
1

Learned Approximate Computing: Algorithm
Hardware Co-optimization
Egor Glukhov, Tianmu Li, Vaibhav Gupta, Puneet Gupta

Department of Electrical and Computer Engineering University of California, Los Angeles
e.glu@ucla.edu, litianmu1995@ucla.edu, vaibhav22@ucla.edu, puneetg@ucla.edu

Abstract—Approximate hardware trades acceptable error for
improved performance and previous literature focuses on opti-
mizing this trade-off in the hardware. We show in this paper
that the application and the hardware can be co-optimized to
achieve the best quality-performance tradeoff. We propose LAC:
learned approximate computing to optimize the algorithm and
approximate hardware at the same time to maximize quality of
output. Our approach allows automatic selection of approximate
computing hardware while achieving similar quality as dedicated
training for a single hardware configuration. Our improved
training algorithm allows simultaneous hardware selection and
application optimization without additional runtime overhead.
Multi-hardware setup chooses a separate approximate hardware
for each part of an application which allows for more hardware
configurations and further improves quality.

I. INTRODUCTION

Approximate computing trades some computation accuracy
to improve area and energy efficiency. Some examples of
approximate computing include introducing uncertainty by
lowering voltage [2] or introducing input-dependent error to
simplify logic design [3], [4]. Despite finding interest in error-
tolerant applications like deep learning using neural networks
[5], the inherent uncertainty in approximate computing has
prevented wide adoption in mainstream applications.

Multiple approaches have been proposed to improve the ac-
curacy of approximate computing, preserving area and energy
efficiency. The methods include compensating errors with ad-
ditional circuitry [6], [7], finding better accuracy-performance
tradeoffs through better logic design [8] or allowing multiple
accuracy levels [4], [9], [10]. As approximate computing relies
on uncertainties to achieve better performance, reducing the
overall error runs into diminishing returns.

To further enhance the accuracy of approximate computing
in practice, there are two aspects to improve: the approximate
computing hardware and the target application. Most recent
works focus on optimizing approximate computing hardware
for specific applications. The approaches include reducing
the approximation error for computations prevalent in an
application [11]–[13], or limiting approximation to specific
error-tolerant components of applications [14]. Optimizing the
approximate computing hardware for one or two particular
applications means that the hardware may not be suitable for
other applications. Efforts on optimizing the latter have been
sparse [1], and most past works have focused on neural net-
works [15], [16]. With all the different approximate computing

This is a modified and extended version of the previous work [1].

options, it also becomes challenging to choose the setup that is
most suitable for a given application or a specific performance
or quality constraint.

In this work, we propose LAC: learned approximate com-
puting. Instead of optimizing the approximate computing
hardware for a fixed application, we optimize the application
kernel for both a fixed and trained hardware configuration. The
key observation is that the application and the approximate
computing hardware can be co-optimized to achieve optimal
performance while minimizing manual intervention. During
the process, we also allow searching for the approximate
hardware configuration that is most suitable for the application.
This way, the coefficients of an application kernel are automat-
ically adjusted to the error properties of the most appropriate
approximate hardware configuration. Our contributions are as
follows:

• We develop the LAC methodology to train almost arbi-
trary parameterizable application kernels.

• In cases where the hardware can be changed, LAC
searches for the optimal hardware while tuning the al-
gorithm.

II. FIXED HARDWARE LAC

Approximate

 hardware 2
Approximate

 hardware 1

Approximate

 hardware 1

2

Fig. 1: Difference between traditional and LAC setups. LAC
focuses on optimizing the application kernels rather than
optimizing the hardware approximations.

While most previous works try to reduce the error of the
approximate hardware for a particular application, the appli-
cation itself is mostly untouched. The traditional setup implies
that the approximate hardware may not be a good choice for
other applications, and different applications require separate
approximate hardware for the best quality and performance.
This section will focus on a fixed hardware version of LAC
where applications are trained for fixed hardware.

A. Training applications for a fixed hardware

In a fixed hardware setup, LAC tries to make the application
learn the approximate computing hardware by training its pa-

mailto:e.glu@ucla.edu
mailto:litianmu1995@ucla.edu
mailto:vaibhav22@ucla.edu
mailto:puneetg@ucla.edu

2

Original Coefficients,

Approximate Compute

Inputs

Outputs

Flexible Coefficients,

Approximate Compute

Training Inputs

Approximate

Outputs

Original Coefficients,

Accurate Compute

Accurate

Outputs

Err

Trained Coefficients,

Approximate Compute

Outputs

Test Inputs

Original Setup Training Setup Evaluation Setup

Fig. 2: Overview of LAC for fixed hardware.

rameters. Fig. 1 compares a traditional approximate computing
setup with LAC. By training the application to better match
the properties of the approximate multiplier, LAC aims to
improve application performance for a specific multiplier and
allow the reuse of approximate computing hardware across
multiple applications. The motivation behind LAC is that
error distributions in approximate computing units are strongly
input-dependent. An example is the Kurkarni [3] multipliers,
which only have errors when multiplying three by three within
a 2-bit multiplier and no error for any other multiplication. If
an application is dominated by multiplying three by three, the
results have very high errors. Conversely, if the application
does not contain three in any 2-bit sections, multiplications
can be completely accurate. This discrepancy means that
approximate computing hardware does not have consistent
performance across multiple applications since the values used
between applications vary greatly. One way to get around this
issue is by modifying the application coefficients so that the
computation performed avoids the high-error regions of the
approximate hardware. However, approximate compute units
differ in their error characteristics. Dynamic Range Unbiased
Multiplier (DRUM) [17] lowers average error at the cost of in-
troducing error in more multiplications. Even if it is possible to
achieve better overall performance with a lower average error,
manually tuning the coefficients of an application to achieve
that becomes difficult. LAC tries to simplify this process by
training the coefficients. If a learning algorithm has access
to the expected accurate result and all the properties of the
approximate hardware, it should be possible to avoid the high-
error regions. LAC is not limited to machine learning-type
applications. The only constraint is that the application kernels
should be parameterizable and hence be able to optimize using
standard mathematical optimization approaches.

Figure 2 demonstrates the overall setup of LAC. Before
training, application performance is verified by using the
traditional setup, where computation uses the approximate
units and the application itself is unaltered. During training,
inputs enter an approximate branch and an accurate branch.
The accurate branch keeps the original application coefficients
and produces precise results. The approximate branch accu-
rately models the approximate hardware while using flexible
coefficients. The difference between the two branches is then

used as the error to train the coefficients in the approximate
branch. Training is performed using an optimization solver.
The optimizer used will depend on the size of the application
kernel and the nature of the approximate computing unit
involved (e.g., integer vs. floating point).

III. EVALUATION ON FIXED HARDWARE

A. Approximate hardware

TABLE I: Multiplier summary. Performance numbers are
normalized to 16-bit multipliers.

Multiplier Variant Area Power

ETM [4] 8-bit 0.14 0.04
16-bit 0.50 0.25

DRUM [17] 16-bit-4 0.25 0.12
16-bit-6 0.39 0.29

EvoApprox [9]

mul8u JV3 0.03 0.02
mul8u FTA 0.07 0.04
mul8u 185Q 0.13 0.09
mul8s 1KR3 0.07 0.02
mul8s 1KVL 0.21 0.12
mul16s GK2 1.01 0.89
mul16s GAT 0.74 0.58

We choose to study approximate multipliers since they add
the most energy and time delay costs, as compared to the other
arithmetic operations. The multipliers we use are summarized
in Table I. We use a subset of multipliers from the EvoApprox
library [9] since the well-defined error metrics provided a
clear baseline for comparing their performance in different
applications. We also demonstrate improvements when using
more widely used multipliers that were intentionally designed
for high performance - the error-tolerant multiplier (ETM)
[4] and the Dynamic Range Unbiased Multiplier (DRUM)
[17]. We use an 8-bit ETM with the bits split at k = 4
and a 16-bit ETM with the bits split at k = 8 and use two
implementations of the 16-bit DRUM with k = 4 and k = 6.
Area and power numbers in Table I are normalized to accurate
16-bit multipliers.

B. Applications

Table II summarizes the applications used for evaluating
LAC. Performance is first evaluated for three applications

3

TABLE II: Application summary

Application Coefficients
Gaussian blur 3x3
Edge detection 3x3
Image sharpening 3x3
Discrete Cosine Transform 8x8
Discrete Fourier Transform 12x12(complex)
Inversek2j [18] 4

using 3x3 filters. The three filters include the 3x3 versions
of Gaussian blur for image blurring, Sobel filter for edge
detection and Laplacian filter [19] for image sharpening. Gaus-
sian blur uses unsigned values, so the unsigned multipliers
are used for the experiments, while the other two use signed
values in the filters. Coefficients are constrained to [0, 255]
for applications using unsigned values, and [−255, 255] for
signed values. Average Structural Similarity Index (SSIM) [20]
is used to measure the performance before and after training
using LAC since the applications produce image outputs. To
adjust the final output to the [0, 255] range, bit shift is used in
both accurate and approximate computes. The bit shift amount
is chosen such that the maximum of bit shifted output is 255.
For image sharpening using the Laplacian filter, the outputs of
the filter are added to the original image for the final result.

To analyze the performance of more complicated applica-
tions, we also train the Discrete Cosine Transform (DCT) and
the Discrete Fourier Transform (DFT). The DCT uses a quality
level of 50, as described in [21], and requires an 8x8 filter.
For DFT, we used 12x12 matrix. Both DCT and DFT contain
floating-point coefficients, so the coefficients are scaled up
by 2m and then rounded to fill the integer input range. m
is the bit width of the multiplier. The final values are scaled
down by the 2m for DCT and 22m for DFT since DFT is
performed twice on the x and y axes. The quality of DCT
and DFT are measured using the peak signal-to-noise ratio
(PSNR) between outputs using approximate multipliers and
outputs using accurate multipliers. Coefficients are constrained
to [0, 2m − 1] for applications using unsigned values, and
[−(2m − 1), (2m − 1)] for signed values.

We also include Inversek2j from AxBench [18] as an
application that does not operate on image inputs. Inversek2j
computes the inverse kinematics for a 2-joint arm, which is
useful in robotic applications. The quality of Inversek2j is
measured using relative error. For SSIM and PSNR, a higher
value indicates a better quality, while the opposite is true for
relative error.

C. Dataset

We use the CIFAR-10 dataset [22] as the input for all of
the image applications. Models are trained on 100 training
images, and evaluated on the 20 test images. Inversek2j uses
1000 train samples and 200 test samples from AxBench [18].

D. Optimization Solvers

The optimization problem was framed as pure integer op-
timization - for the blurring, edge detection, and sharpening
- since in these cases all the variable weights are constrained

to being integers by the input requirements of the multipliers.
In the case of the DFT and DCT, weights are scaled to force
them into integers. These integer or range constraints were
also provided to the optimizer.

The initial LAC implementation [1] is performed using the
Matlab surrogate solver that runs into runtime issues for larger
applications. To resolve the runtime issue and allow integration
with the search component in the trained hardware setup,
described in Section IV, we migrated to the gradient-based
Adam optimizer in PyTorch. During the training process, we
keep a high-precision floating-point copy of the weights and
quantize the weights to integers on the fly, similar to the
straight-through estimator [23] used for training quantized
neural networks. To further speed up the simulation of the
approximate computing hardware, we implement parallel ver-
sions of the approximate multipliers to spread the work across
multiple CPU cores.

E. Results

1) Application quality improvement: Figure 3 shows the
quality improvements from LAC. While some applications
originally use signed parameters, we use both unsigned and
signed multipliers for all applications as even unsigned multi-
pliers can benefit from LAC. As is mentioned in Section III-B,
Gaussian blurring, edge detection, and image sharpening use
SSIM for training and evaluation, while DCT and DFT use
PSNR. On average, SSIM improves by 0.28, 0.20, and 0.24 for
the three applications.1 PSNR improves by 1.73dB and 1.36dB
for DCT and DFT respectively. For Inversek2j, the relative
error is reduced by 0.054 on average. Quality improvements
from LAC depend on the application and characteristics of the
approximate multipliers. Some multipliers with lower quality
before training happen to have large errors when using the
original coefficients in the application. For those multipliers,
LAC is able to avoid the high-error points in those multipliers
and achieve higher quality. The improvement is dramatic in
many cases, making previously unusable approximate hard-
ware acceptable.

2) Hardware efficiency impact of LAC: The improved
quality from LAC results in a better quality-performance
tradeoff for all the applications. Fig. 4. compares the output
quality before and after LAC optimization for two approximate
multipliers. While the results before optimization favor the
more expensive approximate multipliers, results after LAC
optimization are much closer and allow us to use the cheaper
and less accurate multipliers.

IV. TRAINED HARDWARE LAC
While training the application for a fixed hardware configu-

ration enables hardware reuse between different applications,
it is overly restrictive when designing hardware for an ap-
plication. For hardware-application co-optimization, we allow
searching between hardware configurations. For applications
that can choose between different approximate computing
hardware, LAC automatically chooses the optimal configura-
tion for a given quality or performance constraint.

1Note that SSIM lies between -1 and 1 with 1 being best.

4

-0.2

0

0.2

0.4

0.6

0.8

1

m
u

l1
6

s
_

G
K

2

m
u

l1
6

s
_

G
A

T

m
u

l8
u

_
J
V

3

m
u

l8
u

_
F

T
A

m
u

l8
u

_
1

8
5

Q

m
u

l8
s
_

1
K

R
3

m
u

l8
s
_

1
K

V
L

E
T

M
_

8
 b

it

E
T

M
_

1
6

 b
it

D
R

U
M

_
1

6
 b

it
_

4

D
R

U
M

_
1

6
 b

it
_

6

S
S

IM

Before Optimization Fixed-hardware LAC

(a) Gaussian blur SSIM

-0.2

0

0.2

0.4

0.6

0.8

1

m
u
l1

6
s
_
G

K
2

m
u
l1

6
s
_
G

A
T

m
u
l8

u
_
J
V

3

m
u
l8

u
_
F

T
A

m
u
l8

u
_
1
8
5
Q

m
u
l8

s
_
1
K

R
3

m
u
l8

s
_
1
K

V
L

E
T

M
_
8
 b

it

E
T

M
_
1
6
 b

it

D
R

U
M

_
1
6
 b

it
_
4

D
R

U
M

_
1
6
 b

it
_
6

S
S

IM

Before Optimization Fixed-hardware LAC

(b) Edge detection SSIM

-0.2

0

0.2

0.4

0.6

0.8

1

m
u
l1

6
s
_
G

K
2

m
u
l1

6
s
_
G

A
T

m
u
l8

u
_
J
V

3

m
u
l8

u
_
F

T
A

m
u
l8

u
_
1
8
5
Q

m
u
l8

s
_
1
K

R
3

m
u
l8

s
_
1
K

V
L

E
T

M
_
8
 b

it

E
T

M
_
1
6
 b

it

D
R

U
M

_
1
6
 b

it
_
4

D
R

U
M

_
1
6
 b

it
_
6

S
S

IM

Before Optimization Fixed-hardware LAC

(c) Sharpening SSIM

0

10

20

30

40

50

60

70

m
u
l1

6
s
_
G

K
2

m
u
l1

6
s
_
G

A
T

m
u
l8

u
_
J
V

3

m
u
l8

u
_
F

T
A

m
u
l8

u
_
1
8
5
Q

m
u
l8

s
_
1
K

R
3

m
u
l8

s
_
1
K

V
L

E
T

M
_
8
 b

it

E
T

M
_
1
6
 b

it

D
R

U
M

_
1
6
 b

it
_
4

D
R

U
M

_
1
6
 b

it
_
6

P
S

N
R

 (
d
B

)

Before Optimization Fixed-hardware LAC

(d) DCT PSNR

20

22

24

26

28

30

32

34

36

38

40

m
u
l1

6
s
_
G

K
2

m
u
l1

6
s
_
G

A
T

m
u
l8

u
_
J
V

3

m
u
l8

u
_
F

T
A

m
u
l8

u
_
1
8
5
Q

m
u
l8

s
_
1
K

R
3

m
u
l8

s
_
1
K

V
L

E
T

M
_
8
 b

it

E
T

M
_
1
6
 b

it

D
R

U
M

_
1
6
 b

it
_
4

D
R

U
M

_
1
6
 b

it
_
6

P
S

N
R

 (
d
B

)

Before Optimization Fixed-hardware LAC

(e) DFT PSNR

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

m
u

l1
6

s
_

G
K

2

m
u

l1
6

s
_

G
A

T

m
u

l8
u

_
J
V

3

m
u

l8
u

_
F

T
A

m
u

l8
u

_
1

8
5

Q

m
u

l8
s
_

1
K

R
3

m
u

l8
s
_

1
K

V
L

E
T

M
_

8
 b

it

E
T

M
_

1
6

 b
it

D
R

U
M

_
1

6
 b

it
_

4

D
R

U
M

_
1

6
 b

it
_

6

R
e

la
ti
v
e

 E
rr

o
r

Before Optimization Fixed-hardware LAC

(f) Inversek2j RAE

Fig. 3: Quality improvements of (a) Gaussian blur, (b) edge detection, (c) image sharpening, (d) JPEG compression using DCT,
(e) DFT, and (f) Inversek2j. For (a)-(e), higher is more accurate. For (f), lower is more accurate. Absence of a bar represents
close to zero SSIM.

mul16s_GAT

 [9]

ETM_8 bit

 [4]

(a) Gaussian blur

ETM_8 bit

 [4]

mul16s_GAT

 [9]

(b) Edge detection

ETM_8 bit

 [4]

mul16s_GAT

 [9]

(c) Laplacian sharpening

Fig. 4: Quality improvements of (a) Gaussian blur, (b) edge detection, and (c)image sharpening. Figures on the right use Pareto
optimal multipliers with the highest SSIM before optimization.

Fig. 5 illustrates the overall structure of LAC for a trained
hardware scenario. The application training component uses
the same structure as LAC for fixed hardware, which trains
the coefficients of an application to minimize the difference
between the outputs from approximate hardware and accurate
hardware. Multiple approximate hardware are trained at the
same time, each with its own set of trainable parameters.
The selector at the end decides the one to choose that
maximizes application performance. The optimization goals
here are similar to a neural architecture search (NAS) setup.
In neural architecture search, the search algorithm needs to
find the optimal network architecture parameters under some
constraints from several different options. To apply NAS
methods to LAC, we need to replace the network architecture

options with approximate hardware options.
To this end, we use the Binary Gate proposed in Proxyless-

Nas [24]. Fig. 6 demonstrates the structure of the binarized
gate with three inputs, which acts as the ”Search” component
in Fig. 5. In the original ProxylessNas setup, each binary
gate is used to choose between multiple layer alternatives
for a layer. In LAC, we use it to orchestrate between dif-
ferent approximate multipliers. Furthermore, a binary gate
is incorporated into the training process, tuning its weights
while LAC optimizes application coefficients. Weight values
represent the preference of each multiplier. NAS explores the
design space by allowing the binary gate to stochastically
select a different approximate multiplier at each new iteration.
It does not guarantee convergence to the global optimum but

5

Applica on 1

LACHardware 1

LACHardware 2

LACHardware n

… Search
Trained

Applica on

Fig. 5: Overview of LAC for trained hardware.

So max

0.2834

3.2197

2.4742

0.0347

0.6546

0.3106

Sample

Gate Weights Probability Values

Search

Fig. 6: Illustration of the binarized gate used for choosing
between different hardware outputs.

has shown effectiveness in a variety of applications [25], [26].
Most importantly NAS enables co-optimization of applications
with hardware.

Before training, the binarized gate is initialized with the
same weight value assigned to each path, where each path rep-
resents the application’s output using a specific approximate
multiplier. In the forward pass, a Softmax function converts the
weight values into probability values. We sample two of the
paths in each cycle using the probability values. The sampled
output is then used to calculate the loss. In the backward
pass, the application coefficients and the binary gate weights
are treated differently. For the application coefficients, the
output loss is backpropagated to both of the sampled paths
to update the coefficients of two corresponding multipliers.
Compared to single path propagation, this approach improves
application training, which allows NAS results to reach brute-
force search results. For the binarized gate weights, the output
loss is backpropagated to all the weight values weighted by
the probability values. After training, a single best-performing
path becomes the chosen approximate hardware configuration.

We choose the binarized gate setup for the following rea-
sons:

• Performance. The binarized gate is a point-wise function
that has a low computation cost regardless of the com-
plexity of the applications.

• Scalability. The binarized gate setup allows scaling to
more complicated applications that can be divided into
multiple stages. For an application with n stages, where
each stage can choose from k different approximate
computing hardware configurations, there are kn distinct
options to choose from. Searching for the optimal hard-
ware while training the application coefficients would
incur a kn time penalty compared to only training the co-
efficients. On the other hand, the binarized gate removes
that penalty, as it is training two configurations (two

paths) at each iteration regardless of n and k. NAS still
explores the whole design space, since different stages are
separated and are controlled by separate binarized gates.

During training, we use Eq. 1 to calculate the loss during
training. x is the input value, w is the application coefficients
to be trained, and w0 is the original application coefficients to
calculate the target for optimization. f(x,w0) calculates the
results from accurate hardware using the original coefficients,
and fa(·) is the function to simulate the approximate com-
puting hardware. b(·) then selects one of the possible choices
based on the current weights in the binary gate. L(·) represents
the output quality of the application and can be peak signal-to-
noise ratio (PSNR), structure similarity index measure (SSIM),
or something else.

La(x,w, t) = L(b(fa(x,w)), f(x,w0)) (1)

The loss performance in Eq. 1 only searches for optimal
accuracy without performance considerations. In the trained
hardware setup, for cases where there is a performance
constraint (area/power), we reduce the search space to only
include multipliers that satisfy the performance constraint,
instead of using the regulatory loss term as in the original
ProxylessNas setup. Performance-constraint-based pruning of
search space is only for the trained-hardware NAS where a
single multiplier type is chosen for the entire application.
Hence any multiplier that violates the performance constraint
need not be considered within the NAS.

We also evaluate the search results when different compo-
nents of an application can use different multipliers. Perfor-
mance constraint pruning is not applied here as multipliers
that are larger than the constraint may satisfy the average
area constraint if mixed with cheaper ones. As approximate
multipliers make distinct tradeoffs in their error profiles,
different multipliers can potentially compensate for their error
when used together. To achieve this, we separate applications
into multiple layers and assign a binary gate to each layer.
Binarized gate weights are updated using gradients from the
final output that combines all selection results. This way
each hardware is picked depending on errors introduced by
other selections. In this setup, only a single path was back-
propagated, which allowed for greater runtime benefit. We
used two different approaches for layering: serial and parallel
NAS.

Serial implementation features multiple stages of an applica-
tion that are to be executed in series. After each stage, Binary
Gate is applied to choose only one hardware option and pass
the output to the next stage. The loss of the whole application

6

is the output of the last stage. Each gate has its own, sep-
arate weights which allows for choosing different hardware
at each stage. We used serial implementation for the JPEG
compression algorithm, which we divided into 3 components:
the DCT computation which performs the compression, the
inverse DCT computation which generates images from the
compressed data, and the computation in between.

In parallel NAS, parts of an application can be executed
at the same time. After completion, Binary Gate is applied
to each part separately to select multipliers. Outputs of the
gates are then combined to generate the final loss. We applied
this method to the Gaussian Blur application. Convolution was
separated into 9 matrix scalar multiplications, each involving a
separate coefficient of 3x3 matrix. We allowed each coefficient
in the kernel to use different approximate hardware during
convolution, so a total of 9 multiplier types were used. After
all matrix operations are finished, results are summed up to
complete a convolution.

For evaluating loss in multi-hardware setup, we use Eq. 2. a
is the area of the current configuration, ath is the area threshold
that is set before training and unchanged. To prevent violation
of constraint, regulatory term Lh(·), resembling hinge loss, is
added to loss function La(·) from Eq. 1. Formula for Lh(·) is
shown in Eq. 3. Hinge loss serves to increase loss if the area
is above the target, otherwise do nothing. As the regulatory
term can often be traded for additional accuracy, we introduce
parameter γ that lowers the constraint to ensure meeting the
target area requirement. Parameter δ weights hinge loss Lh(·)
with accuracy loss La(·), aiming to adjust the contribution of
the area factor to the overall loss. Both parameters ought to
be determined by experimentation.

Lb(x,w, t, a, ath) = La(x,w, t) + δ ∗ Lh(a, ath) (2)

Lh(a, ath) =

{
0, if a < γ ∗ ath
a− γ ∗ ath, otherwise

(3)

Setups discussed so far make use of the fact that the area
is unchanged throughout the training. Other use cases have
constraints that are not constant. To evaluate the NAS approach
on these problems, we flip the problem by optimizing the
area with a lower limit of accuracy. The loss is calculated
by Eq. 4, where ltarget is the constraint. The inverted area is
taken as a base loss. Modified hinge loss Lhm(·) from Eq. 5
acts as a regulatory term, resembling Lh(·) with a distinction
of argument order as this term is designed to be positive.
Additionally, we take γ = 1.

Lc(x,w, t, a, ltarget) = −a− δ ∗ Lhm(La(x,w, t), ltarget)
(4)

Lhm(l, ltarget) =

{
0, if l > ltarget

ltarget − l, otherwise
(5)

V. EVALUATION ON TRAINED HARDWARE

We use the same set of approximate multipliers as Sec. III to
evaluate the performance of LAC when performing a hardware
search at the same time.

A. Quality Search Results

Fig. 7 compares the output quality with and without hard-
ware training enabled. For all of the tested applications, LAC
is able to find the approximate computing setup that has the
highest quality after training. Despite training for multiple
multipliers at the same time, LAC does not degrade the
performance of the best-performing multiplier significantly.
Due to the stochastic nature of the search, there can be a
slight difference in the output quality of a single multiplier.

B. Performance Search Results

To evaluate the search performance of LAC under a per-
formance constraint, we tested the performance of LAC with
area, delay, and accuracy constraints (power constraints gen-
erate similar results). Fig. 8 shows the quality-performance
tradeoff with an area constraint. The training algorithm can
find the approximate hardware with the highest output quality
regardless of the area constraint. In Fig. 9 we showcase
delay-restricted search using the same setup on a subset of
applications for brevity with delay values from Table III.
The slight degradation of output quality compared to fixed
hardware results is due to inevitable stochastic selections of
incorrect multipliers in the middle of training, causing an
under-training of the correct multiplier.

TABLE III: Delay of multipliers.

Multiplier Variant Delay

EvoApprox [9]

mul8u JV3 0.58
mul8u FTA 0.95
mul8u 185Q 1.41
mul8s 1KR3 0.89
mul8s 1KVL 1.33
mul16s GK2 2.95
mul16s GAT 2.57

Results of the accuracy-constrained search are presented in
Fig. 10. An accurate multiplier was not included in the search
so area values are not bounded at 1. For each of the target
values of SSIM, we compare the area output of three search
methods: picking a minimal satisfactory multiplier without
any LAC optimization, NAS accuracy-constrained setup, and
a brute-force search that optimizes all available multipliers
prior to making a selection. Even though it incurs the smallest
runtime cost, a search without LAC has a too scarce selection
of multipliers with high accuracy. Utilizing LAC, both NAS
and exhaustive search achieve the same area that is better than
trivial no LAC approach. NAS offers runtime benefits that are
further discussed in Section V-D.

C. Multi-hardware Search Results

Our first multi-hardware search setup is Gaussian blur
(parallel NAS). We used hyperparameter values γ = 0.9 and

7

0

0.2

0.4

0.6

0.8

1

m
u

l1
6

s
_

G
K

2

m
u

l1
6

s
_

G
A

T

m
u

l8
u

_
J
V

3

m
u

l8
u

_
F

T
A

m
u

l8
u

_
1

8
5

Q

m
u

l8
s
_

1
K

R
3

m
u

l8
s
_

1
K

V
L

E
T

M
_

8
 b

it

E
T

M
_

1
6

 b
it

D
R

U
M

_
1

6
 b

it
_

4

D
R

U
M

_
1

6
 b

it
_

6

S
S

IM

Fixed-hardware LAC Trained-hardware LAC

(a) Gaussian blur SSIM

0

0.2

0.4

0.6

0.8

1

m
u
l1

6
s
_
G

K
2

m
u
l1

6
s
_
G

A
T

m
u
l8

u
_
J
V

3

m
u
l8

u
_
F

T
A

m
u
l8

u
_
1
8
5
Q

m
u
l8

s
_
1
K

R
3

m
u
l8

s
_
1
K

V
L

E
T

M
_
8
 b

it

E
T

M
_
1
6
 b

it

D
R

U
M

_
1
6
 b

it
_
4

D
R

U
M

_
1
6
 b

it
_
6

S
S

IM

Fixed-hardware LAC Trained-hardware LAC

(b) Edge detection SSIM

-0.2

0

0.2

0.4

0.6

0.8

1

m
u
l1

6
s
_
G

K
2

m
u
l1

6
s
_
G

A
T

m
u
l8

u
_
J
V

3

m
u
l8

u
_
F

T
A

m
u
l8

u
_
1
8
5
Q

m
u
l8

s
_
1
K

R
3

m
u
l8

s
_
1
K

V
L

E
T

M
_
8
 b

it

E
T

M
_
1
6
 b

it

D
R

U
M

_
1
6
 b

it
_
4

D
R

U
M

_
1
6
 b

it
_
6

S
S

IM

Fixed-hardware LAC Trained-hardware LAC

(c) Sharpening SSIM

0

10

20

30

40

50

60

70

m
u

l1
6

s
_

G
K

2

m
u

l1
6

s
_

G
A

T

m
u

l8
u

_
J
V

3

m
u

l8
u

_
F

T
A

m
u

l8
u

_
1

8
5

Q

m
u

l8
s
_

1
K

R
3

m
u

l8
s
_

1
K

V
L

E
T

M
_

8
 b

it

E
T

M
_

1
6

 b
it

D
R

U
M

_
1

6
 b

it
_

4

D
R

U
M

_
1

6
 b

it
_

6

P
S

N
R

 (
d

B
)

Fixed-hardware LAC Trained-hardware LAC

(d) DCT PSNR

20

22

24

26

28

30

32

34

36

38

40

m
u
l1

6
s
_
G

K
2

m
u
l1

6
s
_
G

A
T

m
u
l8

u
_
J
V

3

m
u
l8

u
_
F

T
A

m
u
l8

u
_
1
8
5
Q

m
u
l8

s
_
1
K

R
3

m
u
l8

s
_
1
K

V
L

E
T

M
_
8
 b

it

E
T

M
_
1
6
 b

it

D
R

U
M

_
1
6
 b

it
_
4

D
R

U
M

_
1
6
 b

it
_
6

P
S

N
R

 (
d
B

)
Fixed-hardware LAC Trained-hardware LAC

(e) DFT PSNR

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

m
u

l1
6

s
_

G
K

2

m
u

l1
6

s
_

G
A

T

m
u

l8
u

_
J
V

3

m
u

l8
u

_
F

T
A

m
u

l8
u

_
1

8
5

Q

m
u

l8
s
_

1
K

R
3

m
u

l8
s
_

1
K

V
L

E
T

M
_

8
 b

it

E
T

M
_

1
6

 b
it

D
R

U
M

_
1

6
 b

it
_

4

D
R

U
M

_
1

6
 b

it
_

6

R
e

la
ti
v
e

 E
rr

o
r

Fixed-hardware LAC Trained-hardware LAC

(f) Inversek2j RAE

Fig. 7: LAC search results of (a) Gaussian blur, (b) edge detection, (c) image sharpening, (d) JPEG compression using DCT,
(e) DFT, and (f) Inversek2j.

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 0.2 0.4 0.6 0.8 1

S
S

IM

Area

Fixed-hardware LAC Trained-hardware LAC

(a) Gaussian blur SSIM

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2

S
S

IM

Area

Fixed-hardware LAC Trained-hardware LAC

(b) Edge detection SSIM

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 0.2 0.4 0.6 0.8 1 1.2

S
S

IM

Area

Fixed-hardware LAC Trained-hardware LAC

(c) Sharpening SSIM

30

35

40

45

50

55

60

65

0 0.2 0.4 0.6 0.8 1 1.2

P
S

N
R

 (
d

B
)

Area

Fixed-hardware LAC Trained-hardware LAC

(d) DCT PSNR

20

22

24

26

28

30

32

34

36

38

40

0 0.2 0.4 0.6 0.8 1 1.2

P
S

N
R

 (
d

B
)

Area

Fixed-hardware LAC Trained-hardware LAC

(e) DFT PSNR

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2

R
e

la
v
e

 E
r
ro

r

Area

Fixed-hardware LAC Trained-hardware LAC

(f) Inversek2j RAE

Fig. 8: LAC performance-centric search results of (a) Gaussian blur, (b) edge detection, (c) image sharpening, (d) JPEG
compression using DCT, (e) DFT, and (f) Inversek2j.

8

0.9

0.92

0.94

0.96

0.98

1

0 0.5 1 1.5 2 2.5 3

S
S

IM

Delay

Fixed Hardware Trained Hardware

(a) Gaussian blur SSIM

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

S
S

IM

Delay

Fixed Hardware Trained Hardware

(b) Edge detection SSIM

0.9

0.92

0.94

0.96

0.98

1

0 0.5 1 1.5 2 2.5 3

S
S

IM

Delay

Fixed Hardware Trained Hardware

(c) Sharpening SSIM

Fig. 9: LAC delay constrained search results of (a) Gaussian blur, (b) edge detection, (c) image sharpening

0

0.2

0.4

0.6

0.8

1

0.9 0.95 0.98

A
re

a

Accuracy constraint (SSIM)

Without LAC NAS LAC Brute-force LAC

Fig. 10: LAC accuracy constrained search results of Gaussian
blur

0.95

0.96

0.97

0.98

0.99

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

S
S

IM

Area

Fixed-hardware LAC Trained-hardware LAC

Trained Mul -hardware LAC Greedy Search

Fig. 11: Multi-hardware search results of Gaussian blur.

30

35

40

45

50

55

60

65

0 0.2 0.4 0.6 0.8 1

P
S

N
R

 (
d

B
)

Area

Fixed-hardware LAC Trained-hardware LAC

Trained Mul�-hardware LAC

Fig. 12: Multi-hardware search results of JPEG compression
using DCT.

δ = 1.0. Fig. 11 shows the training results, where we take the
average of multipliers as the overall area. For any given area in
this range, allowing different multipliers in an application (de-
noted as “Trained Multi-hardware LAC”) approach provides
better output accuracy than the single multiplier approach.
The maximum improvement in SSIM is 0.01 (from 0.988 to
0.998) achieved with a configuration with an average area
of 0.123. The optimizer selected 8-bit FTA multiplier for
the middle coefficient of the Gaussian blur kernel, namely
4/16. This hardware produces more accurate results working
with numerically larger inputs. Assigning it to the numerically
highest value in computation increased the accuracy of the
final result.

To provide a more comprehensive comparison, we imple-
ment a greedy stage-by-stage search. Starting with a random
stage/part of an application, the search will select hardware
for this stage by brute forcing all options, keeping the rest
of the application fixed. The hardware assignment becomes
permanent and an algorithm continues to the next random
stage. Results are included in Fig. 11. The approach yields
inferior to NAS quality, as an optimal choice for a single
stage might become less performant once other multipliers are
selected.

Results for our second setup, 3-stage JPEG (serial NAS), are
shown in Fig. 12. In this setup, we take γ = 1.0 and δ = 300.0.
Combining approximate hardware allowed for area utilization,
which is impossible in the single-multiplier setup. If the target
accuracy is between two ”Trained-hardware” points, the multi-
hardware setup provides an area reduction. If both setups
are compared for the same area, there is a small gap due
to training noise. Gradual results were achieved by mixing
above and below the constraint multipliers. Best performing
configurations used well-performing DRUM ”16-bit-6” and
EvoApprox ”mul16s GK2” multipliers. Quality Pareto curve
of the greedy stage-by-stage search for JPEG is not included
as runtimes are impractically long as we discuss in Section
V-D.

Both serial and parallel NAS implementations produce finer
Pareto curves compared to trained hardware points. If the
constraints are near these points, NAS will converge to the
trained-hardware solution. New points become the optimal
choice if other points are too far. For example, for the 58−59
dB PSNR range on the JPEG application, the area is improved
by 24% using the serial NAS training approach.

9

TABLE IV: Runtime comparison. Trained Multi-hardware
Brute-force search and Greedy search values for JPEG and
a Brute-force search value for Gaussian blur are estimated.

Setup NAS Brute-force search Greedy search
Trained-hardware 147 sec 449 sec 449 sec
Trained Multi-hardware 462 sec > 1011 sec 7940 sec

(a) Gaussian blur

Setup NAS Brute-force search Greedy search
Trained-hardware 11 min 57 min 57 min
Trained Multi-hardware 60 min > 6000 min > 1500 min

(b) JPEG

D. Runtime analysis
Alternatives to NAS, the brute-force and greedy approaches,

require a longer runtime that is proportional to the number
of hardware options. All tests are completed on the Intel
i7-12700H CPU and Nvidia RTX 3070 GPU. Measurement
results for Gaussian blur are presented in Table IVa. In the
case of the trained hardware setup that used only a single
approximate hardware, NAS always achieved same accuracy
as brute-force search, while providing nearly 3 times runtime
savings. Applied to a single layer, as in trained hardware,
greedy search is the same as brute-force. For multi-hardware
setup, the search space increases exponentially, making brute-
force search infeasible. Greedy search is more practical but
requires 17x running time compared to NAS. We also observed
the runtime benefit of NAS for the JPEG application. As
shown in Table IVb, using NAS decreased runtime by around
5 times in the trained hardware case. Multi-hardware brute-
force and greedy search have impractical runtimes that are
estimated to be at least 100 and 25 times the NAS runtime
respectively.

VI. CONCLUSION

Approximate arithmetic units are a promising method to
reduce energy, cost, and latency in error-tolerant applica-
tions. So far, research has focused on the optimization of
the hardware approximation to minimize application quality
loss. In this work, we flip the argument and propose the
learned approximate computing approach where the applica-
tion kernels are optimized to improve application quality in the
presence of approximate hardware. In a fixed-hardware setup,
We have shown improvements of 0.24 in SSIM and 1.55dB in
PSNR on average across a variety of signal/image processing
applications, showing the utility of LAC as an approach to
making the use of approximate hardware more broadly viable.
In a trained hardware setup, LAC allows searching for the
best hardware configuration during training. With a method
inspired by works on neural architecture search, LAC can find
the best approximate hardware configuration even allowing
for different hardware implementations for each part of the
application. The multi-hardware approach enabled up to 38%
area reduction compared to the single-hardware setup.

REFERENCES

[1] V. Gupta, T. Li, and P. Gupta, “LAC: Learned Approximate Computing,”
in IEEE/ACM Design, Automation and Test in Europe, March 2022, p. 4.

[2] R. Hegde and N. R. Shanbhag, “Energy-efficient signal processing via
algorithmic noise-tolerance,” in ISLPED 1999, 1999, pp. 30–35.

[3] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power
with an underdesigned multiplier architecture,” in VLSID 2011, 2011,
pp. 346–351.

[4] Khaing Yin Kyaw, Wang Ling Goh, and Kiat Seng Yeo, “Low-power
high-speed multiplier for error-tolerant application,” in EDSSC 2010,
2010, pp. 1–4.

[5] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan, “Macaco:
Modeling and analysis of circuits for approximate computing,” in
ICCAD 2011, 2011, pp. 667–673.

[6] M. Masadeh, O. Hasan, and S. Tahar, “Using machine learning for
quality configurable approximate computing,” in 2019 DATE, 2019, pp.
1575–1578.

[7] ——, “Machine learning-based self-compensating approximate comput-
ing,” in 2020 SysCon, 2020, pp. 1–6.

[8] F. Farshchi, M. S. Abrishami, and S. M. Fakhraie, “New approximate
multiplier for low power digital signal processing,” in CADS 2013, 2013,
pp. 25–30.

[9] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, “Evoapprox8b:
Library of approximate adders and multipliers for circuit design and
benchmarking of approximation methods,” in DATE 2017, 2017, pp.
258–261.

[10] Z. Vasicek and L. Sekanina, “Evolutionary design of approximate
multipliers under different error metrics,” in DDECS 2014, 2014, pp.
135–140.

[11] A. Bonetti, A. Teman, P. Flatresse, and A. Burg, “Multipliers-driven
perturbation of coefficients for low-power operation in reconfigurable
fir filters,” TCAS1, vol. 64, no. 9, pp. 2388–2400, 2017.

[12] G. Sreegul and T. S. Bindiya, “An approximation algorithm for reducing
the number of non-zero bits in the filter coefficients,” in SCEECS 2020,
2020, pp. 1–6.

[13] A. Jaiswal, B. Garg, V. Kaushal, and G. K. Sharma, “Spaa-aware 2d
gaussian smoothing filter design using efficient approximation tech-
niques,” in VLSID 2015, 2015, pp. 333–338.

[14] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Rinard,
“Chisel: Reliability- and accuracy-aware optimization of approximate
computational kernels,” SIGPLAN Not., vol. 49, no. 10, p. 309–328, Oct.
2014. [Online]. Available: https://doi.org/10.1145/2714064.2660231

[15] S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan, “Axnn:
Energy-efficient neuromorphic systems using approximate computing,”
in ISLPED 2014, 2014, pp. 27–32.

[16] Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu, “Approxann: An
approximate computing framework for artificial neural network,” in
DATE 2015, 2015, pp. 701–706.

[17] S. Hashemi, R. I. Bahar, and S. Reda, “Drum: A dynamic range unbiased
multiplier for approximate applications,” in ICCAD 2015, 2015, pp. 418–
425.

[18] A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, and P. Lotfi-Kamran,
“Axbench: A multiplatform benchmark suite for approximate comput-
ing,” IEEE Design & Test, vol. 34, no. 2, pp. 60–68, 2017.

[19] ——, “Axbench: A multiplatform benchmark suite for approximate
computing,” IEEE Design and Test, special issue on Computing in the
Dark Silicon Era, 2016.

[20] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assess-
ment: from error visibility to structural similarity,” IEEE Transactions
on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[21] K. Cabeen and P. Gent, “Image compression and the discrete cosine
transform.” [Online]. Available: https://www.math.cuhk.edu.hk/∼lmlui/
dct.pdf

[22] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
pp. 32–33, 2009. [Online]. Available: https://www.cs.toronto.edu/∼kriz/
learning-features-2009-TR.pdf

[23] Y. Bengio, “Estimating or propagating gradients through stochastic
neurons,” CoRR, vol. abs/1305.2982, 2013. [Online]. Available:
http://arxiv.org/abs/1305.2982

[24] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture
search on target task and hardware,” CoRR, vol. abs/1812.00332, 2018.
[Online]. Available: http://arxiv.org/abs/1812.00332

[25] W. Jiang, X. Zhang, E. H.-M. Sha, L. Yang, Q. Zhuge, Y. Shi, and J. Hu,
“Accuracy vs. efficiency: Achieving both through fpga-implementation
aware neural architecture search,” in Proceedings of the 56th Annual
Design Automation Conference 2019, ser. DAC ’19. New York, NY,
USA: Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3316781.3317757

https://doi.org/10.1145/2714064.2660231
https://www.math.cuhk.edu.hk/~lmlui/dct.pdf
https://www.math.cuhk.edu.hk/~lmlui/dct.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://arxiv.org/abs/1305.2982
http://arxiv.org/abs/1812.00332
https://doi.org/10.1145/3316781.3317757

10

[26] W. Jiang, L. Yang, E. H.-M. Sha, Q. Zhuge, S. Gu, S. Dasgupta, Y. Shi,
and J. Hu, “Hardware/software co-exploration of neural architectures,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 39, no. 12, pp. 4805–4815, 2020.

Egor Glukhov is pursuing the B.S. degree in Elec-
trical Engineering at the University of California at
Los Angeles. His research interests include computer
architecture and hardware design.

Tianmu Li received the B.S. and Ph.D. degrees
in electrical and computer engineering from the
University of California at Los Angeles in 2017
and 2023 respectively. His current research focus
is on efficient machine learning using approximate
computing methods.

Vaibhav Gupta received his B.S. in Electrical En-
gineering from the University of California at Los
Angeles.

Puneet Gupta (Fellow, IEEE) received the B.Tech.
degree in electrical engineering from the Indian
Institute of Technology Delhi, New Delhi, India,
in 2000, and the Ph.D. degree from the University
of California at San Diego, San Diego, CA, USA,
in 2007. He is currently a Faculty Member with
the ECE Department, University of California at
Los Angeles, and has authored over 200 papers,
18 U.S. patents, a book, and a book chapter in the
areas of system-technology co-optimization as well
as variability/reliability aware architectures.

	introduction
	Fixed hardware LAC
	Training applications for a fixed hardware

	Evaluation on fixed hardware
	Approximate hardware
	Applications
	Dataset
	Optimization Solvers
	Results
	Application quality improvement
	Hardware efficiency impact of LAC

	Trained hardware LAC
	Evaluation on trained hardware
	Quality Search Results
	Performance Search Results
	Multi-hardware Search Results
	Runtime analysis

	Conclusion
	References
	Biographies
	Egor Glukhov
	Tianmu Li
	Vaibhav Gupta
	Puneet Gupta

