
Post-Layout Sizing for Leakage Power
Optimization: A Comparative Study

Santiago Mok
Advisor: Puneet Gupta

Electrical Engineering Department, University of California Los Angeles
{smok,puneet}@ee.ucla.edu

1. Introduction

Sizing is a widely-used method to tune design param-
eters (i.e. gate width, threshold voltage) to meet timing,
power, and signal integrity constraints. Compared to syn-
thesis, placement, and routing, sizing can help to meet these
constraints with a minimal effect on the overall design.

In library-based designs, the gate sizing problem
amounts to choosing an appropriate size from the cell li-
brary for each of the gates in the design. This problem has
been studied extensively, however as the problem is NP-
hard [1], optimality has been difficult to show. Variety of
approaches have been proposed to the sizing problem.

A rich literature [2, 3, 4, 5, 6, 7, 8, 9, 10] studies the siz-
ing framework for area/power/delay optimization. [2, 3, 4]
apply a greedy heuristic to optimize power/area/delay sub-
ject to delay/area constraints. [5] studies a sensitivity-
based heuristic. The sizing problem has been formulated
as a linear program problem in [6, 7]. [7] solves the
problem as continous optimization and discretize the solu-
tions. Slack allocation-based linear program is employed
in [8]. Lagrangian relaxation based optimization is pro-
posed in [9, 10].

Though many approaches have been proposed for the
discrete sizing problem, there is no common delay model
which makes comparison between methods hard. [2, 3, 9,
10] approximate timing using Elmore delay. [5] uses re-
gionwise quadratic delay model in circuit timing and El-
more delay in estimating sensitivities. [6, 7] assume gate
delay as a linear function of gate size or threshold voltage.
[8] employs SPICE-characterized rise/fall delay as function
of load.

The demand for low power design and aggresive time-to-
market schedule require late-stage (post-layout) optimiza-
tion with accurate design information and minimal design
alterations. Gate sizing has been the desirable technique to

achieve low power design but an accurate timing model that
account for slew effects is indispensable, as designer cannot
afford timing violation.

Many sizing work from the literature focus on circuit-
level optimization and the effects from post-layout (post
place and route) has not been carefully addressed. Addi-
tional constraints must be considered in post-layout stage
optimization: 1) library-based design is the de facto stan-
dard where a set of discrete gate sizes is available; hence,
no assumption on continuous sizing can be made. 2) As
routing has not scaled so aggresively compare to devices,
wire contribute significant capacitive loading; as a result,
gate delay is impacted. Wire loading and wire delay have
significant impact on overall design timing that cannot be
ignored.

Due to these contraints, an accurate timer is an essen-
tial tool in the sizing problem. Gate delays are often taken
as cost metric in many optimization framework. In certain
delay-sensitive optimization, an inaccurate timing model
could lead to significant error. In this paper, we will com-
pare discrete gate sizing methods implemented with accu-
rate delay model comparable to the commercial timer used
for timing sign-off. We also propose a new incremental gate
sizing framework which has not been studied in the sizing
literature.

The remainder of the paper is structured as follows. Sec-
tion 2 discusses commonly employed sizing optimization
methodologies. We introduce a new incremental sizing
framework in Section 3. Experimental results are discussed
in Section 4 and we conclude our finding in Section 5.

2. Discrete Gate Sizing Methodologies

In this section, we discuss three widely studied gate siz-
ing algorithms: greedy, linear programming (LP) and La-
grangian relaxation (LR). Greedy is widely used for the



simplicity of its implementation. The main drawback for
any greedy heuristic is that they might be easily trapped
in local minima. On the other hand, LP and LR are both
mathematical-based algorithms that were proposed to avoid
the pitfall of greedy optimization. The details of each algo-
rithm is discussed in the next subsections.

2.1 Greedy Algorithm

The greedy algorithm is a problem solving heuristic
that evaluates the most cost-effective solution at each stage
of the optimization. Extensive gate sizing optimization
framework has been centered around greedy heuristic and
sensitivity-based greedy heuristic [2, 11, 4, 3, 12, 5]. An
early work, TILOS [2] optimizes area by assuming a
minimum-sized circuit is allowed and iteratively sizes tran-
sistors in the critical path until timing is met.

We implemented a greedy heuristic similar to [2] that op-
timizes leakage power based on (∆Power/∆Delay) sensi-
tivity function. The sensitivity metric measure the improve-
ment in power per unit of delay. In our implementation, the
initial design is a timing feasible (timing optimized) design,
as in [12]. The main optimization heuristic trades gate de-
lay for leakage power in decreasing sensitivity values. For
each gate size change, an incremental static timing analysis
is carried out to ensure timing is met. This heuristic iter-
ates until no further gate size changes is possible that would
meet timing. The flow of the algorithm is shown in Figure 1
and the details are explained below.

1. Create Sensitivity List: For each gate in the circuit,
compute the (∆Power/∆Delay) sensitivity value with
respect to each of the downsizes available.

2. Evaluate: For each sensitivity in descending order,
change the current gate to the new gate’s size. Perform
incremental timing analysis and verify timing feasibil-
ity. If it does not meet timing, reverse gate to previous
sizing; otherwise retain new sizing.

3. Update and Iterate: Note that during the evaluate
phase, for any sizing modification in the circuit, the
affected sensitivity values are not updated for perfor-
mance purposes. Sizing a gate affects its fanin loading
and its output transition time. The evaluate phase loops
through all power-improving moves until the list is ex-
hausted. If any sizing changes were performed, the
sensitivity list is updated to capture the new configura-
tion from previous iteration and the evaluate phase is
re-iterated. Othewrise, the heuristic terminates as no
further downsize is possible.

4. Single Iteration Greedy: A variant of this greedy
heuristic is to terminate after evaluating through the
sensitivity list once. This provide speed-up when no
significant benefit is gained from additional iteration

Figure 1. Greedy algorithm

such as in Vt assignment.

2.2 Linear Programming

The linear programming (LP) problem, in general, is for-
mulated as maximizing a linear function subject to linear
constraints. In academia, LP has been widely studied in
gate sizing and Vth assignment context [6, 8, 7, 13, 14].

Gate sizing technique in [8] has claimed remarkable
power improvement using a slack allocation-based LP. Sim-
ilar to our greedy approach, (∆Power/∆Delay) sensitivity
value is assigned for each library size available from each
gate in the circuit. Based on the power sensitivity value,
the linear program smartly distributes slack to each individ-
ual gate with the objective of minimizing leakage power.
In contrast to the greedy method where maximum delay on
highly sensitive gates are traded for power, this method may
assign more delay to those gates that are bottlenecks and
common to multiple critical paths.

In this comparative study, we implemented the slack
allocation-based LP algorithm; the flow of the algorithm is
shown in Figure 2 and the details are explained below.

1. Create Sensitivity List: For each gate in the circuit,
compute the (∆Power/∆Delay) sensitivity value with
respect to each possible downsize cell that quantifies
maximum power savings per unit delay cost.

2. Slack Allocation: Taking the measured sensitivity
into consideration, LP is solved to distribute slack

2



among gates in the circuit. The LP formulation is given
as follow for a circuit G with n gates:

minimize
∑

n

d+
n

∆Pn

∆Dn
, ∀nεG

subject to ai + di + d+
n ≤ an, ∀nεG, ∀iεfanin

0 ≤ d+
n ≤ Tmax, ∀nεG

aj ≤ Ttarget, ∀jεPO
(1)

where d+
n is the additional delay assigned to gate n,

ai is the arrival time and di is the gate+wire delay with
respect to fanin i, an is the arrival time at output of gate
n, aj is arrival time at the primary output and Ttarget

is the target delay.
3. Sizing Assignment: Once the slack is allocated, the

best configuration (minimum power) is assigned such
that the allocated slack is not violated. This is done by
choosing the lowest power size that changes the slack
to a difference that is within the slack allocated to the
gate. As new sizes alter slew and load in the fanin and
fanout cone, an incremental static timing is triggered
for each gate size change to ensure that circuit timing
constraint is met.

4. Update and Iterate: Due to the interactions between
gates, slack may remain after an initial assignment.
Steps 1, 2, and 3 are re-iterated with updated sensi-
tivity list that capture changes in the new configura-
tion. The heuristic iterate until the power objective
converges and no further power improvement is pos-
sible.

2.3 Lagrangian Relaxation

Lagrangian Relaxation is another mathematical based
nonlinear optimization method that has been adapted to
solve the sizing problem [10, 9]. For power optimization,
[9] define the lagrangian problem for circuit G with n gates:

minimize
∑

xεG

p(x) +
∑

I ε PI

λi(ai − qi)

+
∑

∀(xj ,xi) ε G

λji(qj + D(xji)− qi)

subject to Xmin ≤ xn ≤ Xmax

qi ≥ ai

qi ≥ D(xji) + qj

(2)

where:

• p(x) is the leakage power for gate x in the design G
• D(xji) is the delay of gate x through fanin(i)
• λji is the lagrangian multiplier through fanin(i)
• (xi, xj) is the interconnect between gate xi and xj

• xn is the vector of gate sizes
• ai is the arrival time at fanin(i)

Figure 2. Slack Allocation-based LP

• qi is the require arrival time at input of gate(i)

The lagrangian relaxation method reduces the number of
timing constraints in (2) by embedding them as cost func-
tion into the lagrangian multipliers (λ). The reduction is
made possible by deriving the ”Kuhn-Tucker” optimality
conditions on λ (proved in [10]) that lead to the flow-like
requirement in (3). The condition on λ is indepedent of the
arrival and require arrival time at the gate nodes. With (3),
the lagrangian function in (2) reduces to the weighted sum
of power and delay in (4).

∑

i ε fanins(xk)

λi =
∑

j ε fanouts(xk)

λj (3)

minimize
∑

x ε G

p(x) +
∑

i ε fanin

λijD(xij )

subject to Xmin ≤ xn ≤ Xmax, ∀n
(4)

The lagrangian-based heuristics that we will compare is
based on ”Timing-Constrained Power Optimization” in [9]
which is a Dynamic Programming (DP) guided lagrangian
relaxation heuristic. Lagrangian relaxation method does not
rely on sensitivity metrics which some claim that sensitiv-
ity model leads to local minima. This algorithm offer two
main advantages over other continuous lagrangian-based
optimization: (1) This algorithm can be easily adapted to
look-up table timing model which avoid fitting data to con-
tinuous timing model that is subject to inaccurate delay; (2)

3



It avoids snapping solution to a discrete size which is also
prone to error.

In brief, the algorithm solves two problems: 1) the La-
grangian relaxation subproblem (4) guided by DP, and 2)
the Lagrangian dual problem which tune the Lagrangian
multipliers (λ) to optimize the Lagrangian function. The
Lagrangian function serves as the objective for DP. The
DP perform a reverse topological propagation from primary
outputs (PO) to primary inputs (PI) to compute the partial
lagrangian function; which is then followed by a forward
topological search from PI to PO that assigns the gate size
that optimizes the Lagrangian function.

The Lagrangian relaxation subproblem is solved by re-
cursively computing the partial weighted Lagrangian func-
tion (5) at each gate for each size option. At each gate’s
output node, the candidate solutions from its fanouts are
merged and pruned based on the criteria in (7). Once all
candidate solutions are generated for each gate, a forward
topological search is performed to assign the gate size that
minimizes the weighted objective function (6).

L(xn
i ) =

∑

xj ε fanout(xi)

min
m ε vec(xj)

{p(xi) + λijD(xm
ij ) + L(xm

j )}

(5)

solution(xi) = min
m ε vec(xi)

[L(xm
i ) +

∑

xj ε fanin(xi)

{λjiD(xm
ji ) + p(xh)}]

(6)

if c(xn
i ) ≥ c(xm

j ) and L(xn
i ) ≥ L(xm

j ) (7)

The Lagrangian dual problem updates the Lagrangian
multipliers in equation (8) simlar to the subgradient method
based on the input slack and α factor that facilitate conver-
gence. The overall algorithm is shown in Algorithm (1)

λ+
i = λi + α(−slack(xi)), i ε fanin(xi) (8)

3. Peephole

One area that deserves attention is incremental gate siz-
ing. This has not been studied in prior literarture. In this
section, we present a method to perform incremental gate
sizing. This method focuses on optimizing portions of the
design, which we call peepholes, which can unlock addi-
tional leakage power improvement of an optimized design

Definition 1. A peephole is a collection of a gate (the root)
and an arbitrary collection of its fanouts.

Algorithm 1 DP LR()
1: λ← 0
2: for all x ε G in reverse topological order do
3: for all size option(n) in vec(xn) do
4: for all xjεfanout(x) do
5: obj(xn

i )← L(xn
i )fromequation (5)

6: end for
7: end for
8: Prune candidates based on 7
9: end for

10: for all x ε G in topological order do
11: if xi ε P I then
12: solution(x)← min

k ε option(xn)
obj(xk

i )

13: else
14: solution(x)← equation (6)
15: end if
16: end for
17: Update λ

Figure 3. Peephole Example

For the example in Figure 3 there are many peepholes as-
sociated with “G1”. One peephole could beP = {G1, G6},
and another could be P = {G1, G3, G6}. From the
graph, there are also natural peepholes that can be made,
for example, the root gate and its immediate fanouts (P =
{G1, G2, G3}), and the root gate and its second level
fanouts (P = {G1, G4, G5, G6}). These peepholes play
a key part in the optimization, and we formalize these natu-
ral peepholes below:

Definition 2. An nth degree peephole consists of the peep-
hole formed by the root, and the fanouts that are at least n
levels from the root.

Note that the nth degree peephole excludes the gates that
are less than n levels from the root. For example, in Figure 3
the 2nd-degree peephole is P = {G1, G4, G5, G6} and ex-
cludes gates P = {G1, G2, G3}.

The peephole optimization focuses on upsizing the root
gate, and downsizing the fanouts in the peephole. The main
idea is to create slack by upsizing the root gate, which is
used downstream to downsize multiple gates. This improves
leakage power by downsizing multiple gates at the expense

4



of increasing the leakage power of the single root gate, and
yields a net leakage power improvement. This allows leak-
age power improvement in cases where it is not possible
when only a single gate is evaluated.

nth-degree peepholes with n > 1 are considered because
the slack from upsizing a root propagates through the path
but its immediate fanouts may not be able to take advantage
of these slacks. Thus, in the algorithm in this section, we
focus on nth-degree peepholes for n ∈ {1, 2, 3}.

An overview of the peephole optimization algorithm is
given in the next section and the rest of this section we pro-
ceed to discuss in details each steps of the algorithm.

3.1 Peephole Optimization Algorithm

The overall flow for the peephole is:

1. Start with a list of all peepholes for the circuit.
2. Prune the peephole list
3. Rank peepholes according to their size-ability
4. Optimize the peepholes in decreasing order of rank
5. Recover the additional slacks created by step (4) using

a greedy sizing method.

3.2. Pruning the peepholes

The number of nth degree peepholes in a circuit is pro-
hibitively large. It is approximately the number of gates
times the depth of the circuit. As the number of peepholes
is large, pruning is necessary to manage runtime and avoid
effort wasted in peepholes that are unlikely to give a power
reduction. The following conditions are verified before any
peephole is accepted for sizing optimization.

• Restriction to n ∈ {1, 2, 3}: Substantial amount
of time is taken and no considerable improvement is
achieved when 4th and higher degree fanouts are con-
sidered. Thus, we restrict the peepholes up until 3rd

degree fanouts.

• Up-Sizeable Root: Since our optimization relies on
upsizing the root r ∈ P to create slack for its fanout,
any peephole that contains a root with maximum size
is removed.

• Timing-Infeasible Root: It is not always the case that
upsizing a gate will create additional slacks on the
path. When a gate is upsized, the driver of this gate
encounters a larger load at its output. The larger load
can slow down the driver and eventually slow down the
path. Consequently, if the output arrival time is worsen
when the root r ∈ P is upsized, then any peephole with
such root is removed.

• Down-Sizeable Fanout: Another peephole constraint
is the fanout gates are downsized only. Each fanout
j ∈ P that is already minimum size is removed from
the peephole for optimization.

In addition, we prune peepholes during the optimization
process:

• Optimized Peephole: From our extended peephole
definition, up to 3 peepholes can be associated with
a gate in the circuit. Recall that the extended peephole
definition takes into account transitive fanouts in case
that immediate fanouts were not able to be optimized;
if any 1 of 3 peephole is optimized, not enough slack is
available to optimize another peephole with the same
root. As the algorithm proceed, onceP(r, j), peephole
with root r and fanouts j is optimized, further peephole
P(r, k) down in the ranked-list are removed.

3.3 Peepholes Ranking

After the pruning process, the peephole are ranked in or-
der of the likelihood that it will provide power savings after
optimization. This is done using two metrics – timing fea-
sibility and sizeability.

The timing feasibility measures the likelihood that the
root upsize – fanout downsize combination will be timing
feasible:

Definition 3. The timing Feasibility of a root, r and fanout
j is measured as:

Feasibility(r, j) = ∆(+)delay(r)−∆(−)delay(j)+slack(j)
(9)

where ∆(+)delay(r) is the change in the delay of gate r
when it is upsized (to the next available size), ∆(−)delay(j)
is the change in the delay of gate j when it is downsized (to
the next available size), and slack(j) is the output slack of
gate j. The gate delay is estimated as the time required to
drive the fanout load with the current input slew and output
load configuration.

The size-ability of a peephole P can then be defined us-
ing the timing Feasibility of its members:

Sizeability(P) = slew(r) ·
∑

i∈P

W(Feasibility(r, i)) (10)

where

W(x) =

{

1 if x > 0

0 otherwise
(11)

A weight W = 1 is added for each fanout j ∈ P that is
has a positive feasibility. The weighted sum is then multi-
plied with output slew of root r ∈ P , which accounts for
propagated arrival time effects. This is because when a root

5



with a high (slow) slew is upsized, the downstream slew
will decrease (speed up), improving the probability that the
peephole optimization will be successful.

3.4 Peephole Evaluation

The peepholes are evaluated in the ranking order in Sec-
tion 3.3. The evaluation checks if a peephole P(r, j) yields
leakage power improvement without violating timing. The
pseudo-code for the evaluation process is shown in (2).

In the evaluation process:

1. The root r is upsized to the next available size.

2. Fanouts j ∈ P are sorted according to its timing feasi-
bility estimates using (9).

3. For each j ∈ P , j is downsized until it cannot be
downsized without violating the timing constraint.

4. If the net leakage power has improved, the current size
is retained. Otherwise, the sizes of the fanouts are re-
verted and goes to step 2.

Algorithm 2 Evaluate(P(r, j))
1: while Up− Sizeable(r) do
2: UpSize(r)
3: for all j ∈ P do
4: j ← minimum size that meet timing
5: end for
6: if NetLeakagePowerImprove(r,j) then
7: retain current size; mark(r); break
8: else
9: reverse size; continue

10: end if
11: end while

3.5 Algorithm Summary and Slacks Recovery

An overview of the peephole optimization is given in Al-
gorithm 3. It begins by storing all the peepholes in a list L.
In lines 2-3, pruning is performed, size-ability is computed
and the peepholes are ranked (Sections 3.3 and 3.2). In lines
5-10, the peephole list is evaluated in decreasing rank order
(Section 3.4) and the Evaluate algorithm (Algorithm 2) is
executed.

After peephole optimization ends, excessive slack is left-
over. Sensitivity-based greedy heuristic is applied after
peephole optimization to take advantage of the slacks.

Algorithm 3 OptimizePeephole()
1: L← 1st, 2nd, and3rd degree peephole
2: ComputeRankAndPrune(L)
3: Sort(L)
4: for all P ∈ L do
5: r ← P(root); j ← P(fanouts)
6: if r is optimized then
7: continue
8: end if
9: EV ALUATE(r, j)

10: end for
11: Do Sensitivity-based Greedy()

4. Experimental Setup and Results

We tested the algorithms on ISCAS’85 benchmark cir-
cuits. All benchmark circuits are synthesized with Ca-
dence RTL Compiler. The design were optimized for leak-
age power and timing during synthesis. We used Cadence
SoC Encounter to place, route, and extract interconnect
RC (.spef). All design optimizations were disabled during
placement and routing.

The benchmark circuits is synthesized to Nangate 45nm
Open Cell Library [15] and a commercial 65nm ST library.
In the Nangate library, there are 6 sizes for inverter and 3
sizes for other standard cells. In ST library, there are at
least 6 sizes for all standard cells. In addition to gate siz-
ing, we synthesized the circuits to different Vt from the ST
library for Vt assignment. There are 3 Vt variants: high Vt,
standard Vt, and low Vt.

(∆Power/∆Delay) sensitivity-based greedy heuristic,
slack allocation-based linear programming, Lagrangian re-
laxation, and Peephole algorithm are implemented in C++
using OpenAccess API [16] from Si2. We used an open-
source OpenAccess-based timer from OAGEAR [17] pack-
age for static timing analysis (STA). The timer STA engine
is comparable to commercial timer; the timer propagate
both rise/fall transistion and timing, and it uses 2D-table
lookup (slew,load) for delay model.

As a starting point, the benchmark circuits were op-
timized for timing using the dynamic program employed
in [9] for maximizing slacks. The target timing constraint
for all the benchmarks is 30% from minimum delay with
respect to delay with minimum size configuration.

The results for the four algorithms are plotted in fig-
ure (4) and figure (6) for Nangate and ST libraries, respec-
tively. In general, none of the three discrete sizing meth-
ods perform better than another under Nangate library even
though the percentage difference among them is quite small.
The % power improvement among the algorithms is more
clearly plotted in figure (5) which is normalized with re-
spect to the greedy algorithm. LP performs better on c432

6



Figure 4. Gate Sizing with 45nm Nangate li-
brary

Figure 5. Power improvement compare to
greedy (Nangate lib)

and c1908 while LR outperfom other methods by more than
3% on c1355. Greedy leads in c3540 and c7552 by a mere
1% difference.

Gate sizing with ST library indicate more interesting re-
sults. LR algorithm yields the best leakage power in all six
benchmark circuits in Figure (7). Normalized with respect
to greedy, LR leads by as high as 11% in c1355 and 4%
on average over the benchmark suite . On the other hand,
LP’s results are the least among most of the circuits. For the
designs synthesized with ST library, there is a wider spread
in delay between the minimum timing and minimum size
configuration. The wider delay spread along with more dis-
crete sizes in the ST lib facilitate convergence with better
solution quality in the LR algorithm.

In Vt assignment, benchmarks using greedy show much
better power results over LP and LR shown in Figure (9).
The suboptimality of LP in exponential power tradeoff is
quite high which confirm the result in [18]. From the results
in Nangate library and Vt assignment, LR require larger set
of discrete sizes to yield significant power improvement.

With respect to Peephole algorithm, the power improve-
ment shown in Figure (11) over greedy is under the 3%

Figure 6. Gate Sizing with 65nm ST library

Figure 7. Power improvement compare to
greedy (ST lib)

Figure 8. Algorithms Runtime in seconds

bound. Compare to Nangate library, larger improvement are
seen on ST library with more discrete gate sizes and in ST
for Vt assignment with exponential power tradeoff. How-
ever, the quality of the improvement in peephole is difficult
to compare as the optimum delay is unknown and differ-
ence in best leakage power results among the other sizing
method is quite small.

The runtime comparison is shown in Figure (8). LP al-
gorithm has the worst runtime among the three sizing meth-
ods. In LP, the slack allocation is quite sensitive to the rough
estimate of delta delay value; hence, static timing analysis
(STA) is carried out for the sensitivity computation. Also
after slack allocation, STA is triggered to search for the li-
brary gate assignment that fit the given allocated delay. In
contrast, an estimate of the sensitivity value is computed in
greedy and STA is carried out only in evaluating the gate
size change. Similarly in LR, DP is solved with an estimate

7



Figure 9. Vth assignment with 65nm ST library

Figure 10. Power improvement compare to
greedy (ST Lib-Vt)

Figure 11. Peephole power improvement over
greedy

delay and STA is performed for each sizing solution.

5. Conclusion

We have implemented three distinct flavors of discrete
sizing method commonly studied in the literature. A com-
mon timer that employs 2D-table lookup is used among the
algorithms to make comparison fair. No algorithm perform
better than other under the Nangate library. However, LR
yields the best power improvement with gate sizing in ST
library and greedy outperform in the Vt assignment.

Though we have not shown significant improvement
with our peephole method, incremental gate sizing has not
been studied in the literature and it should be an interesting
area of research for late-stage optimization.

References

[1] W. Li, “Strongly np-hard discrete gate sizing prob-
lems,” IEEE International Conference on Computer
Design: VLSI in Computers and Processors, pp. 468–
471, Oct 1993.

[2] J. Fishburn and A. Dunlop, “TILOS: A Posynomial
Approach to Transistor Sizing,” Proceedings of the
1985 International Conference on Computer-aided
Design, Nov, 1985.

[3] L. Wei, Z. Chen, K. Roy, and V. De, “Design and Op-
timization of Dual Threshold Circuits for Low Volt-
age Low Power Applications,” in IEEE Trans. on Very
Large Scale Integration Systems, pp. 16–24, March
1999.

[4] O. Coudert, “Gate sizing for constrained de-
lay/power/area optimization,” Very Large Scale Inte-
gration (VLSI) Systems, IEEE Transactions on, vol. 5,
pp. 465–472, Dec 1997.

[5] S. Sirichotiyakul, T. Edwards, C. Oh, R. Panda, and
D. Blaauw, “Duet: an accurate leakage estimation and
optimization tool for dual-Vt circuits,” in IEEE Trans.
on Very Large Scale Integration Systems, pp. 70–90,
2002.

[6] M. R. C. M. Berkelaar and J. A. G. Jess, “Gate siz-
ing in mos digital circuits with linear programming,”
in EURO-DAC ’90: Proceedings of the conference
on European design automation, (Los Alamitos, CA,
USA), pp. 217–221, IEEE Computer Society Press,
1990.

[7] A. Srivastava, “Simultaneous vt selection and assign-
ment for leakage optimization,” in Proc. Int. Conf.

8



Low Power Electronics and Design, pp. 146–151,
2003.

[8] D. Nguyen, A. Davare, M. Orshansky, D. Chin-
nery, B. Thompson, and K. Keutzer, “Minimization
of dynamic and static power through joint assign-
ment of threshold voltages and sizing optimization,”
in ISLPED ’03: Proceedings of the 2003 interna-
tional symposium on Low power electronics and de-
sign, (New York, NY, USA), pp. 158–163, ACM,
2003.

[9] Y. Liu and J. Hu, “A new algorithm for simultane-
ous gate sizing and threshold voltage assignment,” in
ISPD ’09: Proceedings of the 2009 international sym-
posium on Physical design, (New York, NY, USA),
pp. 27–34, ACM, 2009.

[10] C. Chen, C. Chu, and D. Wong, “Fast and exact si-
multaneous gate and wire sizing by lagrangian re-
laxation,” IEEE Trans. on Computer-Aided Design,
vol. 18, no. 7, pp. 1014–1025, 1999.

[11] O. Coudert, R. Haddad, and S. Manne, “New algo-
rithms for gate sizing: A comparative study,” Design
Automation Conference, vol. 33, pp. 734–739, Dec
1996.

[12] S. Sirichotiyakul, T. Edwards, C. Oh, J. Zuo, A. Dhar-
choudhury, R. Panda, and D. Blaauw, “Stand-by
power minimization through simultaneous threshold
voltage selection and circuit sizing,” in Proc. Design
Automation Conference, pp. 436–441, 1999.

[13] D. G. Chinnery and K. Keutzer, “Linear program-
ming for sizing, vth and vdd assignment,” in Proc. Int.
Conf. Low Power Electronics and Design, pp. 149–
154, 2005.

[14] K. Jeong, A. Kahng, and H. Yao, “Revisiting the lin-
ear programming framework for leakage power vs per-
formance optimization,” in IEEE International Sym-
posium on Quality Electronic Design, pp. 127–134,
2009.

[15] “Nangate Open Cell Library v1.2.” Available from
http://www.si2.org/openeda.si2.org/projects/nangatelib.

[16] Available from http://www.opencores.org.

[17] OAGear v0.98 available from
http://www.si2.org/openeda.si2.org/projects/oagear.

[18] P. Gupta, A. Kahng, A. Kasibhatla, and P. Sharma,
“Eyecharts: Constructive benchmarking of gate siz-
ing heuristics,” in DAC ’10: Proceedings of the 47th
annual conference on Design automation, 2010.

9


