
1

Learned Approximate Computing: Algorithm
Hardware Co-optimization
Egor Glukhov, Tianmu Li, Vaibhav Gupta, Puneet Gupta

Department of Electrical and Computer Engineering University of California, Los Angeles
e.glu@ucla.edu, litianmu1995@ucla.edu, vaibhav22@ucla.edu, puneetg@ucla.edu

Abstract—Approximate hardware trades acceptable error for
improved performance and previous literature focuses on opti-
mizing this trade-off in the hardware. We show in this paper
that the application and the hardware can be co-optimized to
achieve the best quality-performance tradeoff. We propose LAC:
learned approximate computing to optimize the algorithm and
approximate hardware at the same time to maximize quality of
output. Our approach allows automatic selection of approximate
computing hardware while achieving similar quality as dedicated
training for a single hardware configuration. Our improved
training algorithm allows simultaneous hardware selection and
application optimization without additional runtime overhead.
Multi-hardware setup chooses a separate approximate hardware
for each part of an application which allows for more hardware
configurations and further improves quality.

I. INTRODUCTION

Approximate computing trades some computation accuracy
to improve area and energy efficiency. Some examples of
approximate computing include introducing uncertainty by
lowering voltage [2] or introducing input-dependent error to
simplify logic design [3], [4]. Despite finding interest in error-
tolerant applications like deep learning using neural networks
[5], the inherent uncertainty in approximate computing has
prevented wide adoption in mainstream applications.

Multiple approaches have been proposed to improve the ac-
curacy of approximate computing, preserving area and energy
efficiency. The methods include compensating errors with ad-
ditional circuitry [6], [7], finding better accuracy-performance
tradeoffs through better logic design [8] or allowing multiple
accuracy levels [4], [9], [10]. As approximate computing relies
on uncertainties to achieve better performance, reducing the
overall error runs into diminishing returns.

To further enhance the accuracy of approximate computing
in practice, there are two aspects to improve: the approximate
computing hardware and the target application. Most recent
works focus on optimizing approximate computing hardware
for specific applications. The approaches include reducing
the approximation error for computations prevalent in an
application [11]–[13], or limiting approximation to specific
error-tolerant components of applications [14]. Optimizing the
approximate computing hardware for one or two particular
applications means that the hardware may not be suitable for
other applications. Efforts on optimizing the latter have been
sparse [1], and most past works have focused on neural net-
works [15], [16]. With all the different approximate computing

This is a modified and extended version of the previous work [1].

options, it also becomes challenging to choose the setup that is
most suitable for a given application or a specific performance
or quality constraint.

In this work, we propose LAC: learned approximate com-
puting. Instead of optimizing the approximate computing
hardware for a fixed application, we optimize the application
kernel for both a fixed and trained hardware configuration. The
key observation is that the application and the approximate
computing hardware can be co-optimized to achieve optimal
performance while minimizing manual intervention. During
the process, we also allow searching for the approximate
hardware configuration that is most suitable for the application.
This way, the coefficients of an application kernel are automat-
ically adjusted to the error properties of the most appropriate
approximate hardware configuration. Our contributions are as
follows:

• We develop the LAC methodology to train almost arbi-
trary parameterizable application kernels.

• In cases where the hardware can be changed, LAC
searches for the optimal hardware while tuning the al-
gorithm.

II. FIXED HARDWARE LAC

Approximate

 hardware 2
Approximate

 hardware 1

Approximate

 hardware 1

2

Fig. 1: Difference between traditional and LAC setups. LAC
focuses on optimizing the application kernels rather than
optimizing the hardware approximations.

While most previous works try to reduce the error of the
approximate hardware for a particular application, the appli-
cation itself is mostly untouched. The traditional setup implies
that the approximate hardware may not be a good choice for
other applications, and different applications require separate
approximate hardware for the best quality and performance.
This section will focus on a fixed hardware version of LAC
where applications are trained for fixed hardware.

A. Training applications for a fixed hardware

In a fixed hardware setup, LAC tries to make the application
learn the approximate computing hardware by training its pa-

mailto:e.glu@ucla.edu
mailto:litianmu1995@ucla.edu
mailto:vaibhav22@ucla.edu
mailto:puneetg@ucla.edu


2

Fig. 2: Overview of LAC for �xed hardware.

rameters. Fig. 1 compares a traditional approximate computing
setup with LAC. By training the application to better match
the properties of the approximate multiplier, LAC aims to
improve application performance for a speci�c multiplier and
allow the reuse of approximate computing hardware across
multiple applications. The motivation behind LAC is that
error distributions in approximate computing units are strongly
input-dependent. An example is the Kurkarni [3] multipliers,
which only have errors when multiplying three by three within
a 2-bit multiplier and no error for any other multiplication. If
an application is dominated by multiplying three by three, the
results have very high errors. Conversely, if the application
does not contain three in any 2-bit sections, multiplications
can be completely accurate. This discrepancy means that
approximate computing hardware does not have consistent
performance across multiple applications since the values used
between applications vary greatly. One way to get around this
issue is by modifying the application coef�cients so that the
computation performed avoids the high-error regions of the
approximate hardware. However, approximate compute units
differ in their error characteristics. Dynamic Range Unbiased
Multiplier (DRUM) [17] lowers average error at the cost of in-
troducing error in more multiplications. Even if it is possible to
achieve better overall performance with a lower average error,
manually tuning the coef�cients of an application to achieve
that becomes dif�cult. LAC tries to simplify this process by
training the coef�cients. If a learning algorithm has access
to the expected accurate result and all the properties of the
approximate hardware, it should be possible to avoid the high-
error regions. LAC isnot limited to machine learning-type
applications. The only constraint is that the application kernels
should be parameterizable and hence be able to optimize using
standard mathematical optimization approaches.

Figure 2 demonstrates the overall setup of LAC. Before
training, application performance is veri�ed by using the
traditional setup, where computation uses the approximate
units and the application itself is unaltered. During training,
inputs enter an approximate branch and an accurate branch.
The accurate branch keeps the original application coef�cients
and produces precise results. The approximate branch accu-
rately models the approximate hardware while using �exible
coef�cients. The difference between the two branches is then

used as the error to train the coef�cients in the approximate
branch. Training is performed using an optimization solver.
The optimizer used will depend on the size of the application
kernel and the nature of the approximate computing unit
involved (e.g., integer vs. �oating point).

III. E VALUATION ON FIXED HARDWARE

A. Approximate hardware

TABLE I: Multiplier summary. Performance numbers are
normalized to 16-bit multipliers.

Multiplier Variant Area Power

ETM [4] 8-bit 0.14 0.04
16-bit 0.50 0.25

DRUM [17] 16-bit-4 0.25 0.12
16-bit-6 0.39 0.29

EvoApprox [9]

mul8u JV3 0.03 0.02
mul8u FTA 0.07 0.04
mul8u 185Q 0.13 0.09
mul8s 1KR3 0.07 0.02
mul8s 1KVL 0.21 0.12
mul16s GK2 1.01 0.89
mul16s GAT 0.74 0.58

We choose to study approximate multipliers since they add
the most energy and time delay costs, as compared to the other
arithmetic operations. The multipliers we use are summarized
in Table I. We use a subset of multipliers from the EvoApprox
library [9] since the well-de�ned error metrics provided a
clear baseline for comparing their performance in different
applications. We also demonstrate improvements when using
more widely used multipliers that were intentionally designed
for high performance - the error-tolerant multiplier (ETM)
[4] and the Dynamic Range Unbiased Multiplier (DRUM)
[17]. We use an 8-bit ETM with the bits split at k = 4
and a 16-bit ETM with the bits split at k = 8 and use two
implementations of the 16-bit DRUM with k = 4 and k = 6.
Area and power numbers in Table I are normalized to accurate
16-bit multipliers.

B. Applications

Table II summarizes the applications used for evaluating
LAC. Performance is �rst evaluated for three applications



3

TABLE II: Application summary

Application Coef�cients
Gaussian blur 3x3
Edge detection 3x3
Image sharpening 3x3
Discrete Cosine Transform 8x8
Discrete Fourier Transform 12x12(complex)
Inversek2j [18] 4

using 3x3 �lters. The three �lters include the 3x3 versions
of Gaussian blur for image blurring, Sobel �lter for edge
detection and Laplacian �lter [19] for image sharpening. Gaus-
sian blur uses unsigned values, so the unsigned multipliers
are used for the experiments, while the other two use signed
values in the �lters. Coef�cients are constrained to[0; 255]
for applications using unsigned values, and[� 255; 255] for
signed values. Average Structural Similarity Index (SSIM) [20]
is used to measure the performance before and after training
using LAC since the applications produce image outputs. To
adjust the �nal output to the[0; 255] range, bit shift is used in
both accurate and approximate computes. The bit shift amount
is chosen such that the maximum of bit shifted output is255.
For image sharpening using the Laplacian �lter, the outputs of
the �lter are added to the original image for the �nal result.

To analyze the performance of more complicated applica-
tions, we also train the Discrete Cosine Transform (DCT) and
the Discrete Fourier Transform (DFT). The DCT uses a quality
level of 50, as described in [21], and requires an 8x8 �lter.
For DFT, we used 12x12 matrix. Both DCT and DFT contain
�oating-point coef�cients, so the coef�cients are scaled up
by 2m and then rounded to �ll the integer input range.m
is the bit width of the multiplier. The �nal values are scaled
down by the2m for DCT and 22m for DFT since DFT is
performed twice on the x and y axes. The quality of DCT
and DFT are measured using the peak signal-to-noise ratio
(PSNR) between outputs using approximate multipliers and
outputs using accurate multipliers. Coef�cients are constrained
to [0; 2m � 1] for applications using unsigned values, and
[� (2m � 1); (2m � 1)] for signed values.

We also include Inversek2j from AxBench [18] as an
application that does not operate on image inputs. Inversek2j
computes the inverse kinematics for a 2-joint arm, which is
useful in robotic applications. The quality of Inversek2j is
measured using relative error. For SSIM and PSNR, a higher
value indicates a better quality, while the opposite is true for
relative error.

C. Dataset

We use the CIFAR-10 dataset [22] as the input for all of
the image applications. Models are trained on 100 training
images, and evaluated on the 20 test images. Inversek2j uses
1000 train samples and 200 test samples from AxBench [18].

D. Optimization Solvers

The optimization problem was framed as pure integer op-
timization - for the blurring, edge detection, and sharpening
- since in these cases all the variable weights are constrained

to being integers by the input requirements of the multipliers.
In the case of the DFT and DCT, weights are scaled to force
them into integers. These integer or range constraints were
also provided to the optimizer.

The initial LAC implementation [1] is performed using the
Matlab surrogate solver that runs into runtime issues for larger
applications. To resolve the runtime issue and allow integration
with the search component in the trained hardware setup,
described in Section IV, we migrated to the gradient-based
Adam optimizer in PyTorch. During the training process, we
keep a high-precision �oating-point copy of the weights and
quantize the weights to integers on the �y, similar to the
straight-through estimator [23] used for training quantized
neural networks. To further speed up the simulation of the
approximate computing hardware, we implement parallel ver-
sions of the approximate multipliers to spread the work across
multiple CPU cores.

E. Results

1) Application quality improvement:Figure 3 shows the
quality improvements from LAC. While some applications
originally use signed parameters, we use both unsigned and
signed multipliers for all applications as even unsigned multi-
pliers can bene�t from LAC. As is mentioned in Section III-B,
Gaussian blurring, edge detection, and image sharpening use
SSIM for training and evaluation, while DCT and DFT use
PSNR. On average, SSIM improves by0:28, 0:20, and0:24 for
the three applications.1 PSNR improves by1:73dB and1:36dB
for DCT and DFT respectively. For Inversek2j, the relative
error is reduced by0:054 on average. Quality improvements
from LAC depend on the application and characteristics of the
approximate multipliers. Some multipliers with lower quality
before training happen to have large errors when using the
original coef�cients in the application. For those multipliers,
LAC is able to avoid the high-error points in those multipliers
and achieve higher quality. The improvement is dramatic in
many cases, making previously unusable approximate hard-
ware acceptable.

2) Hardware ef�ciency impact of LAC:The improved
quality from LAC results in a better quality-performance
tradeoff for all the applications. Fig. 4. compares the output
quality before and after LAC optimization for two approximate
multipliers. While the results before optimization favor the
more expensive approximate multipliers, results after LAC
optimization are much closer and allow us to use the cheaper
and less accurate multipliers.

IV. T RAINED HARDWARE LAC

While training the application for a �xed hardware con�gu-
ration enables hardware reuse between different applications,
it is overly restrictive when designing hardware for an ap-
plication. For hardware-application co-optimization, we allow
searching between hardware con�gurations. For applications
that can choose between different approximate computing
hardware, LAC automatically chooses the optimal con�gura-
tion for a given quality or performance constraint.

1Note that SSIM lies between -1 and 1 with 1 being best.



4

(a) Gaussian blur SSIM (b) Edge detection SSIM (c) Sharpening SSIM

(d) DCT PSNR (e) DFT PSNR (f) Inversek2j RAE

Fig. 3: Quality improvements of (a) Gaussian blur, (b) edge detection, (c) image sharpening, (d) JPEG compression using DCT,
(e) DFT, and (f) Inversek2j. For (a)-(e), higher is more accurate. For (f), lower is more accurate. Absence of a bar represents
close to zero SSIM.

(a) Gaussian blur (b) Edge detection (c) Laplacian sharpening

Fig. 4: Quality improvements of (a) Gaussian blur, (b) edge detection, and (c)image sharpening. Figures on the right use Pareto
optimal multipliers with the highest SSIM before optimization.

Fig. 5 illustrates the overall structure of LAC for a trained
hardware scenario. The application training component uses
the same structure as LAC for �xed hardware, which trains
the coef�cients of an application to minimize the difference
between the outputs from approximate hardware and accurate
hardware. Multiple approximate hardware are trained at the
same time, each with its own set of trainable parameters.
The selector at the end decides the one to choose that
maximizes application performance. The optimization goals
here are similar to a neural architecture search (NAS) setup.
In neural architecture search, the search algorithm needs to
�nd the optimal network architecture parameters under some
constraints from several different options. To apply NAS
methods to LAC, we need to replace the network architecture

options with approximate hardware options.

To this end, we use the Binary Gate proposed in Proxyless-
Nas [24]. Fig. 6 demonstrates the structure of the binarized
gate with three inputs, which acts as the ”Search” component
in Fig. 5. In the original ProxylessNas setup, each binary
gate is used to choose between multiple layer alternatives
for a layer. In LAC, we use it to orchestrate between dif-
ferent approximate multipliers. Furthermore, a binary gate
is incorporated into the training process, tuning its weights
while LAC optimizes application coef�cients. Weight values
represent the preference of each multiplier. NAS explores the
design space by allowing the binary gate to stochastically
select a different approximate multiplier at each new iteration.
It does not guarantee convergence to the global optimum but


	introduction
	Fixed hardware LAC
	Training applications for a fixed hardware

	Evaluation on fixed hardware
	Approximate hardware
	Applications
	Dataset
	Optimization Solvers
	Results
	Application quality improvement
	Hardware efficiency impact of LAC


	Trained hardware LAC
	Evaluation on trained hardware
	Quality Search Results
	Performance Search Results
	Multi-hardware Search Results
	Runtime analysis

	Conclusion
	References
	Biographies
	Egor Glukhov
	Tianmu Li
	Vaibhav Gupta
	Puneet Gupta 


