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Industry adoption of chiplets has been growing as chiplets are a cost-effective option for making large, high-
performance systems. Consequently, partitioning large systems into chiplets is increasingly important. In this
work, we introduce ChipletPart — a cost-driven 2.5D system partitioner that addresses the unique constraints of
chiplet systems, including complex objective functions, limited reach of inter-chiplet I/O transceivers, and the
assignment of heterogeneous manufacturing technologies to different chiplets. ChipletPart integrates a sophisti-
cated chiplet cost model with a genetic algorithm (GA)-based technology assignment and partitioning method-
ology, along with a simulated annealing (SA)-based chiplet floorplanner. Our results show that ChipletPart:
(i) reduces chiplet cost by up to 58% (20% geometric mean) compared to state-of-the-art min-cut partitioners,
which often yield floorplan-infeasible solutions; (ii) generates partitions with up to 47% (6% geometric mean)
lower cost compared to the prior work Floorplet; (iii) reduces chiplet cost up to 48% (30% geometric mean)
compared to Chipletizer, while consistently producing I/O-feasible chiplet solutions across all testcases; and (iv)
for the testcases we study, heterogeneous integration reduces cost by up to 43% (15% geometric mean) com-
pared to homogeneous implementations. Additionally, we explore Bayesian optimization (BO) for finding low
cost and floorplan-feasible chiplet solutions with technology assignments. On some testcases, our BO frame-
work achieves better system cost (up to 5.3% improvement) with higher runtime overhead (up to 4x) compared
to our GA-based framework. We also present case studies that show how changes in packaging and inter-chiplet
signaling technologies can affect partitioning solutions. Finally, ChipletPart, the underlying chiplet cost model,
and our chiplet testcase generator are available as open-source tools for the community.

CCS Concepts: « Hardware — 3D integrated circuits; Partitioning and floorplanning; Economics of chip
design and manufacturing.

Additional Key Words and Phrases: 2.5D, Chiplets, Partitioning, Floorplanning, Chiplet Manufacturing Cost
Model

1 INTRODUCTION

The integration of multiple chips on an interposer has become a favorable approach to reduce the
cost of building large systems [1, 2]. In a 2.5D system, a design is decomposed into multiple smaller
chiplets, which are packaged together on the same substrate. This splitting can have significant ben-
efits for yield and can enable designs using heterogeneous process technology nodes, going beyond
what is possible in a monolithic design. On the other hand, inter-die communication exhibits higher
area and power overhead compared to intra-die communication. Consequently, the potential cost
benefits of disaggregation are not always realized [3]. Therefore, it is important to intelligently par-
tition a design into constituent chiplets and assign a manufacturing technology to each chiplet so as
to optimize manufacturing costs.

The natural partitioning granularity for 2.5D integration is at the block-level. Splitting individual
IP blocks into multiple chiplets is problematic for design and test methodology reasons as well as for
IP reuse. Additionally, splitting an IP block will often have a significant impact on performance and
I/O count. Due to these considerations, block-level chiplet partitioning (Figure 1) is the focus of this
paper. The cost-aware partitioning problem for chiplet systems is fundamentally different from the
well-studied netlist min-cut partitioning [4—6]. For the former, the problem size is smaller (usually
a few hundred blocks and a few tens of chiplets at most) and the underlying objective function can
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Fig. 1. Generic example of block-level chiplet partitioning. Left: an IP block-level netlist (different types of IP
blocks shown in different colors). Right: an integrated 2.5D chiplet system reflecting the block-level netlist
partitioning with technology node assignment shown in different colors.
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be complex. Furthermore, inter-chiplet I/O reach limitations can render some partitions infeasible,

necessitating floorplan-awareness in the partitioner. This is further complicated by the need to select

a manufacturing technology for each chiplet.

We propose ChipletPart, the first open-source, unified framework for chiplet partitioning that com-
bines cost-driven multi-way partitioning, heterogeneous technology assignment and I/O reach-aware
floorplanning in a single, automated flow. ChipletPart presents a novel adaptation of classical opti-
mizers such as genetic algorithms (GA) and simulated annealing (SA) to generate floorplan-feasible,
cost-optimized 2.5D chiplet system partitions with technology assignments. ChipletPart is intended
for design space exploration before physical implementation.' Our key contributions include:
¢ Integrated chiplet partitioning with floorplan-feasibility: We present the first unified frame-

work that optimizes system partitioning while guaranteeing feasibility under I/O reach constraints.

In contrast to standard min-cut partitioners (e.g., h(METIS [4], TritonPart [6]) that ignore floorplan-

feasibility, ChipletPart employs a reach-aware, simulated annealing-based placement engine to

guarantee floorplan-feasible solutions (Section 5.2).

o Heterogeneous technology assignment: We handle technology node assignment during partition-
ing using a genetic algorithm. This enables exploration of cost trade-offs in heterogeneous 2.5D
systems — a capability not supported by existing tools such as Floorplet [7] or Chipletizer [8].
Our heterogeneous technology-aware, cost-driven, multi-way partitioner, ChipletPart, finds cost
reductions of up to 43% (6% geometric mean) in multi-technology scenarios. To the best of our
knowledge, we are the first work that does technology assignment during partitioning (Section 3).
In addition, we explore the use of Bayesian optimization (BO) to search for floorplan-feasible,
cost-optimal chiplet solutions with technology assignments. While BO improves system cost by
up to 5.3% over our GA-based framework on a few testcases, it incurs a runtime overhead of up
to 4x. Thus, GA and BO provide a quality-runtime trade-off (Section 6.4).

e Improvements over SOTA: ChipletPart achieves up to 46% improvement in cost over state-of-
the-art min-cut based partitioners (hRMETIS [4], TritonPart [6]) that do not guarantee floorplan-
feasibility. Compared to the parChiplet partitioner from Floorplet [7], ChipletPart generates chiplet
solutions that are up to 47% (6% geometric mean) better in cost. Compared to manual partitions,
ChipletPart generates 34% (13% geometric mean) better solutions (Section 6). We also compare
against the cost-driven Chipletizer [8] framework and observe that ChipletPart consistently pro-
duces I/O-feasible partitions with up to 48% lower cost across our design suite (Section 6). Ad-
ditionally, we explore how variations in technology parameters affect chiplet partitioning (Sec-
tion 7).

1 ChipletPart considers a given architecture and generates partitioned chiplets before physical implementation. We do not
perform architecture exploration in this work. We envision ChipletPart as a tool to assist human designers by generating
strong initial solutions, which can then be refined using domain expertise.
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e Standardized open-source ecosystem: We translated the Python-based cost model [9, 10] to an
equivalent C++ implementation (Section 4.1). This yields a 5x speedup in cost model execution
runtime, and a speedup of more than 100X in our multithreaded implementation. ChipletPart,
along with its core cost model, is permissively open-sourced [11], enabling others to readily adapt
it for benchmarking and further development. Also, we make our testcases publicly available,
enabling the community to access a new, standardized set of benchmarks.

In the following, Section 2 reviews related works on chiplet cost modeling, partitioning and floor-
planning. Sections 3 and 5 respectively provide an overview and details of our partitioning approach.
Section 4 describes the driving considerations in chiplet partitioning. Sections 6 and 7 show experi-
mental results and additional case studies, and Section 8 concludes the paper.

2 RELATED WORK

We now discuss fundamentals and previous works on chiplet cost modeling, then review existing
works on chiplet partitioning and floorplanning. Tables 1 and 2 summarize key terms and notations.

2.1 Chiplet Cost Modeling

Cost reduction is one of the main drivers for developing 2.5D systems. The total cost of developing
a VLSI system can be divided into two parts: non-recurring engineering (NRE) cost and recurring
engineering (RE) cost [12]. NRE cost refers to the one-time cost of designing a VLSI system, in-
cluding IP qualification, architecture simulation, verification, physical design, software license fees,
etc. RE cost refers to the fabrication costs in mass production, such as wafers, assembly, and test.
Researchers have proposed several chiplet cost models to estimate various components of the to-
tal 2.5D system cost. [12] introduces a quantitative cost model for comparing RE and NRE costs
between monolithic SoC and multi-chip integration, but accounts for fewer RE cost considerations
than our chosen model. [13] and [7] propose cost models that take into account reliability issues
such as bump stress and warpage. [3, 9] present a case study of a large system built using chiplets
and analyze the sensitivity of system cost to factors such as defect density, assembly cost, I/O size,
etc. The authors have made their cost model publicly available at [10]. In this work, we use the cost
model proposed by [10] (see Section 4) due to the wide range of configurable parameters available for
system technology co-optimization (STCO).? The cost model in [9] was used in collaboration with
IMEC to perform an STCO study in [14]. While the specific parameter settings in the cost model
do influence partitioning outcomes, all parameters are externally configurable via user-defined con-
figuration files. To enable efficient integration with our partitioning framework, we ported the cost
model to C++, resulting in significantly improved performance.

2.2 Chiplet Partitioning and Floorplanning

Several previous works address chiplet partitioning. [ 15] incorporates the min-cut partitioner h(METIS
[16] within a chiplet implementation flow. [7] proposes parChiplet, which partitions the SoC system
into chiplets based on functional and area characteristics of IP blocks. However, [7, 15] do not op-
timize the actual chiplet cost. Chipletizer [8] proposes a unified design characterization graph to
represent both SoC designs and chiplets, and uses simulated annealing (SA) to optimize the overall
cost of chiplet-based systems. However, Chipletizer does not consider floorplan feasibility or support
heterogeneous integration. The recent work of [17] uses reinforcement learning (RL) and simulated
annealing to perform PPA-oriented chiplet partitioning. However, their method does not guarantee

2To the best of our knowledge, the cost model in [10] is the most detailed open-source cost model currently available for
chiplets at the time of this publication.
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Table 1. General terminology and notation.

| Notation

| Description

Set of chiplets

Set of chiplets implemented in technology node ¢

Chiplet-level netlist

Block-level netlist

Chip manufacturing volume

Set of technology nodes

Mapping from chiplets to technology nodes

Partitioning objective function

3le e g <|wlzlolo

Number of different technology nodes

Table 2. GA terminology and notation. Default hyperparameters were empirically determined (Section 6.2.5).

| Notation | Description

t0tpop Number of members in the population (default 50)

kpop Number of pairs of parents selected from a population for tournament selection
(default 45)

4 Tournament size (default 3)

o Number of members picked for elitism (default 5)

Athreshold Threshold value for improvement between successive generations (default 0.01)

L4 Maximum number of generations (default 50)
Maximum number of successive generations with cost improvement less than

‘ Asreshotd (default 10)

De Crossover probability (default 0.60)

Pm Mutation probability (default 0.07)

Kinax Maximum number of attainable chiplets (default 8)

Table 3. Comparison of state-of-the-art chiplet partitioning methods.

Methods Cost-Driven Floo.r p.lfm Heterogen.eous
Feasibility Integration
(7], [15], [16]
(8] v
[17] v v
ChipletPart v v v

floorplan-feasibility. The main differences between our ChipletPart and previous works are summa-
rized in Table 3. In our experimental evaluations, we compare ChipletPart with [7] and [16]. The
authors of [8, 15, 17] have not released their source code or binaries.?

Existing chiplet floorplanning approaches fall into three categories: simulated annealing-based,
branch-and-bound (B&B)-based and mathematical programming (MP)-based. Works such as [18,
19] use classical floorplan representations such as B* tree and apply SA to optimize an objective
function. [20, 21] enumerate possible floorplanning solutions and apply B&B to find a near-optimal

3wWe attempted to contact the authors of [17], but have not received a response.
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solution. [7, 13] develop MP-based formulations of chiplet floorplanning, enabling MP solvers to
find optimal solutions. We note that existing works fail to handle the “reach” constraints imposed by
I/O cells, and generally assume that the size and shape of chiplets are predetermined by designers. In
this work, we propose a reach-aware chiplet floorplanner that simultaneously determines the location
and shape for each chiplet.

3 OUR APPROACH

We now introduce the chiplet partitioning problem, then give an overview of our chiplet partitioning
framework.

3.1 Problem Formulation

The chiplet partitioning problem that we address is fundamentally different from classical min-cut

partitioning. The key differences are summarized as follows.

o Problem size: Min-cut partitioning is typically performed on gate-level netlists comprising mil-
lions of gates. By contrast, we focus on a block-level netlist that typically comprises several hun-
dreds of IP blocks.

e Objective: Min-cut partitioning focuses on minimizing cutsize, the number of nets (hyperedges)
crossing partition boundaries. By contrast, we seek to reduce 2.5D system development cost,
which brings a more complex set of considerations (Section 4).

e Constraints: Min-cut partitioning minimizes cutsize subject to a given balance constraint [6]. By
contrast, chiplet partitioning is not necessarily balanced, but it must produce I/O-feasible solutions
(Section 5.2).

o Heterogeneity: Min-cut partitioning is insensitive to partition labels: swapping the contents of
two partitions will not affect cutsize. By contrast, chiplet partitioning is sensitive to partition labels
(i.e., technology node assignments): swapping the technologies of two chiplets can significantly
change total cost of a 2.5D system.

These fundamental differences between min-cut partitioning and chiplet partitioning motivate our

studies. Formally, the inputs to our multi-technology chiplet partitioning framework are a block-level

netlist S and a set of technology nodes 7. The outputs are a set of chiplets C and their corresponding
technology assignment w : C — 7. The objective is to minimize the total cost of a 2.5D system:

¢ by + 3 S
¢overall(c)= asemsy Yaie +g(w)

ey

Yassembly Vv

where ¢g;. is the silicon cost of each chiplet, ¢ussempiy is the assembly cost, Yy, is the die yield,
Yassembiy is the assembly yield, g(w) is the non-recurring engineering (NRE) cost, and V' is the chip
manufacturing volume. The constraint is the I/O-feasibility of the chiplet set C.

3.2 Overview of ChipletPart Framework

We now describe our chiplet partitioning framework, ChipletPart (see Figure 2). Our ChipletPart
differs from classical min-cut partitioners [4—6] and previous approaches [2, 7, 8, 15] in several key
respects. (i) We optimize a comprehensive chiplet cost function (Section 4), unlike min-cut partition-
ers that focus on minimizing net cutsize. (ii) We integrate a fast, Go-With-the-Winners [22] SA-based
chiplet floorplanner to ensure I/O-feasibility of a partitioning solution (Section 5.2). (iii) We lever-
age a genetic algorithm (GA) framework to discover high-quality technology node assignments for
heterogeneous integration.
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[ Inputs: tech. node array {t4, ty, ..., t;,} + SoC netlist S + system definition files (.xml) ]

1

— - Core-ChipletPart
Initial Population
Generation Partitioning pool
| [ Partition pruning ]
. . L 2
Fitness Evaluation [ Partitioning ]
[ Core-ChipletPart Refinement
\_
Crossover and Mutation
A
[ Convergence Check t
No Tournament Selection ]
Yes

\ 4

[ Outputs: chiplets Cpog¢ + tech. assignment wp gt ]

Fig. 2. ChipletPart Framework. Core-ChipletPart is shown in Figure 5. Partitioning refinement is shown in
Figure 6.

ChipletPart inputs include a system block-level netlist S, a set of technology nodes 7, and system
definition provided in XML files.* The algorithm is outlined in Algorithm 1 and visually illustrated
in Figure 3. Within the GA framework, a gene is a technology node, and a genome is a sequence
of technology nodes in which corresponding chiplets (partitions of §) will be implemented. Details
and source code for our GA-based partitioning and technology assignment methodology are in [11].
Step 1: [Lines 3-4] We first generate the initial population in the GA. Each member in the population
(a genome) represents an ordered sequence of technology assignments (to chiplets) o : C — 7. We
generate totpop (totpop = 50 by default) genomes; each genome is generated by randomly mapping
Kmax chiplets to technology nodes 7~.5 To avoid redundant evaluations and improve scalability, we
canonicalize all generated genomes by mapping functionally equivalent assignments to a unique rep-
resentation. For example, genomes (7 nm, 7 nm, 14 nm) and (14 nm, 7 nm, 7 nm) are treated as equiv-
alent, since they correspond to the same multiset of assignments.

Step 2: [Lines 5-11] We assess the fitness of each genome in the current population. For each genome
wj, we (i) run Core-ChipletPart® to generate a partitioning solution based on w ; and (ii) calculate
the fitness score of this solution using our cost model.

Step 3: [Lines 12-21] We declare convergence if either of the following two termination criteria is
met:

e The algorithm reaches the maximum number of generations, ¥ (¥ = 50 by default). Upon
reaching this limit, the algorithm terminates and returns the best chiplet solution, Cp.;, along
with its corresponding technology mapping, wpes:-

4As in [3, 9], our netlists are modeled as graphs rather than hypergraphs, since these previous works use a directed (source-
sink) edge for every inter-block connection.
SFor simplicity, we set t0tpop = kpop + 0.
SFor better scalability, we run Core-ChipletPart with fewer FM (Fiduccia-Mattheyses) moves and passes, and fewer initial
solutions. Details are seen in our code [11].
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Fig. 3. GA-based technology assignment. A genome is a set of technology nodes. Shown: two parent genomes
(7,7,14) and (10, 10, 10) undergo crossover to produce the offspring (7, 10, 14); the offspring undergoes mu-
tation to produce (10, 10, 7) for the next-generation population.

e The improvement between successive generations falls below a predefined threshold, A;preshoid
(Athreshota = 0.01 by default), and remains below this threshold for more than e consecutive
generations (e = 10 by default). If this condition is met, the algorithm terminates and returns
Cbest and Whest -

Step 4: [Line 22] We use fournament selection [23] to identify candidate parents for crossover.
Rather than evaluating the entire population at once, the selection process operates on randomly
chosen “tournaments”, each consisting of { genomes competing based on their fitness scores. The
genome with the highest fitness in each tournament is selected as a candidate parent. This procedure
is repeated until k., pairs of parents are chosen.”

Step 5: [Lines 23-25] We generate the next-generation population (offspring) through crossover,
elitism, and mutation. Notably, we use uniform crossover [24] and random resetting mutation [25].
Additionally, we retain the top ¢ genomes from the parent generation based on their fitness scores
(elitism), ensuring that high-quality solutions persist across generations.

In our implementation, we set totpop = 50, { = 3, kpop = 45, 0 = 5 and K;nax = 8 (Section 6.2.5).
So, we conduct 90 tournaments (each tournament picks three genomes from the current generation) to
select 90 parent genomes, which are then paired to generate 45 offspring genomes through crossover
and mutation. We then supplement these 45 offspring with the top five genomes from the current
generation (elitism) to generate the next generation population of 50 genomes. For additional imple-
mentation details, we refer the reader to [11].

Choice of optimizers: Our choice of picking GA and SA is motivated by their ability to flexibly
optimize over black-box, non-convex and highly discontinuous cost landscapes — characteristics in-
herent to our chiplet cost model (Section 4.1). In contrast, ILP-based methods are less suitable for our
framework due to the lack of closed-form or linearizable expressions for I/O-feasibility and chiplet

7A genome can be selected multiple times as a parent.
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Algorithm 1: Overall ChipletPart framework.
Input: Standard Inputs: 7, S
Hyperparameters: t0tpop, kpops Athresholds € ¢, ¥, &
Output: Chiplet partitioning solution Cpes;,
Technology assignment wpes;

1 Athreshold < 0.01;€ «— 10; ¢ « 3; ¥ « 50; 0 « 5;
2 totpop < 50; Kpop « 45; pe < 0.60; ppy «— 0.07; Kipax < 8;
/* 1. Initial population generation */

w

Costpest < 00,  Costprey < ;A oo;

Generate the initial population with f0zp0, genomes where each genome is a random mapping from Kpax chiplets
to 7T,

i« 0; num_iters « 0;

while true do

SN

n

EN

/* 2. Fitness evaluation */
7 foreach w; in the current population do
8 Ce; < Generate the partitioning solution using Core-ChipletPart with technology assignment «;;
9 Costy, ;< Calculate the cost of C,, ; (Section 4);
10 if Costwj < Costpes; then
1 ‘ Costpest < Coste;;  Chest < Cuwji  Whest < @j3
/* 3. Convergence check */
12 if num_iters > ¥ then
13 ‘ return Cpess, Opest
14 A« Costprep — Costpests
15 if A < Athreshola then
16 i—i+1;
17 if i > € then
18 ‘ return Cpess, Opest
19 else
20 ‘ i 0;
21 Costprey < CoStpest;
/* 4. Tournament selection */
22 Select kpop pairs of parents using tournament selection with tournament size
/* 5. Crossover, elitism and mutation */
23 Perform crossover on each selected pair (wﬁ, a)ly’) to generate offspring wg, using a crossover probability pc;
24 Apply mutation to each offspring w¢ with mutation probability p,,;
25 Construct the next generation by selecting the top o elite genomes from the current generation, along with
kpop offspring;

cost functions. GA enables direct co-optimization of technology assignment and chiplet partitioning,
while SA ensures that floorplanning solutions are always I/O-feasible. Having a unified optimization
approach and formulation is challenging since the solution space spans both discrete combinatorial
variables (chiplet-to-tech assignment) and continuous geometric constraints (I/O reach), which are
difficult to encode and optimize jointly. We hence opt for a modular decomposition — using GA for
assignment and SA for feasibility evaluation. Note that Bayesian optimization (BO) is another power-
ful tool for optimizing complicated, black-box functions — we explore its potential as an alternative
optimizer in Section 6.4.

In the following sections, we discuss the chiplet cost model, Core-ChipletPart, and the SA-based
floorplanner.
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4 CHIPLET PARTITIONING DRIVERS

Smaller chiplets can potentially bring lower costs and improved yield, while technology heterogene-
ity offers better power and performance. The overhead of inter-chiplet I/O also affects how a system
should be partitioned into chiplets. In this section, we briefly discuss these factors.

4.1 Chiplet Cost Model

We use the open-source cost model from [9, 10]. It computes cost and yield based on the chiplet/inter-
poser area (dependent on the technology node), assembly processes (dependent on bonding parame-
ters), and I/O placement constraints (dictated by netlist connectivity and reach). The model calculates
the individual cost and yield of each chiplet along with the interposer, and then aggregates them for
the full assembly cost. We consider designs to be high volume in our studies, to minimize the impact
of NRE. The cost model is summarized by Equation 1. For further details, see [9]. Benefits of using
the cost model in [9] are discussed in Section 6.2 with results in Tables 5 and 6.

A block will have different areas and power in different technology nodes. While assigning a
block to a more advanced technology node could, in principle, improve performance, we assume a
fixed system architecture in this work and therefore keep performance constant while scaling power
accordingly.® In this work, we follow [26] to model this scaling. Different technology nodes result
in different cost per unit area for chiplets, along with differences in yield and reticle-fit dependent
lithography costs [9]. We also scale memory and logic with different factors [27] since memory
tends to scale poorly for advanced nodes. Different technology nodes will also have different non-
recurring design [28] and manufacturing costs [29]. For example, the transition between 45 nm and
10 nm reduces logic size by a factor of ~10x [26], while NRE design cost increases by ~4.6x [28]
and general cost per wafer increases by ~2.6x [30].

4.2 Chiplet Power Model

We assume that performance of chiplets is preserved across technology nodes but that the power
changes. We further assume that inter-chiplet communication latency is small enough to not influence
the architecture. If certain inter-block interfaces are highly latency-sensitive, then those blocks should
be merged in our framework to map them to the same chiplet. More complex performance models
as in [7] are possible but not explored in this work.

Power is calculated as the sum of block power and I/O power. If all blocks are in the same chiplet,
there will be no additional power due to I/O. However, if the blocks are placed into multiple partitions
(chiplets), some additional power will be consumed by the added I/O cells. We scale the block power
according to the scaling factors in [26] for different technology nodes.

4.3 1/0 Reach Model

We use an I/O cell model where each I/O cell has both an area and a “reach” which is the maximum
wire length that can be driven by the I/O cell. The reach depends on the I/O transceiver design and is
often dictated by the inter-chiplet I/O standard. For example, Universal Chiplet Interconnect Express
(UClIe) [31] guarantees a reach of 2 mm for advanced packages while standard packages (such as
organic substrates) support larger reaches of up to 25 mm.

Since we assume a fixed system architecture, our partitioner does not modify the network structure
or insert pipeline stages to compensate for long inter-chiplet wires. We also assume a standardized
I/O cell with a fixed maximum reach instead of more complicated I/O structures. These assumptions
help keep the partitioning problem well-scoped and tractable. We leave sophisticated I/O planning

8Modeling architectural changes based on block-to-technology assignments is beyond the scope of the current work and is
left as a future direction.
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Fig. 4. lllustration of reach. Wirelengths: black - 1 mm, orange - 7 mm, blue - 13 mm, and green - 19 mm.

including pass-through connections, inserting buffers on the substrate, multiple I/O types per design,
etc. to future work. However, users can explore multiple architectural variants and I/O types for the
same design. For example, in our industry testcase (Section 6.1), we evaluate two versions that differ
only in their crossbar configurations — and in Figure 14, we examine the impact of different I/O cell
types on partitioning.

Consider the example in Figure 4, and assume that a bundle of wires is connected from the side
of one chiplet to the side of another. If the chiplets are 5 mm on a side and spaced apart by 1 mm,
then the short black connections require a reach of at least 1 mm, while the orange, blue, and green
connections require reaches of at least 7 mm, 13 mm, and 19 mm respectively. Small values of reach
constrain the floorplan, while larger values of reach come at the cost of more expensive I/O cells.

I/Os are discretized depending on the standard. For instance, a single UClIe I/O cell is as large as
0.88 mm? [31] while for parallel signaling (e.g., Advanced Interface Bus (AIB) or [32]), an I/O cell
can be as small as 157 pym? [33]. This discretization can add complexity for chiplet partitioning, as
the I/0 (i.e., net cut) cost calculation follows a stepwise curve as a function of net cut.

5 CHIPLET PARTITIONING CORE

In this section, we first discuss our chiplet-cost-driven partitioning approach Core-ChipletPart in
Section 5.1. Then, we present our reach-aware chiplet floorplanning approach in Section 5.2.

5.1 Cost-driven Partitioning: Core-ChipletPart

Our Core-ChipletPart does not adopt the widely-used multilevel approach since there are typically
only a few hundreds of IP blocks in a block-level netlist. As shown in Figure 5, we (i) compute
a large pool of initial partitioning solutions using a variety of graph partitioning algorithms; (ii)
prune poor-quality partitioning solutions from the pool; and (iii) perform floorplan-aware Fiduccia—
Mattheyses [34] (FM)-based and Kernighan-Lin [35] (KL)-based refinement. We then output the
solution with the best cost.

Generation of a partitioning pool. Similar to the initial partitioning stage in widely-used multilevel
partitioning approaches [4, 6], we compute a pool of initial partitioning solutions so as to explore a
larger solution space.” Specifically, we use the following graph partitioning methods.

9However, unlike multilevel approaches [4, 6], Core-ChipletPart omits the coarsening stage due to the relatively small number
of vertices (i.e., 384 IP blocks in our largest testcase, as shown in Table 4) in the netlist graph.
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[ Input: block level netlist ]
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Fig. 5. Core-ChipletPart partitioning flow. We use multiple techniques to generate the initial partitions, then
we prune out the worst-performing initializations before running refinement.

o Spectral partitioning: Because the block-level netlist is both small and sparse, we apply spectral
partitioning [36]. We first compute the spectral embedding using the two smallest nontrivial eigen-
vectors, then cluster the IP blocks with the K-means algorithm [37]. 10

e High-degree nodes expansion: Our node expansion approach follows [39]. In the block-level
netlist, high-degree nodes (e.g., crossbars) are distributed across different chiplets, and then ex-
panded via breadth-first search. If multiple chiplets qualify for expansion, the block is assigned to
the chiplet with which it has the strongest connection.

e Random partitioning: We randomly distribute all blocks across different chiplets. We generate
multiple random solutions while sweeping K = {1, .., Kmax}.” We consider K = 1 to allow the
degenerate case where all the blocks are placed in a single chiplet.

o METIS: We use the METIS graph partitioner [16] to create initial partitioning solutions, using the
METIS APIs from [40]. Similar to our random partitioning approach, we sweep K = {2, .., Kjax }-
Our partitioning pool consists of 11 solutions in total: one from the spectral method, one from

node expansion, five from random partitioning, and four from METIS. We next discuss the pruning

step, which discards low-quality solutions from this pool.

Partitioning solution pruning. We use a statistical filtering mechanism to prune the partitioning
pool. First, we compute the cost of each initial partition using our cost model (Section 4.1), and then
calculate the mean and standard deviation of these costs, as well as each partition’s cost relative to
the best solution. Our pruning applies two complementary thresholds: (i) a Z-score [41] threshold,
eliminating partitions whose costs exceed 1.5 standard deviations above the mean and (ii) a relative

101 our implementation, we use a parallel K-means method with smart initialization (K-means++ [38]), and we set K = 4 by
default.

Our studies show that Kmay = 8 is sufficient for our testcases. If the solution finds Kyayx number of partitions, the user can
increase Kmax to check larger numbers of partitions.
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Fig. 6. Floorplan-aware FM and KL-based refinement. In our implementation, we run FM first, followed by
KL.

cost threshold, removing partitions whose costs are worse than twice the minimum cost. To prevent
over-pruning, we retain at least three solutions even if they all appear statistically poor. Pruning
significantly reduces computational workload by eliminating low-quality candidates early.

Partitioning refinement. We use two strategies for refinement: (i) FM and (ii) KL. Both of these
processes are shown in Figure 6. Each potential FM move or KL swap triggers a call to the chiplet
cost model to obtain the cost (gain) of an updated partitioning solution. This evaluation includes gen-
erating a floorplan solution using the “fast” mode of our SA-based reach-aware chiplet floorplanner,
followed by calculating the corresponding cost. After completing each FM or KL pass, the “standard”
mode of the SA-based reach-aware chiplet floorplanner is employed to search for an improved floor-
plan solution for the subsequent pass. Further details about our SA-based reach-aware chiplet floor-
planner are provided in Section 5.2. We adopt the K-way FM implementation from TritonPart [6],
while our KL refinement [42] follows the methodology described in [35]. In our implementation, we
apply KL after FM to further improve solution quality, as KL explores a broader neighborhood by
enabling pairwise vertex swaps — compared to FM’s single-vertex moves.

5.2 Reach-aware Chiplet Floorplanning

Chiplet floorplanning is a crucial step, as it determines the location and shape of each chiplet on the
interposer. In contrast to the well-studied macro placement, chiplet floorplanning must also consider
I/O-feasibility. More specifically, the wirelength of a net must not exceed the reach specified by
the corresponding I/O cell (Section 4). Figure 7 illustrates the wirelength (measured in terms of
Manhattan distance) calculation for net e connecting chiplets A and B. Assuming that the bitwidth
of net e is n, and the area of I/O cells is Ajo, then the wirelength of net e (length(e)) in the figure
is calculated as: (i) I = y/w? + 2A;0 — w and (ii) length(e) = h + 21, where [ is the depth needed for
all the 1/0 cells.'” Then the reach violation penalty for net e is n, x max(length(e) — reach(e), 0.0).
The reach violation penalty for a chiplet is defined as the summation of the reach violation penalties
for all the nets connected to the chiplet.

Problem formulation. Our work uses a novel reach-aware chiplet floorplanning approach. The input
to our floorplanner is a set of chiplets C, and a chiplet-level netlist NV that defines the connections
between chiplets. The output is a floorplanning solution which provides the location and shape (width

12The detailed code for more general cases is available in [43].
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Fig. 7. lllustration of wirelength computation (length(e)). The yellow region indicates the placement area
for 1/0 cells that will satisfy the reach constraint.

and height) of each chiplet. The objective of our floorplanner is

WL, eqch = Z ne X max(length(e) — reach(e), 0.0) )
eeN
min o X Wlyegep + BXAc+y X Ap 3)

where WL,eqch, Ac, and Ap respectively denote the reach violation penalty, the area of chiplets, and

the area of the package. @, ff and y are user-defined coefficients that can be modified to achieve a

desired trade-off between the different objectives in Equation 3.'°> Note that we allow the area of

chiplets to increase to satisfy the reach constraints. During optimization, the following constraints

are considered:

e Overlap constraint: No two chiplets can overlap.

¢ Separation constraint: In practical chiplet-based systems, extra space must exist between neigh-
boring chiplets to account for dicing and alignment accuracy, and to prevent defects and mechan-
ical stress during chiplet assembly. The separation constraint sets the minimum distance between
any two chiplets.

SA-based chiplet floorplanner. Our reach-aware floorplanner uses Sequence Pairss [44] to repre-

sent a spatial arrangement of chiplets in the netlist and Simulated Annealing [45] to optimize the

objective function (Equation 3). Our annealer supports five solution perturbation (move) operators,

each selected with equal probability (0.2).

e Opl: Swap two chiplets in the first sequence.

e Op2: Swap two chiplets in the second sequence.

e Op3: Swap two chiplets in both sequences.

e Op4: Reshape a chiplet. Identify the chiplet with the highest reach-violation penalty and modify
its shape using the resizing algorithm described in [46]. Figure 8 (top) illustrates how a reach
violation for the net connecting chiplets E and B (red dashed arrow) is resolved by aligning the
right boundary of B with that of E.

e OpS: Expand (i.e., bloat) a chiplet. Identify the chiplet with the highest reach-violation penalty
and expand it into neighboring whitespace, where the expansion in each direction is determined
by the extent required to eliminate the violation. Figure 8 (bottom) shows how reach violations for
nets connecting chiplets B-G and B—F are resolved by expanding B toward the top and right. This
operator reduces reach-violation penalties at the cost of increasing the chiplet area and potentially
the overall package area as well.

13The default values for &, § and y are 1.0, 1.0 and 1.0, respectively.
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Fig. 8. Top: Resizing of chiplet B fixes a reach violation for a net connecting chiplets B-E. Bottom: Expansion
(bloating) of chiplet B fixes reach violations for nets connecting chiplets B-G and B-F. In each figure pair,
left = before; right = after. Red regions indicate the separation constraint between chiplets, and red dashed
arrows indicate reach violations before fixing.

To enhance the performance of simulated annealing (SA), we adopt a Go-With-the-Winners (GWTW)
strategy [22], which enables 10 parallel SA walkers to independently explore the solution space. Pe-
riodically, a synchronization phase is performed in which: (i) the best-performing threads are identi-
fied, (ii) their solutions are cloned to repopulate the thread pool and (iii) all threads resume indepen-
dent exploration. This strategy balances diversification and intensification, improving convergence
without incurring significant runtime overhead. We use 10 threads in our experiments, a setting that
is easily supported on standard server-class machines.'* As discussed in Section 5.1, our chiplet
floorplanner operates in two modes: “standard” and “fast”. The standard mode performs 1,000,000
perturbations with a cooling rate of 0.989, while the fast mode performs 10,000 perturbations with
an initial temperature of 0.0 (greedy). In our experiments, the “standard mode” is invoked after each
FM or KL pass (default: 4 passes), totaling four invocations per run. The fast mode is triggered after
each FM vertex move (default: 50% of all vertices) and each KL vertex swap (default: 10% of all ver-
tices), resulting in 230 invocations per pass in our largest testcase. These parameters are empirically
selected to maintain a balance between runtime and solution quality.

6 EXPERIMENTAL RESULTS

ChipletPart is implemented using approximately 27K lines of C++ code, building upon implemen-
tations from [6]. We use OpenMP [47] for parallelization, the Eigen library [48] for spectral parti-
tioning, codes from [40] to run METIS, and Boost [49] for high precision arithmetic computations
in the cost model. Additionally, we have translated the Python-based cost model from [9, 10] into
C++ and integrated it into our ChipletPart framework. The scripts and source code of ChipletPart,
including its cost model implementation, are available in [11]. We run all experiments on a Linux
server with Intel Xeon E5-2690 CPU (48 threads) and 256GB RAM.

6.1 Benchmarks and Baselines

We evaluate four categories of testcases in this work: Waferscale, MemPool, Industrial Testcase, and
Comparison Testcases. A common issue in chiplet partitioning research is that most testcases are
too small to warrant practical chiplet partitioning; existing works often focus on very small designs,

14This number of threads is typical for modern multi-core servers and does not impose a significant hardware burden.
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overemphasizing the impact of I/O and underemphasizing yield and packaging costs. To address this,
we scale up the power and area of our baseline designs to sizes more representative of real commer-
cial systems (e.g., Intel’s Ponte Vecchio [1]). We also scale the interconnects using Rent’s Rule,?
applying constants from [51] for microprocessor and memory blocks. This ensures that our scaled
designs have a realistic number of I/Os, making them suitable for evaluating chiplet partitioning.

Our first category of testcases (Waferscale) is derived from the waferscale graph processor in [32].
We extract synthesized IP block areas and a block-level netlist at 45 nm, then apply area and power
scaling to favor partitioning. The second category (MemPool) is similarly extracted from synthesized
blocks in [52] and likewise scaled from its 45nm block-level netlist. The third category (Industry
Testcase) is based on a 16nm design provided by a semiconductor company, which we also scale to a
suitable size. Finally, the Comparison Testcases are based on publicly available information for large
commercial designs, and come from [8]. The original implementations span multiple technology
nodes, and these designs are sufficiently large that no additional scaling is required.

To ensure that routing congestion is not a concern in our example systems, we performed a simple
analytical check based on estimated routing capacity and required wires count. We considered both
escape routing (breakout of signals from each chiplet on the substrate) and global routing (inter-
chiplet connections across the substrate). In all experiments, we considered a substrate with four
routing layers and a routing pitch of 1ym. This is similar to existing technologies [53]. For escape
routing, we verified whether the number of available routing tracks around each chiplet’s perimeter
is sufficient to accommodate all connections to that die. For global routing, we examined the vertical
slices across the substrate and confirmed that each slice contained enough routing tracks to support
all inter-chiplet connections crossing that slice. Additionally, we used alternating routing directions
across routing layers for global routing. Under these considerations, we did not observe routing
congestion in any of our testcases.

Table 4 shows the specific testcase configurations that we use; see also the design-specific dis-
cussion below. In the table, the WS testcases are based on the Waferscale design, the MP testcase
is based on the MemPool design, the TC testcase is based on the Industry design, and EPYC and
GA100 are the Comparison Testcases. The specific design configurations are explained as follows.

Waferscale Testcases. The Waferscale design is organized into a grid of tiles connected in a 2D mesh
configuration with neighbor-to-neighbor communication between tiles. Each tile comprises 48 IP
blocks. Those blocks include a router for tile-to-tile connections, a crossbar for intra-tile connections,
four large shared memory blocks connected to the crossbar, and 14 cores each with associated bus
and private memory blocks. Figure 9 gives a system block diagram. We have implemented a testcase
generator (see [11]) which allows us to choose the number of tiles in a given testcase, along with the
number of cores and memories per tile. Area and power scaling are also provided via the testcase
generator. As noted, Table 4 shows the Waferscale configurations used in our case studies.

MemPool Testcase. The full MemPool design consists of four MemPool groups, each containing
16 MemPool tiles. These tiles each consist of cores and memory along with supporting logic. Note
that while each tile contains four cores and 16 memory banks, we do not split tiles for partitioning.
For our MemPool testcase, we use a single MemPool group, i.e., taken at just above the tile level of
the hierarchy. Based on 16 tiles and 24 blocks related to (remote, local, AXI etc.) interconnect, our
block-level netlist for MemPool group has 40 IP blocks to use in partitioning. A diagram is available
in [11]; see also Figure 3(a) in [52].

I5Rent’s Rule [50] states that the number of terminals T in a logic block scales as T = kCP, where k is a constant, C is the
number of components and p is the Rent parameter. Hence, if C is scaled by a factor s, T is scaled by s?.
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Table 4. Benchmark characteristics. Note that MP and WS both use tile terminology; the others do not.

Benchmark # Tiles # IP Blocks Area (mm?) Area Scaling Power Scaling

WS4 1 48 1582 (45nm) 1600 1600
WS, 2 96 3165 (45nm) 1600 1600
WS3 4 192 6330 (45nm) 1600 1600
WS4 8 384 12,660 (45nm) 1600 1600
MP 16 40 494 (45nm) 100 100
TC, N/A 14 567 (16nm) 16 16
TC, N/A 17 567 (16nm) 16 16
EPYC N/A 32 148 (7nm) 1 1
GA100 N/A 180 548 (7nm) 1 1

One Waferscale Tile Multi-Tile Grid

Sl

1 HH
’Lé L
]

]

Private Memory \ Core \ Shared Memory

Master Crossbar Router

Fig. 9. Waferscale testcase. Left: example IP blocks in a tile. Right: Connection of tiles in a grid. This testcase
allows scaling of the number of tiles to match a target design size for partitioning.

Industry Testcases. We use a chip design from industry with parameters shown in Table 4.'° Because
the original design is relatively small, we scale the area and interconnect via Rent’s Rule to reach
an overall design area of more than 400 mm?. This architecture follows a controller-target structure
around a crossbar, where the crossbar constitutes 30% of the total area of its connected blocks.

Comparison Testcases. We also evaluate on two commercial designs used by Chipletizer [8]. The
first is based on AMD’s EPYC 7282 [55], shown in Figure 10. We additionally examine NVIDIA’s
GA 100 chip [56], which powers the A100 GPU. The GA100 design includes 128 simultaneous mul-
tiprocessor blocks, 40 L2 blocks and multiple HBM controller blocks, totaling 180 blocks. We omit
the GA100 block diagram due to its size.

Metrics. For simplicity, we assume iso-performance for our testcases, even across technology nodes;
instead, we derive advantages in power from improvements in I/O count or changes in technology
node. We also assume that connections between blocks in a chiplet will have the same speed as

16The industry testcases are generated based on discussions with Analog Devices engineers [54].
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Fig. 10. AMD EPYC 7282 Testcase used in [8].

inter-chiplet connections, although the inter-chiplet connections will have higher power and area
requirements due to large I/O drivers. Design area is a major contributor to cost, and chip power
contributes to chip cost via added bumps for current delivery that require additional area. For this
reason, we use cost as a single metric for partitioning.

Baselines. Since there is no open-source, cost-driven chiplet partitioner available, we compare against:
(i) Min-cut partitioners (hMETIS [16], which is often used in chiplet flows [15], and TritonPart [6])

applied to weighted hypergraphs, where each hyperedge is weighted by the corresponding I/O band-

width; (ii) the parChiplet method from Floorplet [7]; (iii) Chipletizer [8], for which we thank the

authors for providing access to their code; and (iv) partitioning solutions generated by human engi-

neers.

6.2 Validations of Chiplet Partitioning

Given that previous works use traditional min-cut partitioners in 2.5D flows, we directly compare
ChipletPart with leading partitioners AMETIS and TritonPart. We also compare to the Floorplet
floorplan-aware chiplet partitioner [7], Chipletizer [8], and manual partitions. For the Waferscale test-
cases based on [32] we compare the memory-compute partition in that work with a per-tile partition-
ing as the manual partition. Overall, our validations span (i) validation of chiplet cost-driven partition-
ing, (ii) validation of floorplan-awareness, (iii) validation of heterogeneous technology-awareness,
and (iv) analyses of hyperparameter sensitivities and runtime.

6.2.1 Validation of chiplet cost-driven partitioning. We evaluate ChipletPart against the baselines
listed in the previous section: hMETIS, TritonPart, Floorplet, Chipletizer, and manually derived
partitions. Our validation is thus divided into three parts, detailed below.

17For the six testcases where Chipletizer produces solutions, the geometric mean cost (GM cost) is 48.5 vs. 33.9 for Chiplet-
Part, with ChipletPart achieving a geo-mean cost improvement (GM imprv.) of 30.1%.
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Table 5. Partitioning costs and number of chiplets for hMETIS, TritonPart, Floorplet [7], Manual, Chiple-
tizer [8], ChipletParty,_gp, and ChipletPart. Best cost per benchmark is in bold. We additionally report the
geometric mean (GM) of absolute costs as well as the GM percentage improvement relative to the Manual
baseline. Positive GM improvement indicates lower (better) cost on average. Chipletizer results are shown
only for testcases where valid solutions were obtained. Because these cover a subset of the full design suite,
GM values computed over six testcases are not directly comparable to the nine-testcase GM; hence, we de-
note Chipletizer’s GM cost (and improvement %) as N/A.!7

Benchmark hMETIS TritonPart | Floorplet Manual | Chipletizer | ChipletParty, gp | ChipletPart
|C]  Cost ||C] Cost ||C|] Cost [|C| Cost ||C|] Cost ||C| Cost |C]  Cost
WS, 5 724 3713 6 555 I 712 | 1 712 | 7 55.1 6 539
WS, 8 1381 | 7 1432 | 4 1503 | 2 1455 | Fail Fail 6 122.3 8 1234
WS3 7 3163 | 8 3624 | 4 3105 | 4 3105 | Fail Fail 8 319.6 7 3004
WS4 8 14495 | 8 15642 | 5 12379 | 8 6743 | Fail Fail | 7 776.2 8 6599
MP 1 5.7 1 5.7 1 5.7 1 5.7 1 5.7 1 5.7 1 5.7
TC, 3 726 3 681 6 456 I 705 1 705 | 4 472 6 465
TC, 3 739 3 711 7 465 4 494 | 1 749 | 6 48.7 7 462
EPYC 4 921 4 963 | 4 893 4 808 | 6 1393 | 8 76.1 8 725
GA100 3 523 3 605 2 421 5 361 | 5 438 | 2 33.6 5 318
GM cost - 1483 | - 1710 | - 1137 | - 1149| - NA"7 | - 85.6 - 823
GMimpr. (%) | — -21% | - -26% | — 2% | - 0% | - NA7| - +9% - +13%

Table 6. Chiplet count and 1/O-feasibility for hMETIS, TritonPart, Floorplet [7], Manual, Chipletizer [8],
ChipletParty,_gp, and ChipletPart. “Feas” indicates I/O-feasibility (v': feasible, X: not feasible; “Fail” indicates
that no valid solution was obtained). We also report the number of successful runs for each category.

Benchmark hMETIS | TritonPart | Floorplet | Manual | Chipletizer | ChipletParty, pp | ChipletPart
|C| Feas | |C| Feas ||C| Feas||C| Feas| |C| Feas | |C| Feas |C|]  Feas
WS, 5 X 3 v 6 X 1 v 1 v 7 X 6 v
WS, 8 X 7 X 4 N 2 v/ | Fail  Fail 6 X 8 N
WS3 7 X 8 X 4 v 4 v | Fail  Fail 8 X 7 v
WS4 8 X 8 X 5 X 8 v/ | Fail Fail 7 X 8 v
MP 1 v 1 N 1 N 1 N 1 N 1 v 1 N
TC, 3 v 3 v 6 X 1 v 1 v 4 v 6 v
TC, 3 v 3 v 7 X 4 v 1 v 6 X 7 v
EPYC 4 v 4 N 4 N 4 N 6 X 8 X 8 v
GA100 3 v 3 v 2 v 5 v 5 X 2 v 5 v
#Successes (out of 9) 4 6 5 9 4 3 9

Comparison with netlist partitioners. We evaluate the chiplet cost-driven partitioning capabilities
of ChipletPart by benchmarking against leading netlist partitioners AMETIS and TritonPart, using the
latter’s default parameter settings.'® We use the testcases listed in Table 4 for our evaluations, with
results presented in Tables 5 and 6. Table 5 presents chiplet cost comparisons and Table 6 presents
floorplan-feasibility comparisons. For both AMETIS and TritonPart:

e We set an imbalance factor of 5% and define our input set of partitions as K = 1,2, 3, ..., 10.

e For each K, we execute ten runs of the partitioner, yielding a total of 100 partitioning solutions. "’

18For hMETIS, the default settings are Nruns = 10, CType = 1, RType = 1, Wycle = 1, Reconst = 0, and seed = 0 [4].
For TritonPart, the default parameter settings are thr_coarsen_hyperedge_size_skip = 200, coarsening_ratio = 1.6,
max_moves = 60, and num_coarsen_solutions = 3 [6].

190ur studies show that longer partitioner runs do not improve the quality of results.
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e We evaluate each partitioning solution using our cost model (Secs. 4 and 4.2) and report the solu-
tion with lowest chiplet cost.

o Since hMETIS and TritonPart are not technology-aware, for a fair comparison, we enforce homo-
geneity by running ChipletPart with only the 7 nm technology node. Consequently, the cost model
evaluates all partitioning solutions using the 7 nm technology node. The floorplanner is run in the
standard mode (Section 5.2).

Results are presented in Tables 5 and 6. Columns |C|, Cost, and Feas, respectively indicate the num-

ber of chiplets, the evaluated cost of the chiplet solution, and whether the solution satisfies the reach

constraints. ChipletPart consistently produces solutions with better cost than hMETIS and Triton-

Part with improvements of up to 55% and 58% respectively. The geometric mean improvements

over hMETIS and TritonPart are 16% and 20%, respectively. This result shows the advantages of

ChipletPart’s cost-driven partitioning over traditional min-cut partitioners. Furthermore, ChipletPart

consistently produces floorplan-feasible solutions, whereas standard netlist partitioners often fail to

meet the reach constraints.”’

Comparison with previous work. We compare ChipletPart with the parChiplet partitioner from
Floorplet [ 7], and Chipletizer [8]. Here, we set the Floorplet parameters as |C|pin = 1, |Clmax = 10
and rr = 1.0. All partitioning solutions are evaluated using our cost model with the 7 nm technology
node and the floorplanner is run in standard mode. Tables 5 and 6 present these results. Compared
to Floorplet, ChipletPart achieves up to a 47% cost improvement, with a geometric mean improve-
ment of 6%. While Floorplet produces a solution with slightly lower cost on the TC; testcase, the
solution violates reach constraints. In contrast, ChipletPart consistently generates floorplan-feasible
solutions with better cost, highlighting its strength in delivering high-quality and physically realiz-
able chiplet partitions. For Chipletizer, we use the default settings from the original implementation,
with production volume [8] set to 500,000 units. Chipletizer fails to produce a solution on three of
nine testcases (WS, WS,, WSs, WS,) due to scalability limitations. Across the remaining testcases,
ChipletPart achieves up to 48% lower cost’! compared to Chipletizer, while consistently generat-
ing I/0O-feasible solutions. For example, on GA 100, both frameworks produce a five-chiplet solution,
but ChipletPart achieves a 27% cost reduction and satisfies I/O-feasibility, whereas the Chipletizer
solution violates feasibility.

Comparison with human baselines. We generate human baselines for each testcase as follows. For
the Waferscale (WS, WS, WSs, WS,) designs, which are tile-based, the human partitioning solution
aligns directly with these tiles. For the red4-way partition with the same blocks as TC; but with a
4-way split crossbar. For the EPYC testcase (Figure 10), we cluster each set of cores with its corre-
sponding L.3 — distributing other blocks to maintain regularity and balanced area — resulting in
four partitions each containing two PCle blocks, one DDR, one L3, and four cores. Similarly, for
GA 100, we create five chiplets: four partitions each holding 32 simultaneous multiprocessors and 10
L2 blocks, and one partition for the remaining blocks.”

Similar to the previous sections, all partitioning solutions are evaluated using our cost model with
the 7nm technology node and the floorplanner is run in standard mode. Tables 5 and 6 present the
results. ChipletPart generates solutions that are up to 34% better than the manual baselines with a

20, METIS and TritonPart optimize cutsize and return partitions with better cutsize compared to ChipletPart (albeit with worse
chiplet cost).

21 A more effective way to run Chipletizer would be to integrate it with our cost model. Since this is beyond the scope of our
current work, we leave it for future research.

22Qur human baselines do not necessarily reflect partitions chosen by industry. Instead, we split the blocks to generate rela-
tively even partitions with small cutset and high regularity as an example of what the human engineer might decide to do.
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Fig. 11. Impact of initial partitioning and refinement in Core-ChipletPart. Pool-Only denotes Core-ChipletPart
with no refinement. KL-Only denotes Core-ChipletPart with KL refinement only. FM-Only denotes Core-
ChipletPart with FM refinement only.

geometric mean improvement of 13%. While the human baselines are all floorplan-feasible, they are
not cost-optimal. These results indicate that a black-box partitioner such as ChipletPart can generate
higher-quality solutions than manual partitioning strategies.

6.2.2 Validation of floorplan-awareness. We evaluate the impact of floorplan-awareness in Chiplet-
Part. Tables 5 and 6 compare solutions generated with and without floorplan-awareness enabled,
denoted as ChipletPart and ChipletParty,.rp respectively. Disabling floorplan-awareness can occa-
sionally yield lower nominal chiplet cost (e.g., WS,), but it frequently produces solutions that violate
interconnect reach constraints. In particular, six out of nine testcases result in infeasible solutions
when floorplan-awareness is disabled. Beyond feasibility, enabling floorplan-awareness improves
chiplet cost by up to 15%, with a geometric mean improvement of 4%. This is because our cost
model incorporates floorplan-level information when evaluating partition quality — thus, floorplan-
aware solutions better align with the true cost objective. These observations highlight the importance
of incorporating floorplan-awareness: while it may slightly increase nominal cost in some cases, it
helps to ensure that all generated solutions are physically realizable.

6.2.3 Impact of initial partitioning and refinement. To quantify the contribution of each compo-
nent in Core-ChipletPart, we conduct an ablation study comparing four configurations: (i) the full
framework i.e., Core-ChipletPart; (ii) initial partitioning pool-only with no refinement; (iii) initial
partitioning pool with FM refinement only; and (iv) initial partitioning pool with KL refinement
only. Figure 11 presents the results across all testcases from Table 4. The full Core-ChipletPart
achieves an average cost reduction of 9.3% compared to the pool-only baseline, with improvements
ranging from 6.4% to 13.4% across different designs. When examining the individual refinement
strategies, FM-only achieves 6.4% average improvement while KL-only achieves 5.7% average im-
provement over the pool-only baseline. Notably, neither refinement strategy consistently dominates
the other: FM-only outperforms KL-only on five out of ten testcases, while KL-only performs better
on the remaining four testcases. This complementary behavior demonstrates that the two refinement
algorithms optimize different aspects of the partitioning solution. FM excels at move-based local
optimization while KL provides effective swap-based refinement for certain design topologies. Im-
portantly, the full Core-ChipletPart consistently outperforms both individual refinement strategies
across all testcases, achieving an additional 2-3% improvement over the better of FM-only or KL-
only in each case. We believe that these results validate our integrated approach: the diverse initial
partition pool provides high-quality starting points, while the application of FM and KL refinement
generates further improvement that neither algorithm achieves independently.
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Table 7. Impact of heterogeneity. “Homogeneous” denotes homogeneous integration cost. “Heterogeneous”
denotes heterogeneous integration cost, chiplet tech distribution, and ChipletPart runtime. A single invoca-
tion of Core-ChipletPart’s runtime is ~5% of ChipletPart's runtime. Runtimes reported are the CPU time.

Bench. Homogeneous Heterogeneous
7nm  10nm 14nm | Cost |#7nm #10nm #I14nm | Runtime (s)

WS, 539 489 42.1 | 41.7 2 0 4 401
WS, 123.4 112.7 109.4| 87.8 1 0 7 1421
WSs3 300.4 310.4 286.3(2544| 3 0 5 3240
WSs [659.9 6624 676.1|656.2| 7 1 0 5624
MP 57 69 88 | 57 1 0 0 180
TC 46.5 524 564 | 39.8 3 0 2 160
TC, 46.2 542 64.1 | 39.3 4 0 2 89
EPYC | 72.5 86.2 94.6 | 65.1 3 0 2 349
GA100| 31.8 40.5 55.2 | 31.6 3 1 0 493

6.2.4  Validation of heterogeneous technology-awareness. We evaluate benefits of incorporating het-
erogeneous technology awareness on all nine testcases (Table 4) and a technology list comprising
7 nm, 10 nm, and 14 nm nodes. Table 7 reports chiplet cost reductions achieved by enabling tech-
nology awareness, relative to the best solutions obtained under homogeneous technology integration
for each node. Specifically, we first run ChipletPart using a single technology node per testcase (ho-
mogeneous integration) to obtain baseline partitioning solutions for each technology. We then run
ChipletPart with technology awareness enabled (i.e., allowing the use of all three technology nodes)
and compare the resulting solutions. Our results show that heterogeneous technology assignment can
reduce system cost by up to 43%, with geometric mean cost reductions of 7%, 15%, and 15% when
compared against homogeneous solutions at 7 nm, 10 nm, and 14 nm, respectively.”®> Note, that all
solutions generated by ChipletPart are floorplan-feasible.

6.2.5 Hyperparameter exploration and sensitivity analysis. ChipletPart’s genetic algorithm relies
on four key hyperparameters: (i) total population size tot,,p; (i) maximum number of generations
¥; (iii) mutation probability p,,; and (iv) crossover probability p. (cf. Algorithm 1).>* We validate
the default values of these hyperparameters via an empirical study using testcases WSy, WS,, TCy,
and TC, from Table 4. We use the following technology nodes for this study: 7 nm, 10 nm, and
14 nm, and run ChipletPart on the four aforementioned testcases. Figure 12 presents the normalized
chiplet costs (normalized to the cost of manual solutions) and the normalized runtime (represented
as “Normalized Value” in Figure 12), normalized to a constant value of 10000 seconds.? In our
experiments, we systematically vary each hyperparameter while keeping the others fixed at their
default values. For each configuration, we measure the resulting chiplet cost and runtime across the
testcases. Our observations from Figure 12 indicates that the default hyperparameter settings achieve
a balanced trade-off between partitioning quality and runtime efficiency.

23To further validate the effectiveness of our GA, we implemented an enumeration-based framework that exhaustively explores
all Zf‘:“fx (k:n":l) possible assignments. Our experiments show that the GA achieves up to 7x speedup with less than 1%
degradation in chiplet cost compared to the enumeration-based framework.

n ChipletPart never returns a chiplet solution with more than 8 chiplets, so we set K;;,4x to 8.

2510000 seconds is chosen for normalization to allow for comparison with about three hours of runtime.
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Table 8. Runtime breakdown of ChipletPart.

Component Runtime share (%)
SA-based floorplanner 67
Partition refinement (chiplet cost model) 28
Partition pool 2

Partition pruning

File I/O handling 1

Figure 13 summarizes the sensitivity of ChipletPart to its hyperparameters. We measure sensitiv-
ity as the normalized variance in cost and runtime across the sweep range for each hyperparameter.
Notably, crossover and mutation probability have the highest influence on cost, while population size
and number of generations dominate runtime variation. Tournament size has relatively low sensitiv-
ity for both metrics. These results indicate that careful tuning of crossover and mutation parameters
is essential for chiplet solution quality, while population size control primarily affects runtime over-
head.

6.3 Runtime remarks

ChipletPart is implemented entirely in C++, including a high-quality C++ translation of the Python-
based cost model from [10]. Our optimized C++ translation achieves approximately a 5x speedup
compared to the original Python version. Empirical results indicate that ChipletPart, when integrated
with the translated C++ cost model, attains over a 100X speedup relative to an integration based on
the Python cost model. Additionally, our open-sourced implementation is fully parallelized using
OpenMP [47]. These improvements make ChipletPart readily adaptable for any chiplet-based design
flow. We present a detailed runtime breakdown of ChipletPart in Table 8. Approximately 67% of the
execution time is spent on floorplanning, while 28% is spent on chiplet cost evaluation. Further
details on ChipletPart’s runtime are provided in Table 7.

Scalability. For large designs such as WSy, our runtime remains under two hours. To improve scal-
ability further, hierarchical decomposition techniques that exploit structural regularity in the netlist,
along with aggressive solution pruning and potential usage of surrogate models for faster evaluation,
can be employed.

6.4 Exploring Bayesian Optimization

Bayesian optimization (BO) is a powerful framework for optimizing expensive, black-box functions,
particularly when gradients are unavailable and each function evaluation incurs significant compu-
tational overhead [57]. Unlike exhaustive or random search strategies, BO constructs a probabilistic
surrogate model of the objective function and uses an acquisition function [58] to balance explo-
ration and exploitation. These properties make BO especially suitable for problems with complex
constraints, cost landscape, and costly evaluations. To provide another quality-runtime tradeoff point,
we have also explored the potential use of BO for chiplet partitioning. We jointly optimize (i) the as-
signment of IP blocks to chiplets, and (ii) the selection of technology nodes per chiplet to minimize
total system cost. Directly optimizing the partitioning function ¢ : S — C is infeasible due to the
combinatorial explosion in the search space: for k chiplets and |S| blocks, there are kS| possible
assignments. Such a high-dimensional, discrete space is ill-suited to BO, which relies on continuous,
low-dimensional representations [59]. To address this, we use spectral embeddings to derive a contin-
uous relaxation of the partitioning problem [60]. We construct a normalized Laplacian matrix [61]
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Table 9. Comparison between ChipletPart-GA and ChipletPart-BO. ChipletPart-GA denotes ChipletPart using
GA as the optimizer. ChipletPart-BO denotes ChipletPart using BO as the optimizer. Runtimes reported are
the CPU time.

Bench. ChipletPart-GA ChipletPart-BO
Cost #7nm #10nm #14nm Runtime (s) | Cost #7nm #10nm #14nm Runtime (s)

WS, 41.7 2 0 4 401 41.7 1 0 4 848
WS, 87.8 1 0 7 1421 97.1 0 3 5 4262
WS3 2544 3 0 5 3240 2514 4 0 4 9839
WSy 656.2 7 1 0 5624 640.2 6 1 1 12149
MP 5.7 1 0 0 180 5.7 1 0 0 350
TC 39.8 3 0 2 160 42.1 4 1 1 1137
TC, 39.3 4 0 2 89 40.2 5 1 2 959
EPYC | 65.1 3 0 2 349 67.8 4 4 0 1263
GA100| 31.6 3 1 0 493 31.6 3 1 0 1685

from the netlist connectivity graph and compute its d nontrivial eigenvectors. These eigenvectors
define a mapping:

Pembed : S — Rd, S e

where s € S is an IP block, and e, € R is its coordinate in the d-dimensional spectral embedding
space. Blocks that are tightly coupled (i.e., frequently communicate or share many nets) are embed-
ded closer together. This transformation preserves the structural information of the netlist in a form
more amenable to clustering [5]. Rather than directly optimizing ¢, we allow BO to propose a set of

k centroids {c;,...,ct} in R4, Each block is then assigned to its nearest centroid:
= i —c; 4
P(s) arg  min lles — cjll2 “)

This transforms the partitioning problem from a high-dimensional discrete search into a continuous
optimization over k - d real-valued variables. Moreover, this centroid-based assignment strategy natu-
rally produces geometrically coherent partitions and enables integration with downstream refinement
algorithms such as FM or KL.

In addition to partitioning, the BO framework must also determine the technology assignment
w(c) € T for each chiplet ¢ € C. Technology assignments are categorical variables, which are
challenging to surrogates due to their non-ordinal nature. To mitigate this, we encode each technology
assignment using a one-hot vector:

m
t; € {0,1}™, where m = |7, Zti [j1=1

Jj=1

Here, t; represents the technology assigned to chiplet c;. This encoding allows the BO surrogate
model to treat technology assignment as a structured subspace within a continuous optimization
landscape. Each candidate solution evaluated by BO is represented as a vector x:

e The number of partitions k (integer-valued).
e k centroids in d-dimensional spectral space: cy, . .., Ck.
e One-hot technology encodings ti, . . ., tg.
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Formally, x = [k,cy,...,Ck, t, ..., tg] and the dimensionality of x is: dim(x) = 1+k-d +k - m.
The BO engine constructs a surrogate model ®(x) to approximate the true cost ®(x) and uses an
acquisition function a(x) to guide exploration. We use a Gaussian Process (GP) [62] surrogate for
small datasets (< 50 IP blocks) and Random Forest [63] for larger datasets. Our acquisition function
comprises Expected Improvement [58] and Upper Confidence Bound [58] metrics. Once BO picks
a candidate x, it undergoes the following evaluation pipeline:

(1) Partition decoding: Assign each block s € S to its nearest centroid to obtain partition ¢.

(2) FM refinement: Improve the partition using ChipletPart’s FM refinement.

(3) Technology decoding: Map each one-hot vector t; to its corresponding technology node
w(c;).

(4) Cost evaluation: Call the ChipletPart’s cost model to evaluate the cost (¢, w), and floorplan
checks.

(5) Feasibility check: If the solution is infeasible, i.e., does not satisfy the reach constraints,
return a large penalty value M > 1: ®(¢,w) = M. This ensures that the BO explores the
landscape where the solutions are always floorplan-feasible.

The result is fed back to update the surrogate model, and the process is repeated until a termination

criterion is met (we use a fixed limit of 200 iterations). We compare our implemented BO framework
with our ChipletPart’s GA framework. Table 9 presents a cost and runtime comparison of the two
optimizers — ChipletPart-GA and ChipletPart-BO. The results show that ChipletPart-BO can pro-
duce lower-cost solutions on the larger designs, WS; and WS4, where it achieves cost reductions of
up to 5.3% and 2.4%, respectively. However, the benefits come at a significant computational cost.
On average, ChipletPart-BO incurs a runtime overhead of 2X—4x compared to ChipletPart-GA, due
to its expensive surrogate model updates. In small-to-medium benchmarks such as MP, TC,, and
GA100, both optimizers achieve comparable costs, but BO remains considerably slower. Thus, GA
and BO provide a quality-runtime trade-off.
BO vs. GA trade-offs. Our results show that ChipletPart-GA provides the best overall quality/run-
time tradeoff for chiplet partitioning: it converges quickly, is robust across benchmarks, and inte-
grates naturally into a broader CAD flow. In contrast, ChipletPart-BO incurs significantly higher
runtime due to surrogate-model construction and acquisition-function optimization, but can yield
modestly better solutions on benchmarks whose spectral embeddings exhibit a smoother cost land-
scape (e.g., WSs, WS4). We recommend ChipletPart-GA for routine use or time-constrained flows,
while ChipletPart-BO can potentially serve as a compute-intensive alternative that may improve
quality on select, more challenging testcases.

7 ADDITIONAL CASE STUDIES

We investigate how different technology parameters affect ChipletPart’s solutions. To accommodate
an arbitrarily complex cost model, ChipletPart employs a black-box partitioning method rather than
a mathematical programming approach. This design choice enables a broader exploration of the
parameter space compared to other partitioners. To illustrate these benefits, we present case studies
that examine effects of altering the chiplet cost model parameters.

I/O type and reach. Chiplet systems often use reduced-size I/O cells that trade driver strength and
electrostatic discharge (ESD) protection for a smaller form factor. However, limited I/O reach makes
it challenging to generate feasible solutions. A 2 mm reach may only allow direct connections be-
tween adjacent chiplets, while a larger reach (e.g., 20 mm) increases flexibility but also adds to
system cost by increasing chiplet area. To explore this, we: (i) analyze the impact of I/O reach on
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chiplet partitioning for a parallel 1/O testcase; and (ii) compare the parallel 1/0 testcase with UCle
advanced and UCle standard definitions [31], which have different cell sizes and reach. The parallel
I/0 has 2 mm reach, while the UCle cases have 10 mm reach.

Figure 14(a) shows that increasing reach enables a greater number of chiplets in the partition-
ing solution, while a short 2 mm reach forces more blocks to remain together in fewer chiplets. As
shown in Figure 4, longer 1/O reach values enable connections that are impossible under shorter
reach limits. A reach of 2 mm effectively restricts connectivity to nearest neighbors, which forces
more blocks to remain colocated and increases overall cost. This effect is clearly illustrated in the
TC, testcase: with a 2 mm reach, the resulting solution has a cost of 46.3, whereas increasing the
reach to 10 mm produces a lower-cost solution (cost 43.4), corresponding to a 6.3% reduction. Fig-
ure 14(b) compares the same parallel 1/0 testcase with UCle interfaces, showing that UCIe’s large
/O cells favor fewer chiplets, while the parallel interface with smaller I/Os and bump pitches enables
finer partitioning. For example, this effect is evident in the EPYC testcase. We verified the impact
of I/O type and bump pitch by evaluating the cost of a fixed chiplet partitioning solution, the paral-
lel_10um solution, under the other I/O configurations. When evaluated with the parallel_I10um 1/O
configuration, the solution has a cost of 73.1, whereas evaluating the same partitioning solution un-
der the UCle_advanced_55um and UCle_standard_110um configurations increases the cost to 74.1
and 74.5, respectively. Because this additional cost arises solely from the larger I/O cell sizes and
pitches, the solutions optimized for UCle_advanced_55um and UCle_standard_110um reduce the
total inter-chiplet connection bandwidth by merging blocks into fewer chiplets, thereby avoiding the
higher I/O cost.

Mixed cost/power objective function. ChipletPart can simultaneously optimize cost and power
using a weighted sum of chiplet cost (Equation 1) and power as its objective function. Table 10
shows results for various cost and power coefficient combinations. For this experiment, we use the
WS, and TC; testcases, with all chiplets implemented in 7 nm technology. As the power coeflicient
increases, the solutions favor fewer chiplets since large I/O drivers for inter-chiplet connections incur
higher power consumption.

8 CONCLUSION

We have proposed ChipletPart, a novel chiplet partitioning framework designed to tackle the chal-
lenges of partitioning large, 2.5D heterogeneously integrated systems into chiplets. ChipletPart lever-
ages an advanced cost model, is power-aware, and uses a genetic algorithm to simultaneously assign
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Table 10. Effects of different cost and power coefficient combinations. Cost and Powery refer to normalized
cost and power, respectively.

Coefficients | wS, | TC,

Cost Power | [C| Costy Powery | |C| Costy Powery
1 0 6 1.00 1.00 6 1.00 1.00

0.75 0.25 6 1.02 0.97 4 1.03 0.97
0.5 0.5 4 1.06 0.95 2 1.04 0.95

025 0.75 4 1.07 0.93 2 1.07 0.93
0 1 2 1.10 0.92 1 1.08 0.91

technologies to chiplets, all while consistently returning I/O-feasible solutions that honor the driv-
ing reach of inter-chiplet I/O drivers. Experimental results demonstrate that ChipletPart outperforms
classical netlist partitioners, Floorplet [7], and human baselines. Additional studies illuminate de-
pendencies of partitioning outcomes on the underlying packaging and I/O technology. We have also
explored Bayesian optimization as an alternative search strategy. Although Bayesian optimization
can sometimes generate higher-quality solutions than the genetic algorithm, it incurs significantly
higher runtime overhead.

While ChipletPart is designed as a cost-driven partitioning framework, its modular, black-box
optimization approach promotes future integration of more complex objective functions that con-
sider power, performance and thermal factors. Extending the current objective function to include
additional factors remains a direction for future work. Considering detailed I/O planning is another
direction for future work. Detailed I/O planning that supports pass-through connections, multiple I/O
types on a die, “gas station” buffers [64], buffer chiplets, or other similar architectural considerations
will bring significantly increased problem complexity. Evaluation with routing-congested designs is
another topic of interest. We also aim to enhance ChipletPart by identifying repeated structures in
the netlist, a capability that could significantly improve scalability for larger designs. Beyond 2.5D,
adapting ChipletPart to 3D-stacked technologies, where vertical interconnects, TSV constraints, and
tier locality introduce new partitioning objectives, is an opportunity for future work. Incorporating
detailed thermal and power delivery models can potentially enable co-optimization for reliability,
temperature, and system-level performance. Finally, we are exploring the use of alternate optimiz-
ers, such as Integer Linear Programming (ILP) and Reinforcement Learning (RL). We also plan to
integrate ChipletPart with OpenROAD [65] to promote engagement in benchmarking and further
development.
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