research

topics.

195



CHAPTER 9

Appendix

In the appendix, I briefly introduce the works I have finished in my Ph.D. program and

are not introduced in this dissertation:

• FPGAPerformance Optimization via Chipwise Placement Considering Pro-

cess Variations. We develop a statistical chipwise placement flow to improve

FPGA performance. First, we propose an efficient high-level trace-based es-

timation method, similar to Ptrace, to evaluate the potential performance gain

achievable through chipwise FPGA placement without detailed placement. Sec-

ond, we develop a variation-aware detailed placement algorithm vaPL within the

VPR framework [18] to leverage process variation and optimize performance

for each chip. Chipwise placement vaPL is deterministic for each chip when the

chip’s variation map is known, and leads to different placements for different

chips of the same application. Our experimental results show that, compared

to the existing FPGA placement, variation aware chipwise placement improves

circuit performance by up to 12.1% for the tested variation maps. This work

was published in International Conference on Field Programmable Logic and

Applications (FPL), August 2006.

• Fourier Series Approximation for Max Operation in Non-Gaussian and

Quadratic Statistical Static Timing Analysis. We propose efficient algorithms

to handle the max operation in SSTA with both quadratic delay dependency and
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non-Gaussian variation sources simultaneously. Based on such algorithms, we

develop an SSTA flow with quadratic delay model and non-Gaussian variation

sources. All the atomic operations, max and add, are calculated efficiently via

either closed-form formulas or low dimension (at most 2D) lookup tables. We

prove that the complexity of our algorithm is linear in both variation sources and

circuit sizes, hence our algorithm scales well for large designs. Compared to

Monte Carlo simulation for non-Gaussian variation sources and nonlinear delay

models, our approach predicts the mean, standard deviation and 95% percentile

point with less than 2% error, and the skewness with less than 10% error. This

work was published in Design Automation Conference (DAC), June 2007.

• Accounting for Non-linear Dependence Using Function Driven Component

Analysis. We first analyze the impact of non-linear dependence on statisti-

cal analysis and show that ignoring non-linear dependence may cause error in

both statistical timing and power analysis. Then we introduce a function driven

component analysis (FCA) to minimize the error introduced by non-linear de-

pendence. Experimental results show that the proposed FCA method is more

accurate compared to the traditional PCA or ICA. This work was published

in IEEE/ACM Asia South Pacific Design Automation Conference (ASPDAC),

February 2009.

• Efficient Additive Statistical Leakage Estimation. We present an efficient

additive leakage variation model. We use polynomial instead of exponential

function to represents the leakage variation considering inter-die variation, then

extend such model to consider both within-die spatial and within-die random

variation. Due to the additivity, this new model is more efficient than the ex-

ponential model when calculating the full chip leakage power. Experimental

results show that our method is 5X faster than the existing Wilkinson’s approach
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with no accuracy loss in mean estimation, about 1% accuracy loss in standard

deviation estimation and 99% percentile point estimation. This work was pub-

lished in IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems (TCAD), Volume 28, issue: 11, November 2009, pp:1777 - 1781.
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