
Eyecharts: Constructive Benchmarking of Gate
Sizing Heuristics

Amarnath Kasibhatla
amar@ee.ucla.edu

University of California Los Angeles
Master’s Project Report, Spring 2010

Advisor: Prof. Puneet Gupta

Abstract—This report presents extensions to the dynamic
programming-based framework proposed in [1] for creating
optimally sized benchmark circuits called eyecharts. Discrete gate
sizing is one of the most commonly used, flexible, and powerful
techniques for digital circuit optimization. The underlying prob-
lem has been proven to be NP-hard [2]. Several (suboptimal) gate
sizing heuristics have been proposed over the past two decades,
but research has suffered from the lack of any systematic way of
assessing the quality of the proposed algorithms. We develop a
method to generate benchmark circuits (called eyecharts) of arbi-
trary size along with a method to compute their optimal solutions
using dynamic programming. We evaluate the suboptimalities of
some popular gate sizing algorithms. Eyecharts help diagnose the
weaknesses of existing gate sizing algorithms, enable systematic
and quantitative comparison of sizing algorithms, and catalyze
further gate sizing research. Our results show that common sizing
methods (including commercial tools) can be suboptimal by as
much as 54% (Vt-assignment), 46% (gate sizing) and 49% (gate-
length biasing) for realistic libraries and circuit topologies.

I. INTRODUCTION

The sizing problem in digital VLSI design seeks to tune
the circuit parameters of supply voltage, threshold voltage,
gate-length and gate-width to optimize a tradeoff of speed,
area and power. The sizing problem arises at all stages of
the RTL-to-GDS implementation flow, and even beyond (e.g.
[3]). The classical problem of discrete gate sizing is to assign
a size (from a pre-characterized cell library) to each gate in
a combinational logic block, such that the block’s total power
is minimized, subject to a maximum delay constraint. Finding
the optimal gate sizing solution for a given digital logic circuit
can be NP-hard [2].

Fishburn and Dunlop proposed a fast greedy method, TILOS
[4], to minimize area while meeting delay constraints. Chan [5]
gives a pseudo-polynomial time slack-computation algorithm
and a backtracking algorithm for gate sizing. Previous methods
have also used mathematical programming techniques to do
gate sizing: linear programming (LP) [6]–[9], Lagrangian
relaxation [10], [11], and convex optimization [12]–[14]. Other
methods include sensitivity-based approaches [3], [15]–[17],
dynamic programming (DP) [18], [19] and heuristics guided
by continuous programming [20]. Coudert et al. [16] give a
good comparison of the gate sizing algorithms proposed during
the early 1990s.

Fig. 1. Basic eyechart topologies.

None of the previous methods in the literature (except
in [21], [22]) quantify their own suboptimality or focus on
characterizing and investigating the suboptimalities of existing
algorithms. There is no consistent benchmarking methodology
when comparing sizing heuristics. Results in [21] show that
sensitivity-based and continuous solution-guided approaches
are not robust, as their suboptimality varies widely (from
4% to 52%) when applied to different ISCAS-85 benchmarks
having nearly identical sizes. A more rigorous approach is
needed to characterize and provide insight into the behavior
of different algorithms over different classes of input circuits.
Suboptimality studies of existing heuristics have already been
performed for other VLSI problems such as logic synthesis
[23], placement [24], [25] and optimal buffer insertion [26],
[27]. However, to our knowledge we are the first to investigate
the suboptimalities of gate sizing heuristics in a systematic
way.

Fig. 2. The half-adder with buffers, with its corresponding graph shown on
the right, is similar to a multi-output mesh topology, which is an extended
version of the basic mesh topology, and is discussed in Section II-C.

In this paper, we present a method to generate combinational
logic circuits (called eyecharts) which are combinations of
the basic chain, mesh and star topologies shown in Figure
1. These eyecharts, together with their optimal solutions, can



be used to benchmark gate sizing heuristics. The idea is to
test just gate sizing heuristics and not any structural/logic
optimization heuristics. Our contribution is especially useful in
benchmarking the heuristics which are often used during post-
layout optimization phase where gate sizing, Vt-assignment,
gate-length biasing are the main choices. We note that the
basic eyechart topologies in Figure 1 represent the common
elements of real circuits. For example, Figure 2 shows a half-
adder circuit which has similarities to a multi-output mesh
topology. Our benchmarks can be generated with various
complexities and topologies (in terms of fanout, logic depth,
and the number of primary inputs (PIs) and primary outputs
(POs)) to study the behavior of existing algorithms under
such variations. This helps us identify the weaknesses of
existing algorithms and may help predict the behavior of a
given heuristic or algorithm for a given arbitrary circuit. Our
experiments show that the suboptimalities of popular sizing
methods can be as large as 54%.1

The contributions of our paper are:
• a set of basic combinational logic topologies that we call

eyecharts;
• a method to size the gates in the eyecharts optimally using

DP;
• a method to form arbitrarily large combinational logic

circuits by daisy-chaining the proposed basic topologies,
while retaining the ability to optimally size these circuits;
and

• experiments and results that show the suboptimality be-
havior of five commonly used gate sizing methods (in-
cluding two commercial tools) under varied topological,
delay/power modeling as well as optimization contexts.

The organization of our paper is as follows. Section II
describes our method to optimally solve the basic and hybrid
eyecharts. Section II-B describes the method to construct and
solve larger hybrid eyecharts (formed by daisy-chaining the
basic eyecharts). Section III describes the implementation
details and the experimental setup to study suboptimalities
of the compared heuristics. Section IV reports the results of
several suboptimality case studies. In Section V, we extend
our dynamic programming approach to solve eycharts for a
more complex delay model where the delay of a gate depends
on both input slew and load capacitance. In the same section
we present the corresponding experimental setup and results.

II. SOLVING EYECHARTS OPTIMALLY

In this section, we present a method to perform optimal
sizing of the basic eyechart topologies shown in Figure 1 using
DP. We assume that a gate’s delay depends only its size and
the total load capacitance.

A. Solving Basic Eyecharts

Solving a Chain. Optimally solving a chain topology entails
allocation of delay budget to each stage such that the total

1Without loss of generality, we only present the details for leakage
optimization in this work.

power is minimized. Here, stage refers to the level of the logic
gate, with PIs at the first level or stage. The delay budget
assignment (without output load dependence) is essentially a
multi-stage allocation problem which can be solved optimally
using DP [28].

For an N -stage chain, the DP recursion is shown in Equa-
tions 1 and 2. We assume that a gate’s delay depends only on
its size and its total output capacitance. We assume that each
gate has k discrete sizes. Dmax denotes the maximum delay
constraint, C(s) is the input capacitance of an inverter of size
s, pij and dij(C(s)) respectively indicate the leakage power
and delay (for an output capacitance C(s)) of the gate at stage
i with size j. Let xi denote the cumulative delay budget for
stage i; then the total power (for an output load C(s)) through
stage i is denoted by Pi,C(s)(xi).

P1,C(s)(x1) = min
j

{p1j} s.t. d1j(C(s)) ≤ x1, 1 ≤ j ≤ k, 1 ≤ s ≤ k (1)

min
j

{d1j(C(s))} ≤ x1 ≤ Dmax

Pi,C(s)(xi) = min
j

{pij + Pi−1,C(j)(xi − dij(C(s)))} s.t. dij < xi (2)

1 ≤ j ≤ k, 1 ≤ s ≤ k

min(xi−1) + min
j

{dij(C(s))} ≤ xi ≤ Dmax, for i ≤ 2 ≤ N − 1

and xN = Dmax

For any stage i, the optimal size for a given cumulative delay
budget is determined by an exhaustive local search among the
available gate sizes. This is done for all of the possible output
loads seen by stage i due to stage i + 1. Stage i + 1 is then
solved optimally by considering all of its gate size choices and
the stage i’s optimal size (for an output load equal to stage
i + 1’s input capacitance) for the range of cumulative delay
budgets shown in Equations 1 and 2. It is easy to see that the
problem has an optimal substructure.2 Dynamic programming
therefore solves this sizing problem optimally. Note that the
principle of optimality holds only if the delay of stage i
depends only on the input capacitance of stage i + 1. This
“levelization” of the circuit graph is the key for preserving
optimality.

We observe that for each stage, an optimal gate size entry
exists for all possible cumulative delay budgets and for all
possible output loads. The last stage’s cumulative delay budget
table has only one entry corresponding to the given PO load
capacitance and the maximum delay constraint (since optimal
sizing uses the full delay budget). A DP execution for a three-
stage inverter chain, with the delay model shown in Table I, is
shown in Table II (CP denotes cumulative power, OS denotes
optimal gate size).

After constructing the table, the optimal size for each stage
is found by traversing the cumulative delay budget table
backwards from PO to PI and allocating a delay budget (and
therefore a size) to each stage. The bolded values in Table II
show this.

2Consider an n-stage chain not containing the optimal solution for n − 1

stages with the given output load. In that case, the solution can be improved
by substituting the optimal solution for stage n − 1.



TABLE I
DELAY TABLE FOR THE INVERTER USED IN THE NUMERICAL EXAMPLE.

Input Leakage Delay
cap power Load cap 3 Load cap 6

Size 1 3 5 3 4
Size 2 6 10 1 2

Fig. 3. Mesh to chain reduction. Delay and power values for B1 and B2
are assumed to be twice and thrice, respectively, that of the values shown in
Table I.

Solving Mesh and Star Structures. Mesh and star topolo-
gies are optimally solved by first reducing them to chains.
This is shown in Figure 3 and Figure 4. A stage with two or
more gates is represented using a composite cell, to capture
the power and delay characteristics of all the gates in that
stage. A composite cell of a stage is a tabular representation
that has power and delay values for all the possible gate size
combinations of all the gates belonging to that stage, for all
the possible output load combinations. For example, if A1,
A2, B1 and B2 each have two gate sizes, then the composite
cell of stage 3 will have 23{A1, B1, A2}×22{B1, B2} entries.
Since each stage with multiple gates is enumerated for all the
possible output loads, we preserve optimality in this reduction
even if the gates belonging to a stage are non-homogeneous.
The gate size entry and the input capacitance entry of a
composite cell is a vector of gate sizes and input capacitances
respectively, of each gate in that stage. For a gate size of a
composite cell, the power is the sum of the powers and the
delay is the maximum of the delays, of the individual gates.
An example of this is shown for stage 4 of the mesh topology
in Figure 3. The composite cell C4 represents the gate size
vector, power and delay values of the gates of stage 4.

Fig. 4. Star to chain reduction.

B. Solving Hybrid Eyecharts

We generate large hybrid eyecharts by daisy-chaining the
basic chain, mesh and star topologies. In this section, we

TABLE II
NUMERICAL EXAMPLE FOR A THREE-STAGE INVERTER CHAIN . THE

FINAL OPTIMAL SIZING SOLUTION IS SHOWN IN bold FONT.

Output Stage 1 Stage 2 Stage 3
cap Budget CP OS Budget CP OS Budget CP OS
3 1 10 2 3 20 2
3 2 10 2 4 15 1
3 3 5 1 5 15 2
3 4 5 1 6 10 1
3 5 5 1 7 10 1
3 6 5 1 8 10 1
3 7 5 1
3 8 5 1
6 2 10 2 4 20 2 8 20 1
6 3 10 2 5 15 1
6 4 5 1 6 15 2
6 5 5 1 7 10 1
6 6 5 1 8 10 1
6 7 5 1
6 8 5 1

explain how to optimally solve the hybrid eyecharts. We solve
a hybrid eyechart by reducing it to a simple chain using a
process similar to the one described in Section II. Figure
5 shows a sample hybrid eyechart and its reduced chain
equivalent. While creating a hybrid eyechart, we mark each
gate in the circuit with a tag that indicates whether it belongs
to a chain, mesh or star structure. All the stages that belong to
a mesh are reduced to single cells using composite cell models.
Starting from each PI, we build cumulative delay budget tables
for each stage until the star node in the center (gate C in Figure
5) is reached. For each such PI chain, the cumulative delay
budget table of the last stage has cumulative power values
for different cumulative delay budgets for the whole PI chain.
Now, these PI chains in parallel can be represented using a
single composite cell, as with Chains 1 and 2 in the hybrid
eyechart of Figure 5. The entries for the power of this cell for
each budget will be the sum of the individual powers of each
PI chain.

Budget tables are built for each stage of the Chains 3 and
4 by following the same steps taken for the PI side chains,
allowing them to be represented using a single composite
cell. The whole circuit can now be treated as a chain and
solved using the DP recursion described in Section II. To
determine the optimal sizes for all the gates in the circuit,
the delay budgets allocated to each cell of the reduced chain
are applied to the corresponding PI/PO chains. The stages
with only one gate are assigned gate sizes directly from the
cumulative budget table, and the gate sizes for other stages are
assigned from the entries found in their respective composite
cell tables.

C. More General Eyechart Topologies

Topologies that are more complex than the basic eyechart
topologies can also be solved. We illustrate this with a multi-
output mesh topology, as shown in Figure 6. This topology has
two two-input cells added in the last stage. A unique property
of the three basic eyechart topologies, unlike the multi-output
mesh, is that a gate at any stage i has inputs coming only from
stage i − 1 and its fanout goes only to gates in stage i + 1.
We treat the group of stages which do not satisfy this unique



Fig. 5. Hybrid eyechart reduced to a chain.

Fig. 6. Multi-output mesh topology.

property as a single stage and solve it using local enumeration.
For example, in Figure 6, stages three, four and five are treated
as a single stage (enclosed by a box), which is enumerated.
The rest of the circuit is solved using the method described
in Section II. Other similar topologies can be added (albeit at
the cost of optimization runtime) in the same way, which can
make our eyechart approach fairly flexible.

III. IMPLEMENTATION DETAILS AND EXPERIMENTAL
SETUP

A C++ program has been written which generates and solves
these eyecharts, and which also writes out their corresponding
netlists, parasitics and delay models in the industry-standard
.v, .spef and .lib formats so that they can be easily used with
standard sizing tools. The complexity of the DP recursion
described in Section II is bounded by O(P · N · B · kn), for
a circuit with P PIs/POs, N stages, delay budget B, k sizes
per gate and n gates per stage. Solving a hybrid benchmark
circuit with 10,000 gates takes approximately four hours.3

Delay tables are formed with delay entries for all possible
output load combinations, to avoid interpolation. This makes
the number of capacitance indices for the delay tables depen-
dent on the maximum fanout in the circuit. For example, if
the library has three sizes per standard cell and the maximum
fanout in the circuit is three, then the delay table would have
nine capacitance indices. This ensures that any combination
of output loads will fall in the range of available discrete
capacitance entries in the delay table. To test the subopti-
malities of post-routing leakage optimization tools, we also
insert parasitic capacitances at different nodes. The values

3Note that this runtime is not a huge concern since the DP method is not
intended for use in practical optimization, but only for benchmarking.

of the parasitic capacitances are set to be integral multiples
of a minimum constructed gate capacitance so that the total
load capacitance seen by a gate has a corresponding index
in the delay table. To preserve optimality, we ignore some
complexities (e.g., crosstalk, slew propagation, etc.), which
are handled by practical optimization engines.

We experimented with the following five different gate
sizing methods for suboptimality studies.

• Comm1, Comm2: Two well known commercial gate siz-
ing and leakage optimization tools. Unfortunately, we do
not know the internal details of these optimizers.

• LP: A linear programming-based slack allocation and
sizing tool which is an implementation of [8]. First, it
optimizes the circuit for maximum speed. Then, it uses
power-delay sensitivities in a linear programming-based
slack allocation to maximize the power savings. It uses
a freely distributed linear programming solver lp solve
(http://lpsolve.sourceforge.net/5.1).

• GS: A greedy sensitivity-based sizing tool similar to
[3], [17] but with a TILOS [4]-like sensitivity function
(∆power/∆delay).

• SBS: A sizing tool that uses the slack-based greedy
sensitivity metric (∆power/∆slack) proposed in [3],
[17].

Note that all the above heuristics except LP use an incre-
mental timing engine in the optimization loop. Due to delay
modeling approximations, LP can sometimes violate timing
constraints. We pick the delay constraint values (by trial and
error) that LP can achieve and run the rest of the heuristics (as
well as the optimal DP) with those constraints. This ensures
that all our comparisons are fair in terms of suboptimality, but
a practical LP-based optimizer will need additional hooks to
fix timing violations.

The following four types of delay and power tradeoffs with
size are investigated.

• LP-LD: Linear increase in power with size and a linear
fit of delay to size/load.

• LP-NLD: Linear increase in power with size and a
nonlinear fit of delay to size/load.

• EP-LD: Exponential increase in power with size and a
linear fit of delay with size/load.

• EP-NLD: Exponential increase in power with size and a
nonlinear fit of delay to size/load.

In the EP-LD and EP-NLD models, we use the term “cell-
variant” to indicate that the cell swapping choices are Vt or
gate-length variants. We assume that the input capacitance of
a gate remains the same across Vt variants. For gate-length
variants, the capacitance increases linearly with gate-length.
All the delay values were fitted individually for each type of
standard cell, using an industrial multi-Vt 65 nm CMOS tech-
nology library. Table III gives a summary of the characteristics
of the four library models used in our experiments, along with
the corresponding optimization contexts.

Table III shows the RMS error of each of these fits. Power
values for all four library models are taken from the reference



technology library and hence do not involve fitting (except for
the studies which involve more number of sizes/variants than
the listed default number). The minimum delay budget for any
benchmark is found by maximally sizing all the gates in the
design.4

TABLE III
SUMMARY OF LIBRARY MODEL CHARACTERISTICS.

Library RMS fitting Optimization context Default #
model error (delay) sizes/variants
LP-LD 8.43% Gate sizing 8

LP-NLD 0.3% Gate sizing 8
EP-LD 8.43% Vt , gate-length bias 3, 3

EP-NLD 0.3% Vt , gate-length bias 3, 3

IV. SUBOPTIMALITY CASE STUDIES

In this section we present the results of a few interesting
case studies. We compare the suboptimalities of the five
optimization heuristics outlined in Section III. These studies
are by no means exhaustive and many other experiments
are possible using eyecharts as a diagnostic tool. All of the
suboptimality values are calculated as

Suboptimality% =
method power − optimal power

optimal power
× 100. (3)

Fig. 7. Daisy-chained individual topologies.

A. Dependence on Circuit Topology

Figure 7 illustrates large chain-, mesh- and star-only circuits
obtained by daisy-chaining the basic topologies. We fix the
netlist size at approximately 10,000 gates and perform the
optimizations with varying delay constraints. The average
fanin/fanout depends on the length of the mesh (three-stage,
five-stage etc., mesh), maximum fanin of the star-only cells,
and total number of stages in the daisy chain. The average
fanouts (and fanins, due to symmetry) of chain-, mesh- and

4Note that this may not be the fastest possible implementation for the case
of gate sizing, where the dependence of the circuit delay on individual gate
sizes is not necessarily monotone.

star-only topologies used in this experiment and shown in
Figure 7 are 1, 1.875 and 1.95 respectively. Figure 8 shows
the suboptimalities for mesh and star topologies; these results
indicate that a mesh structure is more difficult to solve than
a star structure. With respect to circuit topology, designers
should look out for mesh-like topologies (i.e., with reconver-
gent fanouts) since none of the tested heuristics perform well
on them.

500 1000 2000 2500 3000 3500

2

4

6

8

10

12

14

16

18

20

Delay Budget(ps)

S
ub

op
tim

al
ity

 %

 

 
Star−Comm1

Star−LP

Star−GS

Mesh−Comm1

Mesh−LP

Mesh−GS

Star−Comm2

Mesh−Comm2

Star−SBS

Mesh−SBS

Fig. 8. Suboptimality comparison of the daisy-chained mesh-only and
star-only topologies. The chain-only suboptimality results show that all the
compared methods have close to zero suboptimalities and hence are not shown.

We also studied the impact of circuit size on suboptimality.
We varied the circuit’s logic depth and number of PIs/POs,
while keeping the topology of the hybrid eyechart the same
as in Figure 5. The corresponding results (on benchmarks
with sizes ranging from 100 to 51,500 gates) show that the
suboptimality is unaffected by the size of the design, and hence
for the rest of the studies, we use a hybrid benchmark with
10,000 gates.

B. Effect of Delay Modeling

We compare the delay models using a single hybrid bench-
mark with 10,000 gates. This benchmark has a topology
similar to the sample hybrid eyechart of Figure 5 with a multi-
output mesh topology added at each of the POs. It has four PIs
and five POs. 1,000 five-stage mesh topologies and inverter
chains are also inserted randomly into the benchmark. INV,
NAND and four-input AOI gates, each with eight discrete gate
sizes, are used.

We experimented with the LP-LD delay model and the
suboptimality results are shown in Figure 9. Comm2 has
the best suboptimality, while LP performs much better than
the three remaining optimizers. This is expected since lin-
ear power-delay tradeoffs are better suited for the LP-based
slack-allocation engine. To evaluate the performance of the
chosen optimizers with realistic delay models, .lib models are
generated with the LP-NLD delay model. Figure 10 shows
the corresponding suboptimality trends. Note that the delay
dependence on size is only weakly nonlinear in the 65 nm
library used in this paper. The performance of the LP and
Comm2 methods suffers under the nonlinear delay model while
that of Comm1, SBS and GS improves, especially with relaxed
timing constraints. A possible reason is the ability of Comm1,



500 1000 1500 2000 2500 3000 5000 6000

10

20

30

40

Delay Budget(ps)

S
ub

op
tim

al
ity

 %

 

 

Comm1

LP

GS

Comm2

SBS

Fig. 9. Suboptimalities for LP-LD model.

500 1000 1500 2000 2500 3000 5000 6000

0

4

8

12

16

Delay Budget(ps)

S
ub

op
tim

al
ity

 %

 

 
Comm1
LP
GS
Comm2
SBS

Fig. 10. Suboptimalities for LP-NLD model.

SBS and GS to exploit the nonlinearity. Without knowing the
details of Comm1 and Comm2, one conclusion we can draw
is that even with the nonlinearity in the commercial delay
tables, linear programming is a good approach for linear
power tradeoffs.

The non-monotone trends in the suboptimalities can be
explained using Figure 11. The suboptimality of any of the
compared methods is the least for both the smallest and the
largest delay budgets, while the optimal power decreases with
increasing delay budget. This results in the observed non-
monotone behavior of the suboptimalities.

500 1000 1500 2000 2500 3000 5000 6000

2000
4000
6000
8000

10000
12000

Delay Budget(ps)

A
bs

ol
ut

e 
po

w
er

(n
W

)

 

 GS

Optimal

Fig. 11. Absolute power comparison for LP-LD model.

C. Effect of Library Granularity

We experimented with a varying numbers of gate sizes for
the LP-NLD model. For these experiments, the delay and
power ranges are kept the same as in Section IV-B while the
granularity in gate sizes is increased. Figure 12 shows the
corresponding trends in suboptimality. It can be seen that the
performance of Comm1 and Comm2 are relatively unaffected
while LP’s suboptimality improves noticeably, which is likely
due to a smaller error in snapping the continuous solution to
a discrete one.

For the same experiment, Figure 13 shows the optimal
power values for different delay budgets with two, four and
six gate sizes, normalized to the optimal power values with
eight gate sizes. Since the delay range is the same for
these experiments, higher granularities create more gate sizing
options for smaller delay increments. Hence, a higher library

2 4 6 8 10

1
3
5
7
9

11
13
15
17
19

Number of gate sizes

S
ub

op
tim

al
ity

 %

 

 Comm1

LP

GS

Comm2

SBS

Fig. 12. Suboptimalities vs. number of gate sizes for LP-NLD model with
1500 ps delay budget.

granularity results in a lower optimal power, but the difference
is not very pronounced.

500 550 600 650 700 750 800 850 900

1

1.01

1.02

1.03

Delay Budget(ps)

A
bs

ol
ut

e 
P

ow
er

 N
or

m
al

iz
ed

 to
 8

 S
iz

es

 

 
2
4
6

Fig. 13. Optimal power vs. delay budget for different gate size granularities.
Power values are normalized to corresponding optimal results for eight gate
sizes.

500 800 1000 1200 1300 1500
0

5

10

15

20

25

Delay Budget(ps)

S
ub

op
tim

al
ity

 %

 

 
Comm1

LP

GS

Comm2

SBS

Fig. 14. Suboptimalities for EP-LD model under different delay constraints,
using Vt variants only.

500 800 1000 1200 1300 1500

20

30

40

50

60

Delay Budget(ps)

S
ub

op
tim

al
ity

 %

 

 Comm1

LP

GS

Comm2

SBS

Fig. 15. Suboptimalities for EP-NLD model using Vt variants only.

D. The Vt-assignment Context

We experimented with the EP-LD and EP-NLD library
models by varying the delay constraint for the case where each
cell has three variants. The corresponding results are shown



in Figure 14 and Figure 15 respectively. The minimum delay
budget for optimization is found by assigning low Vt variants
to all of the cells. LP and Comm2 perform relatively well for
the smaller budgets but their suboptimality increases for the
larger delay budgets. Moreover, the suboptimality difference
between the LD and NLD delay modeling is more pronounced
for the LP optimizer.

500 1000 1200 1300 1500 1800

1

2

3

4

5

6

7

8

9

10

Delay Budget(ps)

A
bs

ol
ut

e 
P

ow
er

 N
or

m
al

iz
ed

 to
 8

 V
ts 

 

 
2
4
6

Fig. 16. Optimal powers for varying delay budgets and different Vt

granularities. The powers are normalized to the corresponding results for eight
Vt variants.

Figure 16 shows the optimal power values for different delay
constraints for two, four and six Vt variants, normalized to
the powers with eight Vt variants.5 Since the delay range is
the same for these experiments, higher granularities create
more Vt options for smaller delay increments, resulting in
lower optimal powers. These results suggest a strong benefit in
increasing the number of cell variants when the power tradeoff
is exponential, in contrast to the case in Figure 13, which has
a linear power tradeoff.

E. The Gate-length Biasing Context

Figure 17 shows the trends for gate-length biasing. Gate-
length variants have different input capacitance values as
opposed to Vt variants. In these results, all of the tools perform
worse than the gate sizing or Vt-assignment cases. This is
especially true for LP whose suboptimality rises to over 40%
and it does not perform better than the simple GS and SBS
approaches. Iterative methods like GS and SBS, which use a
real static timing engine, perform better than LP due to the
near-quadratic dependence of the delay on the gate-length.
This near-quadratic dependence is due to the reduced drive
strength of the driver, and the increased input capacitance of
the load, for an increased gate-length.

F. Observations

We summarize our main observations and conclusions be-
low.

• All of the tools fare well on designs with low fanouts (i.e.,
designs that are topologically close to the chain eyechart).

• All of the tools fare poorly on designs with reconvergent
fanouts (i.e., designs that are topologically similar to the
mesh eyechart).

5We realize that more than three Vts are rarely used in practice. Neverthe-
less, we show the results with more variants to highlight what is achievable.

500 800 1000 1200 1500
10

15

20

25

30

35

40

Delay Budget(ps)

S
ub

op
tim

al
ity

 %

 

 Comm1

LP

GS

Comm2

SBS

Fig. 17. Suboptimalities for EP-NLD model using gate-length variants only.

• For gate sizing and Vt-assignment, linear programming-
based solvers can perform surprisingly well. Their solu-
tion quality suffers significantly in the gate-length biasing
context where the delay is a strongly nonlinear function
of the gate-length.

• The commercial tools do well in different optimization
contexts (but unfortunately we cannot offer more insight
here). These tools, as well as the sensitivity-based sizers
GS and SBS, benefit from not needing to fit a closed-form
delay/power model to real library data.

• The benefits of having a finer granularity in a library is
much more pronounced for exponential power tradeoffs
(such as gate-length biasing and Vt-assignment) than
linear power tradeoffs (as in the case of gate sizing).

• Local sensitivity-based heuristics like GS and SBS can
be highly suboptimal for large delay budgets due to their
tendency to be trapped in local minima (as we have seen
with star or mesh topologies).

V. EXTENSIONS TO COMPLEX DELAY MODELS

In this section, we present our method to solve the basic and
hybrid eyecharts for a more complex delay model. The delay
of a gate is assumed to depend on its size, input slew and
total load capacitance. The output slew of a gate is assumed
to depend on its size and the total load capacitance.6 Our
method does not guarantee optimality under this delay
model but still produces significantly better solutions than
any of the sizing heuristics we have evaluated.

A. Solving Eyecharts

Solving a Chain. Solving a chain for this assumed delay
model involves a method similar to the one described in
Section II-A except that we build cumulative delay budget
tables for all possible output loads and also for all possible
input slews. The result is a 3D cumulative delay budget table
for each stage with input slew, output load and cumulative
delay budget as the three indices, with the first stage having
constant slew index corresponding to the input slew at the
PI; and the last stage having a constant output load index
corresponding to the output load capacitance at PO.

While building the cumulative delay budget table for an
input slew for stage i, the cumulative delay budget of stage

6In this work, we ignore slew propagation (as do most published sizing
methods) to preserve optimality or near-optimality of dynamic programming
based methods.



i− 1 whose output slew is consistent with the assumed input
slew is chosen. But there could be multiple such cumulative
delay budgets since stage i− 1 is also built for different input
slews.7 So, we choose the one among such cumulative delay
budgets for which cumulative power is least and store it in
the table along with the slew index it belongs to (for ease of
lookup while reverse propagating the tables).8 While reverse
propagating, the cumulative delay budget Dmax of stage N
with the least power contains the optimal solution (optimal
gate size of stage N and optimal power of whole circuit). The
stored values of N − 1 stage’s cumulative delay budget and
slew index of stage are then used to continue with the reverse
propagation.

Due to the need for maintaining slew and load consistency
while building the tables, DP cannot guarantee an optimal so-
lution. For example, optimal solution of a three-stage inverter
chain may not contain the optimal solution for the first two
stages since the optimal solution for two stages only need not
enforce a given slew at the output. Even in the presence of
this suboptimality, our experimental results show that existing
methods used for comparison are still considerably further
worse.

Slew consistency constraint while building cumulative bud-
get tables introduces slight suboptimality if we build cumula-
tive delay budget tables from PI to PO. We can also solve
a chain in a reverse fashion by building cumulative delay
budget tables from PO to PI and allocate budgets by traversing
tables from PI to PO. In this case capacitance assumption
consistency leads to slight suboptimality. We take the best of
two optimization runs:

• run1 - build cumulative delay budget tables from PI to
PO and allocate delay budgets from PO to PI; and

• run2 - build cumulative delay budget tables from PO to
PI and allocate budgets from PI to PO.

Table IV (CP - Cumulative power, OS - Optimal size) shows
run19 of DP execution for a three stage inverter chain, for an
input slew of 2 and output load of 10. It shows how cumulative
delay budget tables are built for all input slew and output load
combinations for a maximum delay constraint of 8. Table V
summarizes the assumed delay model. Sizes 1 and 2 have
output slews 4 and 2 respectively.10 Note that the cumulative
delay budget table for first stage is built only for assumed
input slew (which is 2 in this example). Also, for the final
stage the cumulative delay budget table is built only for the
assumed primary output load (which is 10 in this example).

Solving Mesh, Star and Hybrid Topologies. Since the
delay of each gate of a stage depends on its input slew and
output load, we first build composite cells for all input slew

7This does not happen for i = 2, since stage 1’s cumulative delay budget
table is built for only one input slew.

8So we need to store stage i − 1’s slew index only for 3 ≤ i ≤ N .
9The run2 of this example is executed in the same way except in reverse

direction
10Due to space constraints, we assume one output slew per gate size to

manage Table IV’s size. In our experiments output slew for a gate depends
on load capacitance also.

TABLE V
DELAY TABLE FOR THE INVERTER USED IN THE NUMERICAL EXAMPLE

IN TABLE IV.

Size 1 Size 2
Load cap 5 Load cap 10 Load cap 5 Load cap 10

Input slew 2 3 4 1 2
Input slew 4 5 6 3 4

and output load combinations. It results in a 3D table with
input slew, output load combination and current stage’s gate
size combination as indices. For example, for a stage with
two gates (each with 3 gate sizes), 2 input slews and 4 output
load combinations, the composite cell will have 23 × 2 × 4
entries. The procedure to build a composite cell for an input
slew and output load combination is the same as described in
Section II-A. We also store the output slews of the stage in
the composite cell model for ease of lookup. Once composite
cells for each stage are built, mesh and star topologies can
be reduced to chains and solved using the same procedure as
described in Section II-A.

We solve hybrid eyecharts (shown in Figure 5) using a
procedure similar to the one described in Section II-B. Each
stage is identified as belonging to either a chain, mesh or star
structure by the corresponding stored tag and composite cells
are built accordingly. Using the composite cells the whole
hybrid eyechart can again be treated as a chain and solved
using the previously described procedure for solving a chain.

B. Experimental Setup and Results

In this section we present the experimental setup and results
of some of the experiments described in Section previously in
this section for a chain. The experimental setup is similar to the
one described in Section III. A C++ program has been written
which generates and solves the eyecharts and also generates
the corresponding netlists, parasitics and delay models in their
respective industry standard formats. All the five heuristics
mentioned in Section III are used for suboptimality study.

Delay tables are formed such that delay/slew entries are
available for all possible input slew and output load combi-
nations to avoid interpolation. Since output slew of a gate
depends on its load capacitance, the number of slew and ca-
pacitance indices for the delay/slew tables becomes a function
of the maximum fanout of the circuit. For example, if the
library has 3 sizes per standard cell and the maximum fanout
in the circuit is 3, then the number of capacitance entries
required in the delay table would be 9. This can lead to
27 different possible slews (9 slews for 9 possible output
caps, for each of the 3 sizes). This would make sure that
any combination of existing gate sizes would fall in the range
of the available discrete capacitance and slew entries in the
delay table. However, the number of slew indices quickly rises
with the maximum fanout of the circuit and the number gate
sizes available. To keep the number of slew indices low, slew
table entries are repeated. This is a realistic assumption since
similar output slews for a gate of small size driving lower
load capacitance and a gate of a higher size of the same



TABLE IV
NUMERICAL EXAMPLE FOR A THREE-STAGE INVERTER CHAIN . THE FINAL OPTIMAL SIZING SOLUTION IS SHOWN IN Bold FONT.

Input Output Stage 1 Stage 2 Stage 3
slew cap Budget CP OS o/p Budget CP OS o/p Stage1’s Budget CP OS o/p Stage2’s Stage2’s

slew slew budget slew budget slew
2 5 1 50 2 4 3 100 2 2 2
2 5 2 50 2 2 4 100 2 2 3
2 5 3 25 1 4 5 75 1 4 2
2 5 4 25 1 4 6 75 1 4 2
2 5 5 25 1 4 7 75 1 4 2
2 5 6 25 1 4 8 75 1 4 2
2 5 7 25 1 4
2 5 8 25 1 4
2 10 2 50 2 2 4 100 2 2 2 8 125 2 2 6 2
2 10 3 50 2 2 5 75 1 4 1
2 10 4 25 1 4 6 75 1 4 2
2 10 5 25 1 4 7 75 1 4 1
2 10 6 25 1 4 8 75 1 4 2
2 10 7 25 1 4
2 10 8 25 1 4
4 5 5 100 2 2 2
4 5 6 75 1 4 1
4 5 7 75 2 2 4
4 5 8 50 1 4 3
4 10 6 100 2 2 2 8 150 2 2 4 2
4 10 7 75 1 4 1
4 10 8 75 2 2 4

gate driving higher load capacitance are commonly seen in
industry-standard libraries.

For these experiments also, we assume that input capaci-
tance of a gate increases linearly with length for gate-length
variants and remains constant across Vt variants. All the delay
values are fitted for each type of standard cell, using the
same industrial multi-Vt 65 nm CMOS technology library
mentioned in Section III . Table VI gives a summary of the
characteristics of the four library models used in our exper-
iments along with the corresponding optimization contexts.
The minimum delay budget for any benchmark is found by
maximally sizing all the gates in the design.11

TABLE VI
SUMMARY OF LIBRARY MODEL CHARACTERISTICS.

Library RMS fitting Optimization context Default #
Model error (delay) sizes/variants
LP-LD 12.43% Gate sizing 8

LP-NLD 0.6% Gate sizing 8
EP-LD 12.43% Vt , gate-length 3, 3

EP-NLD 0.6% Vt , gate-length 3, 3

Chain-, star-, mesh-only experiments again showed that
mesh is the most difficult topology. All the compared heuristics
were close to the optimal solution for the chain-only case.
Experiments with varying circuit sizes are also performed. The
results are similar to the experimental results presented in Sec-
tion IV and show that suboptimality is relatively constant with
varying circuit size. So we chose a single hybrid benchmark
with 10,000 gates and obtained the following experimental
results.

11Note that this may not be the fastest possible implementation for the case
of gate sizing, where the dependence of the circuit delay on individual gate
sizes is not necessarily monotone.

LP-LD. We experimented with the LP-LD delay model and
the suboptimality results are shown in the Figure 18. Comm2
has the best suboptimality while LP performs much better than
the other two optimizers. This is expected since linear power-
delay tradeoffs are better suited for the linear programming
based slack-allocation engine.

500 1000 1500 2000 2500 3000 5000 6000

10

20

30

40

Delay Budget(ps)

S
ub

op
tim

al
ity

 %

 

 
Comm1
LP
GS
Comm2
SBS

Fig. 18. LP-LD model suboptimality.

LP-NLD. To evaluate the performance of the chosen op-
timizers with realistic delay models where delay nonlinear
tradeoff with size, .libs are generated with LP-NLD delay
model. Figure 19 shows the corresponding suboptimality
trends. Note that the delay dependence on size etc. is only
weakly nonlinear in the 65 nm library we are working with.
Performance of LP and Comm2 methods suffers a bit under
nonlinear delay model while the Comm1 and the simple
GS heuristics improve significantly. Without knowing the
details of Comm1 and Comm2, one conclusion we can draw
is that even with nonlinearity in commercial delay tables,
linear programming is a good approach at for linear power
tradeoffs. Similar to the results for LP-LD and LP-NLD
experiments shown in Section IV, the suboptimalities show



500 1000 1500 2000 2500 3000 5000 6000

0

4

8

12

16

Delay Budget(ps)

S
ub

op
tim

al
ity

 %

 

 
Comm1
LP
GS
Comm2
SBS

Fig. 19. LP-NLD model suboptimality.

a non-monotone behavior. Tools generate a solution close to
the optimal for very tight or very relaxed timing constraints.

EP-NLD with Vt variants. We experimented with EP-NLD
library model by varying the delay constraint for 3 cell variants
and the corresponding suboptimalities are shown in Figure 20.
LP and Comm2 perform relatively well for lower budgets but
tend be more suboptimal for higher delay budgets. Greedy
methods GS and SBS also improve compared to LP-LD and
LP-NLD case possibly due to the nature of greedy methods
to exploit exponential tradeoffs.

500 800 1000 1200 1500

10

15

20

25

30

35

40

Delay Budget(ps)

S
ub

op
tim

al
ity

 %

 

 

Comm1
LP
GS
Comm2
SBS

Fig. 20. Suboptimality for EP-NLD model using Vt variants only.

EP-NLD with gate-length variants. Figure 21 shows the
trends for gate-length biasing context. Gate-length variants
have different input capacitance values as opposed to Vt vari-
ants. All tools seem to do poorly here compared to gate sizing
or Vt assignment optimizations. This is especially true for
LP whose suboptimality rises to over 35%. Iterative methods
like GS and possibly Comm1 and Comm2 all of which use a
real static timing engine under the hood fare better than LP
due to the somewhat quadratic dependence of delay on gate
length (coming from reduced drive strength of the driver and
increased input capacitance of the load with increasing gate-
length).

VI. CONCLUSIONS AND FUTURE WORK

We have described a method to generate arbitrarily large
combinational circuits with known optimal solutions that can
be used to benchmark and diagnose the problems with siz-
ing heuristics. We have studied the optimization contexts of

500 800 1000 1200 1300 1500

20

30

40

Delay Budget(ps)

S
ub

op
tim

al
ity

 %

 

 
Comm1
LP
GS
Comm2
SBS

Fig. 21. Suboptimality for EP-NLD model using gate-length variants
only.

gate sizing, Vt-assignment and gate-length biasing with two
commercial and three academic sizing heuristics.

Our results show that these heuristics can be suboptimal by
as much as 54%. The presence of reconvergent fanouts in a
circuit topology results in a greater suboptimality compared
to a similar topology without reconvergent fanouts. We also
note that linear programming-based methods perform well
under most scenarios, while local sensitivity (TILOS-like)-
based heuristics perform better under exponential power-size
tradeoffs. We have also proposed a method to solve eyecharts
for a more realistic delay model where delay depends on load
capacitance as well as input slew. Though optimality is not
guaranteed in this case, the results show that the compared
heuristics are significantly suboptimal. The benchmarks and
the code can be downloaded from http://nanocad.ee.ucla.edu/
Main/DownloadForm. Ongoing studies focus on generating
large eyecharts according to a given fanout distribution, to
create benchmarks that have characteristics close to real de-
signs. Another interesting aspect of future work is a method
to detect the presence of the basic eyechart topologies in real
designs and measure the similarity of the designs to eyecharts
with pre-characterized suboptimalities. This will enable the
estimation of suboptimality of a given heuristic on a given
design, possibly allowing optimization tools, which implement
a collection of sizing heuristics, to choose one at runtime.

REFERENCES

[1] P. Gupta, A. B. Kahng, A. Kasibhatla, and P. Sharma, “Eyecharts:
Constructive Benchmarking of Gate Sizing Heuristics,” Proc. DAC,
2010.

[2] W. N. Li, “Strongly NP-Hard Discrete Gate Sizing Problems,” Proc.
ICCD, pp. 468–471, 1993.

[3] P. Gupta, A. B. Kahng, P. Sharma, and D. Sylvester, “Gate-length
Biasing for Runtime-leakage Control,” IEEE Trans. on CAD, pp. 1475–
1485, 2006.

[4] J. Fishburn and A. Dunlop, “TILOS: A Posynomial Programming
Approach to Transistor Sizing,” Proc. ICCAD, pp. 269–273, 1985.

[5] P. K. Chan, “Algorithms for Library-specific Sizing of Combinational
Logic,” Proc. DAC, pp. 353–356, 1990.

[6] M. R. C. M. Berkelaar and J. A. G. Jess, “Gate Sizing in MOS Digital
Circuits with Linear Programming,” Proc. EURO-DAC, pp. 217–221,
1990.

[7] K. Jeong, A. B. Kahng, and H. Yao, “Revisiting the Linear Programming
Framework for Leakage Power vs. Performance Optimization,” Proc.
ISQED, pp. 127–134, 2009.

[8] D. Nguyen, A. Davare, M. Orshansky, D. Chinnery, B. Tompson, and
K. Keutzer, “Minimization of Dynamic and Static Power Through Joint



Assignment of Threshold Voltages and Sizing Optimization,” Proc.
ISLPED, pp. 158–163, 2003.

[9] A. Srivastava, “Simultaneous Vt Selection and Assignment for Leakage
Optimization,” Proc. ISLPED, pp. 146–151, 2003.

[10] H. Tennakoon and C. Sechen, “Gate Sizing Using Lagrangian Relax-
ation Combined with a Fast Gradient-based Pre-processing Step,” Proc.
ICCAD, pp. 395–402, 2002.

[11] C.-P. Chen, C. C. N. Chu, and D. F. Wong, “Fast and Exact Simulta-
neous Gate and Wire Sizing by Lagrangian Relaxation,” Proc. ICCAD,
pp. 617–624, 1998.

[12] S. S. Sapatnekar, V. B. Rao, and P. M. Vaidya, “A Convex Optimization
Approach to Transistor Sizing for CMOS Circuits,” Proc. ICCAD,
pp. 482–485, 1991.

[13] K. Kasamsetty, M. Ketkar, and S. S. Sapatnekar, “A New Class of
Convex Functions for Delay Modeling and its Application to the
Transistor Sizing Problem,” IEEE Trans. on CAD, pp. 779–788, 2000.

[14] H. Tennakoon and C. Sechen, “Efficient and Accurate Gate Sizing with
Piecewise Convex Delay Models,” Proc. DAC, pp. 807–812, 2005.

[15] O. Coudert, “Gate Sizing for Constrained Delay/Power/Area Optimiza-
tion,” IEEE Trans. on VLSI Systems, pp. 465–472, 1997.

[16] O. Coudert, R. Haddad, S. Manne, and S. Manne, “New Algorithms for
Gate Sizing: A Comparative Study,” Proc. DAC, pp. 734–739, 1996.

[17] S. Sirichotiyakul, T. Edwards, C. Oh, R. Panda, and D. Blaauw, “Duet:
an Accurate Leakage Estimation and Optimization Tool for Dual-Vt
Circuits,” IEEE Trans. on VLSI Systems, pp. 79–90, 2002.

[18] S. Hu, M. Ketkar, and J. Hu, “Gate Sizing For Cell Library-Based
Designs,” Proc. DAC, pp. 847–852, 2007.

[19] Y. Liu and J. Hu, “A New Algorithm for Simultaneous Gate Sizing and
Threshold Voltage Assignment,” Proc. ISPD, pp. 27–34, 2009.

[20] S. S. Shah, A. Srivastava, V. Zolotov, D. Sharma, D. Sylvester, and
D. Blaauw, “Discrete Vt Assignment and Gate Sizing Using a Self-
snapping Continuous Formulation,” Proc. ICCAD, pp. 705–711, 2005.

[21] T.-H. Wu and A. Davoodi, “PaRS: Fast and Near-optimal Grid-based
Cell Sizing for Library-based Design,” Proc. ICCAD, pp. 107–111, 2008.

[22] H. Ren and S. Dutt, “A Network-Flow Based Cell Sizing Algorithm,”
Proc. IWLS, pp. 7–14, 2008.

[23] I. L. Markov and J. A. Roy, “On Sub-optimality and Scalability of Logic
Synthesis Tools,” Proc. IWLS, 2003.

[24] J. Cong, M. Romesis, and M. Xie, “Optimality and Stability Study
of Timing-Driven Placement Algorithms,” Proc. ICCAD, pp. 472–478,
2003.

[25] L. W. Hagen, D. J.-H. Huang, and A. B. Kahng, “Quantified Subopti-
mality of VLSI Layout Heuristics,” Proc. DAC, pp. 216–221, 1995.

[26] J. Lillis, C.-K. Cheng, and T.-T. Y. Lin, “Simultaneous Routing and
Buffer Insertion for High Performance Interconnect,” Proc. GLSVLSI,
pp. 148–153, 1996.

[27] L. van Ginneken, “Buffer Placement in Distributed RC-tree Networks
for Minimal Elmore Delay,” Proc. ISCAS, pp. 865–868 vol.2, 1990.

[28] R. Bellman, Dynamic Programming. Dover Publications, N.Y, 1957.


