
 

 

Abstract—A battery is a ubiquitous solution for supplying 

power in embedded systems. Predicting the residual capacity of a 

battery is extremely important in the design and application of 

effective power management policies in portable electronic 

devices. In this paper, we develop and validate a battery discharge 

model to predict the battery capacity using Energizer AAAA 

batteries as a function of discharge rate and temperature for 

continuous discharging applications. We also analyzed the 

variability in lifetime of different batteries and found it to be 

negligible.   

 
Index Terms—Battery Modeling, Discharge Rate, 

Temperature, Individual Variability. 

I. INTRODUCTION 

The rapid advancement of modern portable electronics has 

resulted in the development of devices combining high-speed 

CPU, high resolution display, fast storage and high-speed 

wireless data transfer to drive exciting new applications. As a 

result, these devices consume significantly more energy 

compared to earlier generations of devices. However, the 

advances in battery technologies have not kept up with the 

energy requirements of these electronics. 

Since portable devices use batteries as the sole of energy, 

energy becomes a critical issue in these systems. In addition, 

the energy consumed in the circuit is not always the same as the 

energy drawn from the battery [1]. Therefore, studying and 

understanding battery discharge behavior is important and 

battery modeling is an essential tool to reach this goal.  

When a battery is connected to a load, a reduction-oxidation 

reaction occurs, resulting in the transfer of electrons from the 

anode to the cathode. This process converts the chemical 

potential energy of the battery into electrical energy to drive the 

electronic circuit. Eventually, the consumption of electroactive 

species in the battery causes the battery to reach a threshold 

known as the cutoff voltage. After reaching this voltage, the 

battery is considered to be depleted. 

There are many factors that affect battery capacity. 

Commonly identified factors include discharge rate, 

temperature and individual battery variability. In addition, for 

the rechargeable batteries, the charge-recharge cycles also have 

a significant impact on the battery capacity. 

Developing computationally feasible battery models has 

been a key research topic for several years. Those models can 

be largely divided into four different categories: physical 

models, empirical models, abstract models and mixed models. 

They can be evaluated according to their prediction accuracy, 

computational complexity, configuration effort and analytical 

insight.  

In this paper, we conduct studies on battery discharge 

behavior. Based on an earlier work [1], we first validate an old 

battery model. We then modify the battery model to account for 

the effect of temperature. Finally, we use Energizer AAAA 

battery discharge data to fit the models and predict the lifetime 

of the battery. Our results show that the battery model is 

accurate enough to predict the battery lifetime.  

This paper is organized as follows. Section II details prior 

work on this topic. Section III derives battery models. Section 

IV details the experimental setup for collecting and verifying 

data. Section V presents the analysis of the collected battery 

data. Section VI introduces model fitting and lifetime 

prediction. Section VII concludes the report. 

II. RELATED WORK 

Doyle et. al. [2] developed a physical battery model by 

studying the isothermal, electrochemical and physical 

principles within the battery during a single discharge cycle. 

Solving a set of differential equations, they derived a battery 

model that described the battery capacity as a function of time. 

They further validated the model using the Dualfoil platform 

and FORTRAN simulations. In order to obtain the relevant 

coefficient for the model, many data configurations are 

required to determine the precise battery model. Therefore, this 

model achieves high accuracy but with significant 

computational complexity.  

In [3], a linear-quadratic empirical battery model was 

developed using the ratio of actual battery capacity and 

theoretical battery capacity. They averaged the current load and 

developed an actual battery capacity model corresponding to 

different loads. The model accurately predicts the effect of 

different loads on battery capacity. It has relatively small 

computational complexity and configuration effort. However, 

the model does not provide high accuracy and only accounts for 

different discharge rate. 

Several researchers have also modeled the battery as 

electrical circuit. By considering the model as a combination of 

linear passive elements, voltage sources, and lookup tables that 

store battery characteristics, they have successfully developed 

many abstract battery models that have medium accuracy, 

computational complexity and configuration efforts. In [4], 

Sean Gold studied the effect of capacity fading on the lifetime 
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of the battery. They modeled the capacity fading effect as a 

capacitor, which decreases linearly as the battery cycle 

increases.  

A high-level representation of battery model that combines 

both experimental data characteristics and physical principles 

of battery was developed by Rakhmatov et. al. [1]. In the paper, 

the authors presented a mixed battery model, which is able to 

predict the battery capacity with high accuracy, medium 

computational complexity and low configuration efforts.  They 

used Faraday’s law for electrochemical reaction and Fick’s 

laws for the 1-D distribution of magnetic concentration to 

develop the battery model. By solving a series of partial 

differential equations, they derived a battery model with only 

two variables. Additionally, they also validated the model by 

predicting the lifetime of the battery and comparing it with both 

Dualfoil simulation results and actual measured data.  

In this work, we use the mixed battery model [1] to study the 

battery capacity of Energizer AAAA batteries under continuous 

discharge, with various discharge current loads. We also study 

part-to-part variability and temperature-dependent variation in 

battery capacity using this battery model. Since the mixed 

battery model accounts for the physical and chemical 

phenomena within the battery, it has high accuracy and 

robustness. To validate the battery model, we measure the 

battery discharge behavior data of Energizer AAAA battery 

and fit the model with the collected data. We then use the model 

to predict the lifetime of the battery under different current 

loads and temperatures. Our measurements indicate very strong 

temperature dependence of battery capacity but little 

manufacturing variability in the batteries. 

III. MODEL DESCRIPTION 

A. Discharge Rate Impact. 

Battery capacity depends on discharge rate. As shown in 

Figure 1(a), before the discharge of any current from the 

battery, the electrode surface is filled with uniformly 

distributed electroactive species. When the battery is connected 

to a load, the electroactive species are consumed and the 

diffusion process starts. Because the diffusion speed cannot 

keep up with the consumption speed, a concentration gradient 

of electroactive species appears across the battery as shown in 

Figure 1(b). However, when the load is disconnected from the 

battery, the diffusion process continues and finally reaches 

equilibrium as shown in Figure 1(c). This is the reason that a 

battery partially recovers some capacity after a period of rest. 

At last, as Figure 1(d) shows, after the electroactive species are 

consumed to a certain level on the electrode, battery reaches the 

cutoff voltage. 

During this process, if the battery discharges rapidly, the 

consumption speed of electroactive species is much faster than 

the diffusion speed of the electroactive species. A sharper slope 

of gradient distribution of the electroactive species appears 

across the battery. This causes the battery to reach the cutoff 

voltage rapidly. In comparison, when a battery is being 

discharged at a slower rate, the difference between the diffusion 

rate and the consumption rate of the electroactive species is 

smaller, which results in more electroactive species being 

consumed. This is the reason that faster discharge rate leads to 

shorter battery lifetime while slower discharge rate provides a 

longer lifetime of battery. 

 
Figure 1: Battery operation in a symmetric, electrochemical cell 

[5]. 

B. Temperature Impact 

Temperature also has a significant impact on the battery 

capacity. Below room temperature (around 25
°
C), chemical 

activity in the battery decreases and internal resistance 

increases [5]. Thus, at low temperature, the large internal 

resistance occupies a large part of the output voltage. 

Compared to a battery with smaller internal resistance, the 

output voltage reaches the cutoff voltage faster, which 

decreases the full capacity of the battery. In contrast, high 

temperature enhances the chemical activity within the battery 

and decreases the internal resistance. Additionally, the 

increased chemical activity provides more electroactive 

species. Therefore, it would take longer to reach the cutoff 

voltage at high temperature, which increases the battery 

capacity. 

C. Individual Variability Impact. 

Several aspects of manufacturing may have influences on 

battery capacity. These factors include the temperature of the 

manufacturing process, different sources of raw materials and 

the contamination of the raw materials. These differences 

between individual batteries would introduce different 

characteristics. We study part-to-part battery variation by 

discharging nominally identical batteries with identical loads 

and operating conditions, and analyzing the resulting lifetime. 

D. Model Derivation: 

Ravishankar et. al. [5] analyzed the battery capacity in a one 

dimensional diffusion space with a length of w.  Based on 

Fick’s Laws, the authors defined: 
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Applying the boundary conditions, they got: 
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Solving (1)-(4), the authors obtained an analytical solution 

and reached a mixed battery model as follows (the details of the 

derivation can be found in paper [1]): 
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Under a constant load, this mathematical model can be 

further reduced to: 
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For the more general case where the battery is usually 

discharging under variable loads, the authors proposed a battery 

model that is based on equation (8). By considering variable 

loads as a step wise function of different constant loads, they 

defined the following model: 
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This is the final model we use in this paper. In order to study 

the effect of temperature, we analyze the physical meaning of α 

and β. 

In equation (6), except for the velocity of the electroactive 

species v, all other coefficients are constant. So we studied the 

physical relationship between v and temperature. 

In thermodynamic theory, the kinetic energy usually 

contributes to all the energy in the molecule. Since molecular 

energy is       and kinetic energy is       , by equating 

them, the relationship between v and temperature is   

√     .  

In equation (7), π and w are both constants. The only 

parameter that has any relationship with temperature is D. 

According to Arrhenius dependence on temperature, we get 

                . Therefore, we modified the battery 

model to account for the temperature effect as: 
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TABLE I 

PARAMETER DEFINITION 

Symbol Meaning 

  

x         is the distance magnetic  
J(x,t) flux of species at time t and at distance x 

D diffusion coefficient 

F Faraday coefficient 

L lifetime of the battery 

A surface area of the electrode 

C* initial concentration of the electroactive species  

Ccutoff cutoff concentration of the electroactive species 

W the maximum length of the battery 

t         is the time 

  

 

IV. EXPERIMENTAL SETUP 

A. Data Collection. 

In this project, we used Agilent U2722A SMU [6] to record 

output voltage, internal resistance voltage and current data 

across time. This device is highly flexible and accurate for such 

measurements. It has three channels that can collect three 

different sets of data simultaneously. It can be directly 

connected to a computer via a USB port and the software 

package [7] from Agilent can be used to measure battery data at 

high rates. Figure 2 illustrates the overall architecture of the 

U2722A SMU and Figure 3 is the Agilent Measurement 

Manager (AMM) software. For each of the three channels, 

current source or voltage source can be selected to measure 

constant discharge current or voltage, respectively. It is also 

possible to configure the measurement range to collect specific 

current between 1μA to 120mA or voltage between 0.1V to 2V. 

The AMM also provides a convenient way to record data by 

enabling the automatic script function that records every 

measurement into a CSV file. 

We initially used SMU and AMM to collect data. However, 

the measurement process was not controllable and the 

measured data was not accurate enough. We then developed 

scripts to control and interact with the SMU for the 

measurement. 

The Agilent U2722A SMU supports SCPI and IVI-COM 

standard that is compatible with a wide range of ADE. SCPI, 

also known as the Standard Commands for Programmable 

Instruments, is an ASCII-based instrument command language 

designed for test and measurement instruments [8]. It is widely 

supported in measurement instruments. In particular, there is an 

Instrument Control Toolbox in Matlab that supports various 

communication protocols between measurement instruments 

and computer including GPIB, Serial, TCP/IP, UDP and VISA. 

GPIB is the most widely used protocol in measurement 

instruments. Many Agilent instruments support GPIB. 

However, the U2722A SMU only supports VISA protocol. 

Thus, in our measurements, we have used this protocol to 

control the SMU. 

 



 

 
Figure 2: Agilent U2722A SMU [6]. 

 

Through this VISA protocol and SCPI commands, we 

develop a script that starts by setting up a new VISA connection 

by specifying the instrument vendor and the USB port number. 

The script then clears the previous commands in the device and 

resets the device. After these configurations, any control 

commands can be sent to the device and all received data can be 

stored on the computer. Additionally, by using the Matlab 

syntax, we can have more control over the SMU. For example, 

we can enable the device executing a command for a certain 

amount of time. Finally, the script closes and deletes the 

connection. The following is a pseudo-code example for 

measuring battery discharge behavior: 

obj=visa('AGILENT', 

'USB0::0x0957::0x4118::MY51220005::0::INSTR'); 

fopen(obj); % Open the interface 

fprintf(obj, '*CLS'); % Clear the command in the device 

fprintf(obj, '*RST'); % Reset the device 

 

%send command to measurement instruments 

%receive data from measurement instruments 

 

fclose(obj); %close the connection 

delete(obj); %delete the connection 

clear obj; 

Using this script, we designed different measurement plans. 

According to the specification of the SMU, we measured the 

output voltage under four different constant current loads: 

60mA, 80mA, 100mA and 120mA. We first measured different 

constant current loads at the room temperature. The result 

showed that 60mA and 80mA loads took 9 and 7 hours to 

exhaust the battery, respectively. In order to accelerate the data 

measurement process we collected data under 100mA and 

120mA constant loads for various temperatures. Considering 

the operation temperature of the battery, we measured 100mA 

and 120mA constant loads at 0 Celsius, 20 Celsius, 40 Celsius 

and 55 Celsius.  

Before starting the measurements, we must study the 

individual variability for Energizer AAAA battery. In this way, 

we can ensure that the real average battery capacity would have 

a reasonable probability lying in the range that is obtained from 

the measurement data. We then can determine the number of 

data samples needed to meet the requirements. 

 
Figure 3: Agilent Measurement Manager [7]. 

B. Data Verification. 

After the data was collected, we verified it to ensure its 

correctness. Figure 4(a) shows the battery capacity according to 

the Energizer AAAA datasheet [9]. Under 100mA discharge 

rate at room temperature, it has a battery capacity of about 

450mAh, which means that the battery has a lifetime of about 

4.5 hours when it is discharging at a rate of 100mA. In Figure 4 

(b), the X-axis is the lifetime of the battery in seconds and the 

Y-axis is the output voltage of the battery. It shows a general 

battery discharge behavior under 100mA. Since the datasheet 

of the Energizer AAAA battery defines the cutoff voltage to be 

0.8 volts, we terminated the measurement process when the 

output voltage reached 0.8V. The result shows it took 16729 

seconds which is approximately 4.65 hours to reach this cutoff 

voltage. This value is close to the data sheet value with only 

3.33% error. 

Figure 5(a) shows the battery performance under constant 

discharge rate from [9]. It shows that the service hour of the 

battery is between 9 hours and 4.8 hours in the current range 

between 60mA and 100mA. In Figure 5(b), the X-axis is the 

discharge current load over four different values and Y-axis is 

the lifetime for each individual current load. We converted the 

lifetime of the battery into hours and calculated a linear 

regression for the battery lifetime and current load as   
                . Considering the service hour for the 

battery being discharged between 60mA and 100mA, we can 

conclude that the overall performance matches with the 

manufacturer’s specification well under different current loads 

at room temperature. Therefore, using the script to collect 

battery output voltage will produce sufficiently accurate data. 

Later on, we used the same script to measure all the battery 

discharge data for different situations. 

 



 

 
(a): Battery capacity and discharge rate relationship from 

datasheet [9]. 

 
(b) Battery discharge behavior for 100mA 

Figure 4. Comparison between measured data and datasheet 

specification for lifetime under 100mA. 

V. DATA ANALYSIS AND MODEL VALIDATION 

After data verification, the analysis of the data was performed 

using three steps. The first step is to study the individual 

variability of the battery. The second step is to study the effect 

of different current loads on the battery model. The third step is 

to study the effect of temperature on the battery model. 

A. Variability Study 

Due to various factors, batteries exhibit individual variability in 

energy capacity. For example, variability in the battery 

manufacturing processes can lead to differences in the mixture 

ratio of raw materials. Variability can also be caused by 

differences in battery manufacturing temperature and in 

different factories having variation in processing equipment. 

Thus, in order to obtain the correct data that demonstrates the 

real battery discharge behavior, we must study the individual 

variability. We use probability theory to study the expected 

lifetimes and expected energy capacities. We also calculate the 

confidence interval for lifetime and energy. From our analysis, 

we found that the individual variability in Energizer AAAA 

batteries is negligible and does not significantly influence the 

battery capacity. 

In Figure 6, the X-axis is the lifetime of the battery in  

 

 
(a) Battery lifetime and discharge rate relationship from 

datasheet [9]. 

  
(b) Measured and fitted battery performance under constant 

current. 

Figure 5. Comparison between measured data and datasheet 

specification for lifetime under different discharge rates. 

seconds and the Y-axis is the open circuit voltage in volts. 

There are 12 data samples to show the discharge behavior of 12 

batteries. It is clear that all 12 samples demonstrate almost 

identical discharge behavior with very little difference in 

energy and lifetime. 

In addition, we studied the individual variability of these 

batteries at 60mA, 80mA and 100mA. The results show the 

same characteristics. Thus, we do not plot that data in this 

report. Furthermore, we analyzed the data in terms of expected 

value and standard deviation for lifetime and energy capacity. 

The results are shown in Table II. 

As Table II shows, compared with the expected lifetime, the 

standard deviation of the lifetime is around 1%. The same 

relationship can be found between the expected energy capacity 

and standard deviation of energy capacity. This means that 

there is no significant variability in either lifetime or energy 

capacity. In addition, in order to have a deeper understanding of 

the data, we calculated the confidence interval (CI) for battery 

lifetime and energy capacity. We used the definition of mean 

value confidence interval that   (      √      

    √ )    where µ is the expected value of the samples, c is 

the look up value in t distribution, σ
’
 is the unbiased estimation 

of standard deviation, N is the degrees of freedom, r is the 

confidence probability. We also used the definition [(n-1)×S² / 



 

χ²α/2, n-1] ≤ σ² ≤ [(n-1)×S² / χ²1-α/2, n-1] to calculate the 

standard deviation confidence interval. We calculated the 

confidence interval for expected value with 95% confidence 

level and confidence interval for standard deviation with 90% 

confidence level. All results are shown in Table III. As this 

table also shows, the variability of the battery is small. Thus, 

correct battery discharge behavior can be obtained via limited 

number of data samples. Hence, we conclude that the battery 

variability does not have a significant impact on the battery 

discharge behavior.  

 

 
Figure 6: Battery discharge behavior under 120mA at room 

temperature for 12 battery samples 

B. Discharge Rate Study: 

We now analyze the effect of discharge rate on the battery 

model. Figure 7 shows the battery discharge behavior under 

different discharge rates at room temperature. From the figure, 

it is clear that a faster discharge rate results in a much shorter 

lifetime while a slower discharge rate provides a longer 

lifetime. In addition, we also calculated the energy capacity of 

the battery over different discharge rates. The results are shown 

in Figure 8. From the figure, it is clear that the battery capacity, 

in terms of energy capacity, does not change linearly with the 

discharge rate. Large discharge rate results in small energy 

capacity. However, if the discharge rate is small, the energy 

capacity increases exponentially. 

C.  Temperature Study 

As we discussed earlier, temperature has a significant 

influence on the battery capacity. Thus, we analyze the effect of 

temperature on the battery model. Figure 9 and Figure 10 

illustrates this temperature effect on the battery discharge 

behavior under 100mA and 120mA, respectively. The two 

figures show the same behavior with respect to temperature for 

both 100mA and 120mA. When the temperature is below room 

temperature, the battery capacity decreased dramatically. In the 

case of 0 Celsius, the discharge slope is sharp and the battery 

dies quickly. However, above room temperature, the battery 

capacity increases slowly. This trend is shown in Figure 11. As 

we can see from the figure, 100mA and 120mA discharge rates 

show the same relationship between the battery capacity and 

temperature. Furthermore, the relationship of both energy and 

lifetime with temperature has similar characteristics. The 

capacity increases rapidly at first and then saturates when the 

temperature becomes high. 

 
Figure 7: Battery discharge behavior under different current 

load at room temperature. 

 

 
Figure 8: Energy and discharge current relationship at room 

temperature. 

VI. MODEL FITTING AND LIFETIME 

PREDICTION 

In the first step, we validate the battery model in Equation (9) 

and (10) for different discharge rates. Since lifetime is not a 

fixed number but can be obtained through the measured data, 

we have to change the model to the following form: 
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Since we already know the discharge profile, we can use the 

least square approximation to get the optimal value of α and β 

with the following equation: 
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where Ik is the current we calculated through the model and 

IrealK is the measured current data. By minimizing this least 

squares error using gradient descent, we can get the optimal 

value for α and β.  



 

 

Table II. Comparison between expected lifetime/energy and standard deviation of lifetime/energy. 

 μ value for 

lifetime(Sec) 

δ for lifetime Error rate 

(δ/μ) 

μ value for 

energy capacity 

(Joule) 

δ for energy 

capacity 

Error rate 

(δ/μ) 

120mA 1.3445e+004 177.3 1.32% 1.8880e+003 21.0 1.11% 

100mA 1.7334e+004 444.2 2.56% 2.4218e+003 49.1 2.03% 

80mA 2.2576e+004 307.1 1.36% 3.1839e+003 42.8 1.34% 

60mA 3.2777e+004 231.2 0.71% 4.6499e+003 34.0 0.73% 

 

Table III. Mean confidence interval and standard deviation confidence interval for battery lifetime and battery energy. 

 μ CI (Lifetime) δ CI (Lifetime) μ CI (Energy capacity) δ CI (Energy capacity) 

120mA 13344.68 - 13545.32 132.570 - 274.928 1876.1 - 1899.9 15.7 - 32.5 

100mA 17043.79 - 17624.21 319.047 - 760.033 2389.9 - 2454.1 35.3 - 84.1 

80mA 22228.49 - 22923.51 206.386 - 641.611 3135.6 - 3232.4 24.7 - 188.9 

60mA 32515.38 - 33038.62 155.378 - 483.036 4611.5 - 4688.5 19.7 - 150.1 

 

Table IV. Model fitting results for different discharge rates. 

 60mA 80mA 100mA 120mA 60mA and 120mA 

(Periodically exchange value every 15 

minutes) 

Measurement 

lifetime in Minute 

546.28  376.27  285.55  221.32  290.00  

Model predicted 

lifetime in Minute 

465  345  270  225  300  

Error 14.84% 8.31% 5.45% 1.66% 3.45% 

 

Table V. Model fitting results for different discharge rates accounting for the impact of temperature. 
 60mA 

(20C) 

80mA 

(20C) 

100mA 

(0C) 

100mA

(20C) 

100mA 

(40C) 

100mA 

(55C) 

120mA 

(0C) 

120mA 

(20C) 

120mA 

(40C) 

120mA 

(55C) 

60mA – 120mA 15 min 

periodically change 
(25C) 

Measured 

lifetime in 
minutes 

546.28 376.27 117.28 285.55 326.13 329.27 85.04 221.32 256.37 260.02 290 

Predicted 

lifetime in 

minutes 

455.1 341 108 271 317 354 81.1 225 263 294 270 

Error 16.69% 9.37% 7.91% 5.09% 2.80% 7.50% 4.64% 1.67% 2.59% 13.08% 6.89% 

 

A Matlab program is written to implement this. First two 

arbitrary initial values were chosen for α and β along with an 

initial step size c. At each step of the gradient descent iteration, 

we update the value of α and β by computing the gradient.  To 

ensure that the step size is not too large, we first define gradient 

difference height as the sum of the two gradients for each 

variable. If the difference between the new values and the old 

values of α and β is smaller than half the gradient difference 

height, we accept the new values. Otherwise we decrease the 

value of c until the new values meet the criteria. Finally, when 

the product of the gradient and coefficient c is smaller than a 

threshold value, we terminate the iterations. The values of α and 

β obtained after this least squares fitting are used in our battery 

model. 

After the value of α and β are obtained, we use the model to 

predict the lifetime of the battery. First, we define a function 

f(x) as follows: 
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where u is the current discharge step and f(x) stands for the 

remaining capacity of the battery.  

We define the first time f(x) reaches 0 as the lifetime of the 

battery. Thus, given the discharge profile, we can now 

systematically calculate the lifetime of the battery. The results 

are shown in Table IV. 

 As Table IV shows, the error between the predicted lifetime 

and measured lifetime is within a reasonable range. 

Specifically, the heavy discharge rate has an error under 5% 

while the light discharge rate has an error under 15%. This 

result matches the results of Rakhmatov et. al. [1].  

Furthermore, we studied the case where the battery is 

discharging under varying discharge rate. We chose a load 

profile that periodically oscillates between 60mA and 120mA 



 

 
Figure 9. Battery discharge behavior in various temperatures 

under 100mA. 

 

 
Figure 10. Battery discharge behavior in various temperatures 

under 120mA. 

with a time period of 15 minutes. As Table IV shows, the error 

rate is within 5%, which means that the model works even for 

time varying discharge rate. Figure 12 illustrates this scenario. 

In the second step, we fitted the temperature model defined 

by Equation (11) and (12). The gradient descent optimization 

described earlier is used again with slight modifications to 

account for the specific data in this scenario. The fitted data is 

shown in Table V, along with the prediction error. As shown 

Table V, and illustrated in Figure 13, even after modifying the 

battery model to account for temperature, lifetime prediction 

error does not change significantly.  

VII. CONCLUSION 

In this work, we experimentally measured the lifetime of 

several batteries under different discharge conditions. Using 

this measured data we analyzed the variability in battery 

capacity across 12 samples. We also analyzed the impact of 

discharge rate and temperature on the battery capacity. In 

addition to this, the battery model to predict battery lifetime 

proposed by Rakhmatov et. al. [1] was fitted and validated for 

different discharge rates. We proposed a modification to this 

model that accounts for the impact of temperature on battery 

life. The predicted lifetime of this model matches well with  

 
(a)  Energy temperature relationship 

   
(b) Lifetime temperature relationship 

Figure 11. Energy/Lifetime and temperature relationship under 

100mA and 120mA 

the experimental data. This improved model can therefore be 

incorporated as a part of power management in portable 

embedded systems. 

 

 
Figure 12. Comparison between measured and predicted 

lifetime under different discharge current at room temperature. 

 



 

 
Figure 13. Comparison between predicted and measured 

lifetime under 100 mA and 120mA under different 

temperatures 
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