
University of California

Los Angeles

Hardware-Software Interface in the Presence of

Hardware Manufacturing Variations

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Electrical Engineering

by

Aashish Pant

2010



c© Copyright by

Aashish Pant

2010



The thesis of Aashish Pant is approved.

Lei He

Mihaela van der Schaar

Puneet Gupta, Committee Chair

University of California, Los Angeles

2010

ii



To my parents, Bhasha and Prabhat Pant...

iii



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Software Adaptation in Quality Sensitive Applications to Deal

With Hardware Variability . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Hardware Signature Based Adaptation . . . . . . . . . . . . . . . 8

2.2.1 Quality Sensitive Applications: Q-C Curves . . . . . . . . 9

2.2.2 Signatures and Adaptation . . . . . . . . . . . . . . . . . . 11

2.2.3 Signature Choice and Measurement . . . . . . . . . . . . . 11

2.3 Proof of Concept: H.264 Encoding . . . . . . . . . . . . . . . . . 12

2.3.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 DVS: Power and Voltage as Hardware Signatures . . . . . 19

2.4 Hardware Signatures: Granularity Tradeoffs . . . . . . . . . . . . 21

2.4.1 Optimal Signature Measurement . . . . . . . . . . . . . . . 22

2.4.2 H.264 Encoding: Granularity Analysis . . . . . . . . . . . 25

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Frequency Binning of Multi-core Processors . . . . . . . . . . . . 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Variation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Binning Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

iv



3.3.1 Min-Max and Σf . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.2 Correlation to Throughput . . . . . . . . . . . . . . . . . . 31

3.3.3 Binning Overhead . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Using the Variation Model to Reduce Binning Overhead . . . . . 35

3.4.1 Curve Fitting . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Analysis of Results . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6.1 Dependence on Number of Bins . . . . . . . . . . . . . . . 39

3.6.2 Dependence on Number of Cores . . . . . . . . . . . . . . 42

3.6.3 Dependence on Search Range for Variation-Model Aware

Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6.4 Dependence on Nature of Variations . . . . . . . . . . . . 45

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

v



List of Figures

1.1 ITRS Projection of Variability. . . . . . . . . . . . . . . . . . . . . 2

2.1 Simplified application adaptation model with hardware signatures. 6

2.2 Q-C curve for a one-component hardware undergoes a scaled hor-

izontal shift with frequency variations. . . . . . . . . . . . . . . . 10

2.3 Q-C curve for H.264 encoder showing the various operating con-

figurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Signature based adaptation achieves better PSNR at a given fre-

quency of operation compared to the non-adaptive case. . . . . . . 15

2.5 Manufacturing yield is defined as the percentage of die that ensure

no frame loss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 PSNR Vs. Yield for 0% over-design . . . . . . . . . . . . . . . . . 17

2.7 Average PSNR over all die samples. . . . . . . . . . . . . . . . . . 18

2.8 Variation of frequency and power with supply voltage under pro-

cess variations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.9 Variation space of the PSNR vs power curves for some sample

hardware realizations under process variations for H.264 encoder. 20

2.10 Signature measurement point analysis using Q-C curves. . . . . . 22

2.11 Mapping the optimal signature location problem to a shortest path

problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.12 Improvement in PSNR with finer signature granularity. . . . . . . 24

vi



3.1 Correlation of Min-Max and Σf to throughput for multi-programmed

and multi-threaded workloads. . . . . . . . . . . . . . . . . . . . . 32

3.2 Frequency binning overhead (linear and binary search) for Σf and

Min-Max. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Correlation of various binning metrics to actual throughput and

their binning overhead for varying number of bins. . . . . . . . . . 40

3.4 Correlation of various binning metrics to actual throughput and

their binning overhead for varying number of cores in the multi-

processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Correlation of various binning metrics to actual throughput and

their binning overhead for varying number of cores per cluster. . . 46

3.6 Correlation of various binning metrics to actual throughput and

their binning overhead for varying search range. . . . . . . . . . . 47

3.7 Correlation of various binning metrics to actual throughput and

their binning overhead for different process variation scenarios. . . 48

vii



List of Tables

2.1 Experiment Specifications . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Benchmarks used . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

viii



Acknowledgments

I would like to thank my research advisor, Prof. Puneet Gupta for the constant

motivation, guidance and support throughout this work. Completing this thesis

would have been impossible without his help. I am also thankful to Prof. Mihaela

van der Schaar for helping me understand the basics of multimedia encoding

algorithms and to Prof. Rakesh Kumar from UIUC for guiding me in the area of

computer architecture. I would also like to thank John Sartori from UIUC and

Nicholas Mastronarde for helping me in setting up the experiments for my work.

My sincere acknowledgements are due to my lab-mates: Tuck Boon Chan, Rani

S. Ghaida, Amarnath Kasibhatla, Viswakiran Popuri, Abde Ali Kagalwalla and

John Lee for giving suggestions, participating in various discussions related to

my project and supporting me during those tough paper submission times. My

special thanks to UCLA Fall-08 group for making my stay at UCLA, a memorable

one. I would like to express my deep gratitude towards my parents, family, and

friends for their constant love, encouragement, and support.

ix



Abstract of the Thesis

Hardware-Software Interface in the Presence of

Hardware Manufacturing Variations

by

Aashish Pant

Master of Science in Electrical Engineering

University of California, Los Angeles, 2010

Professor Puneet Gupta, Chair

Variations in manufacturing process are increasingly affecting the performance

(speed, power) of systems, both across multiple instances of a design and in time

over its usage life. Even in these conditions, the basic approach to designing

and operating complex systems that embeds a hardware-software interface that

is rigid and deterministic has largely stayed the same which coupled with the

objective to achieve a good manufacturing yield often leads to systems being

overdesigned and power hungry. In this work, we present the motivation to think

of systems that have a flexible hardware-software boundary. We show that, by

adapting the software application to the post manufacturing performance-power

characteristics of the hardware across different die, it is possible to compensate

for the application quality losses that might otherwise be significant. This in

turn results in improved manufacturing yield, relaxed requirement for hardware

over-design and a better application quality. In another experiment, we show that

performance binning for multi-core processors should be based on the throughput

of the multi-core system which depends on the workload that is run. Such binning

metrics can aid in the graded pricing of multi-core processors to maximize profit.

x



CHAPTER 1

Introduction

Variations in manufacturing process are increasingly affecting the performance

(speed, power) of systems, both across multiple instances of a design and in time

over its usage life. With finer geometry technologies, manufacturing variations

have become very important. For high performance microprocessors in 180nm

technology, measured variation is found to be as high as 30% in performance and

20x in chip level leakage within a single wafer [1]. According to the authoritative

International Technology Roadmap for Semiconductors [ITRS] [2] projections on

performance and power variability for next 10 years shown in Figure 1.1 and

various other research surveys [3, 4], this trend is expected to worsen.

A number of approaches have been proposed to handle the variability asso-

ciated with the manufacturing process. Most of these approaches statistically

model and forecast the effect of variations early in the circuit design flow. These

approaches fall under the broad category of manufacturing aware design tech-

niques. In these set of approaches, the effect of process variations is statistically

incorporated in the design flow and the circuit is designed keeping in mind that

the expected manufacturing yield is maximized, under the constraint that a cer-

tain minimum performance level is satisfied. Although such techniques solve the

problem to some extent, they often lead to the creation of designs that waste

power and are high on designer effort, often resulting in a longer time to market.

Some of the most widely used industrial techniques rely on fine tuning of the

1



Figure 1.1: ITRS Projection of Variability.

manufactured hardware. For example, for slower chips, the threshold voltage

of the gates on the critical path can be lowered after manufacturing in order

to make the circuit run faster by using forward body biasing. For extra leaky

chips, the threshold voltage can be increased to reduce leakage. Often, these

techniques, though effective, result in high power dissipation and complex designs

that support post-manufacturing tuning. Moreover, the tuning needs to be done

on a chip by chip basis and this results in an increased chip test time.

In another set of methods, the final design is subjected to a pre-manufacturing

step where it is changed in a way that guarantees the final chip to be operating

near the expected nominal. For example, methods like optical proximity correc-

tion fall under this category. These methods are indispensable for a reliable yield

and significantly complicate the process and mask making steps.

While process variability is significantly increasing, the basic approach to

designing and operating complex systems has remained unchanged. While the

structure of these complex systems has evolved from being general purpose to

2



specialized, and from single core to multi-core, the notion of a hardware-software

interface that is rigid and deterministic has largely stayed the same. Software has

always assumed the hardware to deliver a certain minimum level of performance,

which the hardware designers try hard to meet without leveraging software’s

flexibility.

This rigid hardware-software paradigm coupled with the objective to achieve

a good manufacturing yield often leads to systems being overdesigned relative

to their specification by addition of certain guardbands. Getting the last bit

of performance incurs serious power and area overheads, thus increasing overall

design cost. It also leaves enormous performance and energy potential untapped

as the rigid software has to assume lower hardware performance than what a

majority of the instances of that system deliver most of the time. Therefore,

there is a motivation to think of systems that have a flexible hardware-software

boundary. The idea is very similar to modern wireless systems where instead of

designing protocols with rigid speed and power constraints, an approach that is

flexible and allows for trade-offs is used and it has been proven to be far more

effective.

In this work, we seek to rethink the area of hardware-software interaction.

We observe that it is much cheaper to make software adaptable than it is to

make hardware robust and adaptable. In Chapter 2, we show that, by adapting

the software application to the post manufacturing performance-power charac-

teristics of the hardware across different die, it is possible to compensate for the

application quality losses that might otherwise be significant. This in turn results

in improved manufacturing yield, relaxed requirement for hardware over-design

and a better application quality.

In Chapter 3, we demonstrate how hardware can be graded into different

3



categories based upon the application that runs on top of them by taking the

example of multi-core frequency binning. We show that performance binning for

multi-core processors should be based on the throughput of the multi-core system

which depends on the workload that is run. Such binning metrics can aid in the

graded pricing of multi-core processors.

Thus, this work researches on a set of approaches that aim at changing the

traditional notion of a rigid hardware-software interface to one that has more

flexibility thus ensuring high manufacturing yields, improved profits and better

system quality.

4



CHAPTER 2

Software Adaptation in Quality Sensitive

Applications to Deal With Hardware Variability

2.1 Introduction

Variations in manufacturing process play a very important role in determining end

circuit functionality. For high performance microprocessors in 180nm technology,

measured variation is found to be as high as 30% in performance and 20x in chip

leakage within a single wafer [1] and with technology scaling, the impact is getting

worse [2–4].

A number of approaches have been proposed to handle the variability asso-

ciated with the manufacturing process. While some of these approaches statisti-

cally model and forecast the effect of variations early in the circuit design flow [4],

others like [5][6] rely on post manufacturing tuning of the hardware. Performance-

power optimization techniques like DVS have been used to take process variations

into account as in Razor [7]. However, over-designing hardware is the most com-

monly used industry mechanism to regulate manufacturing yield. Over-design

comes at a significant cost, power, turnaround time and designer overheads.

In this work, we propose to mitigate the impact of process variations through

software adaptation for quality sensitive applications as shown in Figure 2.1. We

show that, by adapting the application to the post manufacturing performance-

5



Figure 2.1: Simplified application adaptation model with hardware signatures.

power characteristics of the hardware (we refer to these characteristics as hard-

ware signatures) across different die, it is possible to compensate for the appli-

cation quality losses that might otherwise be significant. This in turn results in

improved manufacturing yield, relaxed requirement for hardware over-design and

better application quality.

Our work is motivated by the following two observations:

1. A plethora of modern applications are quality sensitive, e.g. video encoding,

stream mining etc. These applications are capable of operating in various

configurations by adapting to certain input or environmental conditions in

turn producing similar or different quality of service. This notion can be

extended to let variation-affected hardware drive application adaptation.

2. Process variation is increasing and hence, the conventional methods of in-

corporating variation resistant design techniques, post manufacturing hard-

ware tuning or hardware over-design can be too expensive to use.

Communication systems provide an excellent analogy[8]. Communication sys-

6



tems adapt based on the underlying physical communication fabric which is dy-

namic (for instance [9–11]). In the same way, a system can also adapt to the

underlying variation-affected hardware layer. Increased hardware variation and

a plethora of adaptation friendly applications motivate the use of this idea.

The idea of modifying the software to suit the underlying hardware (for pro-

cess variations or otherwise) is not entirely new. In a recent work[12], the authors

propose a method to optimize the power management policy of an SOC statis-

tically across all chips taking process variations into account and its effect on

leakage power. Further, they suggest approaches to tweak the policy on a chip

by chip basis. Software fault tolerance schemes like [13] fall under a related

category where hardware faults are detected (using methods like ECC) and cor-

rected in the software layer. [14] proposed the design of a low power motion

estimation framework in which the supply voltage is purposely lowered trigger-

ing some timing faults which are then corrected using software fault tolerance

techniques. [15] proposes an approach to handle supply voltage variations us-

ing a voltage sensor, error recovery hardware and runtime modification of the

compiled software to prevent such voltage variation triggering. Software thermal

management techniques like [16] perform scheduling in a multitasking scenario

to maintain thermal constraints. The work presented in [17][18] uses application

error resilience in hardware test. A recent work in [19] proposes soft architectures

designs that fail gracefully, thus allowing reliability/performance trade-offs upto

the level which can be tolerated by the application at hand.

All such previous software level approaches either model the hardware inade-

quacy or malfunctioning as transient faults and treat them as emergencies or rely

on the inherent error tolerance of some applications. Moreover, these techniques

are triggered when the so called faults happen and some of them require special

7



hardware. For process variations, software adaptation can utilize the application

algorithm’s quality or performance tradeoffs to achieve error free operation in

presence of permanent manufacturing variations.

Adaptation is easier and cheaper (to implement) as well as better informed at

the application software layer rather than hardware. Contributions of our work

include the following.

• A general framework to discuss application adaptation based on process-

variation affected manufactured hardware.

• Using an H.264 encoder, we show that the use of hardware realization-

based software adaptation increases manufacturing yield, improves overall

application quality and thereby allows for under-design of hardware.

• We present novel methods to compute optimal signature measurement points.

This paper is organized as follows. In section 2.2, we introduce the concept

of hardware signatures based adaptation in quality sensitive applications and

then describe the general idea. In section 2.3, we apply this methodology to an

H.264 encoder and demonstrate the improvements. In section 2.4, we discuss the

effects of signature discretization and present an algorithm to determine optimal

signature measurement points. We conclude in section 2.5.

2.2 Hardware Signature Based Adaptation

In this section, we describe the use of hardware signature based software adap-

tation for quality sensitive applications.

8



2.2.1 Quality Sensitive Applications: Q-C Curves

Consider a quality sensitive application that can operate in different software

configurations to maximize a certain quality metric under the constraint that the

input is processed in time TMAX . If the input processing time is Tc under config-

uration c and Qc is the corresponding output quality, the job of the adaptation

algorithm is to find the configuration cbest such that,

cbest = argmaxc(Qc)

where c ∈ { set of all configurations }

Tc ≤ TMAX (2.1)

We model the behavior of such a system by means of a Quality-Complexity

(Q-C) curve (see Figure 2.2) (e.g.[20]). Any point on the Q-C graph denotes

some application operating configuration and Q-C curve is the envelope or the

curve connecting the points of quality upper bound for every complexity point.

Note that complexity (x-axis) is synonymous to processing time in our case and

we shall use the latter in this discussion.

Clearly, the Q-C graph (and hence the Q-C curve) changes with the underlying

hardware realization. A more complex algorithm can be run on a faster hardware

to satisfy the same time constraint with improved application quality. In general,

an application configuration point maps to different time to process values to

achieve the same quality on the Q-C graph for faster/slower hardware i.e. the

point undergoes a respective horizontal left/right shift in position on the Q-C

graph. Therefore, the envelope or the operational Q-C curve also changes.

Because of process variations, every manufactured die is different. The di-

rection and magnitude of each point shift on the Q-C graph depends on the

9



Figure 2.2: Q-C curve for a one-component hardware undergoes a scaled hori-

zontal shift with frequency variations.

relative contribution of various constituent functional blocks in that application

configuration and the magnitude of process variations for each of these functional

blocks. For the special case of a one-component hardware, every point on the

Q-C graph shifts horizontally by the same percentage amount and the result is a

simple scaled horizontal shift of the Q-C curve (see Figure 2.2).

If the underlying application is unaware of such Q-C graph perturbations (as

in present day systems), the way it solves (2.1) and the resultant configuration

selection cannot be optimal. This results in a loss of manufacturing yield as

systems that cannot meet the specified timing or quality constraints because of

manufacturing variations are simply discarded. We propose that such Q-C graph

perturbations can be captured by storing actual hardware signatures. For quality

sensitive applications, frequency deviation of the hardware from the nominal is

the hardware signature. Figure 2.1 pictorially depicts the proposed hardware-

10



aware adaptation model. Next, we present a generalized description of the idea.

2.2.2 Signatures and Adaptation

Hardware signatures are the post manufacturing hardware performance-power

numbers that are communicated to the software for adaptation. Apart from the

fact that they differ from one hardware realization to another (die to die varia-

tions), they might also differ from one functional block to the other within the

same die (because of within die process variations). The hardware signature then

consists of the independent block level signatures1. An important consequence is

that an application can knowledgeably adapt and redistribute the effort of compu-

tation among its hardware components to achieve the same desired performance

given the manufactured hardware i.e. a chip that will be discarded in the current

setup can be made usable by changing the application’s algorithm to give the

same performance (by redistribution of workloads among hardware components

according to variation map) or at a slight loss in quality. (We demonstrate these

benefits in section 2.3 in Figure 2.4 in the context of an H.264 encoder, where

under hardware-aware adaptation, a slower hardware results in the same PSNR

of the encoded video as the nominal hardware without adaptation).

2.2.3 Signature Choice and Measurement

Choice of signature values depends on system objectives. For a system that

poses strict constraints on timing (like real time quality sensitive applications),

signature could comprise of the frequency deviations of the individual functional

blocks of the hardware. System memory along with the speed of CPU-memory

interface can also be important metric to include if memory intensive and com-

1This assumes that different blocks can be clocked at different frequencies

11



putation intensive techniques are choices for application configuration. For low

power applications that try to trade-off performance for power, leakage power

dissipation values and maximum switching current can be stored as signatures.

Signatures can be measured once post-fabrication and written into a non-

volatile memory element on-chip or on-package. These memory elements need

to be software-readable2. They may also be measured at regular intervals during

operation to account for wearout mechanisms such as TDDB and NBTI as well

as ambient voltage/temperature fluctuations. Well-known parametric tests such

as FMAX (performance) and IDDQ (leakage power) can yield signature values.

At-speed logic and memory built-in self test (BIST) techniques can be employed

as well for faster and any time computation of the signatures. Approximations

using on-chip monitors (e.g., ring oscillators or monitors such as [22]) can work

as well. Since signature measurement involves using test techniques with well

understood overheads, in this work we do not discuss these methods in more

detail.

2.3 Proof of Concept: H.264 Encoding

We demonstrate the benefits realized through hardware-aware adaptation using

Q-C curves for an H.264 encoder. Maximum permitted frame encoding time is

TMAX and the quality metric Q is the PSNR (peak signal to noise ratio) of the

encoded video at a constant bit-rate. If this time deadline is not met, the frame

is dropped, affecting the PSNR of the output video and manufacturing yield of

the hardware.

2Most modern chips already contain several such EEPROM or NVRAM components for
storing hardware IDs, time, etc (e.g., see [21])

12



Table 2.1: Experiment Specifications

Video Source Mobile Sequence

Number of Frames 250

Encoder Tuning Knobs

Used

Motion estimation accuracy (Full-Pixel, Sub-Pixel),

Transform window sizes (4x4, 8x8, 4x4 & 8x8), En-

tropy coding algorithm: CAVLC, CABAC[26], Num-

ber of reference frames for Motion Estimation, Motion

Estimation Search Range, Quantization Parameters

TMAX (not accounting

for over-design)

0.03 seconds

Bitrate 1 Mbps

Frequency Variations I.I.D Gaussian Distributed

Mean = 0

SD: 6.66%

Monte-Carlo Samples 1000

2.3.1 Experiment Setup

We use a H.264 software encoder [23][24] for our experiments. The three critical

components of H.264 encoder are motion estimation (M.E), DCT transform (T.X)

and entropy coding (E.C). The encoder is tunable through various configuration

parameters[25]. Problem of adaptation is therefore, to solve (2.1) for configura-

tion cbest, Tc = tM.E + tT.X + tE.C where tM.E, tT.X and tE.C is the time taken

by M.E, T.X and E.C units respectively. Note that the hardware signatures are

frequency variations of these components represented by the triplet {tM.E, tT.X,

tE.C}.

13



Figure 2.3: Q-C curve for H.264 encoder showing the various operating configu-

rations.

We profile the encoder, measure output PSNR3 and time taken by M.E, T.X

and E.C units on a per frame basis for encoding the standard mobile video se-

quence4 for the chosen encoder configurations. The specifics are indicated in

Table 2.15. This data is used to construct the Q-C curve for the H.264 encoder

at nominal hardware which is shown in Figure 2.3. Base configuration is the

one for which the nominal hardware is designed. Further, we vary hardware

over-design from -20% to +20%. Overdesign provides a buffer/guardband in

performance to take care of process variations after manufacturing. This over-

design has significant penalties in terms of area, power, cost and turnaround time

[27]. Over-design buffer is added to the the maximum frame time for the base

3In this context, it should be noted that a PSNR difference of 0.5 to 1 dB is significant and
is visible

4Note that the results will vary with video sequences and in practical systems, some online
learning techniques may be employed to adapt to the sequence/workload characteristics

5The profiled runtimes are scaled to ensure 33 fps video

14



Figure 2.4: Signature based adaptation achieves better PSNR at a given fre-

quency of operation compared to the non-adaptive case.

configuration, and the resulting sum is taken as TMAX .

2.3.2 Results

In Figure 2.4, we show how the encoder PSNR changes with variation in operating

frequency6. As frequency reduces, the non adaptive encoder violates the time

constraint for certain complex frames which eventually get dropped, resulting in

a significant PSNR loss7. With hardware-aware adaptation, the encoder adapts

and operates in a configuration that results in minimum frame loss, eventually

giving a high PSNR output. In other words, hardware-aware adaptation achieves

the same desired PSNR with a lower frequency of operation, which in turn implies

that such a system can tolerate variations to a greater extent. Note that, a small

part of the curve where PSNR for adaptive case is lower than that of non adaptive

6For this analysis, all three hardware components are assumed to have the same variation
so that the results can be shown on a 2-D plot

7We handle lost frames by replacing them with the previous known good frame and com-
puting the output PSNR as is usually done in real time multi-media decoders

15



Figure 2.5: Manufacturing yield is defined as the percentage of die that ensure

no frame loss.

case, is because in our experiments, adaptation is guided to achieve no frame loss

rather than minimum PSNR.

We generate 1000 Monte-Carlo samples of percentage delay variations for

the three components assuming them to be i.i.d. gaussian distributed random

variables with mean 0 and standard deviation 6.66% (3σ=20%). Actual frame

processing times are calculated by applying these variation samples over the nom-

inal values and the Q-C curve perturbation is estimated. For the non adaptive

case, frames with processing times exceeding TMAX (i.e., the corrected maximum

permitted time after taking over-design into account) in base configuration are

dropped resulting in yield loss. Adaptation is guided to select a configuration

that has minimum frame loss for the given hardware. In our experiments, we

define manufacturing yield as the percentage of die that ensure no frame loss

(i.e., a jitter constraint).

16



Figure 2.6: PSNR Vs. Yield for 0% over-design

Figure 2.5 demonstrates significant yield improvements with hardware adap-

tation. At 0% over-design, yield of the non-adaptive encoder is 50% (intuitively,

half of the die lie on either side of the nominal hardware realization with nor-

mal frequency distribution). When the encoder adapts to manufactured hard-

ware, it operates in a configuration with minimal frame loss and yield increases

significantly to 90%. This trend is seen over the entire span of over-design or

under-design values. An important point to observe is that, given enough avail-

able configurations, application adaptation can ensure almost constant quality by

trading off work needed for different components. Nevertheless, some hardware

realizations do show a slight PSNR degradation since yield is defined to ensure

no frame loss.

From Figure 2.5, we can also conclude that hardware-aware adaptation relaxes

the requirement of over-design to achieve the same manufacturing yield. For

example, to ensure 80% yield, adaptation reduces the over-design requirement by

10%.

Figure 2.6 shows how average PSNR across all die falls as one aims for a

17



Figure 2.7: Average PSNR over all die samples.

higher manufacturing yield for both hardware adaptive and non-adaptive cases.

We only show the plot for 0% over-design as the data for other over-design values

follows the same trend. From the figure, it is observed that adaptation results in

a higher average PSNR over the entire range of manufacturing yield8. At 80%

yield, averare PSNR for hardware adaptive case is higher by 2.6dB. For the non-

adaptive encoder, increase in yield comes at significant PSNR penalty because

the encoder has to ensure a low enough complex configuration (for all die) that

satisfies the required yield and hence a staircase PSNR waveform is observed.

However, adaptation allows for a graceful degradation in PSNR when improving

yield, as operating configurations can change on a die-by-die basis.

In Figure 2.7, we show the behavior of average PSNR over all die samples

with varying over-design values. An improvement of about 1.4dB is seen over

8For the adaptive case, the highest quality realizations are used to match the non adaptive
case for the same yield

18



Figure 2.8: Variation of frequency and power with supply voltage under process

variations.

almost the entire over-design range.

2.3.3 DVS: Power and Voltage as Hardware Signatures

In the above discussion, we considered a system where quality (PSNR) was max-

imized under the constraint that the input was processed within the alloted time.

Frequency deviations from the nominal values were the hardware signatures in

this case. For energy constrained systems, power dissipation is an important

quality metric to include in the adaptation process. Consider Figure 2.8 which

shows the dependence of frequency and power on supply voltage for a simple 4

stage FO-4 inverter chain9 under process variations (varying transistor length,

width and threshold voltage by +-10%) using HSPICE. The curves indicate the

945nm PTM models have been used for these simulations

19



Figure 2.9: Variation space of the PSNR vs power curves for some sample hard-

ware realizations under process variations for H.264 encoder.

nominal and the fast/slow delay/power envelopes. It can be seen that the supply

voltage required to achieve the same frequency for different hardware realizations

is significantly different and so is power dissipation, resulting in a wide power-

performance band. For example, at supply voltage of 1V, there is a variation

of 64% in delay and 63% in switching power across the nominal. More interest-

ingly, to achieve the same switching delay of 20ns, the switching power spans

from 13µW to 25.5µW (i.e. 68% of the nominal power of 18.21µW at 20ns).

By knowing the exact power-performance numbers for a die, adaptation algo-

rithms like DVS (dynamic voltage scaling) that try to optimize on a combined

performance-power-quality metric can do a much better job by adapting in a

manner specific to the die. This motivates the inclusion of power as a possible

signature metric for such systems.

20



To further motivate this work and estimate the returns that one can expect,

Figure 2.9 plots the PSNR vs power trade-off for various hardware realizations for

the encoder configurations of Figure 2.3. For a given TMAX , every encoder operat-

ing configuration is associated with a minimum operating frequency requirement

(to achieve that TMAX) and let us assume that these are the frequencies that

DVS can make the system operate on. Intuitively, to achieve the same frequency,

different realizations need different voltages and hence have different switching

power dissipation. The figure indicates significant PSNR-power curve differences

across different realizations.

Hardware signature for such a system will consist of a look up table that

specifies the operational voltage ([28,29] proposed a look-up table based method

to store and track frequency-voltage relationships across process and temperature

variations) and power dissipation as well for each frequency of operation. This

information will let the application (DVS) know of the exact operational PSNR-

Power curve specific to that die.

2.4 Hardware Signatures: Granularity Tradeoffs

Size (i.e., how many functional blocks and how many parameters per block)

and granularity (e.g., discretization of performance into frequency bins) of the

signature affects the potential benefit that can be derived from signature-based

adaptation. Signature granularity influences test as well as storage complexity.

In this section, we focus on determining optimal signature measurement points

from Q-C curves for one-component hardware or multiple components with per-

fectly correlated variation. We will show that there is no benefit in having more

number of hardware signature measurement points than the number of available

configurations.

21



Figure 2.10: Signature measurement point analysis using Q-C curves.

2.4.1 Optimal Signature Measurement

In Figure 2.10, C0 and C1 are two operating configurations. The Q-C curve at

nominal hardware and also for two slower hardware, HS1 and HS2 is shown,

where hardware HS1 is slower than hardware HS2. For hardware HS2, C2 (that

lies on the TMAX line) is not a valid physically existing operating configuration.

So, the software operates at C1. For hardware HS1, C1 lies on the TMAX line and

the software operates at C1. Therefore, hardware HS2 and the hardware HS1

are equivalent. This equivalance arises because the operating points are discrete.

Therefore, every hardware slower than the nominal but faster than the hard-

ware at HS1 will operate on C1. Hence, signature measurement is only required

to be done at HS1. In general, the maximum number of signature measurement

points for optimum gain are the number of configurations. These measurement

points correspond to those hardware which have their Q-C curves intersecting

the TMAX line at valid operating point.

22



Figure 2.11: Mapping the optimal signature location problem to a shortest path

problem.

If the available number of hardware measurement points, N are less than

the number of configurations, NC , a brute force search technique would require(
NC

N

)
operations to get to the optimal measurement set. We map the optimal

measurement set problem to a graph shortest path problem and solve it using

Dijkstra’s algorithm[30]. Consider Figure 2.11. For notational convenience, to

have a measurement point at configuration c is to have a signature measurement

point at that hardware which has its Q-C curve intersecting the TMAX line at

configuration c. Now, let Qj denote the quality corresponding to configuration

Cj and let Xj be the corresponding measurement location. The number of nodes

in the graph is NC ∗N (arranged as a matrix) and the cost of an edge from node

(i1, j1) to (i2, j2) (cost
(i2,j2)
(i1,j1)) is the quality loss incurred by having signature mea-

surement points at configurations j1 and j2 and no measurement point between

them (note that all nodes in column j have same quality Qj and Qj1 > Qj2 for

23



Figure 2.12: Improvement in PSNR with finer signature granularity.

j1 < j2). If p(x) is the probability distribution of the frequency variations of the

hardware, then

cost
(i2,j2)
(i1,j1) = ∞ for j2 ≤ j1 or i2 6= i1 + 1

=

j2∑
l=j1+1

((Ql −Qj2)

∫ Xl

Xl−1

p(x) dx), otherwise

Every path from node S (imaginary node corresponding to having a signa-

ture at ∞) to node L (signature measurement location XN corresponding to the

maximum tolerable variation) will consist of N nodes. The quality loss minimiza-

tion problem maps to finding the shortest path from S to L. Nodes in the path

correspond to the measurement locations.

24



2.4.2 H.264 Encoding: Granularity Analysis

We derive optimal signature measuring locations on the Q-C curve of the H.264

encoder shown in Figure 2.3 using the proposed shortest path based strategy and

the results are compared with a naive uniform signature measurement based ap-

proach. Monte-Carlo analysis is performed with 1000 die samples where all com-

ponents have the same variation. From Figure 2.12, it can be observed that the

proposed signature measurement method results in higher PSNR than the naive

approach. Also, as we increase the number of available measurement points, the

marginal benefit of adding another signature sample decreases. For six available

measurement points, the improvement in PSNR with the proposed approach is

about 1.3dB. Granularity analysis for a generic multi-component hardware with

independent variations is part of our ongoing work.

2.5 Conclusion

In this work, we have proposed a method to reduce the impact of process vari-

ations by adapting the application’s algorithm at the software layer. With in-

creasing process variations and applications being adaptive and quality sensitive,

we show that variation-aware software adaptation can ease the burden of strict

power-performance constraints in design. Hardware signatures or the post man-

ufacturing power-performance numbers of the hardware, can be used to guide

software adaptation. Using the concept of Q-C curves and Monte-Carlo analysis

on an H.264 encoder, we illustrate that this approach can lead to an improvement

in manufacturing yield, relaxed requirement for over-design and an overall better

application quality. Specifically, we show that, for the H.264 encoder

• Manufacturing yield improves by 40% points at 0% over-design.

25



• To achieve the same yield of 80%, adaptation relaxes the need for over-

design by 10%.

• Encoding quality is better by 2.6dB over the non adaptive case for 80%

yield.

We also derive strategies to determine optimal hardware signature measure-

ment points and analyze the effects of signature granularity on application qual-

ity for one-component hardware or multiple components with perfectly correlated

variation. Specifically, we show that our proposed approach for determining op-

timal signature measurement points results in an improvement in PSNR of about

1.3dB over naive sampling for the H.264 encoder.

As part of our ongoing work, we extend signature granularity analyses to

multi-component (possibly pipelined), multi-application systems (possibly medi-

ated by an operating system). We are also pursuing other application scenarios

such as DVS (already hinted at in this paper) and optimal signature-dependent

adaptation policy perturbations for adaptive applications.

26



CHAPTER 3

Frequency Binning of Multi-core Processors

3.1 Introduction

Performance (or speed) binning refers to test procedures to determine the max-

imum operating frequency of a processor. It is common practice to speed bin

processors for graded pricing. As a result, even in the presence of manufactur-

ing process variation, processors can be designed at the typical “corners”, unlike

ASICs, which are designed at the worst-case corners. Binning a processor also

sets the expectations for the consumer about the performance that should be

expected from the processor chip.

In the case of uniprocessors, the performance of a processor is strongly corre-

lated with its frequency of operation. As a result, processors have traditionally

been binned according to frequency [31]. However, for chip multiprocessors, the

appropriate binning metrics are much less clear due to two main considerations.

1. If binning is done according to the highest common operating frequency

of all cores (one obvious extension to the uniprocessor binning metric),

good performance correlation of the binning metric would only be observed

when the maximum operating frequencies of all cores are very similar. We

speculate that this assumption will not hold true in the future based on the

following observations.

27



• The transition from multi-core to many-core would mean several tens

to hundreds of cores on a single die. In this case, all the cores are

unlikely to have similar maximum safe operating frequencies.

• With scaling, technology process variation is increasing. There is no

obvious process solution to variability in sight. ITRS [32] predicts that

circuit performance variability will increase from 48% to 66% in the

next ten years. Moreover, many-core die sizes may scale faster than

geometric technology scaling [33], facilitated by future adoption of

450mm wafers and 3D integration. As a result, core-to-core frequency

variation is likely to increase in coming technology generations.

2. The second reason why binning metrics may need to be re-evaluated for

multi-core processors is that a good binning metric should not only corre-

late well with the maximum performance of the chip (in order to maximize

producer profits and consumer satisfaction), but should also have accept-

able time overhead for the binning process. As we show in this paper,

different binning metrics have different binning overheads, and therefore,

the tradeoff between correlation to performance and timing overhead should

be evaluated carefully.

In the simplest and most general form of speed binning, speed tests are applied

and outputs are checked for failure at different frequencies [34]. The testing may

be structural or functional in nature [31, 35, 36]. The total test time depends on

the search procedure, the number of speed bins, and the frequency distribution

of the processor. To the best of our knowledge, this is the first work discussing

speed binning in the context of multi-core processors.

In this paper, we make the following contributions.

28



• We explore, for the first time, speed binning in the context of multi-core

processors.

• We propose two multi-core binning metrics and quantify their correlation

with absolute performance as well as their testing time overheads for various

kinds of workloads.

• We demonstrate that leveraging data from the process variation model can

have a significant impact on binning efficiency and propose several variation-

aware binning strategies.

Our results show that variation-aware binning strategies can reduce testing

time significantly with little or no degradation in performance correlation.

3.2 Variation Model

An accurate, physically justifiable model of spatial variability is critical in reliably

predicting and leveraging core-to-core variation in the binning process. Though

most design-end efforts to model spatial variation have concentrated on spatial

correlation (e.g., [37, 38]), recent silicon results indicate that spatial dependence

largely stems from across-wafer and across-field trends [39]. [40] assumes the

source of core-to-core variation to be lithography-dependent across-field variation.

Though a contributor, across-field variation is smaller compared to across wafer

variation [41] (even more so with strong RET and advanced scanners). In light

of these facts, we use a polynomial variation model [42] for chip delay, similar

to those proposed in [39,41,43], having three components: (1) systematic (bowl-

shaped) across wafer variation1, (2) random core-to-core variation (arising from

1Example physical sources of across-wafer bowl-shaped variation include plasma etch, resist
spin coat, post exposure bake [42].

29



random within-die variation); and (3) random die-to-die variation (e.g., from

wafer-to-wafer or lot-to-lot variation).

Vd(x, y) =A(Xc + x)2 +B(Yc + y)2 + C(Xc + x)+

D(Yc + y) + E(Xc + x)(Yc + y) + F +R +M
(3.1)

where Vd(x, y) is the variation of chip delay at die location x, y; Xc, Yc are

the wafer coordinates of the center of the die ((0, 0) is center of wafer); x, y are

die coordinates of a point within the die; M is the die-to-die variation and R

is the random core-to-core variation. A,B,C,D,E, F are fitted coefficients for

systematic across-wafer variation. We use a fitted model as above based on real

silicon data from a 65nm industrial process [42]2. The goal of the binning process

is to accurately classify a chip into one of n bins (where n is decided based on

business/economic reasons) in light of the above variation model.

3.3 Binning Metrics

Traditional uniprocessor binning strategies, which sort chips according to maxi-

mum operating frequency, may fail to adequately characterize multicore proces-

sors, in which within die process variation given by Equation 1 can be substantial.

In this section, we propose and discuss two simple binning metrics that recognize

the frequency effects of process variation. We assume that individual cores are

testable and runnable at independent operating frequencies [44–49] though our

discussion and analysis would continue to hold in other scenarios.

2For this model, mean = 4GHz, σbowl = 0.128GHz, σR = 0.121GHz, σM = 0.09GHz.

30



3.3.1 Min-Max and Σf

Min-Max stands for the minimum of the maximum safe operating frequencies for

various cores of a chip multiprocessor. The Min-Max metric is computed using

equation 3.2, where n represents the number of frequency bins (fi is the frequency

of bin i), m represents the number of processor cores, and fij is a successful test

frequency or 0 if core j fails the ith frequency test.

Min-Max = min[max[fij|ni=1]|mj=1] where

fij =0 if processor j fails the ith frequency test

=fi otherwise

(3.2)

The second binning metric that we evaluate is Σf . While frequency rep-

resents the primary means of increasing the performance of uniprocessors, new

conventional wisdom dictates that the performance of multiprocessors depends

on increasing parallelism [50]. Thus, ranking processors according to maximum

attainable aggregate throughput represents a fitting binning strategy. Ideally,

aggregate throughput should be maximized when every core operates at its max-

imum frequency. Consequently, we calculate the Σf metric using equation 3.3.

Σf =
m∑
j=1

max[fij|ni=1]

fij =0 if processor j fails the ith frequency test

=fi otherwise

(3.3)

3.3.2 Correlation to Throughput

In terms of correlation of the metric with the throughput of the chip, Min-Max

is conservative and therefore, should demonstrate good correlation only for work-

31



0 10 20 30 40 50 60 700.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Number of Bins

C
o
r
r
e
l
a
t
i
o
n
 
t
o
 
T
h
r
o
u
g
h
p
u
t

 

 

Sigma−F, Multi−programmed
Min−max, Multi−programmed
Sigma−F, Multi−threaded
Min−max, Multi−threaded

Figure 3.1: Correlation of Min-Max and Σf to throughput for multi-programmed

and multi-threaded workloads.

loads with regular partitioning (parallel or multi-threaded workloads) in which

the load is distributed evenly between all cores. For other workloads that have

inherent heterogeneity (multi-programmed workloads), Σf should demonstrate

good correlation, especially when runtimes are designed to take advantage of

the heterogeneity inherent in systems and thread characteristics. In fact, for

multi-programmed workloads, the magnitude of miscorrelation between actual

throughput and Σf depends on the extent of disparity between the workloads

that run on various cores. One drawback of Σf is that it may increase the binning

overhead, although we show in this paper that utilizing knowledge of variation

trends can help to keep the overhead in check.

Figure 3.1 compares the correlation of Min-Max and Σf to actual throughput

for multi-programmed and multi-threaded workloads using Monte-carlo simula-

32



tions on 100,000 dice, each die being a 64 core processor in 65nm technology on

a 300mm wafer (please refer to section 3.5 for further details on experimental

setup). It is evident that Σf is a better metric for multi-programmed workloads

while Min-Max performs better for multi-threaded workloads for moderate to

large number of bins. This is because the performance of multi-threaded bench-

marks depends on the speed of the slowest executing thread (because of thread

synchronizations in the benchmarks) which is nicely captured by Min-Max. Also,

the correlation of Σf and Min-Max to the throughput of multi-programmed and

multi-threaded workloads respectively, converges to 1 asymptotically with the

number of bins. This is because, finer binning granularity leads to more precise

estimation of maximum core frequencies. Conversely, when the number of bins

is small, we observe rather poor performance correlation for the metrics.

To compare the two metrics, consider the asymptotic case of very large n and

m and completely random core-to-core variation (i.e., A, B, C, D, E, F, M all equal

zero in equation 1). In this simplified case, Σf converges to m×mean frequency

while Min-Max converges to (E(Mini=1...∞fi) = 0, i.e., for multi-programmed

workloads, we expect the Min-Max to be a progressively worse metric as the

number of cores in a die increases or the variation increases.

3.3.3 Binning Overhead

The binning overhead depends on the specific testing methodology that is used.

On one extreme lies the case where individual cores are tested one at a time

and on the other extreme is the case where all cores are tested simultaneuosly

in parallel. While the latter reduces test time compared to the former, it results

in higher power consumption of the circuit during test. With ever increasing

number of cores within a multiprocessor, parallel testing of all cores leads to very

33



high test power. Hence, testing is usually performed by partitioning the design

into blocks and testing them one at a time [51–53]. For our work, we assume that

cores are tested one at a time. Note that the analysis is also extensible to cases

where a group of cores are tested together in parallel.

To calculate the binning overhead for Min-Max on a processor with n fre-

quency bins and m cores, we use binary search3 (i.e. frequency tests are applied

in a binary search fashion) to find fmax for every core. However, the search range

will reduce progressively. The worst case arises when fmax for every core is 1 bin

size less than the fmax found for the previous core. In this case, the worst-case

number of tests that need to be performed can be computed as (log(n!) +m−n)

(assuming m ≥ n). The best case binning overhead for Min-Max would be m

tests.

To fully evaluate the Σf metric, the maximum operating frequency of each

core must be learned. Using binary search, this process performs, at worst,

m × logn tests4. The best case is still m tests. We will show the average case

runtime results of both these testing strategies using monte-carlo analysis.

It should be noted from the above discussion that the binning overhead for

Σf is always equal to or higher than that of Min-Max and this remains true

even when simple linear search (i.e. frequency tests are applied in a simple linear

fashion, which is the case with most industrial testing schemes) is used instead of

binary search. Moreover, the disparity between binning times for Min-Max and

Σf is never higher for binary search than for linear search. For Min-Max, the

worst case overhead is on the order of n2 and the best case is m tests. For Σf ,

3In this work, we assume that if a core works at a certain frequency, it is guaranteed to work
at all lower frequencies. This stems from the specific case of using binary search in conjunction
with the minmax metric. The constraint can be easily avoided by adding one more test per
core (i.e., testing it at the minmax frequency)

4Note that this expression and the expressions corresponding to Min-Max ignore the bias
introduced in binary search by the probability distribution of the frequencies themselves.

34



0 5 10 15 20 25 30 35

102

103

Number of Bins

A
v
e
r
a
g
e
 
N
u
m
b
e
r
 
o
f
 
T
e
s
t
s
 

P
e
r
 
D
i
e

 

 

Sigma−F,Binary
Sigma−F,Linear
Min−Max,Binary
Min−Max,Linear

Figure 3.2: Frequency binning overhead (linear and binary search) for Σf and

Min-Max.

the worst case number of tests is on the order of m × n and the best case is m

tests. This is also shown in Figure 3.2 by performing Monte-Carlo simulations

on a 64 core multi-processor in 65nm technology with a 300mm wafer. In this

work, we use binary search for comparing test time overheads of various binning

strategies but as explained above, our proposed analysis and results will hold for

linear search as well.

3.4 Using the Variation Model to Reduce Binning Over-

head

The binning metrics described above, as well as the binning strategies for those

metrics, are agnostic of the process variation model. The overhead of binning

using those metrics, however, depends strongly on the process variation model. In

this section, we advocate the use of variation-aware binning strategies. We argue

that the overhead of binning can be considerably reduced by making the binning

35



strategies variation model-aware. The maximum safe operating frequency (fmax)

of a core can be strongly predicted (i.e. mean with standard deviation around

it) based on the process variation model. Therefore, the process variation model

can give a smaller frequency range within which the search should be performed.

3.4.1 Curve Fitting

We propose curve fitting as a technique for reducing testing time overhead by

trimming the range of frequencies at which a core must be tested. The curve-

fitting strategy involves using the variation model (equation 1) to approximate the

expected frequency (in GHz) as well as the standard deviation (=
√

(σ2
M +σ2

R)) of

a core, given its location within a die and die location within the wafer. Therefore,

we can identify the center (= mean) as well as the corners (= +/-kσ) of a new,

tighter search range. If the core falls outside of this range (decided by k), we assign

the core to the lowest frequency bin. Curve fitting reduces both the average and

worst-case testing time for each core.

3.4.2 Clustering

Another strategy for reducing the binning overhead can be to create a hybrid

metric which incorporates the advantages of each of the original metrics – namely,

the low testing overhead of Min-Max and the high performance correlation of Σf .

This behavior can be achieved by clustering the cores in a chip multiprocessor and

then using Min-Max within the clusters (low binning overhead advantage) while

using Σf over all clusters (high correlation to maximum throughput advantage).

To further reduce the overhead of binning, a process like curve fitting can be

applied, where the process variation model is used to identify the search range

for fmax of a core. We refer to this combination of clustering and curve fitting as

36



smart clustering

In order to improve the performance correlation within the cluster and min-

imize the binning overhead (especially when across-wafer variations are high),

clusters can be chosen intelligently to minimize frequency variation (and hence

loss of correlation) within a cluster. To this end, the cluster size can be set to

be inversely proportional to the spread of frequency mean (calculated from the

bowl-shape in equation 1) within the cluster. In general, the dice close to the

center of the bowl (typically close to the center of the wafer) will see large clus-

ter sizes, while clusters are smaller for the dice closer to the edge of the wafer.

We do not evaluate variable clustering in this paper due to the relatively low

across-wafer variations that our current process variation models suggest.

3.5 Methodology

We model chip multiprocessors with various numbers of cores on the die for

different technologies. Each core is a dual-issue Alpha 21064-like in-order core

with 16KB, 2-way set-associative instruction cache and data cache. Each core (1

mm2 at 65nm) on a multiprocessor has a private 1MB L2 cache (0.33MB/mm2

at 65nm). We assumed a gshare branch-predictor [54] with 8k entries for all the

cores. The various miss penalties and L2 cache access latencies for the simulated

cores were determined using CACTI [55]. We model the area consumption of the

processors for different technologies using the methodology in [56].

We considered two types of workloads – multi-programmed workloads and

multi-threaded workloads. Table 3.1 lists the ten benchmarks used for construct-

ing multi-programmed workloads and the three multi-threaded benchmarks. The

benchmarks are chosen from different suites (SPEC, IBS, OOCSB, and Media-

37



Table 3.1: Benchmarks used

Program Description

ammp Computational Chemistry (SPEC)

crafty Game Playing: Chess (SPEC)

eon Computer Visualization (SPEC)

mcf Combinatorial Optimization (SPEC)

twolf Place and Route Simulator (SPEC)

mgrid Multi-grid Solver: 3D Potential Field (SPEC)

mesa 3-D Graphics Library (SPEC)

groff Typesetting Package (IBS)

deltablue Constraint Hierarchy Solver (OOCSB)

adpcmc Adaptive Differential PCM (MediaBench)

CG Parallel Conjugate Gradient (NAS)

FT Parallel Fast Fourier Transform (NAS)

MG Parallel Multigrid Solver (NAS)

bench) for diversity. The parallel applications (CG, FT, MG) are chosen from

the NAS benchmark suite and run to completion. The class B implementations

have been used.

Multi-programmed workloads are created using the sliding window method-

ology in [57]. For multi-programmed workloads, the performance of a mul-

tiprocessor is assumed to be the sum of the performance of each core of the

multiprocessor, derated by a constant factor. The methodology is accurate for

our case, where each core is assumed to have a private L2 cache and a memory

controller [56]. The methodology was shown to be reasonable for our benchmarks

even for processors with shared L2 [56], due to the derating factor.

38



After fast-forwarding an appropriate number of instructions [58], multi-programmed

simulations are run for 250 million cycles. As mentioned before, parallel appli-

cations are run to completion. The frequency of each core is determined by the

variation model. Simulations use a modified version of SMTSIM [57].

3.6 Analysis of Results

In this section, we compare the binning metrics and the various evaluation strate-

gies in terms of their overheads as well as their correlation to throughput. We

run Monte-Carlo simulations using 100,000 dice. Unless specified otherwise, each

die is a 64-core processor (256 mm2) in a 65nm technology 300mm wafer, binned

using 8 frequency bins. Curve fitting and smart clustering use a search range

of ±3σ (where σ accounts for the random die to die and within die variations),

while Σf and the baseline clustering approach search the entire frequency range

for fmax. We use the process variation model as described by Equation 1, with

σbowl = 0.128GHz, σR = 0.121GHz, σM = 0.09GHz, based on a fitted model from

a 65nm industrial process.

3.6.1 Dependence on Number of Bins

Figure 3.3 shows how binning overhead and throughput correlation vary with

the number of frequency bins for multi-programmed (Fig. 3.3(a)) and multi-

threaded (Fig. 3.3(b)) workloads. Using 100,000 data points (processor dice),

we calculate correlation between the average of the maximum throughput of

the various workloads on a processor (where cores run at different frequencies

dictated by the variation model) and the value of the metric when following a

given binning strategy. Note that performance of a thread often does not vary

39



0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

2 4 8 16 32
Number of bins

Co
rr

el
at

io
n 

to
 T

hr
ou

gh
pu

t  
   

   
.

0

50

100

150

200

250

300

Thr(sigmaf) Thr(minmax) Thr(curve_fit) Thr(clust)
Test(sigmaf) Test(minmax) Test(curve_fit) Test(clust)

Av
er

ag
e 

Nu
m

be
r o

f T
es

ts
 / 

Di
e

(a) multi-programmed

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

2 4 8 16 32
Number of bins

Co
rr

el
at

io
n 

to
 T

hr
ou

gh
pu

t  
   

   
.

0

50

100

150

200

250

300

Thr(sigmaf) Thr(minmax) Thr(curve_fit) Thr(clust)
Test(sigmaf) Test(minmax) Test(curve_fit) Test(clust)

Av
er

ag
e 

Nu
m

be
r o

f T
es

ts
 / 

Di
e

(b) multi-threaded

Figure 3.3: Correlation of various binning metrics to actual throughput and their

binning overhead for varying number of bins.

40



linearly with frequency due to pipeline hazards, memory accesses, etc., so it is

unlikely that correlation will be 1 for any binning metric.

There are several things to note in these graphs.

• First, Σf achieves significantly better correlation to throughput than Min-

Max for multi-programmed workloads. This is not surprising, considering

that the throughput of a thread often depends on the frequency of the core it

is running on, and for multi-programmed workloads, every thread execution

is independent. Min-Max fails to account for variation in frequency (and

therefore, average throughput) between individual cores.

• While the correlation of Min-Max to throughput suffers for multi-programmed

workloads, Min-Max actually surpasses Σf for multi-threaded benchmarks

as the number of bins increases. This is due to the fact that synchroniza-

tion in the parallel benchmarks causes performance to be constrained by

the slowest thread, since faster threads must wait at synchronization points

until all threads have arrived.

• Correlation is especially low for a small number of frequency bins. This

is because the binning process picks an overly conservative frequency as

fmax for a die in that case. Even the relative performance of Min-Max (as

compared to Σf) worsens as the number of frequency bins is decreased.

• In terms of binning overhead, Min-Max is significantly faster than Σf , es-

pecially for large number of bins (70% faster for 32 bins). This is because

while Σf involves doing binary search over the full frequency range (over all

frequency bins) for every core, Min-Max progressively reduces the search

range and requires very few tests per core, on average. minmax and Σf

41



have comparable overheads for small number of bins since the search range

is reduced.

• The graph also shows that curve fit (the approach of using variation model

aware curve fitting to approximate Σf) has performance correlation to through-

put that is equivalent to that of Σf . This is because a range of 6σ (±3σ) is

searched for curve fit, which is often big enough to allow the discovery of

the true fmax of a core. In terms of binning overhead, curve fit is signifi-

cantly faster than Σf (36% for our baseline architecture). This is because

the range of frequencies that are searched for curve fit is directed by the

variation model and is therefore, relatively small. Overhead is greater than

that for Min-Max because of the need to estimate the fmax for every core.

• Clustering-based strategies (the approach of using clustering to approximate

Σf) result in a smaller binning overhead than curve fit (26% for the base-

line, results are shown for a cluster size of 16). Clustering that relies on

the variation model to reduce the search range for fmax of the cores (smart

clust) is faster than the naive approach that performs search over the full

range for all cores (6% improvement in test time for the baseline case). In

terms of correlation to throughput, clustering-based strategies lie between

Σf and Min-Max for both types of workloads. This is not surprising, con-

sidering that clustering represents a hybrid between the two schemes.

3.6.2 Dependence on Number of Cores

Figure 3.4 shows how correlation and binning overhead change with the number

of cores on the processor dice. The results are shown for 16 frequency bins. There

are several things to note from these graphs.

42



0.75

0.80

0.85

0.90

0.95

1.00

16 64 256
Number of  Cores

Co
rr

el
at

io
n 

to
 T

hr
ou

gh
pu

t  
   

   
 . 

0

100

200

300

400

500

600

Thr(sigmaf) Thr(minmax) Thr(curve_fit) Thr(clust)

Test(sigmaf) Test(minmax) Test(curve_fit) Test(clust)

Av
er

ag
e 

Nu
m

be
r o

f T
es

ts
 / 

Di
e

(a) multi-programmed

0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

16 64 256
Number of  Cores

Co
rr

el
at

io
n 

to
 T

hr
ou

gh
pu

t  
   

   
 . 

0

100

200

300

400

500

600

Thr(sigmaf) Thr(minmax) Thr(curve_fit) Thr(clust)

Test(sigmaf) Test(minmax) Test(curve_fit) Test(clust)

Av
er

ag
e 

nu
m

be
r o

f t
es

ts
 / 

di
e

(b) multi-threaded

Figure 3.4: Correlation of various binning metrics to actual throughput and their

binning overhead for varying number of cores in the multi-processor.

43



• For multi-programmed workloads, the correlation to throughput increases

with the number of cores for both clustering-based strategies. Better cor-

relation with more cores is a result of having a fixed cluster size, which

results in a larger number of clusters per chip (note that with more clus-

ters, the granularity of clustering becomes finer). To confirm this, we also

performed experiments to see how the correlation and binning overhead

change when the number of cores per cluster (and, therefore, the number

of clusters) is changed for a fixed sized chip (with 64 cores). Figure 3.5

shows the results. We indeed observe that the binning overhead of clus-

tering decreases with increasing number of cores per cluster. Similarly, the

correlation to throughput decreases for multi-programmed workloads with

increasing cores per clusters.

• Interestingly, the roles of the metrics are reversed for multi-programmed

and multi-threaded workloads. While Σf and curve fitting do well for

multi-programmed workloads, Min-Max and clustering do better for multi-

threaded workloads. This reversal can be explained by the fact that Σf and

curve fitting (a close approximation) characterize the maximum throughput

of a die, which is strongly correlated to performance for multi-programmed

workloads. However, when workload performance correlates more strongly

to the performance of the weakest core, Min-Max wins out. Since clustering

uses the Min-Max metric as its backbone, trends for clustering are similar

to those for Min-Max.

• As the number of cores per cluster increases, we see an interesting difference

between the two types of clustering for multi-threaded benchmarks. For

clustering that bounds the search range based on perceived variation (smart

clust), throughput correlation levels off and begins to decrease as the number

44



of cores per cluster becomes large. This is because the limited search range

may not be wide enough to capture the variation range in a large cluster.

However, when the entire search range is considered, correlation continues

to increase even as the number of cores per cluster increases. This is because

performance is correlated to the performance of the slowest core on the die

for our multi-threaded benchmarks, and larger clusters result in less over-

estimation of performance for a processor running such benchmarks.

3.6.3 Dependence on Search Range for Variation-Model Aware Ap-

proaches

Figure 3.6 shows how performance correlation and binning overhead change as the

search range is varied for 8 and 64 frequency bins (we only show the results for

multi-programmed workloads as multi-threaded benchmarks behave similarly).

Both techniques that rely on the variation model to come up with aggressive

search ranges (curve fit and smart clust) have better correlation as the search

range is increased. The improvement is higher for larger number of frequency

bins. For example, when moving from 2σ to 3σ, correlation to throughput for

curve fitting improves by 30% for 64 bins but just by 6% for 8 bins. However, the

increase in binning overhead is also higher for a larger number of bins. Therefore,

unless the variation is large enough to justify an increase in the bin count, fixed

search range of 2σ or 3σ is good enough.

3.6.4 Dependence on Nature of Variations

In Figure 3.7, we show the effect that the nature of variations has on binning

metrics and their evaluation. The four cases: baseline (incorporates all vari-

ation model components), only inter-core random, only inter-die random, and

45



0.75

0.80

0.85

0.90

0.95

1.00

2 4 8 16 32 64
Number of Cores Per Cluster

Co
rr

el
at

io
n 

to
 T

hr
ou

gh
pu

t  
   

   
 .

0

20

40

60

80

100

120

140

160

Av
er

ag
e 

Te
st

in
g 

Ti
m

e 
/ D

ie
   

   
   

.

Thr(sigmaf) Thr(minmax) Thr(curve_fit)
Thr(clust) Thr(smart clust) Test(sigmaf)
Test(minmax) Test(curve_fit) Test(clust)
Test(smart clust)

(a) multi-programmed

0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

2 4 8 16 32 64
Number of Cores Per Cluster

Co
rr

el
at

io
n 

to
 T

hr
ou

gh
pu

t  
   

   
 .

0

20

40

60

80

100

120

140

160

Av
er

ag
e 

Te
st

in
g 

Ti
m

e 
/ D

ie
   

   
   

.

Thr(sigmaf) Thr(minmax) Thr(curve_fit)
Thr(clust) Thr(smart clust) Test(sigmaf)
Test(minmax) Test(curve_fit) Test(clust)
Test(smart clust)

(b) multi-threaded

Figure 3.5: Correlation of various binning metrics to actual throughput and their

binning overhead for varying number of cores per cluster.

46



0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1-sigma 2-sigma 3-sigma 4-sigma
Search Range

Co
rr

el
at

io
n 

to
 T

hr
ou

gh
pu

t  
   

   
 .

0

20

40

60

80

100

120

140

160

Thr(sigmaf) Thr(minmax) Thr(curve_fit)
Thr(clust) Thr(smart clust) Test(sigmaf)
Test(minmax) Test(curve_fit) Test(clust)
Test(smart clust)

Av
er

ag
e 

Nu
m

be
r o

f T
es

ts
 / 

Di
e

(a) 8 frequency bins

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1-sigma 2-sigma 3-sigma 4-sigma
Search Range

Co
rr

el
at

io
n 

to
 T

hr
ou

gh
pu

t  
   

   
 .

0

50

100

150

200

250

300

350

Thr(sigmaf) Thr(minmax) Thr(curve_fit)
Thr(clust) Thr(smart clust) Test(sigmaf)
Test(minmax) Test(curve_fit) Test(clust)
Test(smart clust)

Av
er

ag
e 

Nu
m

be
r o

f T
es

ts
 / 

Di
e

(b) 64 frequency bins

Figure 3.6: Correlation of various binning metrics to actual throughput and their

binning overhead for varying search range.

47



0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Baseline Only Inter-Core
Random

Only Inter-Die
Random

Only Across-
Wafer

SystematicVariations

Co
rr

el
at

io
n 

to
 T

hr
ou

gh
pu

t  
   

   
 .

0

20

40

60

80

100

120

140

160

Thr(sigmaf) Thr(minmax) Thr(curve_fit) Thr(clust)

Test(sigmaf) Test(minmax) Test(curve_fit) Test(clust)

Av
er

ag
e 

Nu
m

be
r o

f T
es

ts
 / 

Di
e

(a) multi-programmed

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Baseline Only Inter-Core
Random

Only Inter-Die
Random

Only Across-
Wafer

Systematic
Variations

Co
rr

el
at

io
n 

to
 T

hr
ou

gh
pu

t  
   

   
 .

0
20
40
60
80
100
120
140
160

Thr(sigmaf) Thr(minmax) Thr(curve_fit) Thr(clust)

Test(sigmaf) Test(minmax) Test(curve_fit) Test(clust)

Av
er

ag
e 

Nu
m

be
r o

f T
es

ts
 / 

Di
e

(b) multi-threaded

Figure 3.7: Correlation of various binning metrics to actual throughput and their

binning overhead for different process variation scenarios.

48



only across-wafer systematic (i.e., the bowl-shaped variation) all have the same

variance. As within-die (i.e. core-to-core) variation increases, the correlation of

Min-Max to the throughput of multi-programmed workloads decreases, since it

grossly underestimates throughput (because it takes the minimum fmax of all

cores). However, for multi-threaded workloads, Σf shows poor performance cor-

relation when inter-core variation dominates, since it overestimates the through-

put of the processor. Therefore, increase in random core to core variation magni-

fies the difference between the two metrics with the workload types. This implies

that in such a variation scenario, choice of metric will strongly depend on the

expected workload type. Note that variation-aware binning strategies that use the

variation model for prediction (i.e., curve fitting) achieve maximum reduction of

binning overhead in cases where there is systematic variation (baseline and only

across-wafer systematic).

3.7 Conclusion

In this paper, we have studied for the first time, speed binning for multi-core pro-

cessors. We have compared two intuitive metrics – Min-Max and Σf – in terms

of their correlation to actual throughput for various kinds of workloads as well as

their testing overheads. Furthermore, we have proposed binning strategies which

leverage the extent of variation (clustering) as well as the partially systematic

nature of variation (curve fitting). From our analysis, we conclude the following

• In terms of correlation to actual throughput, Σf is an overall better met-

ric except for two cases where Min-Max performs well: 1) multi-threaded

benchmarks, with large number of bins (larger than 8) and, 2) multi-

threaded benchmarks when within-die variations are dominant. However,

49



Min-Max has a significantly lower binning overhead than Σf (lower by as

much as 70%).

• Clustering based strategies which are a hybrid of Σf and Min-Max reduce

the binning overhead by as much as 51% with a small loss (5% points for 8

bins) in correlation to throughput.

• Variation-model aware strategies help in reducing the binning overhead

significantly with the same correlation to throughput as Σf . Variation

aware curve fitting reduces the binning overhead by as much as 36%.

Our overall conclusion is that uniprocessor binning methods do not scale well

for multi-core processors in the presence of variations. Multi-core binning metrics

and testing strategies should be carefully chosen to strike a good balance between

goodness of the metric and time required to evaluate it. Most importantly, the

efficiency of speed binning can be improved significantly by leveraging process

variation knowledge to optimize the binning procedure.

In some cases, power and memory/cache size are also important binning met-

rics. For low power embedded applications where power is an equally important

metric as performance, the same notion of binning can be employed to catego-

rize processors. The variation model can be used to bin processors based on

power dissipation. The concept of voltage binning [59] [34] can be extended

for multicore processors by making use of similar techniques as suggested in this

paper. This is part of our ongoing work on efficient characterization of multicore

processors.

50



CHAPTER 4

Conclusions

In this work, we have shown that the notion of a flexible hardware-software inter-

face can significantly help in combating the effects of manufacturing variations.

Traditional approaches have always assumed software to be fixed, thus demand-

ing a certain minimum level of performance out of the hardware. Meeting these

minimum performance levels in presence of process variations results in a sig-

nificant design overhead and resource wastage. We show that, by adapting the

software application to the post manufacturing performance-power characteris-

tics of the hardware across different die, it is possible to relax design constraints

with the same manufacturing yield and application quality. In another area, we

show that binning multi-core processors depending on the kind of workload and

levaraging the information from the variation model can help in maximizing the

profit with the added benefit of a much lower test time.

This work demonstrates the benefits of software adaptation on a single appli-

cation system. Most systems today run multiple applications possibly mediated

by an operating system. Therefore, it is quite intuitive to extend the notion

of adaptation to multi-application scenarios. This scenario will further benefit

from the trade-offs that will exist among individual applications, thus provid-

ing a greater potential to impact performance, power and quality. Extending

this notion of adaptation to operating system power management policies can

dramatically improve power savings by knowing the exact chip specific power-

51



performance trade-offs.

This work also demonstrates how manufacturing profits can be maximized

by binning multi-core processors accurately, that depends on the workload that

they execute. In this work, we touched upon the traditional notion of frequency

aspects of binning. However, multi-core performance is strongly related to other

aspects like memory. Moreover, power dissipation is also an important perfor-

mance metric. Both memory and power are subject to process variability and

therefore, it is but natural to include these quantities during binning. This indi-

cates an area of potential future research.

Another potential area of impact of this hardware-software interaction is re-

lated to the design cycle of complex systems. The manufacturing process model

that is used during design matures over course of time. Therefore, the models

that are used during architectural design are not the same that are used during

placement and routing. Therefore, the optimum set of decisions taken at the

architectural level may not remain optimum at the routing level. As part of our

future work, we are investigating a soft architectural constraints guided synthe-

sis, place and route system that tries to optimize the design flow at every stage

knowing the most recent input models.

52



References

[1] S. Borkar, “Parameter Variations and Impact on Circuits and Microarchi-
tecture,” C2S2 Marco Review, 2003. 1, 2.1

[2] “Process Integration, Devices and Structures, ITRS,” 2007. 1, 2.1

[3] Y. Cao, P. Gupta, A. Kahng, D. Sylvester, and J. Yang, “Design Sensitiv-
ities to Variability: Extrapolations and Assessments in Nanometer VLSI,”
ASIC/SOC Conference,15th Annual IEEE International, 2002. 1, 2.1

[4] S. R. Nassif, “Modeling and Forecasting of Manufacturing Variations,” in
Fifth International Workshop on Statistical Metrology, 2000. 1, 2.1

[5] J. Tschanz, “Adaptive Body Bias for Reducing Impacts of Die-to-Die and
Within-Die Parameter Variations on Microprocessor Frequency and Leak-
age,” ISSCC, 2002. 2.1

[6] S. Sen, V. Natarajan, R. Senguttuvan, and A. Chatterjee, “Pro-VIZOR:
Process Tunable Virtually Zero Margin Low Power Adaptive RF for Wireless
Systems,” in Design Automation Conference, 2008. 2.1

[7] D. Ernst, N. S. Kim, S. Das, S. Pant, T. Pham, R. Rao, C. Ziesler, D. Blaauw,
T. Austin, and T. Mudge, “Razor: A Low-Power Pipeline Based on Circuit-
Level Timing Speculation,” in Micro Conference, 2003. 2.1

[8] N. Shanbhag, “A Mathematical Basis for Power-Reduction in Digital VLSI
Systems,” Circuits and Systems II: Analog and Digital Signal Processing,
IEEE Transactions on, vol. 44, no. 11, pp. 935–951, Nov 1997. 2.1

[9] P. B. Bhat, V. K. Prasanna, and C. Raghavendra, “Adaptive Communication
Algorithms for Distributed Heterogeneous Systems,” Intl. Symposium on
High-Performance Distributed Computing, 1998. 2.1

[10] S. Sampei, S. Komaki, and N. Morinaga, “Adaptive Modulation/TDMA
Scheme for Personal Multimedia Communication Systems,” in GLOBE-
COM, 1994. 2.1

[11] X. Qiu and K. Chawla, “On the Performance of Adaptive Modulation in
Cellular Systems,” Communications, IEEE Transactions on, 1999. 2.1

[12] S. Chandra, K. Lahiri, A. Raghunathan, and S. Dey, “System-on-Chip Power
Management Considering Leakage Power Variations,” in DAC. New York,
NY, USA: ACM, 2007. 2.1

53



[13] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
“SWIFT: Software Implemented Fault Tolerance,” in CGO, 2005. 2.1

[14] G. V. Varatkar and N. R. Shanbhag, “Energy-efficient Motion Estimation
Using Error-tolerance,” in ISLPED ’06. ACM, 2006. 2.1

[15] V. J. Reddi, M. S. Gupta, S. Campanoni, M. D. smith, G. Wei, and
D. Brooks, “Software-Assisted Hardware Reliability: Abstracting Circuit-
level Challenges to the Software Stack,” in DAC, 2009. 2.1

[16] J. Choi, C.-Y. Cher, H. Franke, H. Hamann, A. Weger, and P. Bose,
“Thermal-aware Task Scheduling at the System Software level,” in ISLPED
’07. ACM, 2007. 2.1

[17] H. Chung and A. Ortega, “Analysis and Testing for Error Tolerant Motion
Estimation,” in DFT, Oct. 2005. 2.1

[18] M. A. Breuer, “Intelligible Test Techniques to Support Error-Tolerance,”
Asian Test Symposium, vol. 0, 2004. 2.1

[19] A. B. Kahng, S. Kang, R. Kumar, and J. Sartori, “Designing a Processor
from the Ground Up to Allow Voltage/Reliability Trade-offs,” HPCA, 2010.
2.1

[20] B. Foo, Y. Andreopoulos, and M. van der Schaar, “Analytical Complexity
Modeling of Wavelet-Based Video Coders,” 2007. 2.2.1

[21] http://docs.sun.com/source/816-5772-11/funct.html. 2

[22] H. M. Saibal Mukhopadhyay, Kunhhyuk Kang and K. Roy, “Reliable and
Self-Repairing SRAM in Nanoscale Technologies using Leakage and Delay
Monitoring,” in IEEE International Test Conference, 2005. 2.2.3

[23] “Joint Video Team Reference Software JM 15.0,” http://iphome.hhi.de/
suehring/tml/. 2.3.1

[24] G. Sullivan and T. Wiegand, “Video Compression - From Concepts to the
H.264/AVC Standard,” Proceedings of the IEEE, 2005. 2.3.1

[25] “H.264/MPEG-4 AVC Reference Software Manual,” http://iphome.hhi.de/
suehring/tml/JM(JVT-X072).pdf/. 2.3.1

[26] D. Marpe, H. Schwarz, and T. Wiegand, “Context-Based Adaptive Binary
Arithmetic Coding in the H.264/AVC Video Compression Standard,” Cir-
cuits and Systems for Video Technology, IEEE Transactions on, 2003. 2.1

54

http://docs.sun.com/source/816-5772-11/funct.html
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/JM(JVT-X072).pdf/
http://iphome.hhi.de/suehring/tml/JM(JVT-X072).pdf/


[27] K. Jeong, A. B. Kahng, and K. Samadi, “Quantified Impacts of Guard-
band Reduction on Design Process Outcomes,” Quality Electronic Design,
International Symposium on, vol. 0, pp. 790–797, 2008. 2.3.1

[28] M. Elgebaly, A. Fahim, I. Kang, and M. Sachdev, “Robust and Efficient
Dynamic Voltage Scaling Architecture,” SOC Conference, 2003. 2.3.3

[29] M. Elgebaly and M. Sachdev, “Variation-Aware Adaptive Voltage Scaling
System,” VLSI Sys., IEEE Tran. on, 2007. 2.3.3

[30] E. W. Dijkstra, “A Note on Two Problems in Connexion with
Graphs,” Numerische Mathematik, 1959. [Online]. Available: http:
//jmvidal.cse.sc.edu/library/dijkstra59a.pdf 2.4.1

[31] D. Belete, A. Razdan, W. Schwarz, R. Raina, C. Hawkins, and J. Morehead,
“Use of dft techniques in speed grading a 1ghz+ microprocessor,” in ITC ’02:
Proceedings of the 2002 IEEE International Test Conference. Washington,
DC, USA: IEEE Computer Society, 2002, p. 1111. 3.1, 3.1

[32] D. P. Darcy and C. F. Kemerer, “The international technology roadmap for
semiconductors,” Semiconductor Industry Association, p. 19, 1999. 1

[33] S. Borkar, “Design challenges of technology scaling,” IEEE Micro, vol. 19,
no. 4, pp. 23–29, 1999. 1

[34] S. Paul, S. Krishnamurthy, H. Mahmoodi, and S. Bhunia, “Low-overhead
design technique for calibration of maximum frequency at multiple operating
points,” in ICCAD ’07: Proceedings of the 2007 IEEE/ACM international
conference on Computer-aided design. Piscataway, NJ, USA: IEEE Press,
2007, pp. 401–404. 3.1, 3.7

[35] B. D. Cory, R. Kapur, and B. Underwood, “Speed binning with path delay
test in 150-nm technology,” IEEE Des. Test, vol. 20, no. 5, pp. 41–45, 2003.
3.1

[36] J. Zeng, M. Abadir, A. Kolhatkar, G. Vandling, L. Wang, and J. Abraham,
“On correlating structural tests with functional tests for speed binning of
high performance design,” in ITC ’04: Proceedings of the International Test
Conference on International Test Conference. Washington, DC, USA: IEEE
Computer Society, 2004, pp. 31–37. 3.1

[37] J. Xiong, V. Zolotov, and L. He, “Robust extraction of spatial correlation,”
in ISPD ’06: Proceedings of the 2006 international symposium on Physical
design. New York, NY, USA: ACM, 2006, pp. 2–9. 3.2

55

http://jmvidal.cse.sc.edu/library/dijkstra59a.pdf
http://jmvidal.cse.sc.edu/library/dijkstra59a.pdf


[38] F. Liu, “A general framework for spatial correlation modeling in vlsi design,”
in DAC ’07: Proceedings of the 44th annual Design Automation Conference.
New York, NY, USA: ACM, 2007, pp. 817–822. 3.2

[39] P. Friedberg, W. Cheung, and C. J. Spanos, “Spatial modeling of
micron-scale gate length variation,” I. Emami, K. W. Tobin, and Jr.,
Eds., vol. 6155, no. 1. SPIE, 2006, p. 61550C. [Online]. Available:
http://link.aip.org/link/?PSI/6155/61550C/1 3.2

[40] E. Humenay, D. Tarjan, and K. Skadron, “Impact of process variations on
multicore performance symmetry,” in DATE ’07: Proceedings of the confer-
ence on Design, automation and test in Europe. San Jose, CA, USA: EDA
Consortium, 2007, pp. 1653–1658. 3.2

[41] K. Qian and C. J. Spanos, “A comprehensive model of process variability
for statistical timing optimization,” V. K. Singh and M. L. Rieger,
Eds., vol. 6925, no. 1. SPIE, 2008, p. 69251G. [Online]. Available:
http://link.aip.org/link/?PSI/6925/69251G/1 3.2

[42] L. Cheng, P. Gupta, C. Spanos, K. Qian, and L. He, “Physically justifiable
die-level modeling of spatial variation in view of systematic across wafer
variability,” in DAC ’09: Proceedings of the 46th Annual Design Automation
Conference. New York, NY, USA: ACM, 2009, pp. 104–109. 3.2, 1, 3.2

[43] B. E. Stine, D. S. Boning, and J. E. Chung, “Analysis and decomposition of
spatial variation in integrated circuit processes and devices,” IEEE Trans-
actions on Semiconductor Manufacturing, vol. 10, pp. 24–41, 1997. 3.2

[44] M. C. S. J. N. B. D. W. M. B. S. M. E. F. J. Dorsey, S. Searles and R. Ku-
mar, “An integrated quad-core opteron processor,” in Proceedings of the
International Solid-State Circuits Conference (ISSCC 2007), 2007. 3.3

[45] S. Herbert and D. Marculescu, “Analysis of dynamic voltage/frequency scal-
ing in chip-multiprocessors,” in ISLPED ’07: Proceedings of the 2007 inter-
national symposium on Low power electronics and design. New York, NY,
USA: ACM, 2007, pp. 38–43. 3.3

[46] C. Isci, A. Buyuktosunoglu, C. yong Cher, P. Bose, and M. Martonosi, “An
analysis of efficient multi-core global power management policies: Maximiz-
ing performance for a given power budget,” in in Proc. Intl Symp. Microarch.
(MICRO, 2006, pp. 347–358. 3.3

[47] P. Juang, Q. Wu, L. shiuan Peh, M. Martonosi, and D. W. Clark, “Coordi-
nated, distributed, formal energy management of chip multiprocessors,” in

56

http://link.aip.org/link/?PSI/6155/61550C/1
http://link.aip.org/link/?PSI/6925/69251G/1


In ISLPED 05: Proceedings of the 2005 International Symposium on Low
Power Electronics and Design, 2005, pp. 127–130. 3.3

[48] J. Sartori and R. Kumar, “Proactive peak power management for many-core
architectures,” 2009. 3.3

[49] ——, “Three scalable approaches to improving many-core throughput for a
given peak power budget,” 2009. 3.3

[50] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick, “The landscape of parallel computing research: a view
from berkeley,” Electrical Engineering and Computer Sciences, University
of California at Berkeley, Tech. Rep. UCB/EECS-2006-183, December 2006.
[Online]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/
EECS-2006-183.pdf 3.3.1

[51] Y. Bonhomme, P. Girard, C. Landrault, and S. Pravossoudovitch, “Test
power: a big issue in large soc designs,” in DELTA ’02: Proceedings of the
The First IEEE International Workshop on Electronic Design, Test and Ap-
plications (DELTA ’02). Washington, DC, USA: IEEE Computer Society,
2002, p. 447. 3.3.3

[52] P. Girard, “Survey of low-power testing of vlsi circuits,” IEEE Des. Test,
vol. 19, no. 3, pp. 82–92, 2002. 3.3.3

[53] N. Nicolici and B. Al-Hashimi, Power-Constrained Testing of VLSI Circuits.
Kluwer Academic, 2003. 3.3.3

[54] M. S., “Combining branch predictors,” Digital Western Research Laboratory,
Tech. Rep., 1993. 3.5

[55] S. J. E. Wilton and N. P. Jouppi, “Cacti: An enhanced cache access and
cycle time model,” IEEE Journal of Solid-State Circuits, vol. 31, pp. 677–
688, 1996. 3.5

[56] R. Kumar and D. M. Tullsen, “Core architecture optimization for heteroge-
neous chip multiprocessors,” in International Conference on Parallel Archi-
tectures and Compilation Techniques, PACT. ACM Press, 2006, pp. 23–32.
3.5, 3.5

[57] D. M. Tullsen, “Simulation and modeling of a simultaneous multithreading
processor,” in Int. CMG Conference, 1996, pp. 819–828. 3.5

57

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf


[58] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically char-
acterizing large scale program behavior,” in ASPLOS-X: Proceedings of the
10th international conference on Architectural support for programming lan-
guages and operating systems. New York, NY, USA: ACM, 2002, pp. 45–57.
3.5

[59] J. Tschanz, K. Bowman, and V. De, “Variation-tolerant circuits: circuit so-
lutions and techniques,” in DAC ’05: Proceedings of the 42nd annual Design
Automation Conference. New York, NY, USA: ACM, 2005, pp. 762–763.
3.7

58


	Introduction
	Software Adaptation in Quality Sensitive Applications to Deal With Hardware Variability
	Introduction
	Hardware Signature Based Adaptation
	Quality Sensitive Applications: Q-C Curves
	Signatures and Adaptation
	Signature Choice and Measurement

	Proof of Concept: H.264 Encoding
	Experiment Setup
	Results
	DVS: Power and Voltage as Hardware Signatures

	Hardware Signatures: Granularity Tradeoffs
	Optimal Signature Measurement
	H.264 Encoding: Granularity Analysis

	Conclusion

	Frequency Binning of Multi-core Processors
	Introduction
	Variation Model
	Binning Metrics
	Min-Max and f
	Correlation to Throughput
	Binning Overhead

	Using the Variation Model to Reduce Binning Overhead
	Curve Fitting
	Clustering

	Methodology
	Analysis of Results
	Dependence on Number of Bins
	Dependence on Number of Cores
	Dependence on Search Range for Variation-Model Aware Approaches
	Dependence on Nature of Variations

	Conclusion

	Conclusions
	References

