
Report: Variance on a Wafer 
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0.95502

1.0002

1.0455

1.0907

1.1359

1.1812
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1.2716

1.3168

1.3621

 

 

Overview 

 Motivation: 

 Compare two Monte-Carlo Methods – the use of pseudorandom numbers compared to the used 

 of quasi-Monte Carlo samples. These methods will be compared on a wafer-profit-model 

 example, to see which method performs better, and to understand how to select the method for 

 different applications. 

 Setup:   

 Using MATLAB, graphically model the placement of dies on a wafer.  

Wafer diameter: 300 

Die size:  1 



Standard Deviation of Random Noise: 0.05 

Grid Size on each die: 2x2=4 

Systemic variation: (32/9000000) r2+ (1/1250) r + 1 

Model the variance of the on each die of four values according to the sum of a parabolic 

systemic variation and randomly generated white noise. Then calculate the profit as a function of 

the lowest frequency values on each die and the resulting average profit. Examine the results of 

differently generated random noise.  

 Error: 

 We want to estimate our profit with the different variations. The profit function is: 

13.53e2x 
 

where x is the minimum frequency on the die. The profit for a wafer with no variation is called 

the nominal value. This value is greater than the value with variations and a higher deviation 

results in lower profit values. The actual profit value is estimated using the Monte Carlo 

methods, and in these methods, an increasing number of samples improves the accuracy of the 

estimate. The difference between the estimate and the actual value is the error in the Monte 

Carlo estimation. 

 Monte Carlo: 

This term refers to a group of computational algorithms that use pseudorandom sampling to 

model results. Pseudorandom sequences are generated using an algorithm to mimic the 

properties of true random numbers. For example, they exhibit the behavior of no patterns or 

regularities.  In  contrast with true random sequences however, pseudo random sequences are 

generated via a deterministic procedure, which utilize a “seed” to generate the sequence of 

numbers. Such a process is used because it is impossible to generate pure random numbers on a 

standard computer. A Monte Carlo algorithm generally follows these steps: 

1. Define a domain of possible inputs. 

2. Randomly generate input values from the domain with a specified probability 

 distribution. 

3. Perform a deterministic computation using the inputs. 

4. Combine the results of the computations as a final result, which is an approximation. 

 

Example: The Monte Carlo method can be used to approximate the value of pi. 

The domain is the two dimensional points bound by the lines  

X=0, y=0, x=1, y=1 



Then we generate a pseudorandom stream of points with a uniform distribution over the 

domain. We want to find the number of points that lie in a quarter circle with the center at the 

origin, so we test each point (x ,y) to see if  x2+y2<1. The ratio of the number of points inside the 

circle to the total number of points will approach the ratio of the area of the circle to the area of 

the square. Thus, the value of pi would be simply approximated as  

4(Number of Points Inside the Circle)/(Total Number of Points Generated) 

 

In the case of the wafer, what we attempt to approximate is the average profit with a set 

variance as the sum of a random sequence and a systemic sequence. We observe the change in 

error as more inputs are used.  

 

 Quasi Monte Carlo: 

The difference of QMC from MC is that QMC relies on low discrepancy sequences to generate 

its inputs while MC relies on pseudorandom sequences. This means that overall QMC can be 

expected to yield a better accuracy than MC for the same number of inputs. However, because 

QMC relies on the concept of low discrepancy, the number of samples needs to be greater than 

the dimension to be accurate. In high dimensions, many points are required to give the QMC 

and advantage over the MC. Unlike MC however, the samples are not randomly dispersed but 

are related in a way to create low discrepancy (uniform distribution) among the sequences. This 

means that enough points must be generated to create low discrepancy, and the number of 

points is proportional to the exponential of the dimension.  

Data 

Calculated Average Profit (tens of thousands of dollars) Dimensions: 2368 

# of Trials 
Type 

5 10 15 20 25 30 35 40 45 50 10000 

MC 1.5430 1.5385 1.5375 1.5420 1.5419 1.5400 1.5411 1.5402 1.5403 1.5405 1.5405 

QMC 1.5360 1.5361 1.5368 1.5373 1.5376 1.5381 1.5387 1.5391 1.5396 1.5401 1.7170 

 

Percentage Error (%) Dimensions: 2368 

Type\# 
of Trials 

5 10 15 20 25 30 35 40 45 50 

MC 0.1623 0.1298 0.1947 0.0974 0.0909 0.0325 0.0389 0.0195 0.0130 0 

QMC 13.8445 9.9555 8.0301 6.0237 5.2881 4.0893 3.1108 2.4045 2.1099 1.5655   
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qmc

mc

 Dimensions: 2368 

 Sigma 10 Sigma 100 Sigma 1000 

MC 7.1353 6.7691 2.3409 

 

Quasi Monte Carlo does not converge quickly enough for 2368 dimensions. In this case, it is preferable to 

run Monte Carlo estimation over Quasi-Monte Carlo. For a reduced dimension of 35 (Changed the die 

size: 4, and Grid Size: 1x1=1) the analysis is:   

  

Dimensions: 35 

 Sigma 10 Sigma 100 Sigma 500 Sigma 1000 Sigma 3000 

MC 23.2779 6.7813 3.2406 2.2104 1.3634 

QMC 46.8910 8.2996 2.3315 1.9111 0.7155 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Research 

 How are the Halton sequences of quasi random numbers generated? 

 Halton sequences all share the characteristic of low discrepancy and are deterministic, yet 

 appear to be random for computation algorithms. They are a subset of quasi-random numbers. 

 Every Halton sequence, regardless of dimension, use prime number(s) for its base(s).  In J. H. 

 Halton’s paper on Halton sequences (1958?), he proposes the following: 

 Express any integer n as the sum of the successive powers of radix R. That is, 

n = nMnM-1…n2n1n0 = n0 + n1R + n2R
2 + … + nMRM , where M = [log R n] 

      Then, a new fraction,  f , between 0 and 1, is formed when all the powers of the radix are 

 changed with their respective inverses. That is, 

f = fR(n) = 0.n0 n1 n2…nM nM-1 = n0 R
-1 + n1R

-2 + n2R
-3 + … + nMR-M-1 

 To generate N numbers in K dimensions, use the k-dimensional space 

(n/N,  fR1(n),  fR2(n), …,  fRK-1(n)), 

where n = 1, 2, …, N and R1, R2, …, Rk-1 are the first k-1 primes. 

 Why is it crucial to generate correct dimensions of Halton sequences? 

 If lower dimension Halton sequences are spliced and paired up to form higher dimension 

 sequences, the  linear correlation of the identical radices will form a patterned plot of points, 

 eliminating the desirable low discrepancy characteristic. 
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 If higher dimension Halton sequences are spliced and lined up to form lower dimension 

 sequences, the change of radices partway results in more than one low discrepancy 

 sequence. Thus, the combined sequence is not as low discrepancy because the positions of 

 the values of one radix does not “know” where the positions of the values of another radix 

 is, as in the case where the Halton sequence is  generated with the correct dimension(s).  

  

1 dimension sequence in 1 dimension        2 dimension sequence in 1 dimension 

 

Why is it not viable to use a spaced grid of numbers as inputs?  

The amount of work to obtain the same amount of precision is independent of the dimension d of the 

underlying random variables. 

Thus Monte Carlo integration is practically the only method to numerically compute high-dimensional 
integrals. Traditional quadrature techniques generally require an amount of work exponential in the 
number of dimensions d , since they require sampling a grid in d -dimensional space. 

On the other hand, Monte Carlo integration is generally not competitive with quadrature for low-
dimensional integration (e.g. d=1 or d=2 ). 

 


