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Achieving DRAM-like PCM By Trading Off Capacity For
Latency

Irina Alam and Puneet Gupta

Abstract—Phase Change Memory (PCM) is considered one of the most
promising scalable non-volatile main memory alternatives to DRAM.
It provides ∼4x-5x cost per bit advantage over DRAM, thus enabling
cost-effective dense main memory solution. However, PCM accesses are
slower than DRAM, which leads to significantly poorer overall system
performance (upto 80% higher execution time for memory intensive
applications based on our analysis). To use PCM as a viable DRAM
replacement, the performance gap between the two memory technologies
has to be bridged, primarily by improving PCM read latency.

In this work we propose an optimized PCM architecture, PCM-
Duplicate, that trades off capacity to improve PCM read latency. In
PCM-Duplicate, every row in the PCM subarray has a duplicate row.
During memory read, both the rows are activated simultaneously. As a
result, the bitline discharges through two PCM cells. This reduces the
discharge time significantly, bringing down the overall sensing latency by
>3x compared to baseline PCM. While the overall PCM density benefit
over DRAM halves, it still provides 2x more capacity than DRAM while
having almost comparable read latency. PCM-Duplicate can either be
used as low-cost DRAM main memory alternative or it can be used
to replace the DRAM-based last level cache used in today’s hybrid
main memory systems for the slower PCM memories. Both these system
options not only improve main memory capacity but also allow main
memory based persistence by replacing DRAM and making the entire
main memory non-volatile.

Index Terms—Phase Change Memory, Non Volatile Main Memory,
Emerging Technology, Storage Class Memory, Error Correcting Code

I. INTRODUCTION

In today’s computing systems, main memories serve a pivotal role,
sitting in between the processor cores and the slow storage devices.
As a result, there is an ever-increasing demand for main memory
capacity to fully extract and exploit the processing power of today’s
high-performance multicore and manycore systems. Though DRAM
is still the main memory workhorse, DRAM scaling is, unfortunately,
slowing down. Besides, several application contexts need different
properties from the main memory such as higher density, lower
cost-per-bit, non-volatility, etc. Hence, it is becoming increasingly
important to consider alternative technologies that can potentially
avoid the problems faced by DRAM and enable new opportunities.

Several emerging non-volatile memory (NVM) technologies are
now being considered as potential replacements for or enhancements
to DRAM. Most of these new non-volatile technologies (Phase
Change Memory[PCM], STT-RAM, Resistive RAM[ReRAM], etc.)
promise better scaling, higher density, and reduced cost-per-bit. 3D-
XPoint [1], [2] is one such commercially available PCM-based non-
volatile main memory that has gained a lot of attention. Unfortunately,
NVMs have their own set of challenges and cannot simply replace
DRAM in their current form. Compared to DRAM, NVMs have
higher read and write latencies and often consume more energy.
Besides, most NVM technologies have limited write endurance and
also suffer from high stochastic bit error rates [3]. Hence, most current
NVM-based main memory systems are hybrid in nature comprising
of both DRAM and NVM [2], [4]. A hybrid memory system helps
to increase capacity while reducing the impact on performance.
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A hybrid memory system can be configured in two ways [2], [4]. In
one configuration (Memory Mode), the smaller but faster DRAM is
used as a hardware-managed cache for the denser but slower PCM.
However, the DRAM cache is transparent to the operating system
(OS) and hence, the total main memory capacity is equal to the total
PCM capacity. In the other configuration, the DRAM and PCM are
configured as a flat address space, where the OS is aware of both
memories for page allocation. Hence, the entire memory capacity can
be fully utilized. However, the placement of data between the two
memories has to be efficiently managed [4]. The first configuration
has the advantage that it can be easily deployed, with DRAM acting
as an additional level of caching between the CPU caches and main
memory. However, this mode does not ensure non-volatility as data
stored in the DRAM will be lost when power is lost. Besides, the
DRAM is transparent to the OS. This has a non-negligible impact
on overall memory capacity. DRAM has 4-5x higher cost-per-bit as
compared to PCM [5], [6] and hence, using DRAM as a transparent
cache to mitigate the loss in performance because of the slower PCM
increases the overall system cost.

Overall, based on our analysis and past works [7], it seems that
improving PCM read latency can provide significant performance
gains. If PCM read latency becomes closer to that of DRAM, the use
of large DRAM-based caches for performance improvement can be
avoided. That would help to increase main memory capacity, reduce
memory cost and make the main memory non-volatile. In this work,
we propose an optimized PCM architecture (PCM-Duplicate) that
helps to lower the sensing time in a PCM array by activating two
wordlines in a PCM array simultaneously. In this architecture, data is
duplicated across two rows in a PCM array. During a read operation,
both rows are activated together. This helps to reduce the overall
sensing latency since the bitline voltage now discharges through two
cells instead of one, thus, increasing the rate of discharge. The overall
read latency becomes almost comparable to that of DRAM while the
overall PCM capacity becomes half. Thus, there is a capacity-latency
tradeoff. We provide two possible ways of using this reduced capacity
faster PCM in today’s systems. The first option is to use it as a low-
cost alternative to today’s DRAM-based main memory subsystem.
It provides 2x higher capacity/lower cost at ∼6% higher average
execution time compared to a system using DRAM memory. The
other option is to use it in a hybrid main memory setup where the
PCM-Duplicate acts as the faster cache (lower cost/higher capacity
compared to DRAM cache) for the slower PCM main memory. In
this setup, the increased cache capacity provides up to 38% (average
5.7%) higher performance than today’s baseline hybrid system with
DRAM and PCM. Most importantly, in both system options, the
entire main memory system is non-volatile and hence, allows easy
main memory-based persistence and checkpointing. This reduces a
significant overhead that is incurred in today’s systems where the
application state is stored in much slower non-volatile storage devices
and each checkpoint restoration can take as long as 30 minutes [8].

II. BACKGROUND

This section provides a brief background on two important con-
cepts: details and working of a PCM cell, and the pros and cons of
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Fig. 1: Structure of PCM cell, overview of SET and RESET current
pulses and variation in cell resistance for SET and RESET states.

using PCM-based memories as DRAM replacements.

A. PCM Basics

Phase change memory (PCM) is a type of non-volatile memory.
PCM exploits the unique ability of chalcogenide glass of switching
between high resistance amorphous and low resistance crystalline
states. Figure 1 shows the structure of a PCM cell, typically compris-
ing of Germanium-Antimony-Tellurium or GST. The state of the cell
can be changed by heating and the two different states represent the
stored data; high resistance RESET represents ’0’ and low resistance
SET represents ’1’. Switching from one state to the other requires
two different heat-time profiles. As shown in Figure 1, to program
a ’0’, a high power short pulse quickly raises the temperature of
the PCM element above the melting point. The pulse is abruptly
terminated, and the small region of melted material rapidly cools
through thermal conduction, locking the material in the amorphous
state. To program a ’1’, the amorphous element needs to be converted
into a polycrystalline state. To do that, a long electric pulse is used to
raise the temperature of the PCM element above the crystallization
but below the melting point. The temperature needs to be sustained
for a lengthy period so that most of the material crystallizes and the
target cell resistance is achieved. Thus, programming a ’0’ (RESET)
requires much lower latency than programming a ’1’ (SET). To read
the data stored in the cell, the cell resistance is sensed without
changing the state of the cell.

A PCM memory module is similar to today’s DRAM array and is
split up into small independent banks. As shown in Figure 2, each
bank consists of multiple subarrays, where each subarray is made of
horizontal wordlines and vertical bitlines. Each bitline is attached to
a sense-amplifier circuitry that senses the bitline voltage and outputs
a digital value of ‘0’ or ‘1’ based on that. The bitline sense amplifiers
drive then drive the global amplifiers shared across all sub-arrays in
a bank. The global sense amplifiers boost the voltage and drive the
data out of the PCM chips to the processor over a DDRx-based bus.

During a read operation, the read address selects the target bank
and activates the corresponding wordline. In voltage-based sensing,
which has been commonly used in many industry chips [9], [10],
the bitline is precharged to Vrd. Once the target wordline is turned
on, the bitline starts discharging. The rate of discharge depends on
the cell resistance. When in SET state, the discharge is faster and
takes lesser time for the bitline voltage to drop below the reference
voltage (Vref ) as compared to that when the cell is in RESET state.
After a pre-determined amount of time (Tsense), the sense amplifiers
compare the bitline voltage with Vref . If it is higher than Vref ,
then the cell is considered to be in RESET state, if not, then in
SET state. The combination of Vref and Tsense is decided based
on the cell characteristics or the resistance distribution of the cell at
each state and the Vrd voltage used. The sensing time is determined
conservatively to account for device variations and drift. For target

Fig. 2: Organization of a PCM bank

SET and RESET resistance values, the wait time before sensing
bitline voltage should be such that the voltage separation is at least
300mV between the worst-case cells of the two states (shown in
Figure 1). The sensing latency (Tsense) constitutes the largest fraction
of the read time in a PCM array [7]. Hence, in this work, we try to
reduce the sensing latency using two different optimization schemes.

B. DRAM vs. PCM

DRAM scaling is, unfortunately, slowing down [11] while the
demand for main memory capacity is increasing at a very fast rate.
Besides, increasing capacity and aggressive technology scaling in
modern DRAM chips is significantly impacting manufacturing yield
and reliability. With increasing scaling induced error rates, DRAM
manufacturers are resorting to increased row/column sparing and
within-dram error-correcting codes to maintain acceptable DRAM
yields. These techniques add significant area, latency, and energy
overheads. As a result, DRAMs have overall become a large contrib-
utor to operational cost. The other major disadvantage with DRAM is
that it is volatile in nature. Several application contexts today, such
as persistent database management, not only demand higher main
memory density, but also the ability to store persistent data in main
memories instead of using heavyweight filesystems in today’s slower
persistent storage devices. Phase Change Memory (PCM) has become
one of the most promising scalable byte-addressable main memory
alternatives to DRAM. PCM provides a significant 4x-5x [5], [6] cost-
per-bit advantage over DRAM while being non-volatile and amenable
to technology scaling. As a result, it has been studied extensively and
manufactured commercially as DRAM replacement towards building
a low cost, higher capacity main memory system [5].

However, PCM has its own set of disadvantages when compared
to DRAM, the most important being higher read and write latencies,
write power, and limited endurance [11], [3]. As a result, in today’s
systems, PCM is typically used in a hybrid main memory setup
comprising of both DRAM and PCM memory modules. DRAM
modules have limited capacity but lower read and write latencies as
compared to the denser but slower PCM. Thus, while PCM helps to
achieve higher capacity main memory at a lower cost, DRAM helps to
reduce the performance impact by servicing the more frequent/recent
accesses at lower latency and energy overheads. This hybrid memory
can be used in two modes: (1) Memory mode, and (2) App Direct
mode. In the memory mode, DRAM acts as a hardware-managed
cache for the slower and denser PCM. This DRAM-based cache,
sitting in between the last level cache (LLC) and the PCM main
memory, is transparent to the OS [4], [2] and, therefore, the overall
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main memory capacity is equal to only that of the total PCM.
Besides, the main memory is not persistent since data sitting in the
volatile DRAM will be lost if the system loses power. In the app
direct mode, the DRAM and PCM modules are configured as a flat
address space and the OS uses both memories for page allocation.
This mode has the advantage of providing higher memory capacity,
but faces the challenge of efficient data placement and swapping
of data between the two memories. The frequently accessed hot
pages would need to be identified in the PCM and swapped with
the cold data in the DRAM. Since this data management requires
additional hardware/software support, this mode is less frequently
used as compared to the memory mode in today’s systems.

III. MOTIVATION AND PAST WORK

There has been significant research in improving latency and
limited endurance of PCM [12], [13]. However, achieving read
latency similar to that of DRAM has not been talked about much.
One of the past works from Nair et. al. [7] focused on improving read
latency by either reducing the reference sensing resistance and using
ECC to tolerate the uni-directional sensing errors or by increasing the
read voltage and using ECC to tolerate the read disturb errors. We
tried to combine the two techniques with stronger ECC to achieve the
best possible read latency. We describe it in detail under PCM-ECC
Scheme.

A. PCM-ECC Overview: Combination of Previously Proposed Im-
provements

In PCM-ECC, we combine the previously proposed techniques [7]
to reduce the read sensing time by reducing the reference sensing
resistance (Rsense) and increasing the read voltage (Vrd). PCM cells
have a variation in cell resistance in both SET and RESET states
as shown in Figure 1. The final resistance of the cell depends on
the amount of amorphous volume in the cell and how easily the
cell crystallizes in either of the two states. The sensing reference
resistance is determined by the worst-case SET cell and the read
voltage is determined by the worst-case RESET cell. Reducing the
sensing resistance leads to lower sensing latency, but also increases
sensing circuitry errors. However, this sensing error is unidirectional,
where SET gets classified as RESET. On the other hand, increasing
the read voltage that the bitlines are pre-charged to before it gets
discharged through the cell to the sense amplifier also helps to
improve read latency. However, doing so increases error rates due
to read disturb. The read current flowing through the cell can
accidentally flip the state of the cell. In PCM, read disturb errors
are also typically unidirectional and result in RESET switching to
SET. Based on prior studies [14], every 30mV increase in sensing
voltage increases the read disturb error rate by 3 orders of magnitude.

From past works and PCM device characterization results [15],
using a Rsense of 10kΩ and Vrd of 0.70V results in a sensing time
of 69ns and a bit error rate (BER) of 10−16. As proposed in [7],
in PCM-ECC, we reduce Rsense from 10kΩ to 7kΩ and increase
Vrd to 0.82V. The combined effect of reduced reference resistance
and increased read voltage leads to a significant reduction in sensing
time from 69ns to 34ns. But the BER increases exponentially to 10−5,
primarily coming from the reduction in reference sensing resistance.
This increase in error rate can, however, be mitigated using error
correcting codes (ECC). We use a default BER target of 10−16,
similar to that in [7]. We show that with a 4-bit rank-level error
correcting code (ECC-4) for every 64-bits of data, the probability that
a 512-bit memory line would have 5 errors is 3.9×10−18, well below
the desired target. The parity storage overhead of ECC-4 is 25-bits per
64-bits of data [16], [17] and incurs a decoding latency of 4 cycles.

We assume that the PCM-based memory system will use today’s
standard DDRx protocol [18]. Thus, the total size of a memory line
that is accessed during each memory READ/WRITE operation is
576-bits (512-bits of data and 64-bits of parity bits for rank-level
within controller ECC). For ECC-4, with 25-bits of parity per 64-
bits of data, the size of the memory line increases to 712-bits. Thus,
accessing all the data and parity bits would require two consecutive
READ/WRITE operations when using today’s DDRx protocol. This
is expected to significantly degrade performance. To reduce the
impact on performance, we divide the ECC-4 code into two parts: (1)
A Single-bit Error Correcting, Multi-bit Error Detecting code (2) A 4-
bit Error Correcting Code. The first part of the code requires 8-bits per
64-bits of data and a single cycle of decoding. Thus, to achieve single-
error correcting, multi-error detecting property, only one memory
access is required. If the decoder detects an uncorrectable error,
then the remaining parity bits are fetched using an additional READ
and the decoding with error correction takes 4 cycles. For a 512-bit
memory line and a BER of 10−5, once every 60,000 reads would
require additional access to fetch the extra parity bits.

B. Performance Analysis: PCM-ECC vs. DRAM

With the modifications in reference sensing resistance and read
voltage, the PCM sensing time decreases by half. While this improve-
ment is significant, a DRAM-based memory system still achieves
higher performance. To understand the difference in performance we
simulated a single-core system using cycle accurate Gem5 simula-
tor [19]. We ran several workloads from the CPU SPEC 2017 [20]
and GAP [21] suites, where we fast-forwarded 1 billion instructions
and ran the simulation for a total of 3 billion instructions. We used
a 2GHz single-core processor with a private 32KB I-cache, 64KB
D-cache, 512KB L2 cache, and 2MB L3 cache. On average we
see that the DRAM-based main memory system outperforms the
system with the PCM-ECC by an average of 19%. While the sensing
latency improvements in the PCM array provide significant benefit
(6.7% average improvement in execution time over baseline PCM-
based main memory system), it still lags behind DRAM-based main
memory system. This is primarily because the PCM-ECC read latency
is still more than twice that of DRAM. Thus, PCM-ECC provides
∼3x higher capacity/lower cost compared to DRAM, but has up to
60% higher execution time for memory intensive workloads.

C. Motivation to achieve near-DRAM latency

From the performance results we see that PCM-ECC improves
system performance as compared to baseline PCM but it still signif-
icantly lags behind DRAM. One way to improve the performance is
to have a hybrid main memory system with a DRAM-based cache for
slower PCM. But, as mentioned before, the two biggest challenges
with that are the limited capacity of the DRAM cache and the lack
of non-volatility. Even though the DRAM cache is typically much
larger than the LLC, capacity limited applications do not benefit much
because of the frequent misses in the DRAM cache. As seen in the
evaluations in [7], with a DRAM cache that is 16x larger than the total
L3 capacity, the memory-intensive workloads have an average of 20.1
misses per thousand instructions (MPKI). This significantly impacts
overall performance. Besides, users cannot utilize the non-volatility
advantage of PCM since the DRAM cache is volatile and transparent
to the OS. So, even though the OS thinks that it is writing to the
non-volatile PCM, the data actually gets written to the DRAM first.
If the system loses power before the data in the DRAM cache could
be written back to the PCM, the data is lost. Hence, persistence is not
guaranteed in such a hybrid memory system. Thus, it is necessary to
have a purely PCM-based memory with higher capacity than DRAM
while achieving near-DRAM read latency.
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Fig. 3: Normalized Execution Time of SPEC-2017 and GAP workloads comparing DRAM and PCM-ECC based main memory systems.
The execution times are normalized against the system using DRAM.

IV. BRIDGING THE PERFORMANCE GAP BETWEEN PCM AND

DRAM

While PCM-ECC provides larger main memory capacity than
DRAM, workloads that do not require the larger capacity and fit
within the DRAM suffer because of the larger read/write latencies
of the PCM. As a result, we aim to bridge this performance gap
by further trading off PCM capacity to achieve near-DRAM read
latency. Our proposed reduced capacity PCM-Duplicate architecture
has similar read performance as that of DRAM while having ∼2x
larger capacity at the same cost compared to DRAM.

A. PCM-Duplicate Overview: PCM with DRAM-like read latency

We propose a PCM-Duplicate scheme that helps to significantly
improve PCM read latency by trading off capacity. In this scheme,
every row in a PCM subarray will have a duplicate row. The original
row and the duplicate row are activated simultaneously when reading
from a particular address. As a result, the overall resistance of
the PCM cells being sensed is halved as they are connected in
parallel. This allows us to reduce the reference resistance (Rsense)
from 10kΩ to 5kΩ without impacting the bit error rate (BER). We
can further reduce Rsense and increase read voltage (Vrd) to get
additional improvements in sensing latency. With Rsense = 4kΩ
and Vrd = 0.8V , we can achieve a sensing latency of 21ns and
BER of 10−8. With 2-bit error correction (ECC-2) per 512-bits of
data, the probability of having 3 errors is 2.2×10−17, which is well
below the desired target of 10−16. The exact ECC protection used is
described later in Section IV-C. PCM-Duplicate provides an overall
sensing latency reduction of more than 3x compared to the baseline
PCM memory and brings the overall read latency closer to that of
DRAM (1.3x of DRAM). However, it halves the memory capacity.
But PCM has more than 4x cost-per-bit benefit over DRAM [5],
[6]. Even after halving the capacity, the cost-per-bit benefit of PCM-
Duplicate stands at a significant 2x over DRAM. Keeping the trade-
offs of PCM-Duplicate in mind, this reduced capacity PCM with near-
DRAM latency is also a good fit as the last level cache for slower
PCM main memories. Using PCM-Duplicate as the last level cache
for the slower PCM main memory instead of DRAM would provide
2x more cache capacity at the same cost, as well as overall main
memory persistence since both last-level cache and main memory
are PCM-based and hence, non-volatile.

Fig. 4: Sensing latencies of PCM-ECC vs PCM-Duplicate

B. PCM-Duplicate Implementation

To activate two rows simultaneously, the row decoder is modified
to activate two wordlines using a single address. So, if row address
A is sent, rows A and A’ are activated. Since two PCM cells in
the same state are connected in parallel (as shown in Figure 5), the
total cell resistance becomes half. As a result, the 300mV separation
between the worst-case SET and RESET states during discharge can
be achieved much faster than in the baseline PCM cell. The PCM
can operate in both normal and duplicate modes. The operation mode
can be set by the memory controller during boot time by setting
a PCM mode register. In normal mode, the row decoder decodes
using all row address bits and activates a single row at a time.
In duplicate mode, each PCM subarray is halved in capacity and
each row has a corresponding duplicate neighboring row. The row
decoder masks the least significant bit of the row address and activates
two neighboring rows that have the same A[MSB:LSB-1] bits. The
original and duplicate rows must be in the same subarray since each
subarray has its own set of local sense amplifiers.

C. Reducing Write Time and Energy using ECC and Infrequent
Refresh

In PCM-Duplicate, the overall write current increases as two PCM
cells are being programmed simultaneously. The increase in total
write current translates to an overall increase in write energy. One
way to reduce the write energy consumption is by reducing the write
latency. As provided in [11], the SET latency is ∼4x that of RESET
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Fig. 5: The two operation modes in PCM-Duplicate

latency. Reducing the SET pulse width results in a smaller volume
of crystalline chalcogenide, which increases the resistance of the
cell. Besides, the resistance of these partially SET cells increases
further over time [22], eventually resulting in retention error when
the SET cells are sensed as RESET. Based on the characterization
results presented in [13], the resistance drift follows a power-law
model [13] and the SET cells begin to lose data after 4 seconds.
If the PCM cells are refreshed every 4 seconds, the retention error
rate has been estimated to be less than 10−8. The overall BER,
considering sensing error, read disturb error, and retention error is
< 2 × 10−8. With (144,128) Double Error Correction, Triple Error
Detection (DECTED) code per 128-bits of data, the probability of a
triple-bit error is 2.7×10−18, which is well below the desired target
of 10−16. Hence, to facilitate lower write time for better performance
and energy, we use DECTED code per 128-bits of data and refresh
memory lines every 4 seconds. This allows us to bring down the SET
latency of PCM-Duplicate from 1µs to 250ns.

D. Sneak Current in Crossbar Architecture

Typically, in most non-volatile resistive main memory modules,
the wordlines and bitlines are organized in a crossbar array to
achieve maximum density. In such a setup, each PCM element does
not have an individual access transistor. This is because having
an access transistor per cell significantly increases the cell size,
thereby, negating most of the density benefits of crossbar architecture.
Instead, each PCM element is placed at every wordline and bitline
intersection. The bitlines are first precharged to Vrd.

Fig. 6: Crossbar array structure showing read current and sneak
current

In an ideal scenario, based on the row address, during activation,
the wordline voltages should be set such that voltage Vrd is applied
across the target cells and zero voltage is applied across the unselected
cells. However, in a crossbar array, while applying the desired voltage
across the cells to be read, adjacent cells get partially selected.
This creates parallel ‘sneak’ discharge paths through the adjacent

junctions, as shown in Figure 6. The parallel paths usually have higher
resistance since the sneak currents have to pass through multiple
resistive cells in series (three cells in Figure 6). But, these parallel
circuits can alter the measured output, resulting in a read error. The
impact of sneak current depends on the ratio of the current flowing
through the target cells to the sneak current. Higher the ratio, the
smaller the impact. With two wordlines activated at once in PCM-
Duplicate, the number of sneak paths increases. However, the total
current flowing through the target cells being read also increase in
PCM-Duplicate due to lower total cell resistance (duplicate data cells
connected in parallel). Thus, the ratio of actual to sneak current
does not increase significantly to worsen the read error. Besides, in
crossbar arrays, to tackle the problem of sneak currents, each PCM
cell is placed in series with either a diode or a switching mechanism
such as Ovonic Threshold Switch (OTS) [23] that is much smaller
than an access transistor. The OTS conducts only when there is
enough voltage applied across the cell. The sneak paths consist of
multiple PCM/OTS cells in series. Hence, most of the cells in these
paths do not see enough voltage across their terminals and hence,
remain in the off state.

V. EVALUATION METHODOLOGY

We modified cycle-accurate Gem5 simulator to evaluate the per-
formance of PCM-Duplicate. The details of the simulated systems
are provided in Table I. System-1 is a DRAM-based main memory
system. System-2 replaces the DRAM main memory with the baseline
PCM memory that has 4x higher capacity than DRAM, but has
4.6x larger read time. System-3 uses our proposed PCM-Duplicate
memory that provides 2x capacity at the same cost as compared to
DRAM while having comparable read latency. We also simulated
hybrid memory systems where the faster memory (DRAM/PCM-
Duplicate) acts as a hardware-managed cache for the slower PCM
main memory. This last level cache is transparent to the OS and,
therefore, does not add to the main memory capacity. In System-
4, DRAM acts as the last level cache for the baseline PCM main
memory. In System-5, we replaced the DRAM cache with our
proposed 2x higher capacity PCM-Duplicate cache and the baseline
PCM main memory with the PCM-ECC main memory. We simulated
several workloads from SPEC CPU 2017 [20], Parsec [24] and
GAP [21] benchmark suites. We fast-forwarded 1 billion instructions
and ran the simulations for a total of 3 billion instructions. Since
most of the larger Parsec and GAP benchmarks either suffer from a
timeout or a kernel panic issue when simulating a multi-core system
on Gem5 (similar observations reported in [25]), we had to be limited
to a single core system and scale down the size of the caches. We
used a 2GHz out-of-order single-core processor with a private 32KB
I-cache, 64KB D-cache, 256KB L2 cache, and 512KB L3 cache in
all six systems. The DRAM cache in System 4 is 8MB and the PCM-
Duplicate cache is 16MB. The three graphs used when running the
GAP workloads are 200MB and 500MB sized synthetic kron [21]
and 600MB sized wikipedia graphs. Using graphs larger than this
results in unreasonably long runtimes of more than a day. We also
had to scale down the L4 sizes because of the limited-sized SPEC
workloads that we used for this analysis. For an L4 size larger than
16MB, the L4 miss rate would be exceptionally low. This means
that the number of memory accesses would be too less for gathering
any meaningful main memory performance results. Many past works
have faced similar issues [7], [12] and hence, could only evaluate a
limited set of workloads.

VI. RESULTS

We evaluate the performance improvements achieved by using our
proposed optimized PCM substrates in two different main memory
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TABLE I: Details of the different memory systems evaluated
System-1 System-2 System-3 System-4 System-5

Processor
Details OoO, single-core, 2GHz

L1-I/L1-D/L2/L3 32KB/64KB(2-way)/256KB/512KB
LLC transparent to OS

Technology - - - DRAM PCM-Duplicate
Size - - - 8MB 16MB

Latency (Read/Write) - - - 15ns 21ns/250ns
Main Memory

Technology DRAM Baseline PCM PCM-Duplicate Baseline PCM PCM-ECC
Capacity 8GB 32GB 16GB 32GB 24GB

Read Latency 15ns 69ns 21ns 69ns 34ns
Write Latency 15ns 1us 250ns 1us 1us

Bus per Channel DDR4
Ranks per Channel 1
Number of channels 2

system configurations: (1) Replacing DRAM-based main memory
system with PCM-Duplicate instead of baseline PCM, (2) Replac-
ing the DRAM cache in hybrid main memory system with PCM-
Duplicate cache for the slower PCM main memory.

A. Using PCM-Duplicate as Main Memory

PCM-Duplicate has read latency comparable to that of DRAM
while providing 2x higher capacity at the same cost. In Figure 7,
we compared PCM-Duplicate based main memory system (System-
3) with DRAM and baseline PCM-based main memory systems
(System-1 and System-2, respectively). Overall, for SPEC workloads,
we see an average of 12.27% improvement of System-3 with PCM-
Duplicate main memory over System-2 using baseline PCM-based
main memory. For memory intensive workloads such as mcf and lbm,
we see more than 30% speedup with PCM-Duplicate. The Parsec
and GAP workloads are more memory intensive and also require
larger memory capacity. For these workloads, the PCM-Duplicate
provides a significant 23.54% average speedup. The improvement
in performance is due to more than 69.5% reduction in read latency.
Since the working set sizes of the workloads fit within the main mem-
ory, the reduction in main memory capacity in System-3 compared
to System-2 did not impact the overall performance of System-3.
PCM-Duplicate’s read latency is comparable to that of DRAM. When
compared against DRAM main memory (System-1), System-3 has,
on an average, 4.6% higher execution time for SPEC workloads. This
is primarily due to the longer write time of PCM. For larger GAP
and Parsec workloads, this increases to 5.9% higher execution time.
However, with only ∼5% slowdown, on an average, PCM-Duplicate
provides 2x more capacity at the same cost or 2x lower cost for
the same main memory capacity. Besides, PCM is non-volatile and,
therefore, PCM-Duplicate can be easily used for main memory based
checkpointing instead of having to use much slower storage.

B. Using PCM-Duplicate as Last Level Cache instead of DRAM

As mentioned before, today’s systems using PCM typically im-
plement a hybrid main memory system where each memory channel
consists of both DRAM and PCM DIMMs. The DRAM becomes a
hardware managed cache that is transparent to the OS. As a result,
the total memory capacity reduces by a non-negligible amount as
compared to a full PCM system. Also, the main memory no longer
provides the benefit of persistence that comes with NVM-based main
memories. In order to deal with both these problems, we propose to
using optimized PCM-Duplicate as a smaller but faster cache for the
slower PCM main memory. PCM-Duplicate would provide 2x more
cache capacity as compared to DRAM and the entire cache-main
memory system would be non-volatile. We evaluated this proposed
System-5 and compared its performance with today’s standard hybrid
main memory system using DRAM based cache and baseline PCM-
based main memory (System-4). The results are shown in Figure 8.

For less memory intensive SPEC 2017 workloads, we found
that our proposed system provides an average of 4.67% speedup
(upto 18% speedup for memory intensive workloads like mcf r) as
compared to the baseline hybrid system. For larger, more memory in-
tensive Parsec and GAP workloads, the improvement in performance
is upto 38.7% (average 9.43%). The performance improvement is
due to the increase in the size of the last level cache. Even though
PCM-Duplicate has higher write time than DRAM, the read latency
is almost comparable. Since writes do not mostly fall in the critical
path, the decrease in misses per thousand instruction (average 15.8%)
translates to the overall speedup. For example, canneal has a 14.2%
speedup while X264 has a 5.07% speedup. Both applications have
similar read to write ratio (2.17:1 vs 2.89:1). But the difference in
performance stems from the fact that canneal’s misses per thousand
instruction reduces by 102% while in x264, the reduction is by 29%.
Overall, we see that using PCM-Duplicate as last level cache instead
of DRAM helps in improving the overall system performance. This
speedup comes from the larger sized last level cache that has similar
read performance as that of the DRAM cache.

C. Enabling Lightweight Main Memory Based Persistence

In both main memory system configurations using PCM-Duplicate
(System-3 and System-5), the main memory is non-volatile. Using
DRAM as either the main memory (System-1) or the last level cache
for the slower PCM (System-4) in hybrid memory systems makes
the overall main memory system volatile. As a result, to ensure data
persistence and enable checkpointing, much slower storage devices
such as solid state drives(SSDs) or hard disk drives (HDDs) are
used to flush and store the application state. During checkpoint
recovery, the data is read back from the storage devices into the main
memory before the program resumes. This overhead can be upto 30
minutes [8]. Using PCM-Duplicate as main memory or last level
cache for slower PCM makes the entire main memory system non-
volatile. Thus, expensive slow storage based checkpointing can now
be easily replaced by lightweight main memory based checkpointing.
Since, the main memory now falls within the persistence domain, the
data in the CPU caches and the write queues in the memory controller
need to be flushed to the main memory. This dramatically reduces
the checkpointing overhead.

VII. CONCLUSION

Phase Change Memory (PCM) is considered one of the most
promising scalable non-volatile main memory alternatives to DRAM.
It provides ∼4x-5x cost per bit advantage over DRAM. However,
the PCM has more than4x higher read latency, which leads to
significantly poorer overall system performance (up to 80% for
memory-intensive applications based on our analysis). To use PCM
as a viable DRAM replacement, the performance gap between the
two memory technologies has to be bridged, primarily by improving
PCM read latency. In this work we propose an optimized PCM
architecture, PCM-Duplicate, that trades off capacity to improve PCM
read latency. In PCM-Duplicate, every row in the PCM subarray has
a duplicate row. During a memory read, both the rows are activated
simultaneously. As a result, the bitline discharges through two PCM
cells. This reduces the discharge time significantly, bringing down the
overall sensing latency by >3x compared to baseline PCM. While
the overall PCM density benefit over DRAM halves, it still provides
2x more capacity than DRAM while having almost comparable read
latency. PCM-Duplicate can either be used as a low-cost DRAM
main memory alternative or can be used to replace DRAM-based
last level cache for slower PCM main memory. Both these system
options allow main memory-based persistence by replacing DRAM
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Fig. 7: Normalized Execution Time of SPEC-2017, GAP and Parsec workloads comparing DRAM (System-1), Baseline-PCM (System-2)
and PCM-ECC (System-3) based main memory systems. The execution times are normalized against the System-1.

Fig. 8: Normalized Execution Time of SPEC-2017, Parsec and GAP workloads comparing DRAM and PCM-Duplicate as last level caches
(System 4 vs. System 5) for slower PCM main memories. The execution times are normalized against the system using DRAM-based cache
(system 4).

and we evaluate both options in this work. The first system using
PCM-Duplicate-based main memory has 2x more memory capacity
than DRAM, provides non-volatility while having only 6% worse
overall system performance (average). The second system provides
a fully non-volatile hybrid system with a PCM-Duplicate cache for
slower PCM-ECC main memory. This system has 2x more cache
capacity and 75% main memory capacity as compared to today’s
hybrid system with DRAM cache and baseline PCM. Our proposed
hybrid system can provide up to 38.7% (average 7.87%) better overall
performance than the baseline hybrid system. Thus, PCM-Duplicate-
based memory systems provide two significant benefits over DRAM
- (1) Higher capacity at lower cost (2) Lightweight main memory-
based persistence.
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