
EE299 Master’s Project Report, Winter 2014

VarLEON: FPGA Based Processor Variability Emulator for Variation Aware Software

ABHISHEK BHATIA (404-191-904)
Dept. of Electrical Engineering

University of California, Los Angeles, USA

bhatiaabhishek1991@gmail.com

Advisor: Prof. Puneet Gupta

Abstract— In the area of design automation, variability

emulation is a powerful idea that can help bridge the gap

between a conservative design and the opportunistic

characteristics in a software. A variability emulator can be used

to explicitly control hardware variability to study development of

variation-aware software such as in Underdesigned and

Opportunistic Computing (UnO) [1]. This project focuses on

development of such an emulator comprising of both power and

delay variability injection, on a LEON3 microprocessor. The

implementation was realized on a Virtex-5 FPGA using Xilinx

design tools.

Keywords— Delay Variability, Power Variability, Variable

Delay Element, LEON3, FPGA Editor, Kuhn-Munkres Algorithm,

GRMON

I. INTRODUCTION

As the manufacturing processes scale by large factors each

year, we are now beginning to experience variations of

performance, power and reliability across manufactured parts.

Apart from manufacturing processes, environment variables

such as temperature and humidity may also affect

performance. These variations necessitate the need for

stringent guardbands and hardware specifications that

hardware engineers try to meet. A chip’s maximum speed is

reported by taking into account the worst case scenarios of

manufacturing imperfections, environmental variables and

power supply fluctuations. This increases cost and also fails to

fully leverage the full potential of the software’s inherent

flexibility and resilience. Most chips are capable of

performing beyond their specifications. To solve such a

problem, [1] proposes a novel hardware-software stack

interface that adapts to variations in the hardware, thus

relaxing the guard-bands in hardware design. The hardware

can be under-designed and the software stack along with

sensing circuits can sense and adapt to variations. Such a

development could benefit from a reconfigurable variability

emulator which can be a useful tool to study real world

hardware variability scenarios.

This project deals with development of such a variability

emulator on a LEON3, a SPARC-V8-based microprocessor

implemented on a Xilinx’s XUPV5-LX110T Development

System which is based around Virtex-5 FPGA. The source

code of LEON3 is freely available under the GNU GPL

license.

II. DELAY INJECTION METHODOLOGY

The following sections describe the FPGA implementation of

the emulator. The power variability was implemented inside

the RTL, while the delay variability was introduced later in the

FPGA flow.

A. Working Principle of the Variability Emulator

The variability emulator comprises of both power variations as

well as delay variations which can be manipulated on-the-fly

by writing to a memory-mapped register (0x80000a00) [2]

using pointer dereference to the memory address of the

register. The power variations are realized using ring

oscillators in the LEON3 RTL at strategic locations in the

pipeline, specifically for the four major functional groups of

ALU, FPU and conditions for branches. Though results for

both power and delay variability have been presented in the

results, this project focuses on the delay variations which have

been realized using tapped buffer chains (which map to LUT

delays in FPGA implementation). The basic implementation

architecture for the variability emulator is depicted in figure 1.

Fig.1 Architecture of the Variability Emulator

The programming configuration for the 32-bit memory-

mapped register is depicted in figure 2. The brackets specify

which part of the emulator do the bits control.

Fig.2 Memory-Mapped Register (0x80000a00)

As shown by the above figure, the delay tap values for the

injected variable-delay elements can be configured

dynamically from the software itself. Each delay element has

8 taps (3 –bits) and 3 delay elements (9-bits – 28:18) can be

configured in one clock cycle synchronous to the clock of the

mailto:bhatiaabhishek1991@gmail.com

EE299 Master’s Project Report, Winter 2014

CPU core. Bits 19:16 are used by the delay decoder to

interpret as to which delay elements are to be configured in

that particular cycle. The emulator provides for a maximum of

48 delay elements which take 16 cycles (4-bit decoder) for all

to be programmed. Refer figure 3 for the architecture for delay

variability. The architecture of the decoder has been discussed

in Section C. Once inserted on a set of critical paths, each of

the delay elements can be configured to have one of the 8

delay values, and once the delay value exceeds the available

slack for a given clock period on a particular path, the

operation will fail.

Fig.3 Architecture for Delay Variability

The injected power variations can also be controlled by the

same general purpose register according to the following bit

assignments:

Bit 31 Selects the core (CPU 0 or 1) in which the power

variations are inserted.

Bit 30:29 Selects which functional group is associated with

the inserted power variations by the following rule.

2’b00: Memory

2’b01: ALU

2’b10: Floating Point Unit

2’b11: Conditions for branches

Bit 15:0 Selects which set of ring oscillators are enabled.

The emulator provides for a set of 16 oscillators hence giving

finer control over the variability.

B. The Variable Delay Element Hard Macro

The Variable Delay Element (VAR_ELE) was first designed

in RTL as a chain of 8 buffers with taps after each buffer, all

of which were multiplexed to one output. Hence the delay

value can be configured using 3 bits. It synthesized and

implemented using Xilinx ISE tools, and optimized to occupy

2 Slices as shown in figure 4. The design was saved as a hard

macro with the bottom slice as the ‘Reference Group’

implying that the macro would always be placed in this

configuration with both the slices and the nets relationally

placed. A hard macro is nothing but a special reusable circuit

block in which every aspect of the design is preserved from

LUT configuration to the physical routing between

components. The IOB pads need to be unplaced /deleted and

the slice pins connected to those pads need to be declared as

external pins. One thing to note is that to save the design as a

hard macro, the VCC/power nets have to be removed. But a

workaround here is to assign the VDD port as external input

pins and connect them to the power sources after instantiating

the macro in a design.

Fig.4 VAR_ELE hard macro

A post-place-and-route simulation was performed to confirm

the integrity of the logic (see Appendix A.1 for the

waveform). As seen in the simulation, the output signal is

progressively delayed from a value of 1.22ns (tap0) to 5.896

ns (tap7) as the tap value ($delay_sel) is incremented.

C. Delay Insertion Flow

A general purpose register is available as a module called

GPREG in the leon3 source code itself, which can be

instantiated and the parameters specify the address of that

register. The Decoder for delay taps was incorporated in the

RTL itself inside the top level module of leon3, connected to

the General Purpose Register. It can be modeled as a 9bitX16

(18B) set of Flip-Flops which is synchronously written to, by

the general purpose register. The output of each such flip-flop

was left unconnected and preserved through the synthesis and

mapping phase for them to be connected later to the

VAR_ELE elements. The Figure 5 depicts the decoder.

Fig.5 Decoder for Delay Tap Configuration

The first step was to reserve a grid of 13X20 pairs of evenly

distributed slice locations before the LEON3 design is

mapped. This was achieved using “CONFIG PROHIBIT”

VAR_ELE0 (2:0)

VAR_ELE1 (5:3)

VAR_ELE2 (8:6)

VAR_ELE45 (2:0)

VAR_ELE46 (5:3)

VAR_ELE47 (8:6)

16 Rows

(8:0) – Tap Values for

three VAR_ELE

(3:0) – Address

(8:0)- Tap Data

EE299 Master’s Project Report, Winter 2014

constraint in the User Constraint File (.UCF) [4] (Refer

Appendix). Pre-reserving slices gives us the flexibility to place

the delay elements as near to the target paths as possible thus

minimizing the cost (route) of adding extra elements to the

design (refer section D). The UCF file was also populated with

constraints (NET S) preventing the trimming of the

unconnected output ports of the delay decoder. The ‘KEEP’

attribute was also used in conjecture with the UCF constraints.

After the design was placed and routed, timing analysis was

done, based on which, critical paths were identified and the

elements were inserted in the ‘Pre-Route’ stage using the

FPGA Editor (refer section E). The tap select lines for each of

the elements were tied to the open outputs of the above

decoder. The resulting design was then routed by the Place-

And-Route (PAR) tool. Fig.6 gives an overview of the delay

variability insertion flow. Please note that the Macro could

only be placed on type ‘SLICEM’ and hence the right grid

needed to be figured out.

Fig..6 General Insertion Flowchart

D. Assignment Problem- ‘Munkres’

One of the issues with inserting delay elements on an FPGA

board is the fact that the resources available are limited and

the elements can only be placed on SLICE locations which

were reserved in the UCF file. At the same time, the route

overhead of all such insertions should be collectively as low as

possible. Consider Fig.7 as a small example of this problem.

Fig.7 Assignment Problem

Let there be two target slices before which the VAR_ELE(s)

need to be inserted. The black locations signify empty

reserved locations where they can be possibly inserted. Now,

the problem is to find an optimal assignment of two such black

locations to the target locations such that the total overhead is

as low as possible. In this project, the cost of placing

VAR_ELE0 (for X1, Y1) at (Ai,Bi) was C1i = (X1-Ai)+(Y1-

Bi). Similarly the cost for placing VAR_ELE1 (for X2, Y2) at

a location of (Aj,Bj) was C2j = (X2-Aj)+(Y2-Bj). The problem

now reduces to finding i and j such that the total cost C1i + C2j

is minimized. This is a standard assignment problem which

can be solved using Kuhn-Munkres algorithm (a.k.a.

Hungarian algorithm [5]) in polynomial time [6].

A cost matrix was created using Perl and the algorithm was

applied to find the optimal assignment of the locations to the

target slices. A Perl package for Munkres Algorithm was used

which takes the following matrix as the input and gives a

single dimensional array as an output which denotes which

column is assigned to which row [7].

 (A1,B1) (A2,B2) (A3,B3) (A4,B4)

(X1,Y1) C11 C12 C13 C14

(X2,Y2) C21 C22 C23 C24

E. FPGA Editor Flow

In this project, the delay elements were inserted by editing the

NCD (Native Circuit Description) file which was generated by

the MAP process. A Perl script was developed which apart

from solving the assignment problem, also generated a (.scr)

script as an input to the FPGA Editor tool [3] which automated

the process of insertion of delay elements on the desired paths.

The inputs to the Perl script are the net name as well as the

SLICE pin location of the target Flip-Flop. The FPGA Editor

script first places the VAR_ELE(s) macros on the assigned

locations and then connects them across their assigned paths.

Fig.8 depicts the flow followed by the FPGA editor script in

inserting the delay elements.

EE299 Master’s Project Report, Winter 2014

Fig.8 Flow of the FPGA_ED Script

The edited NCD file was then passed onto the PAR tool which

takes care of the routing of the design. Insertion of the delay

elements needed to be done as late in the flow as possible so

that the critical paths are not affected in terms of

optimizations, because of the inserted logic. It was decided to

perform the insertion just after placement but before the route

phase. The PAR tool produces another NCD file which a fully

routed version of the MAP_NCD version. There were issues

with editing a fully routed design since the PAR tool swaps

pins to optimize logic which created errors in inserting the

delay elements.

The resultant design was passed onto the bitgen tool which

produces the bit programming file using the NCD file and a

Physical Constraint File (PCF) as inputs. Xilinx’s iMPACT

software was used to download to the bit file to the FPGA.

III. TESTING

There was a need to find a concrete way to test the working of

the emulator both in terms of delay and power. To the test the

functioning of the delay taps, a path in the “Execute” stage of

the integer pipeline was chosen due to its critical nature in the

architecture. Since in timing slack aspect, it was not the most

critical path, the core frequency needed to be increased for it

to start failing on changing the taps. The frequency needed to

be changed without repeating the whole place and route

process so that the layout of the design remains the same for

the entire frequency sweep. The power was tested using

“Watts Up Pro” power meter attached to the FPGA board and

running benchmarks with varying the enabling/disabling the

ring oscillators.

The LEON3 design derives its clocks from two PLLs (Phase

Locked Loops) which use the on board 200 MHz and 100MHz

clock chips integrated on the XUPV5-LX110T. A PLL uses an

input clock, an integer multiplier and an integer divider to

produce the desired frequencies. The core uses the the PLL

with the 100 MHz clock as the input. The default setting is for

Multiplier = 8 and Divider = 10, resulting in a core frequency

of 80 MHz. To change the frequency after placement and

routing, the FPGA Editor was used to modify the fully routed

NCD file (refer Fig.9). The parameters of the PLL were

modified to generate the desired output frequencies. The

design was then bit-streamed and downloaded each time a new

frequency was to be tested. The LEON3 that was placed and

routed for 80 MHz was found to be able to operate up to 140

MHz (without delay insertion).

Fig.9 Viewing the PLL in FPGA Editor

IV. EXPERIMENTAL RESULTS

For testing the LEON3 processor as a whole, a popular debug

monitor ‘GRMON’ was used to load and run applications on

the target hardware (Virtex-5-FPGA). Benchmarks such as

‘Dhrystone’, ‘Whetstone’ and Linux OS were run with

different delay tap values ranging from 0-7 for a sweep of

frequencies between 80 MHz and 140 Mhz. If the output of

the GRMON monitor was as expected, then the benchmarks

were deemed as pass. The following graph depicts the max

core frequency each benchmark runs for different tap values.

As expected, the programs start failing as the tap value is

increased. Whetstone runs on the Floating-Point-Unit module

and hence doesn’t fail due to the delay element which was

introduced in the integer unit. Please note that since the path

chosen is not a true critical path, the other paths of the core

fail at 140 MHz before the experimental path. Hence the graph

terminates at 140 MHz. Another graph (see below) was

plotted to see the relationship between the delay of each tap

based on timing analysis and the delay actually observed. It is

observed that the tap value 6 and 7 have nearly the same delay

value since the fanout of for tap 7 is only 1 (the output

80

90

100

110

120

130

140

150

0 1 2 3 4 5 6 7

M
ax

. F
re

q
u

e
n

cy
 o

f
o

p
e

ra
ti

o
n

 (
M

H
z)

Delay Tap Value

Linux OS

Dhrystone

Whetstone

EE299 Master’s Project Report, Winter 2014

multiplexer) and that for other stages is 2 (the next stage as

well as the output multiplexer). Hence, the last stage does not

offer much incremental delay compared to others.

The power variability was tested using a “Watts Up Pro”

Power meter connected to the board and running Dhrystone

benchmark with varying number of active ring oscillators. The

ring oscillators were enabled only if an ALU operation was

active. The result for dhyrstone benchmark is showed in the

figure below.

Fig..10 Dhrystone benchmark power variations

V. CONCLUSION

This project focused on conceptual development of a

variability emulator for a LEON3 processor on Virtex-5

FPGA platform (ML509). Architecture was first developed for

the emulator and then individual components were designed

and tested. Various levels of delays can be injected before

Flip-Flops and controlled by user registers using memory

mapped registers which gives an important ability to

reconfigure variability dynamically during execution of

standalone programs or applications on LEON3 Linux OS.

This is a first step towards development to a large scale

variability emulator and can be improved upon in the future by

developing flows to inject delay elements in a fully routed

design. Provision can be added for more number of delay

elements (>100). Also, it can be an important step in creating

variability models based on which software can be developed

that dynamically adapts to a modeled hardware and removes

the need of an overdesigned hardware [1].

VI. ACKNOWLEDGEMENT

I would like to express my sincere gratitude to Prof. Puneet

Gupta for his esteemed guidance and mentorship. I would also

like to acknowledge Chengfei Tao for his work and results on

the power variability implementation of the emulator.

VII. REFERENCES

[1] P. Gupta et al., “Underdesigned and opportunistic

computing in presence of hardware variability,” IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst., 2012,

Keynote Paper

[2] GRLIB IP Core User’s Manual Version 1.3.1 -

B4135, Aerolib Gaisler, 2013

[3] Xilinx FPGA Editor Guide - 2.1i, Printed in USA

[4] Xilinx Constraint Guide – 10.1, Printed in USA

[5] Harold W. Kuhn, "The Hungarian Method for the

assignment problem", Naval Research Logistics

Quarterly, 2:83–97, 1955. Kuhn's original publication

[6] J. Munkres, "Algorithms for the Assignment and

Transportation Problems", Journal of the Society for

Industrial and Applied Mathematics, 5(1):32–38, 1957

March.

[7] http://search.cpan.org/~anaghakk/Algorithm-Munkres-

0.02/lib/Algorithm/Munkres.pm

0

0.5

1

1.5

2

2.5

1
.2

2

1
.5

4
9

2
.2

0
2

2
.3

4
4

3
.4

6
5

4
.0

5
5

5
.6

8

5
.8

9
6

A
ct

u
al

 in
cr

e
as

e
 in

 d
e

la
y

(n
s)

Simulated increase in delay of taps (ns)

Linux OS

Dhrystone

http://en.wikipedia.org/w/index.php?title=Naval_Research_Logistics_Quarterly&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Naval_Research_Logistics_Quarterly&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Journal_of_the_Society_for_Industrial_and_Applied_Mathematics&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Journal_of_the_Society_for_Industrial_and_Applied_Mathematics&action=edit&redlink=1

EE299 Master’s Project Report, Winter 2014

APPENDIX A

A.1 Post PAR Simulation of the variable delay element (VAR_ELE)

A.2 Schematic of VAR_ELE

A.3 List of Scripts

1. ucf_editor_script.pl : Perl Script that modifies the UCF file to include “CONFIG PROHIBIT and “NET S”

constraints. It also outputs a text file “LOC_VAR_ELE.txt” that lists all the slice locations that were reserved for the

delay element insertion.

2. fpga_editor_script_gen_end.pl : Perl script that takes the target pin locations and target net as inputs. It solves the

assignment problem as well as generates a script file named “macro_insertion1.scr” which goes as an input to the

FPGA Editor tool.

A4. Xilinx Commands

1. /opt/Xilinx/13.2/ISE_DS/ISE/bin/lin/fpga_editor -e leon3mp.ncd To open the design in the FPGA Editor

tool.

2. par -w -intstyle silent -ol high -mt off leon3mp_map.ncd leon3mp.ncd leon3mp.pcf To place and route

the edited mapped design.

3. bitgen -intstyle silent -f leon3mp.ut leon3mp.ncd To generate bitstream for downloading to FPGA.

	MS_Project_Report
	APPENDIX

