
IEEE JOURNAL OF SOLID-STATE CIRCUITS 1

A 65-nm Digital Stochastic Compute-in-Memory
CNN Processor With 8-bit Precision

Jiyue Yang , Member, IEEE, Tianmu Li , Wojciech Romaszkan , Puneet Gupta , Fellow, IEEE,
and Sudhakar Pamarti , Senior Member, IEEE

Abstract— Compute-in-memory (CIM) is an emerging solution
that embeds compute logic inside the memory array to achieve
high energy efficiency and reduce memory access cost. However,
current CIM solutions require bulky analog-to-digital converter
(ADC)/digital-to-analog converters (DACs) that make the accel-
erator power hungry and unable to scale in the more advanced
process with a low power supply. Stochastic computing (SC) is
an attractive alternative digital compute scheme that uses tiny
bit-serial logic, e.g., AND and OR, to perform the basic MAC
operations on stochastic sequences. In this work, we propose
a stochastic CIM (SCIM) approach that combines the benefits
of SC and CIM accelerators. It eliminates the DACs/ADCs in
CIM and adds CIM’s benefits to SC. We demonstrate a highly
programmable convolutional neural network (CNN) accelerator
that achieves up to 7.96-TOPS/W peak energy efficiency in 65 nm
and inference accuracy comparable to 8-b fixed point.

Index Terms— Convolutional neural network (CNN), compute-
in-memory (CIM), deep learning, hardware accelerator, stochas-
tic computing (SC).

I. INTRODUCTION

DEEP neural networks (DNNs) have been widely used in
the applications of computer vision, voice recognition,

and natural language processing [1], [2]. Deploying deep
learning algorithms on mobile edge devices can significantly
reduce decision latency and protect users’ privacy, but the
edge device’s limited energy budget poses a big challenge to
the hardware’s energy efficiency. DNNs use a large number
of convolution layers to improve accuracy, which leads to
increasing model sizes. State-of-the-art models for ImageNet
dataset require >100 MB of parameters and >109 of multipli-
cation and accumulation (MAC) operations [3]. A general deep
learning accelerator such as GPU and FPGA can process large
DNN models on a workstation. It accommodates a wide range
of applications and programmable computation precisions for
training and inference. However, GPUs require a large power
consumption that might exceed edge devices’ power budget.

Recent works have proposed custom deep learning acceler-
ators for resource-constrained edge devices. The accelerators
can achieve much higher energy efficiency for low-precision

Received 31 March 2024; revised 16 October 2024 and 18 January 2025;
accepted 15 March 2025. This work was supported in part by the Air Force
Research Laboratory (AFRL) and in part by the Defense Advanced Research
Projects Agency (DARPA) under Grant FA8650-18-27867. This article was
approved by Associate Editor Jie Gu. (Corresponding author: Jiyue Yang.)

The authors are with the Department of Electrical and Computer Engineer-
ing, University of California at Los Angeles, Los Angeles, CA 90095 USA
(e-mail: jyang669@ucla.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSSC.2025.3554554.

Digital Object Identifier 10.1109/JSSC.2025.3554554

and inference-only neural network applications. Chen et al. [4]
proposed a digital deep learning accelerator that uses efficient
data flows to maximize data reuses in DNNs and significantly
reduces the off-chip memory access costs. The accelerator has
an array of processing units with fixed-point computation logic
and local scratch pads. However, data movement costs from
the on-chip memory dominate the overall energy consumption.

Compute-in-memory (CIM) accelerator for deep learning
is an emerging solution that provides high energy efficiency
by embedding computation logic inside the memory array to
reduce the data movement cost. The custom-designed CIM
macros are used for both memory and computation. During
computation, multiple rows are activated at the same time to
perform matrix–vector multiplications. Many proposed CIM
solutions are based on computing in the analog domain and
converting to binary results by analog-to-digital converters
(ADCs). Zhang et al. [5], Dong et al. [6], and Yue et al. [7]
proposed accumulating the bit cell’s current on the bitline.
However, the computation accuracy is significantly limited
by the transistor’s local mismatch and nonlinearity. Although
a large number (32∼64) of rows are activated in parallel,
only 3∼4-bit accurate computation accuracy can be achieved
per dot-product operation. ADCs also cause large area and
energy overhead. Other researchers have proposed charge-
based computing [8], [9], [10] using a metal-based capacitor
embedded on top of the memory’s bit cell at the back end.
Multiplication results are stored as charges on the capacitor
and then accumulated on the bitline. Due to the large size of
the capacitor, a much better matching property is achieved.
More than 2000 parallel rows and 8-bit computation accuracy
are demonstrated. However, charging the bit cell’s capacitor
causes a significant amount of energy. Although capacitors
have good matching properties, Wang et al. [11] found out
that global process, voltage, and temperature variations can
greatly degrade computation accuracy.

To alleviate analog computing’s error and energy over-
head problems, researchers have proposed robust digital CIM
macro [11], [12]. The 1-bit multiplication is done in the
bit cell and accumulated by an in-memory digital adder
tree. It achieves accuracy close to fixed-point computation,
but adder trees degrade the macro’s area density. Stochastic
computing (SC) is a digital probabilistic computing framework
that uses random bit streams to represent numbers and simple
bit-wise digital logic (AND and OR) gates to compute in
the domain of probability. Previous work [13] has shown
a deep learning accelerator using a standard cell’s digital
circuit to implement SC. It has demonstrated significantly

0018-9200 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UCLA Library. Downloaded on April 17,2025 at 02:41:01 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6328-7032
https://orcid.org/0000-0002-1078-6743
https://orcid.org/0000-0003-0906-7079
https://orcid.org/0000-0002-6188-1134
https://orcid.org/0000-0003-1457-7508

2 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 1. High-level diagram of an SCIM macro, comparison between SCIM
and analog CIM.

improved computation density and energy efficiency compared
to digital accelerators. In this work, we propose a stochastic
CIM (SCIM) deep learning accelerator that combines the
benefits of SC and CIM architecture. Due to the digital
computation of SC, the CIM macro eliminates the large
and power-hungry analog blocks: digital-to-analog converters
(DACs)/ADCs. The OR-based SC accumulation is embedded
as the memory’s wired-OR structure on the compute line.
The accumulation is a 1-bit operation and therefore does not
cause area overhead. Efficient training for SC is performed
and achieves comparable accuracy to INT8 on MNIST and
CIFAR-10 classification. A high-level comparison between
stochastic CIM and analog CIM is shown in Fig. 1. The DNN
accelerator achieves energy efficiency up to 7.96 TOPS/W in
65 nm, which is 2–3× higher than analog CIM solutions.
The main contributions of our works are: 1) a bit-parallel
dataflow that maps bit-wise SC to SCIM macros in parallel;
2) storing pre-converted stochastic numbers in memory to
achieve massive reuse of stochastic number generator (SNG);
and 3) computation skipping technique to reduce SC stream
length when the convolution layer is followed by average
function.

A. Stochastic Computing

SC represents numbers and performs computation in the
probability domain. The value of a number is represented
by the fraction of ones in a random binary bit stream. For
example, in a stochastic stream of 8 bits, A = 01000001,
2 bits are one, and 6 bits are zero. It represents the value of
2/8. Each bit represents an equal weight of 1/N , where N is
the stream length. The position of the one should be randomly
located in the bit stream to avoid correlation between different
bit streams during computation.

The conversion from binary to stochastic numbers is done
by the SNG, as shown in Fig. 2. A randomness’ source
is required. True random number generator (TRNG) can
generate uncorrelated bit streams, but the high energy and
area make it impractical to implement. Pseudorandom number

Fig. 2. Number representation and basic building blocks of SC.

generators (PRNGs) such as linear feedback shift register
(LFSR) are commonly used. To avoid correlations between
different SNGs, LFSRs with different polynomial functions
or seeds are used, which can be easily programmed on the
chip. The conversion can be implemented by a comparator or
a chain of multiplexers.

If the location of the ones in the SC bit stream is chosen
randomly, the multiplication arithmetic of SC follows the rules
of probability: Prob(A ∩ B) = Prob(A) × Prob(B). This
can be achieved by AND gate in hardware. Addition can be
implemented by multiplexer and OR gate [14]. Multiplexer
achieves the scaled addition between input streams. The con-
trol bit randomly selects between the inputs, which performs
an average function. For addition between many inputs, mux-
based addition leads to a small output amplitude due to the
scaling factor. Although it performs accurate addition, the
adder hardware costs a large area and energy consumption.
The OR gate performs approximate addition following the
union of two random variables Prob(A ∪ B) = Prob(A =

1) + Prob(B = 1) − Prob(A ∩ B) ≈ Prob(A) + Prob(B).
Although the OR-based accumulation does not implement

the accurate addition function, previous works of SC proposed
training methods to improve the computation errors in accumu-
lation and stream generation when used in deep learning [15],
[16]. SNGs using PRNGs create deterministic bit streams
given the same inputs and stream. The training model can
learn the patterns in the bit stream and allow moderate sharing
of random numbers between SNGs without degradation to
the accuracy. State-of-the-art classification accuracy has been
demonstrated for MNIST/CIFAR10 datasets with DNNs that
are comparable to 8-bit fixed-point implementations.

B. Motivation and Challenge of SC
Memory access consumes significantly more energy than

conventional binary computation. Reducing the number of
on-chip and off-chip memory access is critical to achieve
higher energy efficiency. SC uses tiny bit-wise logic gates
to achieve extremely high parallelism and reduce the on-chip
memory access. The previous work [13] has built a highly

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UCLA Library. Downloaded on April 17,2025 at 02:41:01 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: 65-nm DIGITAL SCIM CNN PROCESSOR WITH 8-bit PRECISION 3

Fig. 3. Architecture of SCIM accelerator.

programmable SC deep learning accelerator using fully syn-
thesizable standard cell digital gates. The MAC array achieves
a density of 38.4 K/mm2 (including SNG, buffers, and control
logic), which is >10× higher than fixed-point logic.

The CIM architecture can achieve a large reuse factor
and high density due to: 1) no memory access is required
for weight since computation happens inside the memory
and reloading of the CIM macro is necessary for a larger
network, but the cost can be reduced by a large amount of
reuse and 2) CIM breaks the bandwidth limits of the Von
Neumann architecture by activating multiple rows or entire
arrays for computation. The dense array can achieve very
high parallelism. Combining the benefits of SC’s lightweight
digital computation with CIM’s low data movement cost is
an attractive solution. The SCIM accelerator embeds robust
digital MAC circuits in the memory and does not suffer from
analog noise. The accumulated output is a 1-b signal at the
logic level and does not require large ADCs. Despite the ben-
efits, a few challenges need to be overcome: 1) SNG’s energy
consumption is significantly larger than the SC’s computation
and a large SNG reuse factor is needed to reduce the average
cost per operation; 2) the stream length of the stochastic
number representation increases as a power of two with the
number’s precision and the long stream length degrades the
energy efficiency and the throughput; and 3) SC’s OR-based
approximate accumulation is a nonlinear addition function.
An efficient model of the accumulation function is needed
during neural network training to achieve comparable accuracy
as a fixed point.

II. SCIM PROCESSOR

Fig. 3 shows an overview of the convolutional neural net-
work (CNN) processor based on the concept of SCIM. It has
32 SCIM macros that perform bit-parallel processing of convo-
lution between activations and weights in the SC domain. The
convolution results are converted to the fixed-point domain
by the parallel counters. ReLU, max pooling, and batch
normalization are performed at fixed point. The layer outputs
are stored in the output SRAM until the next layer starts
processing.

Fig. 4. Split-unipolar representation for inputs and weights. Bit-parallel
processing and mapping to SCIM macros.

A. Bit-Parallel In-Memory Compute Data Flow

Conventional SC operates serially due to the sequential
generation of stochastic bit streams. Embedding bit-serial SC
computation in memory requires SNGs, which occupy a large
area. To enable SC-in-memory, this work proposes to store
entire bit streams in memory and computation will happen in
parallel. A bit-parallel and in-memory SC data flow is designed
to store input bit streams since activations are positive values
and require less storage compared with weights. Unipolar
stochastic representation directly maps the probability of ones
to a range of [0, 1], therefore only representing positive num-
bers. Split-unipolar SC representation is a simple way to use
the difference between two unipolar bit streams, positive and
negative streams, to represent a signed number between −1
and 1. Fig. 4 shows an example. For a negative number, W =

−2/8, and the magnitude 2/8 is encoded in the negative stream
and the positive stream is zero. The difference in probability
between positive and negative streams is −2/8. SCIM can also
support negative inputs by storing split-unipolar streams in
the macros and subtracting macros’ outputs, but the proposed
accelerator only implements data flows for positive inputs
specific to vision-based applications.

The MAC arithmetic of the split-unipolar stochastic bit
streams needs to account for the cross-product between the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UCLA Library. Downloaded on April 17,2025 at 02:41:01 UTC from IEEE Xplore. Restrictions apply.

4 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 5. SNG circuit. Dath path of SNG for input and weight. Seed schedule for parallel SNGs.

operands’ positive and negative streams. Inputs to each neu-
ral network layer are typically positive numbers due to the
nonlinear activation function such as ReLU, which clips
negative values to zero. Inputs only need one unipolar bit
stream to represent positive values. Weight parameters are
signed numbers and require both positive and negative streams
of split-unipolar representation. The cross product between
input’s positive stream: a and weight’s split-unipolar streams:
wp/wn is illustrated in Fig. 4. Assume that both input and
weight are 1-D vectors with K elements. Each element of input
a is multiplied with wp and wn by intersection AND logic:
ak ∩ wpk and ak ∩ wnk and then accumulated by the union
OR logic. The outputs of the two union operations produce
positive and negative streams: outp and outn, which are the
split-unipolar representations of the dot product’s result.

Fig. 4 (bottom) shows how bitwise processing of the con-
ventional SC MAC operation is mapped to SCIM macros.
Assume that the stream length is N . Conventional bit-serial
SC arithmetic process 1 bit at a time through the AND and OR
gates. To perform SC in memory, each SCIM macro stores
the 1-bit representation of the input vector: macro-1 stores
a1_t1∼ak_t1, where a1∼ak denotes the k elements of vector
a and t1 denotes 1st bit of stochastic bit stream. Macro-2
stores a1_t2∼ak_t2 and macro-N stores a1_tN ∼ak_tN . Each
1-bit representation of the weight vector is applied to macros:
wp1_t1∼wpk_t1 and wn1_t1∼wnk_t1 are applied to macro-
1. wp1_tN ∼wpk_tN and wn1_tN ∼wnk_tN are applied to
macro-N . The dot product between inputs and weights is
performed in the memory macros together. The bit-parallel
processing unrolls the bit-wise operation in space so that all
the output bits are computed and available in one cycle.

B. Stochastic Number Generator
A bottleneck with conventional SC is the large energy cost

of the conversion from binary to SNs. SNGs typically use
PRNGs such as LFSR as the randomness source. It consumes
25× more energy than an SC MAC unit, which only performs

1-bit in-memory AND and OR operations. A large reuse factor
of the SNG output is required to reduce the energy cost.
Fig. 5 shows the diagram of the SNG circuit. Each register
of the LFSR controls one multiplexer. The multiplexers are
cascaded, and each control signal selects between a binary
bit of the input and the output of the previous multiplexer
(see Fig. 5). N multiplexers are required to convert an
N -bit binary number to stochastic bits. It can be shown that
the SNG can almost accurately convert binary numbers if
two conditions are met: 1) maximal-length LFSR is used
as the randomness source and 2) the order of the LFSR’s
characteristic polynomial matches the bit width of the input
binary number [17]. An N -bit maximal-length LFSR will
iterate over all the possible combinations of N -bit numbers
except zero and therefore has a period of 2N

− 1. Each N -bit
combination is iterated exactly once. The most significant bit
of the binary number is multiplexed to the SNG output exactly
2N−1 times. Other bits are multiplexed with binary weighted
frequencies: 2N−2, 2N−3, . . . , 20, and therefore, the frequency
of one in the stochastic bit stream accurately represents binary
input. Since the accelerator performs 8-bit computation with
1 bit for sign and 7 bits for magnitude. The LFSR size is
chosen to be 7 bits. The demultiplexer at the output of the
SNG selects between xp and xn based on the sign of the binary
input.

1) SNG for Inputs: The SCIM macro stores the
pre-generated stochastic bit stream of inputs. Fig. 5 shows
how the per-column SNG supports both loading inputs and
applying weights during computation. Each column has an
SNG and driver for bit lines: BL/BLb and compute word
lines: CPWLP/N. The SNG converts the binary number X
to split-unipolar stochastic representation: xp/xn. Since the
activations use unipolar representation, only xp needs to be
stored in the memory. During input loading, xp is sent to the
BL buffer, which drives BL/BLb and stores xp to the bit cell.
Each macro only stores one stochastic bit of the activation.
A parallel stochastic number generation scheme supports the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UCLA Library. Downloaded on April 17,2025 at 02:41:01 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: 65-nm DIGITAL SCIM CNN PROCESSOR WITH 8-bit PRECISION 5

Fig. 6. Reuse of the stored activations (top). Energy cost of SNG with and
without reuse (bottom).

bit-parallel SC processing shown in Fig. 5. The LFSR state
table characterizes the changes in the shift registers at different
cycles. To parallelize the SNG, each LFSR state is used to
initialize the LFSR in different SCIM macros: seed 1 for the
1st macro and seed K for the K th macro. The results of K
SNGs in one conversion cycle are the same as a single SNG
generating for K cycles.

The stored activation stochastic bits can be reused from
filter’s sliding windows and output channels, as shown in
Fig. 6. Assume that the 2-D filter has the shape of R × R
and M output channels, and the activation can be reused with
the maximal factor of R × R × M . The SNG cost is lowered
by the same factor since SNG only consumes energy when
activations are loaded into the memory. The actual activation
reuse factor depends on the size of each layer and whether
the SCIM macro can support sliding windows across X - and
Y -dimensions without reloading the activations. Our proposed
accelerator computes Y -axis sliding windows in parallel due to
the parallel operation of rows in the SCIM macro and X -axis
sliding windows in serial. If the layer’s X -dimension is too
large, the SCIM macro might not support sliding windows on
the X -axis without reloading the activations into the SCIM
macro. The activation reuse over output channels can be
easily supported with increased intermediate storage when the
output channel size is large. Therefore, the lower bound of the
activation SNG reuse factor is: RxM. In our experiment with
CNNs supporting MNIST and CIFAR-10 classifications, the
activation SNG reuse is >32.

2) SNG for Filters: The filters use the same SNGs as inputs
but during the computation cycle. The binary filter coefficients
are converted by SNGs in different SCIM macros in parallel
to stochastic bits. The compute port word line (CPWLP/N)

Fig. 7. SCIM bit cell array. Circuit implementation of 10T SCIM cell and
sense amplifier. Timing diagram of a compute operation.

drivers buffer the split-unipolar bits xp and xn. All the rows in
the SCIM macro operate in parallel, and therefore, the energy
cost of filter SNG and CPWL driver is shared by the number of
rows: 32. The comparison of the energy cost of the activation
SNG, filter SNG, and SNG without any sharing is shown in
Fig. 6. Although the SNG energy is 25× higher than a single
SC MAC unit, the activation and filter SNG energy cost is
reduced by more than 32× due to reuse.

C. SCIM Array

The SCIM macro embeds simple digital SC computation
logic inside the memory to achieve high energy efficiency
for matrix multiplication operations: AND gates for multi-
plication and OR gates for approximate accumulation. Each
1-bit stochastic representation of the activation is stored in the
10-T bit cell before the computation. The storage cell uses
the standard 6-T SRAM cell design. The bit cell structure
is shown in Fig. 7 (bottom). Each pair of cascaded nMOS
transistors performs an AND operation between the stored
activation bit and a weight stochastic bit applied at the compute
wordline (CPWLP/CPWLN). The two multiplier circuits in
the bit cell perform multiplication between activation (a) and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UCLA Library. Downloaded on April 17,2025 at 02:41:01 UTC from IEEE Xplore. Restrictions apply.

6 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 8. Computation skipping of average pooling function. Stream length versus precision function.

weight (wp/wn), which correspond to one positive bit and
one negative bit of a weight parameter. The shared compute
port (CPP/CPN) across a row realizes a wired-OR operation
between 256 cells. The CPWLP/N is routed in the vertical
direction and shared by all the bit cells in the same column.
A simplified diagram of SC MAC units of one row is shown
in Fig. 7 (top). The computation follows the operation of
the precharged pseudo-nMOS logic. The timing waveform of
the MAC operation is shown in Fig. 7. The compute port is
initially precharged to VDD and all the CPWLs are grounded.
Once the computation starts, the compute port’s precharging
pMOS transistor is turned off and CPWL drivers are enabled.
If the OR accumulation result is zero, no bit cell is conductive
and only a small leakage current discharges the compute port.
Simulation shows only 12-mV voltage drop due to 256 bit
cells’ leakage current for the worst PVT corner. If at least
one bit cell is conducting, the OR accumulation result is one
and the compute port will be discharged toward ground by
active current. The timing constraint between pre-charging
and sense amplifier’s latch enable signal is decided by the
propagation delay from the compute line to the output of the
sense amplifier. The worst case propagation delay happens
when only one bit cell is conductive and the rest of 255 bit
cells are non-conductive. The data stored in the bit cells vary
the total compute line’s capacitance. When the stored bit (a)

is 1, the top nMOS transistor is turned on and contributes
extra gate capacitance compared to when the transistor is off.
It is simulated by setting a = 1 and wp/wn = 0 for all
255 non-conductive bit cells and across PVT variation using
parasitic-extracted netlist. The delay between pre-charging and
latch enable signal is controlled by digital logic in a finite
state machine that counts a programmable number of system
clock. A simple inverter acts as a sense amplifier and buffer
to provide tolerance to noise and coupling. Once the compute
port evaluation is done, the 1-bit result is registered in a
flip-flop. The macro is 32 rows tall and 256 columns wide.
Each row performs two 256-long dot products, and one macro
contains 16.4k MAC units.

D. Computation Skipping for Average Pooling
A computation skipping technique is developed to reduce

stream length when the convolution layer is followed by an

average pooling function. The pooling layer is a necessary
component in neural networks to make the output features
less sensitive to the location of the input and reduce layer
dimension to save computation complexity. Pooling based on
the maximal and average values are both highly effective:
max pooling helps highlight the prominent pixel in the win-
dow, while average pooling can smooth out the images [18].
An averaging function can be implemented in SC using simple
multiplexer logic. Consider an average pooling window of
K × K . It is realized by a K 2:1 mux that selects one of
the K 2 inputs randomly (see Fig. 8). The probability of the
multiplexer’s output is the average input probabilities. For
a four-input average pooling function, each stochastic input
is selected for 1/4 of its sequence length. For each input
stream, the unselected stochastic bits do not contribute to the
output and the computation for those bits can be avoided
to save energy and latency, which was originally proposed
by [15]. Each input only needs to compute for N /4 bits for an
original N -bit stream. The shorter stream length equivalently
scales each input by 0.25 and the four inputs are added by
accumulative parallel counters (APCs).

SC’s energy consumption and latency increase exponentially
versus computation precision due to its stochastic represen-
tation: N -bit binary number requires 2N stochastic bits and
2N evaluation of bitwise SC logic. In contrast, fixed-point
digital logic’s energy increases as N 2. An N -bit multiplier
requires N 2 of full adders. Analog-based CIM commonly
uses a bit-parallel bit-serial scheme to perform multi-bit mul-
tiplication [19], which also causes the energy to increase
quadratically. Weight bits are stored as 1 bit per column and
computed in parallel, but the input bit is serially applied to
the CIM macro in N cycles. For an N -bit computation, CIM
requires N 2 of in-memory MAC and ADC evaluation. For
4-bit or lower precisions, the number of MAC evaluations is
comparable between SC and ADC-based bit-serial CIM (42

=

24
= 16). However, an 8-bit SC computation requires 28

=

256 MAC evaluations, which is 4× larger than the ADC-based
bit-serial CIM.

A comparison of the energy efficiency with other CIM
types is shown in Fig. 9. The SCIM macro’s energy cost
is measured in post-layout simulation and includes SNGs for
input stochastic number conversion, counters for output binary

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UCLA Library. Downloaded on April 17,2025 at 02:41:01 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: 65-nm DIGITAL SCIM CNN PROCESSOR WITH 8-bit PRECISION 7

Fig. 9. Energy cost comparison of all components in CIM and SCIM macros
normalized to 1-b Op. Energy efficiency improvement of SCIM over other
CIMs versus precisions.

conversion, and in-memory SCIM MAC. The charge-based
CIM macro consumes energy from the input driver, charge-
based CIM MAC, and column ADC. The energy consumption
of each block is normalized to 1-bit operation and plotted in
Fig. 9. The energy is derived from [19] demonstrated in 65-nm
technology. The ADC accounts for 20% of the macro energy,
but the ADC’s precision is 3 bits less than the full dynamic
range of the column dot product. Overall, SCIM achieves >6×

higher energy efficiency than analog CIM for 1-bit Op. For
higher precision, SC benefits diminish due to the longer stream
length. For 8-bit precision, SC compute requires 256 1-bit
Op, but CIM only requires 64 1-bit Op. The advantages of
SCIM drop to 1.6× for 8-bit computation. The average pooling
reduces the stream length by 4× and makes SCIM 6.4× more
energy efficient than CIM. The energy cost of the digital CIM
is mainly dominated by the full adder circuit, which requires
switching 10∼20 extra transistors per stored bit. SCIM has
8× energy efficiency improvement over digital CIM at 1-b
precision and 2× benefits at 8-b precision, as shown in Fig. 9.

III. EFFICIENT MICRO-ARCHITECTURE DESIGN FOR CNN

The proposed SCIM CNN accelerator supports end-to-end
operation for convolutional neural network inferences and it is
highly programmable to accommodate different layer topolo-
gies. In this section, we introduce different micro-architecture
designs that support the efficient implementation of CNNs.

A. Near-Memory Partial Binary Accumulation

The near-memory accumulation circuit supports partial
binary accumulation between rows (see Fig. 10). Partial binary
accumulation is a technique to improve accuracy by breaking

Fig. 10. Near-memory partial binary accumulator circuits.

large SC dot products into several small ones and adding
partial SC outputs using fixed-point adders. The in-memory
dot product of two vectors in the SC domain uses AND
logic as the multiplier, and then, the multiplication results
are accumulated by the wired-OR structure of the SCIM
macro’s compute port. The partial binary accumulator block
has 32 rows, matching the height of the SCIM macro, and a
binary integrator circuit. The multiplexer can select every eight
adjacent rows to the accumulator’s input, which supports the
row stationary dataflow to be discussed in Section III-B (see
Fig. 10). One multiplexer selects among positive stochastic
bits of the eight rows’ output (outp), and the other multiplexer
selects the negative stochastic bits (outn). The split-unipolar
decoding circuits subtract 1-bit outn from outp. The 2-bit sub-
traction result is accumulated by the fixed-point accumulation
circuit.

B. IRS Dataflow for Conv Layer

The input activation’s stochastic bits are stored in the
SCIM macro due to the shorter stream length of the unsigned
numbers compared to the signed weight parameters. An input
and row stationary (IRS) dataflow is used to maximize the
input reuse during the convolution. Instead of flattening the
3-D activation tensor into a 1-D vector, only the depth channel
is fattened. The rows of the flattened activation can be reused
during convolution sliding. Each activation row is stored in
one row of the SCIM macro. A total of 32 activation rows
are stored. The filter is flattened in the same manner into a
2-D map. Convolution operation prioritizes sliding across the
Y -direction because the physical structure of the macro allows
multiplication between rows to happen in parallel. Weight rows

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UCLA Library. Downloaded on April 17,2025 at 02:41:01 UTC from IEEE Xplore. Restrictions apply.

8 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 11. Data flow of convolution. Ping-pong FIFO registers for weights.

are applied to the macro serially in different cycles, which
is supported by a ping-pong structure of FIFO cyclic shift
registers. Each register stores one row of the weight kernel.
The ping-pong structure enables computation and loading new
weight kernels simultaneously to hide the latency of SRAM
access. One FIFO provides weight parameters to 32 SCIM
macros and the other FIFO loads the next kernel from SRAM.
Once the computation of one FIFO is finished, the roles of
two FIFOs are switched and the multiplexer will select the
new FIFO. Each SCIM row performs a dot product between
an activation row and weight row. In the next cycle, the FIFO
register shifts and the next weight row is applied to the macro.
The row multiplexers shift the sense amplifier’s outputs to the
next row’s partial binary accumulator such that the row outputs
are accumulated diagonally, as shown in Fig. 11. The row-wise
convolution is done until all the weight rows are shifted from
the FIFO. The row multiplexers can select every seven rows’
output, which supports 3 × 3, 5 × 5, and 7 × 7 convolution
kernel size.

Convolution layer’s dataflow is controlled by the on-chip
finite state machine, which can be broken down into three
recursive for loops: 1) convolution sliding across rows; 2) con-
volution sliding across columns; and 3) computing different

output channels. Sliding across rows 1) is prioritized because
of the row-parallel structure of the SCIM array. The order
between column sliding 2) and output channel 3) depends on
the layer and kernel dimensions.

1) If the SCIM Macro’s Width Is Larger Than the Flattened
Kernel Width: The macro’s row can store activations of more
than one convolution sliding window. The column sliding is
scheduled first before loading a different weight kernel because
sliding across the SCIM macro’s columns avoids reading new
weights from SRAM. Since the kernel width is smaller than
the macro width, the weight kernel needs to be shifted to
match the CPWL of a sliding window. This is achieved by a
programmable barrel shifter at the output of ping-pong FIFO
registers, as shown in Fig. 11. Other CPWLs not inside the
sliding window are masked by zero. The shifting step for
each sliding window is calculated by a controller based on the
current sliding location and stride. Once a kernel has finished
convolution over the stored input activation, the next kernel
is applied by switching the ping-pong FIFO. If the activation
map’s size is larger than the SCIM array width, new activations
need to load into the SCIM array to complete convolution over
the entire activation map. Since the kernel width is smaller
than the SCIM array width, the SCIM array is underutilized
and the energy efficiency will degrade. This usually happens
in the first few layers of neural networks when the number of
output channels is small.

2) If the SCIM Array Width Is Equal to or Smaller Than
the Flattened Kernel Width: The current activations stored in
the SCIM array can only support one column-wise sliding
window. Output channels 3) loop will be scheduled first
because the energy cost of reading new weight kernels is
smaller than loading inputs to the SCIM macros. To compute a
different column-wise sliding window would require accessing
input SRAM and loading 32 rows of input activation to the
SCIM array. The kernel size (3 × 3 or 5 × 5) is much
smaller than the height of activation map and therefore requires
less SRAM accessing and communication energy. The output
channels are scheduled to perform convolution over the current
activations stored in the SCIM macros, and then, the SCIM
array will be reloaded with new activations. Since the entire
array is utilized for computation, the energy efficiency is the
highest in this case. This usually happens for most of the
hidden layers in DNNs where the flattened activation map’s
dimension is large.

C. Stochastic-to-Binary Conversion and Fixed-Point
Domain Processing

The convolution outputs from the SCIM macros are con-
verted to binary numbers to perform nonlinearity and scaling
functions in the fixed-point domain. The stochastic outputs
are converted to binary numbers by an array of parallel
counters (see Fig. 12). Each SCIM macro produces 32 4-bit
partial binary outputs. The outputs corresponding to the same
convolution result in all 32 SCIM macros are passed to a
parallel counter, which adds 32 binary numbers and produces a
9-b result. The parallel counter uses a binary tree architecture
with two-stage pipelines to reduce the impact on the overall
latency. The first pipeline register is placed after the third adder

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UCLA Library. Downloaded on April 17,2025 at 02:41:01 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: 65-nm DIGITAL SCIM CNN PROCESSOR WITH 8-bit PRECISION 9

Fig. 12. Parallel counter for stochastic to binary conversion. Fixed-point
domain processing.

stage, which makes the delay of the two pipeline sections about
the same.

After the convolution outputs from SCIM macros are con-
verted to binary numbers, the output processing functions such
as pooling, batch normalization, and ReLU are done in the
fixed-point domain (see Fig. 12). They are implemented in
pipelined stages for maximum throughput. The first step of
the fixed-point processing is average pooling. The computation
skipping implemented in the SC domain reduces the stream
length and therefore implicitly scales down the output value by
the number of elements in the pooling window. To complete
the average pooling function, the scaled outputs within pooling
window need to be added. This design supports a pooling
window of 2 × 2 and the inputs to the average pooling’s
adders are available at two different clock cycles. In the first
clock cycle, the outputs from the parallel counters contain one
column of the output feature map and they are stored in the
shift registers next to the average pooling adders. The adjacent
output feature map’s column is computed after the kernel
slides to the next column. Once the results of two adjacent
output columns are available, the adder sums four inputs from
the shift register. The average pooling can also be bypassed to
support the layer without the pooling function. The results are
scaled with batch normalization’s scaling parameter and then
subtracted with bias. The batch normalization’s outputs are
then processed by the ReLU function, which clips the negative
values to zero. The outputs are loaded in the activation SRAM
on chip until the start of the next layer.

D. OR-Accumulation and Neural Network Training

There are two main sources of random errors: 1) OR-based
nonlinear accumulation function and 2) random bit stream

Fig. 13. OR accumulation’s output versus accurate sum. Modeling of
OR-accumulation during training.

representation generated from SNG. The OR-based accumu-
lation is a nonlinear addition function. Take a two-input OR
operation as an example. If the two input stochastic bit streams
have the probability of a and b, the output probability is
a + b − ab. When multiple inputs are accumulated by the
OR-based accumulation, the output can be derived as shown in
Fig. 13 and approximately equals 1-e−s, where s is the accurate
sum of all the inputs. The plot of OR-accumulator’s outputs
versus accurate sum of the inputs is shown in Fig. 13 (top). The
curve is close to a linear function in the range between 0 and
1. When the inputs become large, the accumulation saturates
at 1 and becomes nonlinear. The backpropagation of the neural
network training needs to account for the accumulation errors.
We model the OR accumulation as a nonlinear activation
function after an accurate accumulation, as proposed in [15].
The error in random bit stream representation is modeled by
using the exact LFSR sequence and SNG during training. Mul-
tiplication is also modeled using the AND operation between
stochastic bit streams of input and weight. The multiplication
outputs are converted to floating point and accurately added.
The details of modeling the errors in stream generation are
discussed in [13].

IV. MEASUREMENT RESULTS

The accelerator chip is fabricated in 65-nm CMOS tech-
nology, and a macro test chip is fabricated in 14 nm to
better characterize the performance of the macro individually.
The accelerator chip in 65 nm has an area of 9.36 mm2.
A die photograph is shown in Fig. 14. The activation and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UCLA Library. Downloaded on April 17,2025 at 02:41:01 UTC from IEEE Xplore. Restrictions apply.

10 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 14. 65- and 14-nm chip micrograph.

Fig. 15. 65-nm chip clock frequency versus voltage.

weight SRAM are located at the bottom of the chip. The
32 SCIM cores are placed in a 4 × 8 array and contain 260-kB
in-memory storage and 520 kB of MAC units in total, which
achieves 130-kB/mm2 MAC density. The nominal voltage
of the 65-nm process is 1 V. The macro’s read/write and
dot product functions are verified at different supply volt-
ages and operating frequencies, as shown in Fig. 15. The
maximal clock frequency at 1 V is 5 MHz. It is limited
by a problem of on-chip power delivery structure and could
achieve a much higher frequency and throughput given a
more optimized design. The macro is fully functional down
to 0.7-V supply with a clock speed of 3.2 MHz. The area
breakdown of the SCIM core and whole chip is shown in
Fig. 16. The SCIM core area is dominated by the bit cells.
The 1-bit sense amplifiers only occupy 2% of the area.
SNG and row accumulator account for 15% and 6.25% of
the SCIM core area, respectively. Input and weight SRAM
accounts for a similar area as SCIM cores at the top level.
The rest of the area is split among local register buffers,
parallel counters, layer processing circuits, FSM, and JTAG
interface.

CNNs for MNIST and CIFAR-10 datasets are demonstrated
on the 65-nm accelerator chip, and the performance is summa-
rized in Table I. We designed and trained CNN networks that
can keep all parameters on the chip during computation. The
measurement of energy consumption includes all components
on the chip and there is no off-chip data movement during
computation. For the MNIST dataset, the LeNet-5 topology is
used. There are two CONV layers, each followed by average
pooling to take advantage of SC’s computation skipping and
three fully connected layers. The classification results of the
MNIST dataset achieve an accuracy of 99.1% over 1000 test
images, which is close to the training accuracy. Activation

Fig. 16. Area breakdown of SCIM cores and whole chip.

and weight both have 8-bit precision. Due to the small size
of filters used in LeNet-5, the peak macro utilization is only
5.1% and it causes significant degradation of energy efficiency.
The peak system energy efficiency for MNIST classification
is 0.35 TOPS/W.

For the CIFAR-10 dataset, we designed and trained a four-
layer network: TinyConv-4. There are three convolution layers
with 5 × 5 filters followed by 2 × 2 average pooling,
batch normalization, and ReLU function. The last layer is
a fully connected layer generating the classification results.
TinyConv-4 is trained in both floating point and SC. The
classification inference accuracy using INT8 is 78%. The
training accuracy using SC achieves 75%. The test accuracy
measured on the SCIM accelerator is 73.5% in 1000 images.
Due to the limited on-chip memory, the accuracy is constrained
by the network size and can be improved for a larger network.
TinyConv-4 is larger than LeNet-5 and the utilization problem
is slightly relieved, as summarized in Table I. The largest
macro utilization is 31.3% at the second layer and the peak
system energy efficiency is 2.2 TOP/S/W. The second layer’s
filter size is 5 × 5 × 32. After flattening to 2-D, the size
becomes 5 × 160. The width of the filter, 160, is smaller than
the width of the SCIM macro, 256.

A convolution layer with full macro utilization is tested to
measure the peak energy efficiency of the accelerator. Activa-
tion and filter with a flattened width of 256 and no sparsity
are applied in activation and weight. The energy efficiency
at 0.8-V supply is 5.75 TOP/S/W. The energy efficiency at
different supply voltages is tested and shown in Fig. 17. The
peak energy efficiency at 0.7-V supply is 7.96 TOP/S/W.
A breakdown of the accelerator’s energy consumption is
shown in Fig. 18. The most dominant components are SCIM
cores (49%), clock communication (26%), controller, and
local buffers (15%). The energy of sending 32 SCIM cores’
output to parallel counters and loading weights from SRAM
to 32 SCIM cores account for 11%. Parallel counter and
fixed-point processing account for 2%.

Another test chip is fabricated in 14 nm to characterize
the performance of the SCIM macros alone. The summary
of the chip in comparison with the 65-nm accelerator chip
is shown in Table II. It has 16 SCIM macros of 32 ×

32 array. The bit cell and sense amplifier design are the same
as the 65-nm chip. Each row performs a 32-long dot product
and generates two stochastic output bits (outp/outn). The

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UCLA Library. Downloaded on April 17,2025 at 02:41:01 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: 65-nm DIGITAL SCIM CNN PROCESSOR WITH 8-bit PRECISION 11

TABLE I
NEURAL NETWORK DEMONSTRATION

Fig. 17. Energy efficiency versus voltage.

Fig. 18. Energy breakdown of the accelerator.

16 SCIM macros generate 32 stochastic bits for a given MAC
operation, which is equivalent to 5-b computation precision.
The macro’s outputs are directly accumulated by the parallel
counter without row mux and accumulator at a frequency
of 130 MHz. The measured energy efficiency is 258 TOP/S/W.
The energy efficiency scaled to 8-b operation is 35 TOP/S/W.
If average pooling is used in combination with the convolution
layer, the 8-b operation has an energy efficiency of
140 TOP/S/W.

A comparison table with other works is shown in Table III.
The 65-nm chip packs 520 kB of in-memory MAC unit
on chip, which is way larger than most of the other works

TABLE II
SUMMARY OF TWO PROTOTYPE CHIPS

except [7]. With a smaller number of on-chip MAC units,
more data movement is needed from on-chip buffer or off-
chip DRAM, which might not be accounted for in the energy
measurement. Our work builds a complete CNN inference
process on the chip and keeps all the parameters on chip
to account for all energy costs. The MAC density is also
superior to other analog and digital CIM types. The 65-nm
chip has a density of 130 kB/mm2 and 14-nm chip has a
density of 860 kB/mm2. Digital CIM removes ADCs, but
each stored bit requires ∼20 extra transistors for multiplier
and digital adder circuits. SCIM cell only adds four extra
transistors for SC multiplier and uses the wired-OR structure
for accumulation. We report energy efficiency for 8-b MAC
operation and compare both system and macro efficiency. For
SC, 8-b computation requires processing 256-long stochastic
bit stream. Energy efficiency with and without average pooling
is reported. The 65-nm accelerator has a peak system energy
efficiency of 7.96 TOPS/W and a macro energy efficiency
of 20 TOPS/W with average pooling. The 14-nm macro chip
achieves 140 TOPS/W for 8-b compute with average pooling
and 35 TOPS/W without average pooling.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UCLA Library. Downloaded on April 17,2025 at 02:41:01 UTC from IEEE Xplore. Restrictions apply.

12 IEEE JOURNAL OF SOLID-STATE CIRCUITS

TABLE III
COMPARISON WITH OTHER WORKS

V. CONCLUSION

In this work, we have demonstrated an ADC-less SCIM
accelerator for convolutional neural networks. The accelerator
has 32 SCIM macros storing the pre-converted stochastic
numbers of activation and computing in a bit-parallel way.
Since the OR-based SC accumulation is a 1-bit logic, the
in-memory computation does not require an ADC. We have
proposed a computation skipping technique to reduce the
SC stream length by 4× when the average pooling layer
is used. The accelerator has an efficient architecture sup-
porting full neural network application on chip: convolution
is performed in SCIM macros, and average pooling, ReLU,
and batchnorm are processed after stochastic numbers are
converted to binary. Classification of MNIST and CIFAR-10
datasets is demonstrated with all parameters remaining on
the chip. The accelerator has a peak energy efficiency of
7.96 TOP/S/W for the system and 20 TOP/S/W for the macro.
A test chip is fabricated in 14 nm with only SCIM macro and
shows 35 TOP/S/W in 8-bit operation and 140 TOP/S/W with
computation skipping in the average pooling layer.

REFERENCES

[1] R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Dec. 2015, pp. 1440–1448.

[2] Y. Wu et al., “Google’s neural machine translation system: Bridging the
gap between human and machine translation,” 2016, arXiv:1609.08144.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 770–778.

[4] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural
networks,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[5] J. Zhang, Z. Wang, and N. Verma, “In-memory computation of
a machine-learning classifier in a standard 6T SRAM array,”
IEEE J. Solid-State Circuits, vol. 52, no. 4, pp. 915–924,
Apr. 2017.

[6] Q. Dong et al., “15.3 A 351TOPS/W and 372.4GOPS compute-
in-memory SRAM macro in 7 nm FinFET CMOS for machine-
learning applications,” in IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. Tech. Papers, San Francisco, CA, USA, Feb. 2020,
pp. 242–244.

[7] J. Yue et al., “15.2 A 2.75-to-75.9TOPS/W computing-in-memory
NN processor supporting set-associate block-wise zero skipping and
ping-pong CIM with simultaneous computation and weight updating,”
in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,
San Francisco, CA, USA, Feb. 2021, pp. 238–240.

[8] D. Bankman, L. Yang, B. Moons, M. Verhelst, and B. Murmann,
“An always-on 3.8 µJ/86% CIFAR-10 mixed-signal binary CNN pro-
cessor with all memory on chip in 28-nm CMOS,” IEEE J. Solid-State
Circuits, vol. 54, no. 1, pp. 158–172, Jan. 2019.

[9] H. Jia et al., “15.1 A programmable neural-network inference accelerator
based on scalable in-memory computing,” in IEEE Int. Solid-State
Circuits Conf. (ISSCC) Dig. Tech. Papers, San Francisco, CA, USA,
Feb. 2021, pp. 236–238.

[10] Z. Jiang, S. Yin, J.-S. Seo, and M. Seok, “C3SRAM: An in-memory-
computing SRAM macro based on robust capacitive coupling computing
mechanism,” IEEE J. Solid-State Circuits, vol. 55, no. 7, pp. 1888–1897,
Jul. 2020.

[11] D. Wang, C.-T. Lin, G. K. Chen, P. Knag, R. K. Krishnamurthy, and
M. Seok, “DIMC: 2219TOPS/W 2569F2/b digital in-memory computing
macro in 28 nm based on approximate arithmetic hardware,” in IEEE
Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, San Francisco,
CA, USA, Feb. 2022, pp. 266–268.

[12] J. Yue et al., “A 28 nm 16.9-300TOPS/W computing-in-memory proces-
sor supporting floating-point NN inference/training with intensive-CIM
sparse-digital architecture,” in IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. Tech. Papers, San Francisco, CA, USA, Feb. 2023,
pp. 1–3.

[13] W. Romaszkan, T. Li, R. Garg, J. Yang, S. Pamarti, and P. Gupta, “A 4.4–
75-TOPS/W 14-nm programmable, performance- and precision-tunable
all-digital stochastic computing neural network inference accelerator,”
IEEE Solid-State Circuits Lett., vol. 5, pp. 206–209, 2022.

[14] Z. Li et al., “HEIF: Highly efficient stochastic computing-based
inference framework for deep neural networks,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 38, no. 8, pp. 1543–1556,
Aug. 2019.

[15] W. Romaszkan, T. Li, T. Melton, S. Pamarti, and P. Gupta, “ACOUS-
TIC: Accelerating convolutional neural networks through or-unipolar
skipped stochastic computing,” in Proc. Design, Autom. Test Eur. Conf.
Exhib. (DATE), Grenoble, France, Mar. 2020, pp. 768–773.

[16] T. Li, W. Romaszkan, S. Pamarti, and P. Gupta, “GEO: Generation
and execution optimized stochastic computing accelerator for neural
networks,” in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
Grenoble, France, Feb. 2021, pp. 689–694.

[17] P. K. Gupta and R. Kumaresan, “Binary multiplication with PN
sequences,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-
36, no. 4, pp. 603–606, Apr. 1988.

[18] F. Bieder, R. Sandkühler, and P. C. Cattin, “Comparison of methods
generalizing Max- and average-pooling,” 2021, arXiv:2103.01746.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UCLA Library. Downloaded on April 17,2025 at 02:41:01 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: 65-nm DIGITAL SCIM CNN PROCESSOR WITH 8-bit PRECISION 13

[19] H. Jia, H. Valavi, Y. Tang, J. Zhang, and N. Verma, “A programmable
heterogeneous microprocessor based on bit-scalable in-memory com-
puting,” IEEE J. Solid-State Circuits, vol. 55, no. 9, pp. 2609–2621,
Sep. 2020.

[20] Y.-D. Chih et al., “16.4 an 89TOPS/W and 16.3TOPS/mm2 all-digital
SRAM-based full-precision compute-in memory macro in 22nm for
machine-learning edge applications,” in Proc. IEEE Int. Solid- State Cir-
cuits Conf. (ISSCC), San Francisco, CA, USA, Feb. 2021, pp. 252–254.

[21] C.-F. Lee et al., “A 12 nm 121-TOPS/W 41.6-TOPS/mm2 all digital full
precision SRAM-based compute-in-memory with configurable bit-width
for AI edge applications,” in Proc. IEEE Symp. VLSI Technol. Circuits
(VLSI Technol. Circuits), Honolulu, HI, USA, Jun. 2022, pp. 24–25.

Jiyue Yang (Member, IEEE) received the B.S.
degree in electrical and computer engineering from
Cornell University, Ithaca, NY, USA, in 2016, and
the M.S. and Ph.D. degrees in electrical and com-
puter engineering from the University of California
at Los Angeles (UCLA), Los Angeles, CA, USA, in
2018 and 2023, respectively.

He is currently a Hardware Research and Devel-
opment Engineer with Broadcom Inc., Irvine, CA,
USA. His research interests include hardware accel-
erators for efficient computing applications and

circuit designs enabling emerging memory technologies.

Tianmu Li received the B.E. degree in electrical
engineering from the University of California at
Los Angeles, Los Angeles, CA, USA, in 2017,
where he is currently pursuing the Ph.D. degree
with the Electrical and Computer Engineering
Department.

His research interests include efficient machine
learning using approximate computing methods.

Wojciech Romaszkan received the B.S. and M.S.
degrees in electronics and telecommunication from
the AGH University of Science and Technology,
Kraków, Poland, in 2012 and 2013, respectively,
and the Ph.D. degree from the Department of
Electrical and Computer Engineering, University of
California at Los Angeles, Los Angeles, CA, USA,
in 2023.

He is currently with Amazon Web Services,
Seattle, WA, USA. His research interests include
computer architecture, hardware design, and
machine learning acceleration.

Puneet Gupta (Fellow, IEEE) received the Ph.D.
degree from the University of California at San
Diego, San Diego, CA, USA, in 2007.

He co-founded Blaze DFM Inc., Sunnyvale, CA,
USA, in 2004. He is currently a Faculty Member
with the Department of Electrical Engineering, Uni-
versity of California at Los Angeles, Los Angeles,
CA, USA. He currently leads the IMPACT+ Center.
His research interests include design–manufacturing
interface for lowered costs, increased yield, and
improved predictability of integrated circuits and
systems.

Dr. Gupta was a recipient of the National Science Foundation CAREER
Award and the ACM/SIGDA Outstanding New Faculty Award.

Sudhakar Pamarti (Senior Member, IEEE)
received the Bachelor of Technology degree from
Indian Institute of Technology, Kharagpur, India, in
1995, and the M.S. and Ph.D. degrees in electrical
engineering from the University of California, San
Diego, CA, USA, in 1999 and 2003, respectively.

He is a Professor of Electrical and Computer
Engineering at the University of California, Los
Angeles. His current research interests are in
analog, mixed-signal, and RF integrated circuit
design, specifically in developing signal processing

techniques to overcome circuit impairments.
Dr. Pamarti is a recipient of the National Science Foundation’s CAREER

award. He was an IEEE Solid State Circuits Society Distinguished Lecturer
and has served on the technical program committees of IEEE Custom
Integrated Circuits Conference (CICC), IEEE International Solid State
Circuits Conference (ISSCC), Design Automation Conference (DAC), and
has been a guest or a regular Associate Editor for both Parts I and II of
the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS and the IEEE
JOURNAL OF SOLID STATE CIRCUITS.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UCLA Library. Downloaded on April 17,2025 at 02:41:01 UTC from IEEE Xplore. Restrictions apply.

