
UNIVERSITY OF CALIFORNIA

Los Angeles

Pin Assignment for 2.5D Dielet Assembly

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Electrical and Computer Engineering

by

Yizhang Wu

2019

c© Copyright by

Yizhang Wu

2019

ABSTRACT OF THE THESIS

Pin Assignment for 2.5D Dielet Assembly

by

Yizhang Wu

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2019

Professor Puneet Gupta, Chair

In this thesis we present several Linear Programming (LP) based pin assignment algorithms

for silicon interposer based 2.5D dielet integration with different purposes. In the first part

of the dissertation we present three different formulations of the pin assignment problem:

1) Integer Linear Programming based (ILP formulation), 2) ILP based with LP relaxation

(Relaxed-ILP formulation), and 3) LP based modeling (LP formulation). ILP based mod-

eling employees the use of integer assignment matrices, which comply with the nature of

pin assignment problem where only discrete locations are available to pins. However, due to

NP-hard nature of ILP problems, complexity and run time of ILP formulation is not scalable

and pin assignment can be accomplished only for designs with limited size. Relaxed-ILP for-

mulation can reduce the run time significantly and can scale to larger design. While solutions

generated with LP relaxation are usually not valid pin assignments, we apply a rounding

heuristic to legalize the solution. Finally the LP formulation with rounding heuristic can

further reduce the complexity of the problem and make the run time more scalable. Since IO

power consumption for each die is a major overhead of 2.5D integration, in the second part

of the thesis we present a framework for optimizing power required by IO cells to drive the

interconnect between different dies. We use RC wire model to simulate power and latency

of interconnects, and use 2π model to simulate wire performance in presence of wire cou-

pling and ground bouncing. We model the power required for each link as a function of link

ii

speed and wire length and modify LP formulation accordingly. We compare our model with

Cadence Innovus and show that we can achieve lower power overhead. In the third part of

the thesis we propose a model for multi-floorplan pin assignment (MFPA). We perform pin

assignment without the knowledge of floorplan such that the block under consideration can

be reused in multiple designs and avoid potential routing hotspot or wire congestion. Also

we show that such MFPA flow can effectively reduce the worst case and average interconnect

length across a set of random floorplans.

iii

The thesis of Yizhang Wu is approved.

Lei He

Sudhakar Pamarti

Puneet Gupta, Committee Chair

University of California, Los Angeles

2019

iv

To my parents

v

Table of Contents

List of Figures . viii

List of Tables . x

Acknowledgment . xi

1 Introduction . 1

1.1 VLSI Design Flow . 1

1.2 Silicon Interposer Based 2.5D Integration . 2

1.3 Pin Assignment . 4

1.4 Thesis Outline . 6

2 Modeling of Pin Assignment Problem . 7

2.1 Problem Formulation . 7

2.2 ILP Based Formulation . 8

2.3 ILP Based Formulation with LP Relaxation 14

2.4 Run Time Scalable LP formulation . 16

2.4.1 LP formulation . 16

2.4.2 Bus Bundling . 19

2.5 Comparison of Different Formulation . 21

3 Interconnect Modeling and Power Optimization 26

3.1 Interconnect Modeling . 26

3.2 Power Optimization and LP formulation . 30

3.3 Experiment Setup and Results . 31

vi

4 Multi-Floorplan Pin Assignment . 34

4.1 LP Formulation . 34

4.2 Rounding Heuristic . 38

4.3 Pin Redundancy . 41

4.4 Experiment Flow and Results . 44

5 Conclusion . 51

Bibliography . 54

vii

List of Figures

1.1 Typical VLSI design flow . 2

1.2 A typical Si interposer-based 2.5D design [14] 4

2.1 Example floorplan and netlist for ILP formulation 12

2.2 Example of illegal pin assignment from LP formulation with good and bad round-

ing results . 15

2.3 Experiment flow for comparing different formulation 22

2.4 Normalized average net Manhattan length results for ILP, relaxed ILP, LP for-

mulation and Innovus . 23

2.5 Normalized average wire length after routing for ILP, relaxed ILP, LP formulation

and Innovus . 23

2.6 Effects of maximum wire length constraints on maximum and average wire length

of routing results . 25

3.1 Dual diode ESD protection scheme[6] . 28

3.2 Wire model for simulating interconnect speed and power 28

3.3 Wire model in presence of noise and crosstalk 29

3.4 Eye diagram for a 5000um interconnect running at 2.5GHz 30

3.5 Fitted curves for interconnects with different length 31

3.6 Experiment flow for power optimization . 32

4.1 Effects of block sizes on pin assignment . 36

4.2 Multi-floorplan pin assignment for a block connected to three other blocks . . . 37

4.3 A valid LP formulation solution for the problem shown in Fig. 4.2 39

4.4 Rounding results for example shown in Fig. 4.3. 41

viii

4.5 Pin assignment performed locally can cause wire congestion or routing hotspot

in the final floorplan . 42

4.7 Experiment flow for comparing multi-floorplan and LP pin assignment for a given

floorplan. 46

4.8 Comparison between multi-floorplan and LP pin assignment with different avail-

able channel routing track assumptions. 47

4.9 Four placement schemes for des3 benchmark used to generate random floorplans. 48

4.10 Experiment flow for comparing multi-floorplan and LP pin assignment using ran-

dom floorplans. 49

4.11 Comparison between multi-floorplan and LP pin assignment on the worst case

performance across random floorplans. 49

4.12 Comparison between multi-floorplan and LP pin assignment on average perfor-

mance across random floorplans. 50

ix

List of Tables

2.1 Notations in ILP modeling . 10

2.2 Benchmarks used for experiment . 22

2.3 Comparison between ILP, relaxed ILP and LP formulation 22

3.1 Experiment results for energy optimization . 33

x

Acknowledgment

I would like to thank my advisor, Prof. Puneet Gupta for the constant guidance, support

and motivations since I joined NanoCAD as an undergraduate student. Our frequenct tech-

nical discussions have been very educative and constructive for this and previous projects.

This thesis would not have been possible without his constant inputs.

I would like to thank my collaborator Saptadeep Pal. Discussions, suggestions and tech-

nical help from him have been very crucial in the completion of this porject. I would also like

to acknowledge the support of my labmates during the past two years: Dr. Wei-Che Wang,

Saptadeep Pal, Irina Alam, Tianmu Li, Wojciech Romaszkan and Eugene Chu. Thank you

Dr. Wei-Che Wang (now at Cadence) for helping me getting started with research, leading

me through the previous projects for the past three years, and providing me with invaluable

suggestions on different aspects.

Lastly, I would like to thank my parents for their unconditional love, encouragement and

support.

xi

CHAPTER 1

Introduction

1.1 VLSI Design Flow

Modern VLSI design flow typically consists of two different parts: front end design and

back end design. Front end design usually refers to the functional design of the system,

which includes the high level system specification, architecture design, RTL design and logic

synthesis. System specification are implemented using high level HDL, and HDL codes are

synthesized into gate-level netlist using logic synthesis tools. Back end design refers to the

physical design of the system, where physical layout are designed. Traditionally, physical

design is a process of partitioning, floorplanning, placement, pin assignment, routing and

creating GDSII layout file. In a flat design flow, floorplanning and placement step determines

the dimension of the design and location of cells, and global and detail routing connects all

cells to complete the netlist [43][4][30].

Most of system-on-a-chip (SoC) device can be designed in a traditional flat flow, however,

in today’s multi-million gate designs, it is usually desirable to adopt a hierarchical flow

where a design is divided into manageable partitions and each partition can be independently

designed. Besides, enabled by today’s deep sub-micron semiconductor technology, large-scale

integration of reusable intellectual property (IP) blocks or macros also favors hierarchical

design methodology [18]. In such a system level design flow, the dimensions and locations

of the blocks are determined during floorplanning and placement phase, and the locations

of pins on the block boundary are determined during the pin assignment step. Finally chip

assembly is finished by routing at global system level to connect pins of various design blocks

[11]. Fig. 1.1 shows a typical VLSI design flow. In this work we focus on the pin assignment

1

Figure 1.1: Typical VLSI design flow

step during the physical design flow.

1.2 Silicon Interposer Based 2.5D Integration

In the last few decades, Moores Law has been followed by the semiconductor industry effec-

tively, which pushed the miniaturization of transistors and enabled integration of large scale

SoCs [9]. Since the invention of the first integrated circuits, the improvement in semicon-

ductor wafer processing and lithography technologies allowed the density of two dimensional

chips to double every 18-24 months [27]. The increasing demands for high-performance and

large SoCs from applications like data center, mobility and Internet of Things (IoT) has also

been driving the scaling of semiconductors[24]. For instance, ITRS 2.0 roadmap [8] outlines

2

that the demands from datacenter and microserver markets requires a roughly 3X increase

in available memory and 4X increase in the number of processor cores per socket and rack

unit, respectively, over the next ten years[35].

However, to meet the increasing demands with traditional process scaling is becoming

more difficult and inefficient. First of all, the Moore’s Law target cadence has been slip-

ping as meeting the desired transistor scaling rate is becoming difficult for foundries[22].

Besides, the benefits from scaling starts to diminish significantly below 28nm node. As de-

sign complexity and density of ICs increase, costs and risk associated with these designs

start becoming prohibitive as more advanced lithographic nodes are required, which suffers

from higher manufacturing costs and yield loss [9][37]. To address the demands for increas-

ing system integration, interposer-based 2.5D integration is proposed as an alternative to

traditional 2D monolithic integration. In 2.5D integration, large dies are partitioned into

multiple chiplets and these chiplets are bonded by high-yield, high-bandwidth, chip-to-chip

interconnect through silicon interposer to form a 2.5D integrated IC. Such die-partitioning

approach also improves the yield [35][34]. Modern SoCs can contain analog, memory and

digital dies, which typically are manufactured using different technologies. 2.5D integration

also facilitates such heterogeneous integration where dies from different technologies can be

placed on the same interposer to create a single chip [34][29]. A typical Si interposer based

2.5D stack is shown in Fig. 1.2. 2.5D integration has already been employed by many devices

on the market. For example, AMD Radeon Fury GPU is the first 2.5D IC GPU, where the

entire GPU memory system is integrated into the package using a Si interposer [23]. Xilinx

has also produced 2.5D FPGA ICs containing logic dies and high speed transceiver dies from

different manufacturing processes [32].

2.5D dielet integration can be summarized in following steps: placing dies on the inter-

poser, routing inter-die connections using metal layers in Si interposer, and placing through

silicon vias (TSVs) in the interposer to connect die microbump to package-level intercon-

nects [34]. Both active-lite interposers and passive interposers are developed for 2.5D and

3D integration. Active-lite interposers can include active components such as diodes, BJTs

3

Figure 1.2: A typical Si interposer-based 2.5D design [14]

to enable faster interconnects and increase the flexibility of the design[17][35]. In this work

we focus on 2.5D integration using passive interposer with only passive interconnects and

TSVs since they are more sensitive to the interconnect designs. Due to the metal-only na-

ture of passive interposer, their capability of providing high bandwidth and low latency for

high performance systems can be limited by the length of interconnects [35]. Also, pas-

sive interconnects through the interposer require each die to have I/O cells with sufficient

drive strength, which potentially increase the power overhead of chip-level integration. In

this work we propose several algorithms for minimizing the interconnect length and power

overhead through die level pin assignment.

1.3 Pin Assignment

After floorplan phase, routing at the system level connecting pins of different design blocks is

a crucial part of the physical design flow as it is critical to system level timing performance.

In a hierarchical design flow, since pin assignment is closely related to global routing, an

off-the-shelf die’s pin assignment can lead to long interconnect on silicon interposer, which

is not ideal for system level timing sign off [10].

A lot of works have been done on pin assignment. Some old approaches on block by block

basis includes concentric circle mapping method [21], nine zone method[26], and topological

pin assignment method[7]. In concentric circle mapping method, two concentric circle are

4

drawn for each block where the inner circle corresponds to the boundary of the block being

considered and the outer circle has all pins on other blocks mapped on it. Then a pin

assignment for the current block is achieved by computing the best mapping between inner

and outer circle. In nine zone method the design is divided into nine possible zones for net

locations to help with pin assignment. In topological pin assignment, on each block being

considered, a ”radar screen” is conceptually imposed to sweep the design and determine

the pin locations. These approaches process pin assignment problem on a block by block

basis, thus the resulting pin assignment quality largely depends on the processing order of

blocks. There are also works that perform a net-by-net approach, where pin assignment and

global routing is considered simultaneously. Cong in [11] uses block boundary decomposition

to model pin assignment into global connection arrangement and channel pin assignment,

and algorithms are proposed to optimize each step. In [20] pin assignment is also modeled

as channel pin assignment and is performed simultaneously with global routing, and block

reshaping and positioning. However, all these block-by-block or net-by-net algorithms are

not ”global” since they fail to optimize the design in a global sense. Works also have been

done to approach pin assignment globally. For instance, [24][16] use simulated annealing to

find a global optimal solution. Another common approach formulates pin assignment into

linear programming (LP) problem and solve with LP solvers. [16] models pin assignment

as mixed integer linear programming (MILP) and use assignment matrix for each block to

map pins to legal pin positions. They also propose to use simulated annealing to accelerate

the process since MILP is an NP-hard problem. Work in [34] uses simulated annealing to

approach FPGA flexible I/O assignment and die placement on a 2.5D interposer. A lot works

also have been done on 3D integration. Similarly to pin assignment, a number of works model

the through silicon via (TSV) assignment as a multi-commodity min-cost problem, and use

different method such as Lagrangian relaxation to reduce the runtime [41][40][15].

In this work we develop several pin assignment modeling and algorithms specifically for

2.5D integration through a global approach, including ILP modeling, ILP with relaxation

and LP modeling. While most existing works take interconnect length minimization as

5

the primary objective, we also propose a pin assignment model for minimizing the IO power

required to drive interconnects in passive silicon interposer. In addition, all works mentioned

above require the global floorplan or perform floorplaning along with pin assignment to

achieve an optimal result for a specific design. In this work we develop a multi-floorplan pin

assignment flow. Without optimizing for a specific floorplan, we achieve a pin assignment

such that a block is portable to multiple different floorplans while reduce the average and

worst case interconnect length. We also use channel routing model to avoid potential routing

hotspot and wire congestion by introducing pin redundancy.

1.4 Thesis Outline

This thesis primarily focuses on the pin assignment for 2.5D dielet integration. The thesis

is organized as follows:

• In Chapter 2 we propose three different formulations for pin assignment: ILP based

formulation, ILP based with LP relaxation, and run time scalable LP formulation. We

use different benchmarks to compare the runtime, and optimality of these formulations

against Cadence Innovus[1].

• In Chapter 3 we present a framework for power optimization during the pin assignment

phase. Using RC model, we model required IO power as a function of wire length and

interconnect speed and modify out pin assignment formulation accordingly. We show

that our model can achieve better power performance than Cadence Innovus.

• In Chapter 4 we develop a multi-floorplan pin assignment framework, where pin as-

signment is performed without the knowledge of floorplan. We develop a rule of thumb

for pin assignment which avoids potential routing hotspot and wire congestion, and

reduce the average and worst case average wire length when the block is integrated in

to a set of random floorplans.

• Chapter 5 concludes the thesis.

6

CHAPTER 2

Modeling of Pin Assignment Problem

In this chapter we introduce the model of pin assignment problem, including problem inputs

and outputs. Then we present 3 different formulations of pin assignment: 1) ILP based (ILP

formulation), 2) ILP based with LP relaxation (relaxed-ILP formulation), and 3) run time

scalable LP based formulation (LP formulation). For second and third problem formulation,

since non-integer formulation can result in invalid pin assignment solutions, we also present

our rounding heuristics which legalize the solutions.

2.1 Problem Formulation

To model pin assignment as an LP problem, we first abstract design information and design

constraints into mathematical constraints. In this chapter and Chapter 3 we perform pin

assignment after floorplanning phase, thus information related to the floorplan of the design

such as locations of each block is known. Besides, we perform hierarchical pin assignment,

where multi-instantiated cells of the same master cell will have identical pin assignment

solutions. Assume there are in total t different type of cells, n blocks, m nets and k pins in

the design, inputs to the problem consist of

• Set of master cells, M = {m1,m2, ...,mt}

• Set of blocks, B = {b1, b2, ..., bn} and their bounding boxes defined by bboxi = {Lxi,

Lyi, Rxi, Ryi}, which are the coordinates of lower-left and upper-right corner.

• Set of pins associated with each block bi, Pinsi = {pini1, pini2, ..., pini|Pinsi|}, where

|Pinsi| is the number of pins associated with block bi

7

• Set of nets, N = {N1, N2, ..., Nm} and netlist connections.

• Pin assignment constraints including pin location step size, pinStepSize, and minimum

pitch between neighboring pins, minPinPitch.

The outputs are the coordinates for each pin.

2.2 ILP Based Formulation

Given a VLSI design, since there are a finite number of pins and available positions to place

a pin, we can easily formulate pin assignment as an ILP problem. We develop our algorithm

based on the work in [16]. In addition to the inputs mentioned in 2.1, we are able to obtain

the following:

• Posi = {posi1, posi2, ..., posi|Posi|}, the set of available pin positions on block bi, i =

1, 2, ..., n where |Posi| is the number of available positions. Available pin positions can

be obtained from the coordinates of the block, minPinPitch and pinMoveStep.

• |Ni|, i = 1, 2, ...,m, the number of pins associated with net Ni.

For each block bi, we represent Posi as two |Posi| × 1 vectors:

Posi X = (posi1 x, posi2 x, ..., posi|Posi| x)T (2.1)

Posi Y = (posi1 y, posi2 y, ..., posi|Posi| y)T (2.2)

where the coordinates of posij, the jth available position in block bi, is decomposed to

(posij x, posij y). Then for each block we define a |Posi| × 2 matrix containing all avail-

able positions as

AvlbPos Mati = (Posi X,Posi Y) (2.3)

Note that AvlbPos Mati is a matrix whose entrees are all known from floorplan. Similarly,

we can define the variables for coordinates of each pin pinij as (pinij x, pinij y). Then for

8

each block we can define two |Pini| × 1 vectors and a |Pini| × 2 matrix as follows:

Pini X = (pini1 x, pini2 x, ..., pini|Pini| x)T (2.4)

Pini Y = (pini1 y, pini2 y, ..., pini|Pini| y)T (2.5)

PinPos Mati = (Pini X,Pini Y) (2.6)

We further define a |Pini| × |Posi| assignment matrix, Ai, for each block bi. Ai kh = 1 if

the kth pin of bi is assigned to the hth available position, and Ai kh = 0 otherwise. Thus we

can obtain the constraints representing the pin assignment for block bi:

PinPos Mati = Ai × AvlbPos Mati (2.7)

Ai kh ∈ {0, 1} (2.8)

Note that entrees of PinPos Mati and Ai are variables to be solved. In the case of hierar-

chical pin assignment, for multi-instantiated blocks with the same master cell, AvlbPos Mat

and PinPos Mat should have identical size.

One criteria of evaluating a 2.5D die-level pin assignment solution is the resulting weighted

sum of wire length of each net after system-level routing. Since accurate wire length is not

available at pin assignment stage which is before routing, in this work we use Half Perimeter

Wire Length (HPWL) to estimate the length of a net. We define (NLkx, NLky, NRkx, NRky)

as the bounding box that contains all pins associated with net Nk, where (NLkx, NLky) and

(NRkx, NRky) are the coordinates of lower-left and upper-right corner, respectively. Since

pins associated with a net are known from the netlist, we can model the wire length, WLk

for a net Nk as

WLk = NRkx −NLkx +NRky −NLky (2.9)

NLkx ≤ pinij x ∀ pinij ∈ Nk (2.10)

NLky ≤ pinij y ∀ pinij ∈ Nk (2.11)

NRkx ≥ pinij x ∀ pinij ∈ Nk (2.12)

NRky ≥ pinij y ∀ pinij ∈ Nk (2.13)

9

Notation Meaning

M = {m1,m2, ...,mt} Set of master cells

B = {b1, b2, ..., bn} Set of blocks in the design

Pinsi =
{pini1, pini2, ..., pini|Pinsi|} Pins associated with block bi

N = {N1, N2, ..., Nt} Set of nets in the design

(NLkx, NLky, NRkx, NRky) Variables representing Nk bounding box coordinates

WLk Variables representing wire length of net Nk

pinStepSize Step size between adjacent legal pin locations

minPinPitch Minimum pitch between neighboring pins

maxWL Maximum allowed wire length in design

AvlbPos Mati Matrix containing all available pin positions in block bi

PinPos Mati
Matrix of variables

for coordinates of pins associated with block bi

Ai Assignment matrix variables for block bi

Table 2.1: Notations in ILP modeling

Also, for designs with constrained operating frequency or performance requirements,

long interconnects may violate timing constraints as the delay and slew can be unaccept-

able. Therefore a maximum allowed wire length constraint can be applied to our problem

formulation. If we note the allowed maximum wire length within the design as maxWL, the

constraints can be simply stated as

WLk ≤ maxWL k ∈ {1, 2, ...t} (2.14)

A summary of introduced notations and variables is shown in table 2.1.

Constraints of our modeled ILP come from assignment matrix A. Since each pin has to

be assigned to one location and each location can only be assigned to one pin, we can add

following constraints on each Ai:∑
row = 1 ∀ row ∈ Ai (2.15)

10

∑
column ≤ 1 ∀ column ∈ Ai (2.16)

To add constraints for hierarchical pin assignment where multi-instantiated blocks should

have identical pin assignment, we define a function

(xrel, yrel) = Abs2Rel(bi, (xabs, yabs)) (2.17)

which can translate a coordinates (xabs, yabs) into relative coordinates with respect to the

origin of block bi. If block bj and bk are multi-instantiated cells, we arrange AvlbPos Matj

and AvlbPos Matk such that

Abs2Rel(bj, (posji x, posji y)) = Abs2Rel(bk, (poski x, poski y)), i = 1, ..., |Posj| (2.18)

We also arrange PinPos Matj and PinPos Matk such that pinji and pinki, i = 1, ..., |Posj|,

represent the same logical pin in two blocks. Then we can we force assignment matrix to have

same solution for block with same master cell, as shown in Eq. 2.19. Note that constraints

in Eq. 2.15 and 2.16 only need to be applied on one of Ai, Aj, ..., Ax to reduce the number

of constraints.

Ai = Aj = ... = Ax if bi, bj, ..., bx have same master cell (2.19)

The objective of our ILP can be the weighted sum of wire length, as shown in Eq. 2.20,

where λi is the weight of net Ni.

Objective : Minimize

t∑
i=1

λiWLi (2.20)

We use an example floorplan shown in Fig. 2.1 to illustrate the ILP formulation of pin

assignment problem given the floorplan. As shown in Fig. 2.1a, the input is a floorplan with

3 blocks: U0, U1, and U2, where U0 and U1 have different orientation but same master cell,

and nets N1 = {pin01, pin11}, N2 = {pin12, pin21}, N3 = {pin02, pin22}. The available pin

positions are labeled in the figure and we can obtain three AvlbPos Mat:

AvlbPos Mat0 =

10 20 30 20

35 45 35 25

T

11

(a) Floorplan with with 3 nets, 3 blocks

and 2 master cells

(b) corresponding ILP solution for pin

assignment

Figure 2.1: Example floorplan and netlist for ILP formulation

AvlbPos Mat1 =

10 20 10 0

20 10 0 10

T

AvlbPos Mat2 =

25 45

21 10

T

Note that since U0 and U1 have the same master cell, AvlbPos Mat0 and AvlbPos Mat1

are arranged to satisfy the relation in Eq. 2.18. Then variable matrices for pin position can

be obtained as:

PinPos Mat0 =

pin01 x pin01 y

pin02 x pin02 y


PinPos Mat1 =

pin11 x pin11 y

pin12 x pin12 y


PinPos Mat2 =

pin21 x pin21 y

pin22 x pin22 y


Since block U0 and block U1 should have identical pin assignment, we only need two

12

assignment matrices in this case, AA and AB. AA is a 2×4 matrix and AB is a 2×2 matrix.

AA =

AA 11 AA 12 AA 13 AA 14

AA 21 AA 22 AA 23 AA 24



AB =

AB 11 AB 12

AB 21 AB 22


The ILP for pin assignment of floorplan shown in Fig. 2.1a can be stated as follows:

Minimize : (2.21)

WL1 +WL2 +WL3 (2.22)

Subject to : (2.23)

WL1 = NR1x −NL1x +NR1y −NL1y (2.24)

NL1x ≤ pin01 x NL1x ≤ pin11 x (2.25)

NL1y ≤ pin01 y NL1y ≤ pin11 y (2.26)

NR1x ≥ pin01 x NR1x ≥ pin11 x (2.27)

NR1y ≥ pin01 y NR1y ≥ pin11 y (2.28)

WL2 = NR2x −NL2x +NR2y −NL2y (2.29)

NL2x ≤ pin12 x NL2x ≤ pin21 x (2.30)

NL2y ≤ pin12 y NL2y ≤ pin21 y (2.31)

NR2x ≥ pin12 x NR2x ≥ pin21 x (2.32)

NR2y ≥ pin12 y NR2y ≥ pin21 y (2.33)

WL3 = NR3x −NL3x +NR3y −NL3y (2.34)

NL3x ≤ pin02 x NL3x ≤ pin22 x (2.35)

NL3y ≤ pin02 y NL3y ≤ pin22 y (2.36)

NR3x ≥ pin02 x NR3x ≥ pin22 x (2.37)

NR3y ≥ pin02 y NR3y ≥ pin22 y (2.38)

PinPos Mat0 = AA × AvalPos Mat0 (2.39)

13

PinPos Mat1 = AA × AvalPos Mat1 (2.40)

PinPos Mat2 = AB × AvalPos Mat2 (2.41)

AA 11 + AA 12 + AA 13 + AA 14 = 1 (2.42)

AA 21 + AA 22 + AA 23 + AA 24 = 1 (2.43)

AA 11 + AA 21 ≤ 1 (2.44)

AA 12 + AA 22 ≤ 1 (2.45)

AA 13 + AA 23 ≤ 1 (2.46)

AA 14 + AA 24 ≤ 1 (2.47)

AB 11 + AB 12 = 1 (2.48)

AB 21 + AB 22 = 1 (2.49)

AB 11 + AB 21 ≤ 1 (2.50)

AB 12 + AB 22 ≤ 1 (2.51)

AA ∈ {0, 1} AB ∈ {0, 1} (2.52)

The results of this ILP is shown in Fig. 2.1b and the values for declared variables are:

AA =

1 0 0 0

0 0 1 0

 AB =

0 1

1 0


N1 : pin01 = (10, 20) pin11 = (10, 35)

N2 : pin12 = (30, 35) pin21 = (45, 10)

N3 : pin02 = (10, 0) pin22 = (25, 10)

2.3 ILP Based Formulation with LP Relaxation

Due to the NP-hard nature of ILP problems, complexity and run time is not scalable if design

size is large. On the other hand, LP problems does not require variables to be integers and

can be solved faster compared to ILP. In this section we propose a Relaxed ILP formulation

14

(a) Initial pin assignment

from LP solution

(b) Desirable fix from LP so-

lution

(c) Bad fix with unnecessary

wire crossing

Figure 2.2: Example of illegal pin assignment from LP formulation with good and bad

rounding results

which apply LP relaxation and rounding on ILP formulation presented in Section 2.2. Among

all variables declared in ILP formulation, entrees of assignment matrices, Ai, are required

to be either 1 or 0. Thus, instead of constraining Ai to be an integer matrix as shown in

constraints 2.8, we can relax the constraints to

0 ≤ Ai kh ≤ 1 (2.53)

while keeping all other constraints unchanged. For the example shown in Section 2.2, we

only need to modify the last constraints into

0 ≤ AA, AB ≤ 1

Since solution to assignment matrix becomes non-integer values, resulting location for a

given pin from the relation in Eq. 2.7 may sit between two available pin positions, which

is not a legal assignment. Thus we present our rounding heuristics for fixing the illegal pin

assignment. Rounding is performed block by block, and blocks with the same master cell are

rounded together. Before rounding is applied, we prioritize all pins based on the estimated

wire length such that pins associated with longer nets are rounded before pins associated

with shorter nets. For each block, we map the LP solution to its nearest available legal pin

position while maintaining minPinPitch constraints.

One common scenario during rounding phase is shown in Fig. 2.2. The LP solution for

15

pin assignment is shown in Fig. 2.2a, where pins for two nets between block U0 and U1, N [0]

and N [1], overlap with each other, i.e. pin01 and pin02 have same solution, and pin11 and

pin12 have same solution. If the distance from pin01, pin02 to available pin positions Pos01

and Pos02 are the same, and similarly for U1, both fix shown in Fig. 2.2b and Fig. 2.2c are

possible solutions from the rounding heuristic; however, solution in Fig. 2.2c can result in

larger wire length and worse routing congestion due to unnecessary crossing of two nets. To

reduce the number of unnecessary crossing of wires after rounding, our heuristic looks for

available positions in four directions in the same sequence for each pin. In the example of

Fig. 2.2, prioritizing pin step ensures that both blocks round pins associated with one net

before pins associated with the other net. Without the loss of generality, assume that block

U0 rounds pin01 before pin02 and block U1 rounds pin11 before pin12. During rounding

pin01, our heuristic will check the availability of Pos01 before Pos02, and assign pin01 to

Pos01, then assign pin02 to Pos02. Similarly block U1 will assign pin11 to Pos11, and

assign pin12 to Pos12. Thus situation shown in Fig. 2.2c can be avoided. The algorithm

for fixing the pin location of one block, bi, is shown in Algorithm 1. The inputs to the

heuristic include LP solutions for pin locations, PinPos Mat, and prioritized array of pins,

PinPriority. Outputs are fixed pin location, Fixed P inPos Mat

2.4 Run Time Scalable LP formulation

2.4.1 LP formulation

Another limitation of ILP modeling comes from the use of assignment matrix Ai which

introduces |Pini| × |Posi| variables for every master cell. Such assignment matrix needs

constraints on row and column. Besides, the number of constraints introduced by the as-

signment equations shown in Eq. 2.7 is large and can significantly increase the complexity

of the ILP. Even with LP relaxation mentioned in Section 2.3 the run time may still be

not scalable to large designs. Thus, in this section we present another run time scalable LP

formulation of pin assignment problem without the use of assignment matrix. Similarly, we

16

Algorithm 1 Fix Pin Location Algorithm

Input: PinPos Mati and PinPriorityi

Output: Fixed P inPos Mati

1: AvlbPos Mati cp = AvlbPos Mati

2: for pinj in PinPriorityi do

3: tmp PinPosij = nearest Point in AvlbPos Mati

4: for i ≤ |AvlbPosi| do

5: if tmp PinPosij + (i ∗ pinStepSize, 0) in AvlbPos Mati cp then

6: Fixed P inPos Matij = tmp PinPosij + (0, i ∗ pinStepSize)

7: else if tmp PinPosij − (i ∗ pinStepSize, 0) in AvlbPos Mati cp then

8: Fixed P inPos Matij = tmp PinPosij + (0, i ∗ pinStepSize)

9: else if tmp PinPosij + (0, i ∗ pinStepSize) in AvlbPos Mati cp then

10: Fixed P inPos Matij = tmp PinPosij + (0, i ∗ pinStepSize)

11: else tmp PinPosij − (0, i ∗ pinStepSize) in AvlbPos Mati cp

12: Fixed P inPos Matij = tmp PinPosij − (0, i ∗ pinStepSize)

13: Fixed P inPos Matij = nearest Point in AvlbPos Mati cp

14: AvlbPos Mati cp.erase(Fixed P inPos Matij)

15: j = j + 1

17

apply rounding heuristics after solving LP to obtain the final valid pin assignment.

In relaxed ILP formulation discussed in Section 2.3, it is common for LP to give an invalid

solution similar to Fig. 2.2a. For instance, a 2× 2 assignment matrix with value

A =

0.5 0.5

0.5 0.5


satisfies all constraints on A but results in two pins overlapping on each other. As the inten-

tion of applying constraints shown in Eq. 2.15 and Eq. 2.16 is to maintain the validity of pin

assignment, these constraints become ineffective after LP relaxation. Therefore one insight

we can obtain is to remove these constraints completely to reduce the complexity of the

problem. Furthermore, since solutions for PinPos after relaxation no longer correspond to

positions in AvlbPos Mat as A is not an integer matrix, we can free variables in PinPos Mat

from the relation shown in Eq. 2.7. Given a block bi, we note its bounding box using the co-

ordinates of its lower-left corner and upper-right corner as {BLix, BLiy, BRix, BRiy}. Then

the constraints on a pin, pinij, associated with bi are

BLix ≤ pinij x ≤ BRix (2.54)

BLiy ≤ pinij y ≤ BRiy (2.55)

which limit the location of pinij to be inside the bounding box of its associated cell. To

maintain the minimum pin pitch rule, one naive way is to add constraints between every two

pins in a block:

|pinij x− pinik x|+ |pinij y − pinik y| ≥ minPinPitch ∀ pinij, pinik ∈ bi, j 6= k (2.56)

In the example shown in Fig. 2.1, constraints from Eq. 2.39 to Eq.2.52 can be replaced by

following constraints:

10 ≤ pin01 x ≤ 30 (2.57)

25 ≤ pin01 y ≤ 45 (2.58)

10 ≤ pin02 x ≤ 30 (2.59)

18

25 ≤ pin02 y ≤ 45 (2.60)

|pin01 x− pin02 x|+ |pin01 y − pin02 y| ≥ minPinPitch (2.61)

0 ≤ pin11 x ≤ 20 (2.62)

0 ≤ pin11 y ≤ 20 (2.63)

0 ≤ pin12 x ≤ 20 (2.64)

0 ≤ pin12 y ≤ 20 (2.65)

|pin11 x− pin12 x|+ |pin11 y − pin12 y| ≥ minPinPitch (2.66)

25 ≤ pin21 x ≤ 45 (2.67)

0 ≤ pin21 y ≤ 20 (2.68)

25 ≤ pin22 x ≤ 45 (2.69)

0 ≤ pin22 y ≤ 20 (2.70)

|pin21 x− pin22 x|+ |pin21 y − pin22 y| ≥ minPinPitch (2.71)

2.4.2 Bus Bundling

Without the use of assignment matrix, LP formulation mentioned in Section2.4.1 can reduce

the complexity of the problem. However, minimum pin pitch constraints shown in Eq.2.56

can become the bottleneck, since the number of constraints needed if we add such constraints

to every pair of pins is at the order of O(|Pini|2), which is not scalable to large designs. On

the other hand, it is not necessary to apply minimum pitch constraints since rounding phase

after solving LP will legalize all pin locations. However, without any constraints on pin pitch

can cause pin snapping on each other as shown in Fig.2.2a, where same optimal solution is

reached for every pin associated with nets between two blocks. If the number of overlapping

pins is to large, resulting pin assignment after rounding can deviate significantly from LP

solution and wire length estimations in LP formulation may no longer be accurate, and final

pin assignment can be far from optimal.

To compromise between run time and quality of pin assignment, we propose a bus

19

bundling method to reduce the number of minimum pin pitch constraints needed. In most

chip designs, it is common that nets from a bus in block bi are all connected to the block bj.

For instance, address nets and data nets of a CPU can connect to the same memory block.

Therefore it is desirable to place pins in a bus together. Assume we have a block with pins

pina1, pina2 from busa and pinb1, pinb2, pinb3 from busb. In LP formulation, we constraint

that pins from the same bus should have same solution, and that pitch between two buses

is at least d1
2
(|busa| + |busb|)e × minPinPitch such that enough space is reserved for pins

during the rounding phase, where |busa| and |busb| are the sizes of two buses. Instead of

adding minimum pin pitch constraints between every two pins, bus bundling constraints can

be stated as

pina1 x = pina2 x (2.72)

pina1 y = pina2 y (2.73)

pinb1 x = pinb2 x (2.74)

pinb1 y = pinb2 y (2.75)

pinb1 x = pinb3 x (2.76)

pinb1 y = pinb3 y (2.77)

|pina1 x− pinb1 x|+ |pina1 y − pinb1 y| ≥ 3×minPinPitch (2.78)

If we note the number of buses within a block as |BUS|, the number of bus bundling

constraints is at the order of O(|BUS|2). Since |BUS| can be much smaller than number

of pins in a block, considerable reduction in number of constraints and run time can be

achieved. For instance, if a block has 100 pins and in total 10 buses, the number of constraints

for adding minimum pin pitch between every two pins is 100 × 99 = 9900, while only

10× 9 + 100− 10 = 180 for bus bundling constraints, 10× 9 for bus pitch and 100− 10 for

equality constraints among pins within the same bus.

20

2.5 Comparison of Different Formulation

In this section we present a comparison of ILP formulation, relaxed ILP formulation, and

LP formulation described in section 2.2, 2.3 and 2.4.1. For LP formulation, we do not

include minimum pin pitch constraints in Eq. 2.56 and bus bundling constraints described

in Section 2.4.2. The experiment flow is shown in Fig. 2.3. We use OpenAccess [2] for

the design database and IBM ILOG CPLEX Optimizer [3] for solving ILP and LP. The

program is implemented in C++. With initial floorplan, we perform pin assignment and

then use Cadence Innovus [1] to perform chip-level routing using only metal 6 and metal

7. A list of benchmarks we use is shown in Table 2.2. The program terminates either

when pin assignment is finished, or run time is larger than 24 hours(TO). We compare both

average wire length, max wire length and run time of three formulations and also results from

Cadence Innovus. The results for the objective minimizing average wire length are shown in

Table 2.3. Fig. 2.4 shows the resulting average Manhattan wire length normalized to Innovus

results. We can see our formulation can achieve large improvement over some benchmarks

where Innovus fails to produce an optimal solution. Fig. 2.5 shows the normalized results

after routing. Still we can see for some benchmarks our formulation is close to Innovus

and for others we can have large wire length reduction. In addition, we can see that ILP

formulation can achieve the best results among all formulations since the results from ILP

is exact and no rounding is needed. The trade-off for ILP formulation is the unaffordable

run time for large designs, which fails to finish pin assignment for des3, rockettile x2 and

rockettile x4. Also, relaxed ILP formulation outperforms LP formulation, but the run time

is longer than LP formulation and can be 100X for some benchmarks. Overall we can see a

trade-off between optimality and run time among these three formulations.

In addition, since we can easily impose maximum wire length constraints into our for-

mulation, we can observe the effects of maxWL on both final average and maximum wire

length after pin assignment. We apply maximum wire length constraints in Eq. 2.14 on

LP formulation for faster run time and test on aes top benchmark. Since we use HPWL

method to estimate wire length, the total net length after routing can be different from

21

Figure 2.3: Experiment flow for comparing different formulation

Benchmark Die Size [um]x[um] Blocks Total Pins

sbox x4 145.7 x 145.0 4 64

aes top 389.3 x 282.2 17 548

des3 649.3 x 626.6 3 564

rockettile x2 4618.1 x 4194.1 2 1060

rockettile x4 5670.93 x 5668.04 4 2120

Table 2.2: Benchmarks used for experiment

Innovus/ILP/Relaxed ILP/LP

Benchmark Average WL [um] Max WL[um] Runtime [s]

sbox x4 34.0/8.0/8.3/8.8 74.0/16.97/17.25/19.825 NA/2.5/0.3/0.1

aes top 163.8/169.8/172.0/172.4 506.9/569.3/581.5/582.9 NA/69570.6/48.6/1.1

des3 327.7/NA/310.6/368.8 656.8/NA/686.6/786.6 NA/TO/19.9/1.5

rockettile x2 2339.1/NA/303.2/409.3 656.8/NA/636.4/877.0 NA/TO/407.3/4.2

rockettile x4 4244.4/NA/4258.1/4345.1 4797.1/NA/5944.5/6259.5 NA/TO/238.5/10.6

Table 2.3: Comparison between ILP, relaxed ILP and LP formulation

22

Figure 2.4: Normalized average net Manhattan length results for ILP, relaxed ILP, LP

formulation and Innovus

Figure 2.5: Normalized average wire length after routing for ILP, relaxed ILP, LP formulation

and Innovus

23

estimated HPWL if more than two pins are associated with such net. However, HPWL is

still an accurate estimate for the maximum wire length between two pins. We first run our

LP without maximum wire length constraint and obtain the default estimated maximum

HPWL, HPWL max default, in the design. We also obtain the default maximum and av-

erage wire length, WL max default and WL avg default, after routing when maxWL =

HPWL max default. Then we sweep down the value ofmaxWL fromHPWL max default

until the LP is not solvable. For benchmark aes top, HPWL max default = 415um and

the solver fails to solve the LP when maxWL = 385. We sweep maxWL from 415um to

385um in step of 5um, then perform pin assignment, routing and obtain maximum and aver-

age wire length for each value of maxWL. We normalize each maxWL as a ratio difference

from HPWL max default. Intuitively, strict maximum wire length constraint can reduce

maximum wire length but relax on average wire length. Thus we perform routing for each

maxWL and obtain the new maximum, average wire length as a reduction, increase ratio

of WL max default and WL avg default, respectively. The result is shown in Fig. 2.6.

As expected, maximum wire length decreases and average wire length increases as we apply

more strict maximum wire length constraint. Still, the value of maxWL is more effective

on reducing maximum wire length than degrading overall wire length. Thus our proposed

model can effectively enforce the maximum wire length constraint, which is often associated

with the timing constraints of certain critical paths, without significantly sacrificing overall

performance of the system.

24

Figure 2.6: Effects of maximum wire length constraints on maximum and average wire length

of routing results

25

CHAPTER 3

Interconnect Modeling and Power Optimization

In addition to interconnect length, another important metric for 2.5D integration is the

power overhead. Due to the passive nature of silicon interposer, links between blocks cannot

be buffered like links in SoCs. Thus, appropriate I/O cells with enough driving strength

should be provided for interconnects. Large I/O cell can drive longer interconnect but also

consumes more power. Therefore in this work, the objective for pin assignment is not solely

minimizing wire length, but also minimizing the power required to drive all links. In this

chapter we present our modeling of interconnects for extracting the relation between driver

power, interconnect speed and wire length. For better run time, we modify our proposed LP

formulation in Section 2.4.1 to minimize driver power.

3.1 Interconnect Modeling

The RC model first proposed in [5] has been widely used for resistive interconnects in inte-

grated circuits since it is simple and can characterize wire delay with a reasonable accuracy.

In this work we also use RC model to simulate the wire performance and estimate I/O power

consumption. We obtain the RC model for each 10µm wire segment and lump them into

the final RC network. We use the dimension and RC of metal layer 6 in NangateOpenCel-

lLibrary PDK 45nm technology library to calculate the wire RC. Following the definition

of RPERSQRU , CPERSQRDIST and wire width, WIDTH in technology LEF file, for

each wire segment, resistance, Rsegment, and C, Csegment can be calculated as

Rsegment = RPERSQRU/WIDTH × 10µm (3.1)

26

Csegment = (CPERSQRDIST ×WIDTH + 2× CEDGE)× 10µm (3.2)

We lump the fringing capacitance at two ends of the wire into two terminal capacitance,

Cterm, which can be calculated as

Cterm = WIDTH × CEDGE (3.3)

Similar to SoCs, silicon interposer based 2.5D integration suffers from electrostatic dis-

charge (ESD) issues. To protect chips from damages caused by ESD stress, dedicated on-chip

ESD protection circuits are widely used. On-chip ESD protection circuits are tested and

rated using different ESD test models which simulate the ESD event according to its origins

[36]. Several common models used are

1. Human body model (HBM) simulates the ESD event stimulated by a charged human

body contacting and discharge through an electronic device.

2. Machine model (MM) simulates the ESD event when a charged machinery touch the

device and discharge through the device during testing.

3. Charged-device model (CDM) simulates the ESD event when a charged device dis-

charges though its grounded pins. The floating device can be charged up due to self

induction during the manufacturing and assembly. When some pins of the charged IC

touches an external ground, stored charge will discharge through grounded pins to the

external ground [19] [39].

One of the most common ESD protection solution is to use dual diode concept shown in

Fig. 3.1, where a positive stress on IO pad can discharge to VDD rail through the diode

on the top, and a negative stress can discharge to ground through the diode at the bottom

[6]. ESD protection circuits design is a major challenge in high frequency ICs due to the

parasitic capacitance. Generally, to sustain a higher ESD stress level, stronger circuits are

required, which introduce more parasitic capacitance [13]. As mentioned in [14], 100V −500V

HBM protection level is recommended for today’s 2.5D/3D ICs for factory ESD control. An

27

Figure 3.1: Dual diode ESD protection scheme[6]

Figure 3.2: Wire model for simulating interconnect speed and power

optimized layout for ESD protection diodes is proposed in [38] and for 300V and 800V HBM

level, the parasitic capacitance are 2.84fF and 8.01fF , respectively. Therefore, for the

interconnect model used in our work, we attach a CESD = 5fF capacitor at each terminal

to approximate the ESD protection overhead.

We model interconnect drivers, which are the I/O buffers of each macro block, and

receivers as four back-to-back inverters and each inverter has fanout of 2. Therefore the

complete interconnect model we use for simulating wire speed and driver power is shown in

Fig. 3.2. We use energy-per-bit to evaluate the power efficiency of interconnects. SPICE

simulations are performed to determine the energy required for I/O cells with different

transistor size.

To optimize the power required for drivers after pin assignment, we simulate with our

interconnect model to obtain a power look up table which specifies the power required to

28

Figure 3.3: Wire model in presence of noise and crosstalk

driver a link with certain length and frequency requirement. We simulate different wire

length from 10um to 7000um. For each wire length, we sweep the driver size to obtain

the power required for the link to run at different frequencies. Fig. 3.5 shows the relation

between IO power and interconnect length and speed. The non-linear relation indicates

that minimizing average wire length as in Chapter 2 cannot necessarily minimize power

consumption if different interconnects are running at different frequency.

In today’s sub-micron circuits design, the coupling capacitance between neighboring wires

can be an important component in determining wire performance due to the small wire

spacing. The coupling effects can cause extra signal delays or even logic malfunctions [12].

Therefore, in addition to speed and power simulation, we also simulate interconnect per-

formance in presence of noise and wire crosstalk. Using the 2π model proposed in [12], we

include the noise from an adjacent switching wire and also an non-ideal ground line. The

model is shown in Fig. 3.3. For each entree in our obtained power look up table, we apply

a switching signal with corresponding frequency at the victim wire, and a 10X faster signal

at the aggressor wire. Then we check if the eye diagram has at least 80% opening. If not we

increase the driver size until enough eye opening is obtained. An example eye diagram for

5000um wire running at 2.5GHZ with 25GHz noise is shown in Fig. 3.4

29

Figure 3.4: Eye diagram for a 5000um interconnect running at 2.5GHz

3.2 Power Optimization and LP formulation

As we have shown from the simulation results in Section 3.1, given the length of an inter-

connect, the power required to drive the link has a non-linear relation with the link speed.

Thus, the objective of minimizing overall average wire length is not equivalent to minimizing

total power consumption if different nets have different operating frequency. Therefore in

this section we modify our LP formulation to optimize the integration power overhead.

The primary objective in our proposed LP pin assignment formulation in Chapter 2 is to

minimize the average wire length. However, all the constraints we modeled are not specific to

minimizing wire length, instead they are general constraints to ensure a valid pin assignment

is achieved. Thus, to optimize the power consumption, we can keep all the constraints in

Section 2.4.1 unchanged but only modify the objective function by applying proper weight

to each net, Wgti, i = 1, 2, ...t, according to the maximum delay a net has to meet. We

perform curve fitting using second order polynomial on the results shown in Fig. 3.5, where

the independent variable is the inverse of required maximum delay, or target frequency,

and dependent variable is the required IO power. Examples of fitted curves for wire length

ranging from 10000µm to 20000µm are shown in fig. 3.5. Since different wire length exhibit

30

Figure 3.5: Fitted curves for interconnects with different length

different curves, and we have knowledge on the estimated wire length in the design only after

pin assignment is done, in order to choose the proper function for weight calculation, we use

the average distance between centers of two blocks as a premature estimation of average wire

length before pin assignment is performed. Then we use the fitted function associated with

the wire length which is closest to our premature estimation to calculate Wgti. The weight

can be calculated as

Wgti = a× f 2
i + b× fi + c (3.4)

where fi is the target operating frequency that net i is to meet, and a, b, c are the coefficients

of fitted function. Then we can modify the objective function of ILP/LP formulations to

Minimize :
t∑

i=1

Wgti ×WLi (3.5)

3.3 Experiment Setup and Results

We use the same benchmarks as the experiments in Chapter 2. In reality the required speed

of certain nets depends on the type of interfaces or IP blocks they are associated with. For

31

Figure 3.6: Experiment flow for power optimization

instance, a HBM (high bandwidth memory) interface are likely to be running at a lower

frequency than a GDDR interface. Therefore for each block, we randomly group pins into

buses to model different interfaces a chip has, and apply bus bundling constraints from

Section 2.4.2. Then we randomly assign operating frequencies to each bus. We use the LP

formulation in Section 2.4.1 in this part to apply bus bundling constraints and compare

our results with Cadence Innovus. The experiment flow is shown in Fig. 3.6. Similarly to

the setup in Section 2.5, given the initial floorplan, we perform pin assignment using both

Innovus and our LP formulation. In Innovus we also apply same bus bundling constraints

using addP inGroup command, and apply same priority, Wgti, for each pin. After the pin

assignment is finished, we perform routing using Innovus for both pin assignment solutions.

Finally we calculate and compare the total IO power required using the power look up table

obtained in Section 3.1.

The results are shown in Table 3.1 and we can see improvement for all benchmarks from

Innovus results. The small power reduction on aes top may due to the large fanout of nets.

Since in this work we use Manhattan distance to estimate interconnect length, estimation

may not be accurate in case of multi-pin nets. Also, size of the benchmark is comparable

to the resolution in obtained power look up table. Thus the small length reduction on nets

may not reflect a step in the power look up table.

32

Innovus LP LP

Benchmarks Energy/Bit Energy/bit Reduction Runtime

sbox x4 145.99pJ 144.21pJ 1.22% 0.24s

aes top 1042.76pJ 1042.62pJ 0.01% 1.27s

des3 1278.87pJ 1243.89pJ 2.73% 1.38s

rockettile x2 1660.4385pJ 1315.70pJ 20.76% 771.32s

rockettile x4 5882.06pJ 5652.64pJ 3.90% 587.76s

Table 3.1: Experiment results for energy optimization

33

CHAPTER 4

Multi-Floorplan Pin Assignment

As mentioned in Section 1.3, most of works on pin assignment focus on the design phase

after floorplan or approach pin assignment and floorplan simultaneously. Therefore each

pin assignment solution is customized for a specific design. However, modern SoCs usually

contain hard IP blocks whose physical design are already finished by the IP vendor and

cannot be modified by the designer [25]. Thus during the design of a hard IP block, a proper

pin assignment is needed such that the IP block can be integrated into different systems with

acceptable costs. In this chapter we propose a framework for multi-floorplan pin assignment,

where we perform pin assignment to a block without the knowledge of floorplan. We also

try to avoid potential routing hotspot and wire congestion by introducing pin redundancy

during pin assignment, where multiple physical pins are assigned to a single logical pin.

4.1 LP Formulation

In this section we present our model and formulation for pin assignment without the knowl-

edge of specific floorplan. Although floorplan is not available, we assume that we have the

following knowledge or assumptions for the design:

1. System level netlist: During the development of an IP block, the possible system level

netlist associated with the block is available since designers know the type of macros

each interface should be connected to.

2. Estimation of sizes of other blocks: Since we know what types of blocks can be con-

nected to the block under consideration, we can also estimate the size of those macros.

34

The number of pins connected to an block could be an inaccurate inference for the

block size since some blocks, for example a memory block can have a large physical

size but relatively small number of pins.

A rule of thumb for multi-floorplan pin assignment is to group pins corresponding to

same interface together, and spread pins around the perimeter of the block. Therefore in

the first step we modify the LP formulation in Section 2.4.1 with bus bundling constraints

to assign a location for each bus. Then we apply rounding heuristics to allocate pins within

each bus around assigned bus location.

To spread buses around the perimeter of the block under consideration, we modify the

bus bundling constraints in Section 2.4.2 such that the pitch between buses is determined

not only by the number of pins in each bus, but also related to the the total number of

available positions and area of the connected block. Assume for a block bk, we have buses

bus0, bus1, ..., busn, where pins in a bus are connected to the same block. |busi| is the number

of pins in busi. For each bus, we assume that the area of the connected block is Ai, i =

0, 1, ..., n. We define the weight for each bus to be

BusWgti =
Ai × |busi|∑n
j=1Aj × |busj|

(4.1)

We allocate a number of available pin positions to each bus based on its weight and

apply bus pitch constraints accordingly. Following the notation in Chapter 2 where |Posk|

is the number of available pin positions on block bk, the number of positions that need to be

reserved for busi can be calculated as

bus rsrvPosi = max(bBusWgti × |Posk|c, |busi|) (4.2)

where |busi| is the minimum number of positions needed to assign pins in busi. Since the

total number of positions assigned to all the buses can be larger than |Posk| if one or more

of bus rsrvP insi are |busi|, we keep the buses with minimum number of locations reserved

unchanged while truncating the number of reserved locations for other buses until the total

number of reserved locations is less than or equal to |Posk|. Following the example in Section

35

Figure 4.1: Effects of block sizes on pin assignment

2.4.2, assume we have a block with pins pina1, pina2 from busa and pinb1, pinb2, pinb3 from

busb, we can add bus bundling constraints as

pina1 x = pina2 x (4.3)

pina1 y = pina2 y (4.4)

pinb1 x = pinb2 x (4.5)

pinb1 y = pinb2 y (4.6)

pinb1 x = pinb3 x (4.7)

pinb1 y = pinb3 y (4.8)

|pina1 x− pinb1 x|+ |pina1 y − pinb1 y| ≥ d
bus rsrvPosa + bus rsrvPosb

2
eminPinPitch

(4.9)

Area of the block connected to a bus is not trivial to pin assignment since it can affect the

resulting floorplan, which in turn determines the quality of pin assignment. For example, as

shown in Fig. 4.1 where pins of block A are being assigned, since the size of block D is much

larger than other blocks, block D may ”cover” one entire side of block A after the floorplan.

Thus it is desirable to reserve more space for bus D even though bus B and C have more

pins.

Because pin assignment is performed without the knowledge of floorplan, we cannot

36

Figure 4.2: Multi-floorplan pin assignment for a block connected to three other blocks

estimate the resulting interconnect wire length and we cannot use the same objective function

as in Chapter 2. Besides, since we have reserved space for each bus during construction of

bus bundling constraints, additional objective to spread the bus around the perimeter of the

block is not needed. Therefore we can formulate this multi-floorplan pin assignment into a

LP without an objective function. We only need a valid solution from the LP solver.

Fig. 4.2 shows an example for multi-floorplan pin assignment for block A. Block A has

three buses busB, busC , busD with sizes 2, 2, and 1, respectively, and pins associated with

each bus are pinb1, pinb2, pinc1, pinc2, and pind1. The locations of blocks in Fig. 4.2 does not

represent an actual floorplan but only illustrate the system level netlist. The area for block

B, C and D are 1, 1 and 10. There are 40 pin positions on the perimeter of block A marked

by black squares, with minPinPitch = 1µm. Using Eq. 4.1, we can get that

BusWgtB =
1

7
, BusWgtC =

1

7
, BusWgtD =

5

7

Then the number of reserved pin locations for each bus can be obtained as

bus rsrvPosB = max(b1
7
× 40c, 2) = 5

bus rsrvPosC = max(b1
7
× 40c, 2) = 5

37

bus rsrvPosD = max(b5
7
× 40c, 1) = 28

The total number of reserved locations is 5 + 5 + 28 = 38 < 40 so none of the buses should

be truncated. Therefore the complete LP pin assignment for block A can be formulated as

follows:

Minimize : (4.10)

0 (4.11)

Subject to : (4.12)

0 ≤ pinb1 x ≤ 11, 0 ≤ pinb1 y ≤ 11 (4.13)

0 ≤ pinb2 x ≤ 11, 0 ≤ pinb2 y ≤ 11 (4.14)

0 ≤ pinc1 x ≤ 11, 0 ≤ pinc1 y ≤ 11 (4.15)

0 ≤ pinc2 x ≤ 11, 0 ≤ pinc2 y ≤ 11 (4.16)

0 ≤ pind1 x ≤ 11, 0 ≤ pind1 y ≤ 11 (4.17)

pinb2 x = pinb1 x, pinb2 y = pinb1 y (4.18)

pinc2 x = pinc1 x, pinc2 y = pinc1 y (4.19)

|pinb1 x− pinc1 x|+ |pinb1 y − pinc1 y| ≥ 5× 1 (4.20)

|pinb1 x− pind1 x|+ |pinb1 y − pind1 y| ≥ 17× 1 (4.21)

|pinc1 x− pind1 x|+ |pinc1 y − pind1 y| ≥ 17× 1 (4.22)

A valid solution for the LP is shown in Fig. 4.3, where bus locations are marked by

colored squares.

4.2 Rounding Heuristic

LP formulation will assign all pins in a bus to one location on the perimeter based on bus

size and area of corresponding block. In this section we present our heuristic to round the LP

solution and obtain a valid pin assignment. In the first step we assign a slot of pin positions

to each bus and slot size is roughly equal to bus rsrvPos. In the second step we spread pins

38

Figure 4.3: A valid LP formulation solution for the problem shown in Fig. 4.2

in a bus evenly over the corresponding slot.

We note the coordinate assigned to a bus as (busi x, busi y). The algorithm for assigning

a slot for a bus in block bk is shown in Algorithm 2. It takes the bus locations as inputs

and outputs a vector of positions, sloti, for each bus. We calculate a maximum distance,

maxDisi, from the bus location that a position can be allocated into a bus’s slot. The

equation for calculating maxDisi is shown in line 3 in Algorithm 2. After we add all pin

positions within maxDisi to sloti, we sort sloti such that the positions around the block

perimeter are added into sloti clockwise. The algorithm for spreading pins in buses along

their slots for block bk is shown in Algorithm 3, which takes the slots for all buses as inputs

and update pin locations. The complete algorithm for rounding the LP solution is shown in

Algorithm 4.

The rounding procedure for the example shown in Fig. 4.3 is illustrated in Fig. 4.4. As-

signed slot for each bus marked with color is shown in left figure and the final pin assignment

is shown in the right figure.

39

Algorithm 2 Assign bus slot and quantize each slot

1: function AssignBusSlots(bk, (busi x, busi y), i = 1, 2, ..., n)

2: for each busi in bk do

3: maxDisi = 1
2
bus rsrvP insi ×MinPinPitch

4: for each pos in Posk do

5: if |pos x− busi x|+ |pos y − busi y| ≤ maxDis then

6: sloti.pushback(pos)

7: sort(sloti)

return sloti, i = 1, 2, ..., n

Algorithm 3 Spread pins in a bus along the slot

1: function SpreadPinsInSlot(bk, sloti, i = 1, 2, ..., n)

2: for each busi in bk do

3: posPerPin = b |sloti||busi| c

4: j = 0

5: for each pin in busi do

6: (pin x, pin y) = sloti[j]

7: j+ = posPerP in

return piniq x, piniq y, 1 = 1, 2, ..., |busi|, i = 1, 2, ..., n

Algorithm 4 Complete algorithm for rounding LP solution

Input: Block bk, (busi x, busi y), i = 1, 2..., n

Output: piniq x, piniq y, 1 = 1, 2, ..., |busi|, i = 1, 2, ..., n

1: for each block bk do

2: sloti, i = 1, 2, ..., n = AssignBusSlots(bk, (busi x, busi y), i = 1, 2..., n)

3: SpreadPinsInSlot(bk, sloti, i = 1, 2, ..., n)

40

Figure 4.4: Rounding results for example shown in Fig. 4.3.

4.3 Pin Redundancy

Since pin assignment is performed without the knowledge of floorplan, we can reduce the

probability of wire crossing by bundling pins connected to same macro together and spread

pins around the perimeter of the block under consideration. Still, without performing pin

assignment globally, in some cases resulting pin assignment can cause potential routing

hotspot, which eventually increase the interconnect length. For example, consider an inter-

face with multiple nets between two blocks, b1 and b2, as shown in Fig. 4.5. Multi-floorplan

pin assignment has been applied on both block b1 and b2, and system-level floorplan and

placement has been performed. Since pin assignment is performed locally on each block,

even though placement tool can place these two blocks optimally such that two interfaces

face each other, one interfaces can have a reversed ordering with respect to the other, which

can cause wire congestion or even unroutable design.

In 2.5D integration, due to the passive nature of silicon interposer, a signal cannot be

buffered once it leaves the block and the interconnect length is limited. Pin redundancy

allows such net to be routed internally and buffered through the source macro and the net

would exit through the physical pin that is nearest to the destination. For the multi-floorplan

pin assignment flow we proposed, in terms of routability of the final floorplan, the worst case

scenario is two buses facing each other but with reversed ordering as shown in Fig. 4.5. In

41

Figure 4.5: Pin assignment performed locally can cause wire congestion or routing hotspot

in the final floorplan

this section we present a multi-pin placement method where we add extra physical copy of

a logical pin to alleviate the worst case chip-level routing scenarios and potential routing

congestion.

The scenario depicted in Fig. 4.5 can be modeled as a channel routing problem (CRP).

In Manhattan model of channel routing, a channel consists of 2-layer of rectangular grid of

columns and rows (tracks) and pins are located at the top and bottom tracks. The objective

of such channel routing problem is to connect pins of each net while minimizing the number

of tracks required. Wires can be routed in either layers of tracks between top and bottom

tracks and in either layer of columns [31]. The density of the channel routing problem,

dmax, is defined as the maximum number of nets that are split by any vertical cut across

the channel, where one pin is located on one side of the cut and the other pin is located

on the other side. If we note the number of nets in the problem as nnet, the worst case

density of the problem can be dmax = nnet. It is also obvious that a trivial lower bound for

the number of tracks needed to route all the nets is dmax [28]. Also, if we denote l as the

length of the longest path of the vertical constraint graph of the channel, a well-know loose

lower bound on the number of tracks is max{dmax, l}[42]. An upper bound for the number

of tracks needed for a channel density dmax is 2dmax + O(f), where f is the flux of CRP.

However, in practice 2dmax +O(1) tracks is usually needed since f is small and bounded by

42

a small constant in practical problems [31]. In the 2.5D integration where routing between

different dies is performed on the substrate, the number of pins associated with a channel

between two blocks can be significantly larger than a small constant. Thus, if we note t as

the number of tracks needed, we can roughly say that it is bounded by

t ≤ 2× dmax (4.23)

In a typical design of 2.5D integration interposer, 2500 die-to-die interconnects can be

routed in a single layer at a signal bus with width of 25mm. Also, a gap between different

dies with width at least 100µm is usually maintained in the chip level assembly [33]. Thus

in this section we can make the assumption that around 10 tracks are available for routing

in the channel between two blocks. Since in the worst case dmax = nnet, following the upper

bound of in Eq. 4.23, we can get nnet ≥ 5, which means in the worst scenario at least 5

nets can be routed in the channel between two blocks. In other words, dmax ≤ t
2

should

be satisfied in order to make the channel routable in the scenario shown in Fig. 4.5. Thus,

in order to allow more nets to be routed in the channel, we introduce pin redundancy to

decrease the maximum density in the channel. For example, consider a channel shown in

Fig. 4.6a which consists of 6 nets and 6 pins on each side of the channel. The vertical cut

shown in red has the maximum density 6, since all 6 nets have one pin on the left side and

the other on the right side of the cut. To reduce the channel density, we can duplicate a pin

and place it onto the other side of the vertical cut. For instance, in Fig. 4.6b we make extra

physical copies of Pin1a and Pin2a and place on the right side of the cut, which are labeled

as Pin1a cp and Pin2a cp. The maximum density of the channel becomes 4 as net1, net2 are

located on one side of the cut and different copies of the same pin are internally connected

through their macro block. Therefore, one observation we have is that we can keep making

redundancy for each pin to the other side of the cut until dmax ≤ t
2

is satisfied. dmax can be

estimated as

dmax = dmax original −# pin redundancy (4.24)

where dmax original is the channel density before any pin redundancies are made. In the

example shown in Fig. 4.6a, 1 pin needs to be duplicated in order to make the channel

43

(a)

(b)

Figure 4.6: (a) A channel with 6 nets and maximum density 6. (b) After making physical

copies for two pins the density is reduced to 4.

routable. Thus, in addition to the rule of thumbs for multi-floor pin assignment proposed in

Section 4.1 and Section 4.2, after we spread pins along a bus slot, we make physical copy for

each pin and place in reversed order until dmax is less than t
2
. If we note tchannel as the number

of tracks available in the channel and piniq cp as the duplicate of piniq, we modify Algorithm

3 and the complete algorithm for spreading and duplicating pins is shown in Algorithm 5.

4.4 Experiment Flow and Results

In this section we present two experiment flows to evaluate the quality of multi-floorplan pin

assignment we proposed. In the first flow we compare multi-floorplan results with LP formu-

lation presented in Section 2.4.1 for a specific floorplan. In the second flow we generate 20

random floorplans for each benchmark, and apply one single multi-floorplan pin assignment

and LP assignment on all floorplans to compare the average and the worst case quality.

44

Algorithm 5 Spread pins in a bus and add pin redundancy along the slot

1: function SpreadPinsAndPinRedundancy(bk, sloti)

2: for each busi in bk do

3: posPerP in = b |sloti||busi| c

4: j = 0

5: for each pin in busi do

6: (pin x, pin y) = sloti[j]

7: j+ = posPerP in

8: RedundancyNeeded = |busi| − 1
2
tchannel

9: new slot = all unoccupied pos in quantized sloti

10: j = |new slot| − 1

11: newPosPerP in = b |new slot|
|busi| c

12: RedundancyCount = 0

13: for each pin in busi do

14: if dmax original −RedundancyCount ≤ 1
2
tchannel OR j < 0 then

15: break

16: copy pin to new slot[j]

17: j− = newPosPerP in

return piniq x, piniq y, piniq cp x, piniq cp y, i = 1, 2, ..., |busi|, i = 1, 2, ..., n

45

Figure 4.7: Experiment flow for comparing multi-floorplan and LP pin assignment for a

given floorplan.

In the first experiment flow, we compare the final interconnect length after routing with

the floorplan-specific LP formulation in Section 2.4.1. For each benchmark, we perform

multi-floor pin assignment based on the system-level netlist, then perform floorplan and

routing using Cadnece Innovus. We then perform LP pin assignment specific to the floorplan

generated by Innvous, and perform routing again. The routing results of these two pin

assignments are compared. The experiment flow is shown in Fig. 4.7.

Since the multi-floorplan pin assignment is performed without the knowledge of the floor-

plan while LP formulation assigns pins globally for a specific floorplan, it is expected that

multi-floorplan assignment will result in longer average interconnect length than LP assign-

ment. We also compare the effectiveness of pin redundancy by making different assumptions

about the die spacing and the number of routing tracks available in a channel between two

blocks. We compare the results of assuming unlimited tracks, 20 tracks, 10 tracks and ”0

tracks”. No pin redundancy is made for unlimited tracks and all pins are duplicated for 0

track. We normalize all results to the average wire length of LP formulation and the com-

parison is shown in Fig. 4.8. We can notice that pin redundancy can effectively decrease the

resulting average interconnect length. sbox x4 does not show improvement from unlimited

track assumption to 10 track assumption because the benchmark size is small and no pin

46

Figure 4.8: Comparison between multi-floorplan and LP pin assignment with different avail-

able channel routing track assumptions.

redundancy is needed. Comparing with LP results shows a ”lower bound” on the perfor-

mance of our proposed multi-floorplan pin assignment on a specific floorplan. We can see

that for rockettile x4 the integration overhead is at most 2.6X without any pin redundancy

and 2.4X for 10-track assumption. For other benchmarks overhead are all below 2X with

pin redundancy.

Since the purpose for multi-floorplan pin assignment is to propose a rule of thumb for

pin assignment without the knowledge of floorplan such that the same block can be reused

in different designs, in the second flow we compare the average and worst case performance

of a multi-floorplan assignment and LP assignment across a set of random floorplans. For

each benchmark, we randomly generate 20 floorplans, fp0, fp1, ...fp19. To generate random

floorplans for a benchmark, we first construct different placement schemes for all blocks. For

example, des3 benchmark has 3 blocks, b1, b2, and b3, and we construct 4 different placement

schemes as shown in Fig. 4.9, where block b1, b2, and b3 can be placed into slot slot a, slot b

and slot c in any sequence. Each block can have 4 orientations, north, south, west, and

east. For each floorplan, we randomly choose a placement scheme, placement sequence, and

47

Figure 4.9: Four placement schemes for des3 benchmark used to generate random floorplans.

an orientation for each block.

After random floorplans are generated, a LP pin assignment, PALP , is generated using

fp0, and multi-floorplan pin assignment, PAmulti is generated based on the netlist. We

apply PALP and PAmulti to all floorplans and perform routing to get the average wire

lengths, {avgWLLP 1, avgWLLP 2, ..., avgWLLP 19} and {avgWLmulti 1, avgWLmulti 2,

..., avgWLmulti 19}. Finally the average and worst case of all avgWLLP i and average of

all avgWLmulti i are compared. The experiment flow is shown in Fig. 4.10 and we repeat

the same flow for each channel width assumption. The normalized results for worst case

average wire length of all floorplans are shown in Fig. 4.11. We can see that multi-floorplan

pin assignment can effectively reduce the worst case wire length across the 19 floorplans. A

maximum 26% reduction is achieved without any pin redundancy and 48% reduction can

be achieved with a 10-track assumption. Two different pin assignment would have similar

average performance across a set of random floorplans. A comparison of the average of

average wire length of all floorplans are shown in Fig. 4.12. Still without pin redundancy we

can see a small reduction for most of benchmarks, and a maximum of 40% reduction with

0-track assumption.

48

Figure 4.10: Experiment flow for comparing multi-floorplan and LP pin assignment using

random floorplans.

Figure 4.11: Comparison between multi-floorplan and LP pin assignment on the worst case

performance across random floorplans.

49

Figure 4.12: Comparison between multi-floorplan and LP pin assignment on average perfor-

mance across random floorplans.

50

CHAPTER 5

Conclusion

Silicon interposer based 2.5D integration has become an alternative to traditional 2D mono-

lithic integration as a result of increasing cost and decreasing efficiency for traditional process

scaling. It allows high yield and high band width through die partitioning, and also facilitates

heterogeneous integration. In a 2.5D process, dies are placed on the interposer and connected

by interconnects in the interposer. In this work focus on minimizing the integration overhead

through die-level pin assignment.

In Chapter 2 we develop three ILP/LP based formulations for hierarchical pin assignment

where multi-instantiated blocks of the same cell have same pin assignment. We first present

a ILP based formulation which uses an integer assignment matrix to map each pin to a legal

position. Constraints are applied on the assignment matrix to ensure a valid pin assignment

solution is generated. Since ILP is a NP-hard problem, the run time for directly solving

ILP is not scalable for large designs. Thus we propose a relaxation method for ILP and

present relaxed-ILP formulation. We relax the integer assignment matrix into a non-integer

matrix and other constraints on the matrix are preserved. As the pin assignment results

can be invalid if assignment matrix is no longer integer, we propose a rounding heuristic to

round the LP solution into a valid pin assignment. Finally we present a runtime-scalable

LP formulation by further reducing the complexity of the LP. We simplify the modeling by

removing assignment matrix and only constraint pins to be inside the block bounding box.

Rounding heuristic is then applied to legalize the solution. We also present bus bundle con-

straints to place pins from the same bus together. We show that our formulation can achieve

large improvement over some benchmarks where Cadence Innovus fails to obtain the opti-

mal solution. In addition, these three formulations show a trade-off between optimality and

51

run-time, where ILP formulation can achieve the most optimal results and LP formulations

is most run-time efficient.

In Chapter 3 we present a framework of pin assignment for I/O power optimization.

In a passive silicon interposer, a signal cannot be buffered once it leaves its source block.

Thus the I/O cell of a die must have enough strength to drive the interconnect to meet

system level timing requirements. The I/O power consumption is also a major overhead

for 2.5D integration. We use a RC wire model to simulate the I/O power required as a

function of interconnect length and speed and obtain a power look up table to evaluate

power consumption after routing. We show that an non-linear relation between power and

link speed exists thus minimizing wire length is not equivalent to minimizing I/O power. LP

formulation is modified to optimize power consumption. We add random running frequencies

to nets and perform pin assignment. Our results show that we can achieve a better power

performance compared to Cadence Innovus.

In Chapter 4 we present a multi-floorplan pin assignment flow where pin assignment is

performed without the knowledge of floorplan. For a block to be integrated into a design,

floorplann-specific pin assignment can optimize the integration overhead for a given floorplan,

however the pin assignment is not optimal for other floorplans and the block needs to be

redesigned. On the other hand, multi-floorplan pin assignment assigns pins based on the

possible system level netlist such that the block can be reused in different designs. We also

propose a method to introduce pin redundancy into the design to avoid possible routing

hotspot and further reduce interconnect length. We show that the overhead for a floorplan-

unaware pin assignment is at most 2.6X that of the floorplan-specific pin assignment. In

addition, compared to a pin assignment solution for a specific floorplan, we show that our flow

achieves a better average and worst case performance for a set of random floorplans. In other

words, our proposed multi-floorplan pin assignment can reduce the integration overhead if a

single block design needs to be reused in multiple unknown designs.

In conclusion, in this work we present different flexible formulations for 2.5D die level

pin assignment which are more optimal than Cadence Innovus. Also a multi-floorplan pin

52

assignment flow is proposed to allow the reuse of blocks. In the future we can model buffer

bank allocation into pin assignment formulation, which allows signal to be buffered through

a block before reaching to its destination. We can also develop a flow to integrate pin

assignment and floorplan or routing for 2.5D or 3D integration.

53

Bibliography

[1] Cadence Innovus Implementation System https://www.cadence.com/content/

cadence-www/global/en_US/home/tools/digital-design-and-signoff/

hierarchical-design-and-floorplanning/innovus-implementation-system.

html.

[2] OpenAccess API http://www.si2.org/.

[3] IBM CPLEX Optimizer https://www.ibm.com/support/knowledgecenter/SSSA5P_

12.7.1/ilog.odms.cplex.help/CPLEX/homepages/CPLEX.html.

[4] Vlsi design flow an overview, May 2017. https://anysilicon.com/

vlsi-design-flow-overview/.

[5] R. J. Antinone and G. W. Brown. The modeling of resistive interconnects for integrated
circuits. IEEE Journal of Solid-State Circuits, 18(2):200–203, April 1983.

[6] I. Backers, B. Sorgeloos, B. Van Camp, O. Marichal, and B. Keppens. Low capacitive
dual bipolar esd protection. In 2017 39th Electrical Overstress/Electrostatic Discharge
Symposium (EOS/ESD), pages 1–7, Sep. 2017.

[7] H. N. Brady. An approach to topological pin assignment. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 3(3):250–255, July 1984.

[8] J. Carballo, W. J. Chan, P. A. Gargini, A. B. Kahng, and S. Nath. Itrs 2.0: Toward a
re-framing of the semiconductor technology roadmap. In 2014 IEEE 32nd International
Conference on Computer Design (ICCD), pages 139–146, Oct 2014.

[9] R. Chaware, K. Nagarajan, and S. Ramalingam. Assembly and reliability challenges
in 3d integration of 28nm fpga die on a large high density 65nm passive interposer. In
2012 IEEE 62nd Electronic Components and Technology Conference, pages 279–283,
May 2012.

[10] J. Cong. Pin assignment with global routing. In 1989 IEEE International Conference
on Computer-Aided Design. Digest of Technical Papers, pages 302–305, Nov 1989.

[11] J. Cong. Pin assignment with global routing for general cell designs. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 10(11):1401–1412, Nov
1991.

[12] J. Cong, D. Z. Pan, and P. V. Srinivas. Improved crosstalk modeling for noise con-
strained interconnect optimization. In Proceedings of the ASP-DAC 2001. Asia and
South Pacific Design Automation Conference 2001 (Cat. No.01EX455), pages 373–378,
Feb 2001.

54

https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/hierarchical-design-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/hierarchical-design-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/hierarchical-design-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/hierarchical-design-and-floorplanning/innovus-implementation-system.html
http://www.si2.org/
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.1/ilog.odms.cplex.help/CPLEX/homepages/CPLEX.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.1/ilog.odms.cplex.help/CPLEX/homepages/CPLEX.html
https://anysilicon.com/vlsi-design-flow-overview/
https://anysilicon.com/vlsi-design-flow-overview/

[13] H. Feng, K. Gong, and A. Z. Wang. A comparison study of esd protection for rfics:
performance vs. parasitics. In 2000 IEEE Radio Frequency Integrated Circuits (RFIC)
Symposium Digest of Papers (Cat. No.00CH37096), pages 235–238, June 2000.

[14] Global Semiconductor Alliance. Electrostatic discharge (esd) in 3d-ic packages.
Jan. 2015. https://www.3dincites.com/wp-content/uploads/GSA-ESDA-3D-IC_

ESD_Whitepaper_1.pdf.

[15] C. Hao, N. Ding, and T. Yoshimura. An efficient algorithm for 3d-ic tsv assignment.
In 2016 14th IEEE International New Circuits and Systems Conference (NEWCAS),
pages 1–4, June 2016.

[16] X. He and S. Dong. Pin assignment for wire length minimization after floorplanning
phase. In 2009 IEEE 8th International Conference on ASIC, pages 1294–1297, Oct
2009.

[17] G. Hellings, M. Scholz, M. Detalle, D. Velenis, M. de Potter de ten Broeck, C. R.
Neve, Y. Li, S. Van Huylenbroek, S. . Chen, E. . Marinissen, A. L. Manna, G. Van der
Plas, D. Linten, E. Beyne, and A. Thean. Active-lite interposer for 2.5 amp;amp; 3d
integration. In 2015 Symposium on VLSI Circuits (VLSI Circuits), pages T222–T223,
June 2015.

[18] A. Jain, A. Saha, and J. Rao. Soc design methodology: a practical approach. In 18th
International Conference on VLSI Design held jointly with 4th International Conference
on Embedded Systems Design, pages 10–11, Jan 2005.

[19] M.D Ker, J.J Peng, and H.C Jiang. Esd test methods on integrated circuits: an overview.
In ICECS 2001. 8th IEEE International Conference on Electronics, Circuits and Sys-
tems (Cat. No.01EX483), volume 2, pages 1011–1014 vol.2, Sep. 2001.

[20] T. Koide, S. Wakabayashi, and N. Yoshida. An integrated approach to pin assignment
and global routing for vlsi building-block layout. In 1993 European Conference on
Design Automation with the European Event in ASIC Design, pages 24–28, Feb 1993.

[21] Norman L. Koren. Pin assignment in automated printed circuit board design. In
Proceedings of the 9th Design Automation Workshop, DAC ’72, pages 72–79, New York,
NY, USA, 1972. ACM.

[22] M. Lapudes. What will 7nm and 5nm look like? Jan 2015.

[23] C. Lee, C. Hung, C. Cheung, P. Yang, C. Kao, D. Chen, M. Shih, C. C. Chien, Y. Hsiao,
L. Chen, M. Su, M. Alfano, J. Siegel, J. Din, and B. Black. An overview of the develop-
ment of a gpu with integrated hbm on silicon interposer. In 2016 IEEE 66th Electronic
Components and Technology Conference (ECTC), pages 1439–1444, May 2016.

[24] Z. Li, M. Zhang, and Y. Long. Pin assignment optimization for large-scale high-pin-
count bga packages using simulated annealing. IEEE Transactions on Components,
Packaging and Manufacturing Technology, 6(10):1465–1474, Oct 2016.

55

https://www.3dincites.com/wp-content/uploads/GSA-ESDA-3D-IC_ESD_Whitepaper_1.pdf
https://www.3dincites.com/wp-content/uploads/GSA-ESDA-3D-IC_ESD_Whitepaper_1.pdf

[25] Q. Liu and H. Li. A hierarchical ip protection approach for hard ip cores. In 2015
IEEE International Symposium on Circuits and Systems (ISCAS), pages 1566–1569,
May 2015.

[26] L. Mory-Rauch. Pin assignment on a printed circuit board. In 15th Design Automation
Conference, pages 70–73, June 1978.

[27] K N. Tu. Reliability challenges in 3d ic packaging technology. Microelectronics Relia-
bility, 51:517523, 03 2011.

[28] R. K. Pal, S. P. Pal, and A. Pal. An algorithm for finding a non-trivial lower bound for
channel routing. In Proceedings Tenth International Conference on VLSI Design, pages
531–532, Jan 1997.

[29] C. Pan, Y. Huang, and C. Wang. Characterization and simulation for 2.5-d interposer. In
2015 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS),
pages 74–77, Dec 2015.

[30] Pravriti. Vlsi design flow, November 2017. https://www.vlsifacts.com/

vlsi-design-flow/.

[31] Brenda S. Baker, Sandeep Bhatt, and Frank Thomson Leighton. An approximation
algorithm for Manhattan routing, volume 2, pages 205–229. 01 1984.

[32] K. Saban. Xilinx stacked silicon interconnect technology delivers break-
through fpga capacity, bandwidth, and power efficiency. Dec. 2012. https:

//www.xilinx.com/support/documentation/white_papers/wp380_Stacked_

Silicon_Interconnect_Technology.pdf.

[33] B. M. D. Sawyer, Y. Suzuki, R. Furuya, C. Nair, T. Huang, V. Smet, K. Panayappan,
V. Sundaram, and R. Tummala. Design and demonstration of a 2.5-d glass interposer
bga package for high bandwidth and low cost. IEEE Transactions on Components,
Packaging and Manufacturing Technology, 7(4):552–562, April 2017.

[34] D. P. Seemuth, A. Davoodi, and K. Morrow. Automatic die placement and flexible
i/o assignment in 2.5d ic design. In Sixteenth International Symposium on Quality
Electronic Design, pages 524–527, March 2015.

[35] D. Stow, Y. Xie, T. Siddiqua, and G. H. Loh. Cost-effective design of scalable high-
performance systems using active and passive interposers. In 2017 IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD), pages 728–735, Nov 2017.

[36] A.Z Wang, H.G Feng, K Gong, R.Y Zhan, and J Stine. On-chip esd protection design
for integrated circuits: an overview for ic designers. Microelectronics Journal, 32(9):733
– 747, 2001.

[37] F. Yazdani. A novel low cost, high performance and reliable silicon interposer. In 2015
IEEE Custom Integrated Circuits Conference (CICC), pages 1–6, Sep. 2015.

56

https://www.vlsifacts.com/vlsi-design-flow/
https://www.vlsifacts.com/vlsi-design-flow/
https://www.xilinx.com/support/documentation/white_papers/wp380_Stacked_Silicon_Interconnect_Technology.pdf
https://www.xilinx.com/support/documentation/white_papers/wp380_Stacked_Silicon_Interconnect_Technology.pdf
https://www.xilinx.com/support/documentation/white_papers/wp380_Stacked_Silicon_Interconnect_Technology.pdf

[38] C. Yeh and M. Ker. Optimized layout on esd protection diode with low parasitic
capacitance. In 2010 10th IEEE International Conference on Solid-State and Integrated
Circuit Technology, pages 1701–1703, Nov 2010.

[39] H. Yin, Y. Zhu, C. Wei, A. Klimashov, and D. Bartle. Skyworks capacitor model
for esd applications. In 2011 IEEE International Conference of Electron Devices and
Solid-State Circuits, pages 1–2, Nov 2011.

[40] Y. Zhao, C. Hao, and T. Yoshimura. Tsv assignment of thermal and wirelength opti-
mization for 3d-ic routing. In 2018 28th International Symposium on Power and Timing
Modeling, Optimization and Simulation (PATMOS), pages 155–162, July 2018.

[41] W. Zhong, S. Chen, , and T. Yoshimura. Lagrangian relaxation based pin assignment
and through-silicon via planning for 3-d socs. In 2013 IEEE 10th International Confer-
ence on ASIC, pages 1–4, Oct 2013.

[42] D. Zhou. Lower bound on the channel routing problems. In [Proceedings] 1992 IEEE
International Symposium on Circuits and Systems, volume 1, pages 13–16 vol.1, May
1992.

[43] Y. Zhou, Y. Yan, and W. Yan. A method to speed up vlsi hierarchical physical design in
floorplanning. In 2017 IEEE 12th International Conference on ASIC (ASICON), pages
347–350, Oct 2017.

57

	Title Page
	Abstract
	Committee
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgment
	1 Introduction
	1.1 VLSI Design Flow
	1.2 Silicon Interposer Based 2.5D Integration
	1.3 Pin Assignment
	1.4 Thesis Outline

	2 Modeling of Pin Assignment Problem
	2.1 Problem Formulation
	2.2 ILP Based Formulation
	2.3 ILP Based Formulation with LP Relaxation
	2.4 Run Time Scalable LP formulation
	2.4.1 LP formulation
	2.4.2 Bus Bundling

	2.5 Comparison of Different Formulation

	3 Interconnect Modeling and Power Optimization
	3.1 Interconnect Modeling
	3.2 Power Optimization and LP formulation
	3.3 Experiment Setup and Results

	4 Multi-Floorplan Pin Assignment
	4.1 LP Formulation
	4.2 Rounding Heuristic
	4.3 Pin Redundancy
	4.4 Experiment Flow and Results

	5 Conclusion
	Bibliography

