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Abstract—A robust automated analog circuit synthesis has been con-

sidered the holy grail in semiconductor CAD and design industry. We

review the published literature on analog sizing problem. This work

proposes a new bias-driven analog circuit sizing scheme. The importance

of biasing in analog integrated circuits is emphasized. Our conjecture

is that if the circuit is well biased, the variation of performance across

process variations is lower and that its transient response is better than a

circuit whose biasing is not optimized. We show that there is upto 100%

reduction in the standard deviation values of performance specifications

and there is a significant improvement (10-100%) in the total harmonic

distortion just by biasing the circuit better.

I. INTRODUCTION

Most real world signals are inherently analog. However, informa-

tion storage, processing is done very efficiently in digital domain.

This explains the booming market share of mixed signal integrated

circuits (ICs) seen today with a reported average growth rates

well above 20% [1]. Though the number of transistors is less, the

engineering effort involved in designing analog circuits is not. Most

steps in analog design are basically still handcrafted, ranging from

extensive and repeated SPICE simulation runs through manual place

and route with assistance of parameterized device generators. All

this does not fit well with the short design cycles of time-to-market

critical applications. Therefore, it is necessary to develop computer-

aided design (CAD) tools that assist designers with the design of

analog and mixed-signal integrated systems and eventually automate

(large parts of) it.

Research in analog CAD is not as mature as the digital CAD. There

are some fundamental differences between analog and digital circuits

that prevent adaptation of digital CAD flow to analog design. Firstly,

the digital design typically has fewer performance specifications

(e.g., speed and power) than analog circuits ( e.g., gain, accuracy,

linearity, signal-to-noise ratio, impedance matching). In addition, all

the specifications are tightly coupled in analog and the tradeoffs are

often not as straight forward like in digital (speed vs power).

Fig. 1. A typical mixed signal IC

Secondly, the performance models in digital are typically static.

This is not the case in analog as accuracy performance requires

SPICE level simulations. Abstraction in digital domain can be lever-

aged and design can be done at a very high level e.g., at software

level. In analog, the design needs to be custom crafted at all levels of

hierarchy (architecture, schematic and layout) due to the sensitivity

of the performance towards physical design.

Consequently, because of tighter coupling between specifications

(leading to high dimensional performance models) and the per-

formance models themselves requiring computationally expensive

SPICE simulations, library-based design is impractical in analog

circuits. Both the constraints are relatively relaxed in digital thus

allowing standard cell library-based design.

Finally, integration of analog, RF and digital design onto the same

die opens up a deluge of mixed signal integration issues like substrate

noise etc. Hence, the analog CAD needs to be looked at from a new

perspective. In this paper, we propose a bias-driven robust analog

circuit sizing scheme where the bias information is incorporated in

the optimization process and we see that this leads to a well-behaved

design.

The organization of the paper is as follows. Section II describes the



2

Fig. 2. Analog circuit design flow

analog circuit sizing problem and reviews the performance modeling

and optimization procedures in the analog sizing approaches taken

so far. Section III explains the proposed bias-driven robust analog

circuit sizing methodology. Section IV shows the example circuits

and results. Section V concludes the work and gives future research

directions.

II. ANALOG CIRCUIT SIZING: REVIEW OF PERFORMANCE

MODELS AND OPTIMIZATION APPROACHES

A. Analog Circuit Sizing Problem

Analog design procedure primarily consists of two stages: ar-

chitecture selection and circuit sizing. Here we concentrate on the

circuit sizing problem. In typical circuit sythesis tools, circuit sizing

is formulated as a constrained optimization problem.

minimize
x

f(x)

subject to g(x) ≥ 0

h(x) = 0

XL < x < XH

Where

Vector x corresponds to the design variables (e.g., Device

dimensions).

f(x) is objective to be minimized (e.g., Area, Power etc).

g(x) corresponds to user-defined performance specifications (e.g.,

Minimum gain, SNR etc).

h(x) are equality constraints to be met (e.g., KCL, KVL equations).

Circuit synthesis is the inverse operation of circuit analysis, where

sub-block parameters (such as device sizes and bias values) are

given and resulting performance of the overall block is calculated

(as is done in SPICE). During synthesis, the block performance

is specified and values for the sub-block parameters needed to

meet these performance specifications have to be determined. This

inverse process is not a one-to-one mapping, but usually is an under-

constrained problem with many degrees of freedom. Different analog

circuit synthesis systems can essentially be classified in the way they

eliminate these degrees of freedom. The two key aspects that differen-

tiate the various analog sizing approaches are: performance modeling

and optimization algorithm used in the design space exploration.

B. Performance Modeling

Here, we differentiate between behavioral and performance mod-

eling [2]. Consider a system S transforming an input signal E into

an output signal Y (Figure (4) ). The mathematical modeling of this

input-output relationship is called behavioral modeling. The figure

depicts the same system seen from a designer’s point of view: a

number of design parameters (X) cause the system to exhibit a

particular performance (P). The modeling of this relationship is called

performance modeling. The following section concentrates on the

latter.

Fig. 3. Electronic system seen (a) as a system that relates an input signal E
to an output signal Y and (b) as a system for which a set of design parameters
X have to be chosen to obtain a specified performance P

The performance models can be classified as shown in the Figure

(4).

Fig. 4. Performance estimation approaches
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1) Dynamic models: SPICE models offer state-of-the-art accuracy

but have significant complexity and are hence slow to be simulated.

They also run into convergence problems. However, the computation

capacity increased tremendously over time. With the advent of

parallel processing, simulation time is no longer a bottleneck. In the

modern IC design flows, it has become mandatory to validate design

with the best available models and hence latest analog sizing tools

use the SPICE model in an iterative optimization loop [3] [4].

Another class of dynamic models is learning based models. They

use neural networks [5], support vector machines [6] and data

mining [7] techniques to build macro models. They require a training

sequence, which is usually based upon SPICE simulation data and

that covers significant portions of the design space. However, such

models do not provide much insight. Also, the initial set up time

is high considering that huge multi dimensional data needs to be

analyzed.

2) Static models: Manually created performance models were used

in the early approaches ([8], [9], [10]). Transistor was assumed to

follow simple first order equations. The performance of the circuit

is expressed in terms of the transistor parameters (small signal

parameters like transconductance, output resistance etc) and bias

currents. These are the textbook based equations which are still used

in the initial hand calculations of analog design. Since the sizing

problem is usually under-constrained, the assumptions and initial

estimates are based on the experience of the designer.

As the circuits got complicated, writing analytical equations by

hand became cumbersome. A symbolic simulator [11] was devel-

oped to read in circuit topology and automatically generate design

equations needed to evaluate the circuit performance [12].

Almost all of the symbolic analysis research carried out in the

past concerned the analysis of linear circuits in frequency domain. For

lumped, linear, time invariant circuits, the symbolic network functions

obtained are rational functions in the complex frequency variable x (

s for continuous time and z for discrete time circuits) and the circuit

elements pj that are represented by a symbol (instead of a numerical

value).

H(x) =
N(x)

D(x)
=

X

i

x
i
.ai(p1, . . . , pm)

X

i

xi.bi(p1, . . . , pm)
(1)

In 1 the partially expanded form on the right the coefficients

ai(. . . ) and bi(. . . ) of each power of x for both the numerator and

denominator polynomial are symbolic polynomial functions in the

circuit elements pj . These polynomials can be in nested format or

expanded into the sum-of-product form.

Consider the active RC filter of Figure (5). Starting from the circuit

description of this filter, a symbolic analysis program will return the

following symbolic expression for the transfer function, H(s), of this

filter. In Equation (??),Gi’s denote the conductances of the resistors

used.

H(s) = [−G4G8(G1G2G9 + G1G3G9 + G2G6G9 +

G2G6G1) + sG7G2(G1G3G9 + G1G3G1 − G2G5G9

−G2G5G1) − s2G2G7C1C2(G9 + G1)]/[G1(G9 +

G1)(G4G6G8 + sG5G7C2 + s2G7C1C2)] (2)

Fig. 5. Active RC filter to illustrate the principle of symbolic analysis.

Computer aided symbolic analysis is possible for the small signal

analysis behavior (both linear and weakly nonlinear) of analog

circuits up to the complexity of a few tens of transistors. The symbolic

equations can also be used to provide insight into the behavior of an

analog circuit.

Another efficient approach proposed to describe circuit perfor-

mance is given in [13]. The performance is described with a set

of analytical equations that have a special form (i.e., they are convex

Figure (6)) and the design problem is cast as a convex optimization

problem, which is then solved very efficiently and globally by

numerical algorithms like geometric programming. The problem

formulation for optimization is described in Section II-C2 .

It is shown in [13] that most of the basic transistor parameters

like the gate overdrive, transconductance as well as the circuit per-

formance specifications like the small signal gain, 3-dB bandwidth,

common mode rejection ratio, slew rate, noise etc can be expressed

as posynomial functions (defined in below) of device sizes.

Let x be a vector (x1,. . . ,xn) of n real, positive variables. A

function f is called a posynomial function of x if it has the form

f(x1, . . . , xn) =

t
X

k=1

ckx
α
1k

1
x

α
2k

2
. . . x

αnk
n (3)
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Fig. 6. Optimization problem with nonconvex objective function (a) and
convex objective (b)

where cj ≥ 0 and αij ∈ R.

As seen in the Section II-C2, geometric programming is a very

efficient way of reaching a global optimum for functions which can be

expressed as posynomials. Geometric programming approach is also

taken in [14]. In analog designs, however, it is not guaranteed that

all the performance specifications can be cast into a convex function.

3) Black box regression models: As the transistor dimensions

reduce, the transistor models grow in complexity and first order

calculations result in significant errors. Then, the performance models

were expressed as a function of the device sizes with the coefficients

fitted using SPICE simulations. Circuit sizing methods used these

symbolic models for optimizing the device sizes. A lot of research has

been done on symbolic analysis and efforts were made to incorporate

some non linear effects. The performance estimation is very fast with

such symbolic models, however they suffer from inaccuracies. The

accuracy of the modeling is improved by using SPICE simulation to

fine tune the coefficients in the model.

In general, a mathematical model is assumed and the parameters

of the model are fitted so that the model corresponds as closely as

possible to the simulated or measured data of the real system. Stan-

dard mathematical fitting techniques like interpolation or least squares

regression are well known. However, the use of these techniques

in analog integrated circuit design has always been rather limited.

Techniques from design of experiments provide a mathematical basis

to select a limited but “optimal” set of samples points needed to fit

a black box model. Well known and often used sampling schemes

range from full and fractional factorial design, Placket-Bruman and

Taguchi schemes, to Latin hypercube and even random design.

The combination of design of experiments with a standard fitting

technique often is called response surface modeling.

In symbolic analysis, models are derived via topology analysis. Its

main weakness is that it is limited to linear and weakly nonlinear cir-

cuits. Leveraging SPICE simulation in modeling is promising because

simulators readily handle nonlinear circuits, as well as environmental

effects, manufacturing effects, and different technologies. However,

the models are constrained to templates, which restricts the functional

form.

In [15], symbolic models are generated with a more open ended

functional forms (arbitrarily nonlinear ) and at the same time ensure

that the models are interpretable. Genetic programming is applied as

a means of traversing the space of possible symbolic expressions.

It provides a set of models that trade off normalized mean squared

error and complexity, which is dependent on the number of basis

functions etc. A grammar is specially designed to constrain the search

to a canonical form for functions. In this approach, the posynomial

performance models are handcrafted. In [16], SPICE simulation

data is used to fit a second order polynomial. Then, this model is

automatically be converted into a posynomial model, which can be

solved using geometric programming.

Apart from the above models, there are various approaches that use

cubic splines [17] with adaptive sampling etc. The regression models

have better accuracy than the static models as they are generated using

the simulation data. To summarize, in static models, the coverage of

design space is not good enough to encompass a highly nonlinear

design space of analog circuits. The sizing tools using these models

could design a circuit to meet small signal specifications but might

not fare well to meet the large signal specifications (which usually

represent the nonlinear behavior of circuits).

C. Optimization procedures

The second aspect of the analog circuit sizing problem is the

optimization procedure used in the design space exploration. The

various methods employed are categorized in Figure (7).

Fig. 7. Optimization procedures
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1) Knowledge-based heuristics: Knowledge-based methods have

been widely used in analog CAD. Examples include special heuristics

based systems like IDAC [8], OASYS [9]; systems based on fuzzy

logic like FASY [18].

In heuristics based approaches, the design knowledge is codified

in a computer readable format. They are typically used in topology

selection where the choice is based on decision trees (OPASYN [19])

derived from the designer’s experience. For example, a high voltage

gain requires a cascode structure, a high swing calls for a two stage

opamp. To size a schematic, IDAC [8] makes use of three types of

knowledge, i.e., knowledge specific to the schematic, general circuit

knowledge (for instance, how to size cascode devices) and knowledge

common for a family of circuits (for example, how to stabilize an

amplifier, how to improve the slew rate, etc.). IDAC provides a set

of topologies for several kinds of blocks, e.g., opamps, comparators,

voltage and current references, etc., and can size these circuits to

meet user specifications.

OASYS [9] approaches the problem with a hierarchically struc-

tured framework. The framework is knowledge intensive in that it

relies heavily on the codification of mature analog design expertise.

The analog circuit topologies are represented as a hierarchy of

templates of abstract functional blocks (called design styles) each

with associated detailed design knowledge. This hierarchical structure

has two important features: it decomposes the design task into a

sequence of smaller tasks with uniform structure, and it simplifies

the reuse of design knowledge.

The idea of selecting from among mature design styles follows

directly from standard manual design practices. Analog designers

usually attempt first to find a known, mature topology to fit a

given specification, and only embark on the much more difficult

task of designing a new topology if this search fails to provide

any reasonable candidates. Translation involves knowledge of how

performance specifications for a high level block (a design style)

should be transformed into specifications for each sub-block. For

example, typical performance specifications that form the input to an

opamp level translation task will include dc gain, slew rate, phase

margin, etc. The output of this translation task is a set of designed

sub-blocks, specifically, a set of input specifications for each of these

sub-blocks. The process then repeats inside each sub-block.

BLADES [10] uses an expert system based approach. It uses both

formal and intuitive knowledge in the design process and attacks the

problem using divide-and-conquer strategy. The circuit is partitioned

Fig. 8. OASYS: Topology selection and translation processes.

into sub-blocks and the specifications on the individual sub-blocks are

derived from the global system specification. The design knowledge

is classified as procedures to handle design problems systematically

(e.g., the design of differential amplifiers from a differential pair, load

and current source), or special rules to handle special situations (e.g.,

short circuit protection and compensation). Most of these rules are in

the “if-then” format, where the “if” part represents the instance of the

rule application, and the “then” part is the action to be taken. Text

book design equations are used and the topology choice and sizing

are simple rule based. This approach is similar to OPASYN.

Fuzzy logic based systems have been specially proposed to deal

with “uncertain” information and have proven to be very efficient

in capturing human expertise. FASY [18] uses fuzzy logic in the

topology selection process. Then, a two-phase optimizer sizes all the

components of the selected topology to minimize a user-defined cost

function. First phase uses simple analytical models with simulated

annealing to avoid getting trapped in local minimum. Second phase

uses SPICE in each movement and the results of the first optimiza-

tion phase as a starting point and the wellknown Flectcher-Powell

conjugate gradient method to obtain the final result.

In [20], data mining techniques are used to extract a specs-to-

topology decision tree, global nonlinear sensitivities on topology and

sizing variables and determining analytical expressions of perfor-

mance tradeoffs. A database containing thousands of pareto optimal

designs across five objectives is used.
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2) Mathematical programming: In mathematical programming

based optimization, the analog sizing problem is formulated as a

constrained nonlinear optimization problem ([19]) and it is solved

using various nonlinear solvers like NPSOL. NPSOL employs a

dense SQP algorithm and is especially effective for non linear

problems whose functions and gradients are expensive to evaluate.

The functions should be smooth but need not be convex.

Branch-and-bound is an approach used for solving such nonlinear

optimization problems [21] with a guaranteed globally optimal solu-

tion. It is a systematic enumeration of all candidate solutions, where

large subsets of fruitless candidates are discarded, by using upper and

lower estimated bounds of the quantity being optimized. However, it

tends to get very slow even for a sizeable number of parameters.

Convex functions are a special form of equations that lend them-

selves to very efficient global optimization algorithms. Extremely

powerful interior-point methods are developed for general convex

optimization problems. These methods can solve large problems,

with thousands of variables and tens of thousands of constraints,

very efficiently. The other main advantage is that the methods are

truly global, i.e., the global solution is always found, regardless of

the starting point. Infeasibility is unambiguously detected, i.e., if the

methods do not produce a feasible point they produce a certificate

that proves the problem is infeasible. Also, the stopping criteria are

completely nonheuristic. At each iteration a lower bound on the

achievable performance is given.

Geometric programming is a certain type of convex problem. A

geometric programming is an optimization problem of the form

minimize
x

f0(x)

subject to fi(x) ≤ 1, i = 1, . . . , m.

gi(x)1i = 1, . . . , p.

xi > 0i = 1, . . . , n.

Where f0, . . . , fm are posynomial functions and g1, . . . , gp are

monomial functions.

The posynomial functions are defined earlier. They are closed under

sums, products, nonnegative scaling. Monomials are closed under

products, division.

One of the main disadvantages is that the types of problems,

performance specifications, and objectives that can be handled are

far more restricted than any of the methods described above.

3) Metaheuristics: The simplest among the metaheuristics-based

optimization is the steepest descent method (used in OPASYN). To

find a local minimum of a function using steepest descent, one takes

steps proportional to the negative of the gradient of the function at

current point. Its main disadvantage is that it gets trapped in the local

minima.

Simulated annealing (SA) is a popular method that can avoid

becoming trapped in a locally optimal design. In SA, the algorithm

replaces the current solution by a random “nearby” solution with a

probability that depends on two factors: the difference between the

corresponding function values and a global parameter T (called tem-

perature), that is gradually decreased during the process. In principle

it can compute the globally optimal solution, but in implementations

there is not guarantee at all, since, for example, the cooling schedules

called for in the theoretical treatments are not used in practice. More-

over, no realtime lower bound is available, so termination is heuristic.

Like some knowledge-based and mathematical programming based

methods, SA allows a very wide variety of performance measures

and objectives to be handled. SA has been used in several tools such

as ASTR/OBLX [22]. The main advantages of SA are that it handles

discrete variables well, and greatly reduces the chances of finding

a non globally optimal design. The main disadvantage is that it can

be very slow, and cannot (in practice) guarantee a globally optimal

solution.

In DARWIN [23], genetic algorithm (GA) is used to perform

simultaneous topology selection and circuit sizing. GA belongs to a

class of evolutionary algorithms that can be used to find near optimal

solution for a wide variety of problems. GAs maintain a population of

individuals P(t) for iteration t. During, each generation, all individuals

are evaluated to give some measure of their fitness. On the basis of

this fitness, part of the population is selected to maintain for the next

generation. The vacant places in generation t+1 are filled up by new

individuals, generated by means of applying crossover and mutation

operators. SEAS [24] also uses GA for topology selection.

The GA is not well-suited for fine-tuning structures which are close

to optimal solution [25]. Memetic algorithms [26] can be viewed as a

special kind of GA with a local hill climbing. The role of local search

in memetic algorithm is to locate the local optimum more efficiently

than the GA.

The main disadvantage of SA and GA based approaches is that they

tend to get very slow and huge number of iterations are required to

reach the global optimal solution.
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III. BIAS-DRIVEN ROBUST ANALOG CIRCUIT SIZING

METHODOLOGY

A. Importance of biasing in analog circuit sizing

Unlike digital circuits, analog circuits rely on good biasing for

functionality and performance. For example, the transistor has to be

biased in saturation region to act as a good amplifier. The sizing rules

approach [27] talks about adding the bias constraint to the analog

sizing optimization problem. The bias constraint is that all transistors

should have a positive “margin” (Vds - Vdsat). However, in an analog

circuit, some transistors require more margin than others to stay in

proper region of operation across signal swings and environmental

variations (process, supply voltage and temperature). We proposed

a bias-driven robust analog circuit sizing methodology where this

aspect of bias requirement is captured while sizing the circuit. This

is essential in deep sub-micron CMOS technologies for two reasons.

First, the transition between linear and saturation regions is blurred

and having just a positive margin does not ensure good transistor

properties (e.g., having high gain) in all conditions. Second, as the

supply voltages are scaling down, the voltage headroom is getting

crunched. In a cascode structure, the transistors are left with little

margins and again having the right combinations of margins proves

advantageous in low power analog designs.

In the proposed method, margins of all the transistors are incor-

porated in the optimization routine as a constraint through a margin

function (equation 4). Using three example circuits, we show that

there are two apparent advantages in this methodology compared

to a case where optimization is driven purely by performance

specifications. They are:

• The variation of the performance specifications is reduced.

• The transient behavior of the circuit is improved.

The margin function is defined as below.

Vm(x) =

N
X

i=1

wi

(Vds − Vdsat)i,x

(Vds − Vdsat)i,0

(4)

Where

x represents the vector denoting the sizes of N transistors.

wi is the weight allocated for the normalized margin of transistor i

(
P

w=1).

(Vds − Vdsat)i,x denotes the margin of transistor i at size x.

(Vds − Vdsat)i,0 denotes the margin of transistor i at initial size.

Vm(x) denotes the overall margin of the design at vector x. For the

initial design, its value is 1. A design with better margin would have

a higher value of Vm(x).

B. Calculation of the weights

In order to calculate the weights, first, the sensitivities of the

margins of various transistors w.r.t the sizing of all transistors is

calculated. The sensitivity towards the sizing serves two purposes: it

tries to allocate higher margin to transistors which are more sensitive

to the sizing during optimization, it also serves as a proxy for the

sensitivity towards process variations. All the process variations (Vth,

tox, µ and dimension variations) can be seen as variation of the

strength of transistor and hence sizing can be seen as a proxy for the

process variations.

In the first step, the circuit is provided an initial sizing. This could

be done in many ways. First way is to provide a constant overdrive

to all the transistors. Second way is heuristic (used here) and is an

output of an “initial” design from a designer. Third way is to run

the optimization on the circuit using a subset of performances as

constraints. The key is to provide a decent starting point so that the

sensitivities (of the margin w.r.t sizing) do not change drastically with

sizing.

The second step in weight calculation is to change the size of each

transistor one at a time and calculate the sensitivity of the margin

w.r.t sizing perturbation. For each transistor, the root mean square

value of all the sensitivities is computed and is denoted by Sensi

(See equation ??). The sensitivity matrix is shown below. First row

represents the transistor index. The last row shows the computed

Sensi’s. The remaining rows show the margins of all the transistors

for size perturbations.

0

B

B

B

B

B

B

B

B

B

B

B

B

@

1 . . . i . . . N

V m1,1 . . . V m1,i . . . V m1,N

V m2,1 . . . V m2,i . . . V m2,N

. . . . . . V mj,i . . . . . .

V mM,1 . . . V mM,i . . . V mM,N

Sens1 . . . Sensi . . . SensN

1

C

C

C

C

C

C

C

C

C

C

C

C

A

Sensi =

v

u

u

t

M
X

j=0

(
(V mj,i − V m0,i)

∆W/L
)
2

(5)

Third and the crucial step is to shape the sensitivities using

“coefficient-shaping factor”. Coefficient-shaping factor for each tran-

sistor is chosen based on the sensitivity of the final performance
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on this transistor’s margin. Currently, this is chosen manually. How-

ever, this could be chosen more intelligently such that the sensi-

tivity is shaped accurately. The sensitivities are multiplied with the

coefficient-shaping factor and then normalized (such that
P

wi = 1)

to result in the weights wi’s.

The margin function is provided as a constraint to the optimization

engine. This performance + bias-driven optimization is henceforth de-

noted as PBO. The pure performance-driven optimization is denoted

as PO.

As a comparison, PO is performed with a simpler bias margin

constraint of having a flat margin specification on all the transistors.

This optimization is denoted as POFB.

IV. EXAMPLES AND RESULTS

Analog circuit optimizer (shown in Figure (9)) available in the

Cadence Analog Design Environment is used as the sizing engine for

performing PO, PBO and POFB on three circuits. Monte Carlo sim-

ulation (500 runs) is used to extract the statistics of the performance

specifications. The histograms of the first example are shown in the

Figure (10).

Fig. 9. Circuit size optimization tool in Cadence Environment. The
performance (goals) variation across iterations are shown on the left. The
parameter (variables) perturbations across iterations are shown on the right.

A. Reduction in the variation of performance specifications

1) Single-stage Differential amplifier: The first example circuit is a

simple differential amplifier (schematic in Figure (11)). The Sensi’s,

coefficient-shaping factors and the weights calculated are shown in

Table I. Also, the relative sizes and margins of transistors after PO,

PBO and POFB are shown in the same table. Note the coefficient

(a)

(b)

Fig. 10. Histograms of ac performance specifications of opamp1 optimized
using PO (a) & PBO (b)

shaping factor is chosen as 0 for M1 as it is estimated heuristically

that its margin would not affect the performance specification signifi-

cantly. The targets for the performance specifications are given based

on the topology. Currently, phase margin and supply current are not

constrained in all three designs.

The Table II has the statistics of the performance specifications

resulting from Monte Carlo runs (N=500). The σ values of the

specifications are seen to be lower for the design optimized using

PBO than the one optimized using PO.

2) Single-stage Differential amplifier with telescopic cascode: The

second example circuit is a differential amplifier with telecscopic
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Fig. 11. Opamp1: Single-stage Differential amplifier.

TABLE I
OPTIMIZATION PARAMETERS AND RESULTS OF OPAMP1.

Transistor M1 M2 M3

Sensi 0.3262 0.5080 0.1658

Coeff. Shaping Factor 0 1 1

wi 0.0 0.7539 0.2451

Relative Size(PO) 0.93 8.79 1.45

Relative Size(POF) 7.211 8.931 1.496

Relative Size(PBO) 1.1 7.51 4.36

Margin(PO) in mV 200 242 409

Margin(POFB) in mV 266 244 408

Margin(PBO) in mV 207 345 374

cascode (schematic in Figure (12)). The Sensi’s, coefficient-shaping

factors and the weights calculated are shown in Table III. Also,

the relative sizes and margins of transistors after performance-driven

optimization (PO) and performance + bias-driven optimization (PBO)

are shown in the same table. Note the coefficient shaping factor is

chosen as 0 for M1 as it is estimated heuristically that its margin

would not affect the performance specification significantly. Similarly

it is chosen as 2 for M4 and M5 transistors. The targets for the

performance specifications are given based on the topology. The

target for margin function is 1.5 as cascode has lesser leeway in

margin improvement due to stacking and its value is 0.932 for PO

and 1.321 for PBO.

The Table IV has the statistics of the performance specifications

resulting from Monte Carlo runs (N=500). The σ values of the

specifications are seen to be lower for the design optimized using

PBO than the one optimized using PO.

3) Two-stage Miller compensated OTA: The third example circuit

is a two-stage miller compensated OTA (schematic in Figure (13)).

The Sensi’s, coefficient-shaping factors and the weights calculated

Fig. 12. Opamp2: Single-stage Differential amplifier with telescopic cascode

TABLE III
OPTIMIZATION PARAMETERS AND RESULTS OF OPAMP2.

Transistor M1 M2 M3 M4 M5

Sensi 0.074 0.3532 0.1111 0.4362 0.0255

Coeff. Shaping Factor 0 1 1 2 2

wi 0.0 0.2546 0.08 0.6287 0.0367

Relative Size(PO) 1.44 0.79 0.23 0.25 0.76

Relative Size(POF) 8.209 0.77 0.14 0.246 0.97

Relative Size(PBO) 1.266 0.51 0.46 0.23 0.77

Margin(PO) in mV 61 90 64 181 237

Margin(POFB) in mV 98 92 92.3 112 238

Margin(PBO) in mV 41 165 53 181 228

are shown in Table V. Also, the relative sizes and margins of tran-

sistors after performance-driven optimization (PO) and performance

+ bias-driven optimization (PBO) are shown in the same table. Note

the coefficient shaping factor is chosen as 0 for M1 as it is estimated

heuristically that its margin would not affect the performance spec-

ification significantly. The targets for the performance specifications

are given based on the topology.

The Table VI has the statistics of the performance specifications

resulting from Monte Carlo runs (N=500). The σ values of the

specifications are seen to be lower for the design optimized using

PBO than the one optimized using PO.

B. Improvement in Transient behavior

For evaluating the transient response of the designs optimized

using PO and PBO, total-harmonic-distortion (THD) is chosen as
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Fig. 13. Opamp3: Two-stage Miller Compensated OTA

TABLE V
OPTIMIZATION PARAMETERS AND RESULTS OF OPAMP3.

Transistor M1 M2 M3 M4 M5

Sensi 0.226 0.2311 0.0759 0.2967 0.1687

Coeff. Shaping Factor 0 1 1 1 1

wi 0.0 0.2992 0.0982 0.3841 0.2184

Relative Size(PO) 0.68 4.952 1.704 4.952 1.704

Relative Size(POFB) 9.9 11.6 3.5 11.6 3.5

Relative Size(PBO) 2.49 8.13 7.62 8.13 7.62

Margin(PO) in mV 164 374 370 445 507

Margin(POFB) in mV 279 391 353 518 547

Margin(PBO) in mV 240 439 332 572 481

the performance metric as it captures the nonlinearities of the circuit.

The opamps are configured in a unity feedback mode and a sinusoid

of frequency 100 MHz and amplitude varying from 10mV to 200mV

is given as the input and THD at the output is measured. The THD

vs Input amplitude plots are shown in Figures (14) (15) (16).

Fig. 14. Total Harmonic Distortion in opamp1 optimized using PO (Dotted
line) & PBO (Solid line)

Fig. 15. Total Harmonic Distortion in opamp2 optimized using PO (Dotted
line) & PBO (Solid line)

Fig. 16. Total Harmonic Distortion in opamp3 optimized using PO (Dotted
line) & PBO (Solid line)

It is seen that the transient response is significantly better in PBO

when compared to PO. In the case of opamp2, an improvement

of 100% is seen. The nonlinearity in a transistor comes from two

sources: transconductance, junction capacitance. For a given voltage

swing, the nonlinearity because of the junction capacitance is fixed.

The transconductance of the amplifier changes with the bias voltages,

although the change is not significant when enough margin is

provided to the transistor. This explains why the THD of the opamps

sized using PBO is considerably lower than those sized using PO.

Note that THD was not provided as a performance specification in

the optimization. The improvement in THD comes as a by-product of

biasing the circuit better. This could potentially circumvent the need

to run transient simulation (which is computationally expensive and

could have convergence issues for some designs) in an optimization

loop in order to improve the THD.
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TABLE VII
THD FOR THE THREE OPAMPS DESIGNED USING PO AND PBO

THD (%) at max Input Opamp1 Opamp2 Opamp3

PO 1.25 19 18

PBO 0.7 10 14

% Improvement 50 100 10

V. CONCLUSIONS AND FUTURE WORK

A new bias-driven robust analog circuit sizing methodology is

proposed in this work. The results bring out a key concept: biasing

the circuit well results in a well behaved performance. The benefits

are many folded. Reduction in the variation of performance poten-

tially could eliminate the need to optimize the circuit implicitly for

yield. Also, improvement in transient response comes as an extra

benefit. Both the metrics i.e., variance of small signal specifications

and nonlinear transient specifications are seemingly unrelated. But

improvement in both because of margin optimization points strongly

to the conjecture that biasing is the key for a robust as well as high

performance design. As explained in Section III-A, the advantages

of this scheme only increase in deep sub-micron technologies.

This scheme could be incorporated in an Analog Design Frame-

work where in:

• The circuit is partitioned into groups (could be designer’s input

or done automatically by analyzing the topology).

• The performance specifications are split into two groups: (i) Bias

dependent specifications (e.g., THD) and (ii) Bias independent

specifications (e.g., Slew rate)

• The relative sizing within the group is optimized using PBO with

the bias dependent specifications as the goals and constraints.

• The groups are then scaled up or down using constant cur-

rent density scaling (scale both width and current such that

the biasing is left undisturbed) to meet the bias independent

specifications.

This methodology would still have some extent of nonlinearity

between the groups, but this is still manageable than trying to

optimize the entire circuit at the same time.

REFERENCES

[1] G. V. der Plas, G. Debyser, F. Leyn, K. Lampaert, J. Vandenbussche,
G. G. E. Gielen, W. M. C. Sansen, P. Veselinovic, and D. Leenaerts,
“Amgie-a synthesis environment for cmos analog integrated circuits,”
IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 20, no. 9,
pp. 1037–1058, 2001.

[2] G. G. E. Gielen, T. McConaghy, and T. Eeckelaert, “Performance space
modeling for hierarchical synthesis of analog integrated circuits,” in
DAC, pp. 881–886, 2005.

[3] W. Nye, D. Riley, A. Sangiovanni-Vincentelli, and A. Tits, “De-
light.spice: an optimization-based system for the design of integrated
circuits,” Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, vol. 7, pp. 501–519, Apr 1988.

[4] R. Phelps, M. Krasnicki, R. Rutenbar, L. Carley, and J. Hellums,
“Anaconda: simulation-based synthesis of analog circuits via stochastic
pattern search,” Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, vol. 19, pp. 703–717, Jun 2000.

[5] G. Wolfe and R. Vemuri, “Extraction and use of neural network
models in automated synthesis of operational amplifiers,” Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions

on, vol. 22, pp. 198–212, Feb. 2003.

[6] F. De Bernardinis, M. I. Jordan, and A. S. Vincentelli, “Support vector
machines for analog circuit performance representation,” in DAC ’03:

Proceedings of the 40th annual Design Automation Conference, pp. 964–
969, 2003.

[7] H. Liu, A. Singhee, R. Rutenbar, and L. Carley, “Remembrance of
circuits past: macromodeling by data mining in large analog design
spaces,” in Design Automation Conference, 2002. Proceedings. 39th,
pp. 437–442, 2002.

[8] M. Degrauwe, O. Nys, E. Dijkstra, J. Rijmenants, S. Bitz, B. Goffart,
E. Vittoz, S. Cserveny, C. Meixenberger, G. van der Stappen, and
H. Oguey, “Idac: an interactive design tool for analog cmos circuits,”
Solid-State Circuits, IEEE Journal of, vol. 22, pp. 1106–1116, Dec 1987.

[9] R. Harjani, R. A. Rutenbar, and L. R. Carley, “Oasys: a framework for
analog circuit synthesis,” IEEE Trans. on CAD of Integrated Circuits

and Systems, vol. 8, no. 12, pp. 1247–1266, 1989.

[10] F. El-Turky and E. Perry, “Blades: an artificial intelligence approach to
analog circuit design,” Computer-Aided Design of Integrated Circuits

and Systems, IEEE Transactions on, vol. 8, pp. 680–692, Jun 1989.

[11] G. Gielen, H. Walscharts, and W. Sansen, “Isaac: a symbolic simulator
for analog integrated circuits,” Solid-State Circuits, IEEE Journal of,
vol. 24, pp. 1587–1597, Dec 1989.

[12] G. Gielen, P. Wambacq, and W. Sansen, “Symbolic analysis methods
and applications for analog circuits: a tutorial overview,” Proceedings of

the IEEE, vol. 82, pp. 287–304, Feb 1994.

[13] M. Hershenson, S. Boyd, and T. Lee, “Optimal design of a cmos op-
amp via geometric programming,” Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, vol. 20, pp. 1–21, Jan 2001.

[14] P. Mandal and V. Visvanathan, “Cmos op-amp sizing using a geometric
programming formulation,” Computer-Aided Design of Integrated Cir-

cuits and Systems, IEEE Transactions on, vol. 20, pp. 22–38, Jan 2001.

[15] T. McConaghy, T. Eeckelaert, and G. Gielen, “Caffeine: Template-
free symbolic model generation of analog circuits via canonical form
functions and genetic programming,” Design, Automation and Test in

Europe Conference and Exhibition, vol. 2, pp. 1082–1087, 2005.

[16] W. Daems, G. G. E. Gielen, and W. M. C. Sansen, “Simulation-based
generation of posynomial performance models for the sizing of analog



12

integrated circuits,” IEEE Trans. on CAD of Integrated Circuits and

Systems, vol. 22, no. 5, pp. 517–534, 2003.
[17] R. Vemuri and G. Wolfe, “Adaptive sampling and modeling of analog

circuit performance parameters with pseudo-cubic splines,” in Computer

Aided Design, 2004. ICCAD-2004. IEEE/ACM International Conference

on, pp. 931–938, Nov. 2004.
[18] A. Torralba, J. Chavez, and L. Franquelo, “Fasy: a fuzzy-logic based tool

for analog synthesis,” Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, vol. 15, pp. 705–715, Jul 1996.
[19] H. Koh, C. Sequin, and P. Gray, “Opasyn: a compiler for cmos

operational amplifiers,” Computer-Aided Design of Integrated Circuits

and Systems, IEEE Transactions on, vol. 9, pp. 113–125, Feb 1990.
[20] T. McConaghy, P. Palmers, G. G. E. Gielen, and M. Steyaert, “Automated

extraction of expert knowledge in analog topology selection and sizing,”
in ICCAD, pp. 392–395, 2008.

[21] P. C. Maulik, L. R. Carley, and R. A. Rutenbar, “A mixed-integer
nonlinear programming approach to analog circuit synthesis,” in DAC

’92: Proceedings of the 29th ACM/IEEE Design Automation Conference,
pp. 698–703, 1992.

[22] E. Ochotta, R. Rutenbar, and L. Carley, “Astrx/oblx: Tools for rapid
synthesis of high-performance analog circuits,” in Design Automation,

1994. 31st Conference on, pp. 24–30, June 1994.
[23] W. Kruiskamp and D. Leenaerts, “Darwin: Cmos opamp synthesis by

means of a genetic algorithm,” in DAC ’95: Proceedings of the 32nd

annual ACM/IEEE Design Automation Conference, pp. 433–438, 1995.
[24] Z.-Q. Ning, T. Mouthaan, and H. Wallinga, “Seas: a simulated evolution

approach for analog circuit synthesis,” in Custom Integrated Circuits

Conference, 1991., Proceedings of the IEEE 1991, pp. 5.2–1–4, May
1991.

[25] D. Goldberg, Genetic algorithms in search, optimization and machine

learning. Addison-Wesley, 1989.
[26] B. Liu, F. V. Fernández, G. Gielen, R. Castro-López, and E. Roca, “A
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TABLE II
STATISTICS OF THE PERFORMANCE SPECIFICATIONS OF OPAMP1.

Perf. Adc (V/V) fugb (G Hz) pm (deg) ivdd (µA) margin func. Area (sq.um)
Target 20 1 Unconstrained Unconstrained 2 Unconstrained
Stat. PO POFB PBO PO POFB PBO PO POFB PBO PO POFB PBO PO POFB PBO PO POFB PBO

µ 13.8 13.8 12.55 1.03 1.047 1.05 80.15 80.13 82.27 90.4 91.61 90.4 0.973 0.978 1.264 58.3 78.3 75.7

σ 0.57 0.567 0.425 0.028 0.035 0.026 0.39 0.395 0.36 1.46 2.52 1.53 NA NA NA NA NA NA

min 11.5 11.6 11.25 0.96 0.94 0.97 79 79 81.25 86 84 85 NA NA NA NA NA NA

max 15.5 15.2 13.75 1.12 1.14 1.12 81.25 81 83.25 95 100.2 95 NA NA NA NA NA NA

TABLE IV
STATISTICS OF THE PERFORMANCE SPECIFICATIONS OF OPAMP2.

Perf. Adc (V/V) fugb (G Hz) pm (deg) ivdd (µA) margin func. Area (sq.um)
Target 20 1 Unconstrained Unconstrained 1.5 Unconstrained
Stat. PO POFB PBO PO POFB PBO PO POFB PBO PO POFB PBO PO POFB PBO PO POFB PBO

µ 113.8 112 104.74 0.956 0.923 0.873 78.94 77.8 80.28 76.1 75.3 73.8 0.932 0.883 1.321 17.4 38.6 17.3

σ 12.48 16.78 6.04 0.027 0.016 0.026 0.41 0.29 0.45 2.8 3.19 3.2 NA NA NA NA NA NA

min 60 40 85 0.89 0.84 0.77 78 76.5 79.6 67 65 62.5 NA NA NA NA NA NA

max 135 140 120 0.98 0.95 0.92 81 80 81.1 83.5 85 82.5 NA NA NA NA NA NA

TABLE VI
STATISTICS OF THE PERFORMANCE SPECIFICATIONS OF OPAMP3.

Perf. Adc (V/V) fugb (G Hz) pm (deg) ivdd (µA) margin func. Area (sq.um)
Target 20 1 Unconstrained Unconstrained 1.5 Unconstrained
Stat. PO POFB PBO PO POFB PBO PO POFB PBO PO POFB PBO PO POFB PBO PO POFB PBO

µ 163.5 127 141 193 170 161 35.9 40 48 189 204 199 1.047 1.394 1.213 59.1 152 151

σ 9.58 8.41 9.07 6.63 5.96 4.82 1.46 1.28 0.9 2.38 5.08 3.44 NA NA NA NA NA NA

min 130 100 115 175 145 140 31 36 45 181 190 185 NA NA NA NA NA NA

max 190 150 165 215 185 175 39.25 43.5 50 196 220 210 NA NA NA NA NA NA


