
1

REX-SC: Range-Extended Stochastic Computing
Accumulation for Neural Network Acceleration

Tianmu Li, Wojciech Romaszkan, Sudhakar Pamarti, Puneet Gupta

Abstract—Deep learning has grown in capability and size
in recent years, prompting research on alternative computing
methods to cope with the increased compute cost. Stochastic
computing (SC) promises higher compute efficiency with its
compact compute units, but accuracy issues have prevented wide
adoption, and accuracy-improving techniques have sacrificed
runtime or training performance. In this work, we propose
REX-SC - Range-Extended Stochastic Computing Accumulation
to deal with the accuracy issues of stochastic computing. By
modifying the functionality of OR-based SC accumulation, we
increase SC computation accuracy without sacrificing the perfor-
mance benefits. Our approach achieves a 2X reduction in stream
length for the same accuracy compared to SC with OR-based
accumulation and a up to 3.6X improvement in energy compared
to SC with binary addition. With proper modeling, our approach
improves training performance for SC-based neural networks
and makes training SC models practical for large datasets like
ImageNet.

I. INTRODUCTION

Machine learning has become ubiquitous in fields such as
image recognition, voice recognition and machine translation
[1], [2], [3]. Deep learning using neural networks has been
dominant in machine learning because of its ease of train-
ing and generalization capabilities [4]. Neural networks have
grown in complexity in the past few years [4], [1], [2], with
storage and compute requirements of deep learning outpacing
hardware improvement [5], [6]. This increased cost makes
it hard to run deep neural networks on resource-constrained
devices. Stochastic computing (SC) aims to improve deep
learning efficiency [7], [8]. The compact computation unit of
SC promises reduced computation area, improved data reuse,
and reduced memory access costs [3]. Since SC requires only
single gates for multiplication and addition, it enables a large
number of multiply-accumulate units on the same hardware,
which greatly improves operator reuse and alleviates memory
bottlenecks of deep learning accelerators [3].

However, stochastic computing introduces random errors.
The use of random number generators (RNGs) lead to inac-
curacies during stream generation. Single-gate multiplication
and addition operators are not guaranteed to be accurate,
and very long bitstreams are required to reach acceptable
accuracy [3], [9]. As a result, naively applying stochastic
computing to neural networks reduces either accuracy or
performance compared to traditional fixed-point and floating-
point computation.

SC error mainly comes from stream generation, multipli-
cation, and accumulation. Stream generation error can be
minimized with maximal-length linear feedback shift regis-
ters (LFSR) and low-discrepancy (LD) sequences [10], [11].

Multiplication error can be reduced by utilizing a counter and
a LD sequence for the two multiplicands [11], [12]. Despite
improvements to generation and multiplication error, most
of the previous works use fixed-point accumulation to pre-
serve accuracy, and improvements to SC addition introduced
compromises. [3] preserves SC addition by using OR gates
for accumulation. However, even with cumbersome, dedicated
training, OR gates drop model accuracy due to limited output
precision. [10] improves addition precision by using a mix
of OR gates and binary adders. Mixing the two accumulation
methods complicates the training process.

In this work, we improve SC accumulation accuracy through
REX-SC: Range-Extended Stochastic Computing accumula-
tion, while preserving most of the performance benefits of
stochastic computing. We build upon energy- and area-efficient
OR accumulation and improve its accuracy by increasing
the number of output bits relative to the input bits. Our
contributions are as follows:

• We introduce extended range SC (REX-SC) addition
methods with higher output precision while preserving
the streaming nature of SC.

• We explore the extensive design space of REX-SC accu-
mulation, and develop methods of finding optimal transfer
functions.

• We show that REX-SC improves accuracy by 3-8% com-
pared to previous methods utilizing SC accumulation [3]
and reduces energy consumption by up to 3.6X compared
to SC with binary accumulation.

• We propose training optimizations to improve the training
speed of SC: stream computation simulation, activation
calibration and error injection (a+e).

• We show that our optimizations improve training speed
of SC models using REX-SC accumulation by >22
times compared to previous methods that achieve similar
accuracy levels [10].

II. MOTIVATION

In this section, we motivate the need for new methods of
SC accumulation. By analyzing the shortcomings of existing
techniques through the lenses of precision and efficiency we
expose a glaring design space gap, waiting to be explored.
Most of the previous works on SC focused on stream genera-
tion and multiplication [10], [12], [11], [13]. Our work aims to
mend this oversight, first by showing the importance of opti-
mizing SC addition and then by developing such optimization
techniques.
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TABLE I: Summary of various SC addition methods and
works using them.

Type Streaming Fixed-Point

Realization MUX OR REX Parallel Accumu-
Counter lator

Precision Scaled Approx. Approx. Exact Exact
Area Compact Compact Compact Large Large
Bipolar Yes No No No Yes
Output Range Same as Input Higher than Input Configurable
Example Usage [9], [14] [3], [10] This Work [9], [14], [13] [11], [12]

A. SC Accumulation Primer

Stochastic computing addition techniques can be divided
into two categories: streaming and fixed-point. The former
preserves the number representation of the inputs, through the
use of single-gate, streaming adder implementations, either a
multiplexer (MUX) or an OR gate [8]. A MUX-based SC
adder uses a random select signal with equal probability for
each input, downsampling them to implement scaled addition
[8]. In comparison, an OR-based adder does not introduce a
scaling factor, but it realizes an approximate addition function:
Sum = A+B−AB [3]. The fixed-point addition techniques
implicitly convert the streams into the fixed-point domain
using parallel counters, accumulators, or a combination of
both. Approximate or exact parallel counters add individual
bits of multiple stochastic streams. Tab. I shows an overview
of different SC accumulation methods.

B. Precision

SC is an approximate computing method that can introduce
random errors during both conversion and computation. There-
fore, one of the chief concerns when designing SC systems
is their accuracy. While extensive efforts have been directed
at reducing the error of both stream generation [10], [11],
and multiplication [11], [13], they have done little to explore
and improve the accuracy of addition operators. The use of
multiplexers (MUX) has been largely abandoned for addition
because of their scaling factors equal the sizes of accumulation
[9]. SC additions using MUX-based adders typically come in
two variants. The first is where multiplications and additions
are separated. Multiplications are performed using a traditional
SC multiplier in the form of an AND or XNOR gate, and
addition is performed using MUX with a random signal that
uniformly selects between the different products. We denote
this formulation of MUX-based adders as the multiply-add ver-
sion of MUX, or M-MUX in short. For M-MUX, output of a
dot product can be formulated as M-MUX(a, b) = 1/n

∑
aibi,

where a, b are the input vectors, and n is the size of the
dot product. The M-MUX adder thus scales the multiplication
result by 1/n before adding them together. To understand
how MUX downscaling affects the error of accumulation,
we consider two components that contribute to the output
error. The first is the quantization error. Stochastic computing
typically utilizes uniform quantization to take advantage of the
probabilistic compute units. Uniform quantization has consis-
tent absolute quantization error regardless of magnitude. As
such, the relative error from uniform quantization is larger for
smaller values, which can be observed in Fig. 1a. The second
component is the random error from stochastic computing. If

streams are generated using a true random number generator
(TRNG),1 the expected output error can be derived from a

binomial distribution and is equal to Eabs =
√

v(1−v)
n , where

v is the expected output value and n is the stream length. The
expected error is a concave function of v with a small error for
values close to 0 and 1, but the relative error Erel =

√
1−v
vn is a

decreasing function of v and is large close to zero, as is shown
in Fig. 1b. Both components increase relative error for values
close to 0, which M-MUX accumulation enforces for large n
values. Since M-MUX accumulation results need to be scaled
up by n to recover the true accumulation results, the large
relative error translates directly to large absolute error. For
neural networks with dot products going up to the thousands,
MUX accumulation leads to a significant loss in accuracy, as
the scaling factor is the same size as the dot product size, Fig. 2
compares the accuracy of MUX- and OR-based accumulation
for 1000-wide accumulation. Inputs to the accumulation are
sampled such that the sum of all inputs has a variance of 0.5
and mean of 1. Since neural networks are typically initialized
to maintain unit variance throughout the model, it is a valid
assumption to have 0.5 variance for half (positive values) of
the inputs. Due to the scaling effect, M-MUX requires very
long streams to achieve reasonable accuracy.

The other form of MUX addition fuses the multiplication
component into the MUX adder and utilizes the select signal
to achieve a weighted sum between inputs, which we denote
as the weighted-add version of MUX, or W-MUX in short.
Output of a dot product for this implementation can be
formulated as

W-MUX(a, b) =

∑
aibi∑
|bi|

(1)

where b is the weight vector. The select signal for the weighted
sum can be further simplified to a counter as proposed in the
CeMux implementation in [15]. Compared to the multiply-
add version which scales all multiplication results by 1/n,
the weighted-add version alleviates scaling by normalizing the
weight values to bi∑

|bi| , as can be seen in Eq. 1. However,
this also means that the weighted-add version does not fully
resolve the scaling issue, as the weight values have an average
magnitude of 1/n after normalization. With weight and output

1TRNG is used due to the simplicity of modeling, but other RNG sources
and SC computation results show similar trends
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Fig. 1: Relative error resulting from (a) quantization and (b)
randomness of stochastic computing.
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quantization considered and the output scaled back to the
original range, Eq. 1 becomes

W-MUX(a, b) = (
∑
|bi|)Quant(

∑
aiQuant(

bi∑
|bi|

)) (2)

”Quant” is the quantization function that rounds the weights
and addition results to log2(b) bits, where b is the bit stream
length. This modeling represents a best-case scenario for W-
MUX and ignores any additional error from SC computation
(such as the ones shown in Fig. 1b). MUX Ideal in Fig. 2
depicts this quantization effect assuming all weights are one.
All weights being one is only one case and weight values
are typically different in actual applications, so we considered
its performance when training a neural network. We trained
a small 4-layer CNN [16] on the CIFAR-10 dataset using the
idealized model of the W-MUX adder as shown in Eq. 2. Due
to the 1/n average weight value, the stream length needs to be
at least the size of the dot product for reliable representation of
the weight values. Since the largest dot product in the model is
1024, W-MUX fails to converge reliably and always drops to
10% accuracy either from the beginning (stream length ≤ 128)
or after a few epochs (stream length ≤ 512). 2Deeper neural
networks have even larger dot products. The Resnet models [2]
used in Sec. IV, for instance, have layers with 3x3x512-size
filters, which translates to 4608-sized dot products. Large dot
products in turn require longer streams to represent the weight
values. As we will show in Sec. IV, stochastic computing has
trouble competing against fixed-point computation with stream
lengths >> 64. Since prior works on MUX addition can be
categorized either into M-MUX or W-MUX and both suffer
from the scaling issue, it is difficult to achieve good accuracy
with reasonable stream length using MUX-based addition.
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Fig. 2: Comparison of MUX- and OR-based adders’ error with
respect to accurate addition.

OR-based adders, while not troubled by scaling factors,
come with their own set of issues. First, as mentioned before,
they do not implement exact addition. For two inputs a and
b, an OR gate performs a + b − ab compared to a + b
in an exact addition, which leads to output saturation for
high-magnitude inputs. While the saturation of OR-based
adders can be alleviated with small input values, small input
values increase relative error, as is discussed in the previous

2Longer stream lengths may still face convergence issues with W-MUX but
is not supported in the SC simulation framework used.

discussions on MUX. Second, the outputs of OR accumulation
have the same precision as the inputs due to the bit-wise com-
putation, which reduces accuracy compared to accumulation
without truncation. Recall that adding two N-bit fixed-point
numbers requires N+1 bits to avoid overflow. Prior works
have shown that algorithms can be trained for approximate
addition and saturation for the first and second issue, for
example, by using custom neural network training [3], [10].
Unfortunately, they cannot correct for the loss in intermediate
output precision. Other previous works have tried to combine
the OR accumulation and fixed-point accumulation to achieve
a better trade-off between the two [10]. While it does improve
accuracy, combining the two dramatically slows down the
training process, as discussed in Section IV-C.

In contrast, using various forms of fixed-point accumulation
achieves accurate or near-accurate summation between inputs,
making them the most common choice of addition implemen-
tation in recent SC works [11], [12], [13]. However, as we will
show in the next subsection, they are expensive to implement
since full adders required in APCs are larger, slower, and less
energy efficient than OR gates, or multiplexers [9].

C. Efficiency

Despite the precision issues outlined above, SC remains a
promising candidate for accelerating various types of computa-
tion. The reason for the continued interest in it is the potential
for unparalleled compute density [3], [13]. Small, single-gate
SC multipliers and adders can be orders of magnitude smaller
than their fixed-point equivalents. However, this comes at the
cost of increased computation latency, as SC operators require
tens or hundreds of cycles depending on the stream length
being used [3], [9], [13]. To harness the most benefits out
of SC, the area reduction offered by multipliers and adders
needs to be used to enable higher spatial reuse, which in turn
can amortize costs of conversion and memory accesses. When
playing the spatial reuse game, the additional area and delay
imposed by binary accumulation can wipe off a large part of
the gains, as we will show shortly.

To demonstrate the difference between different styles of
accumulation, we synthesized 256-wide dot-products with
different processing element. Wide dot product is justifiable
for modern neural networks that require multiply-accumulate
computations with hundreds or thousands of inputs [1], [2].
We compare fixed-point (FXP) multiply-accumulate computa-
tion and SC computation using accumulators (Accumulator),
parallel counters (Parallel Counter), and OR gates (OR). We
assume 6-bit input precision, which translates to 64 bits for
the SC accumulators. Parallel counter and OR adder trees
use split-unipolar computation [3], which assumes one of the
operands is bipolar while the other one can only be positive.
The 64 bits are split into two 32-bit parts for the bipolar
operand representing the positive and negative values sepa-
rately. For positive values, the negative part is all zero, and vice
versa. This is also a commonly encountered situation in neural
networks employing the ReLU activation [1], [2]. For SC mul-
tiplication, we assume that it is performed using simple AND
gates. The accumulator configuration assumes 256 individual
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accumulators. We further compare non-saturating (NS) and
saturating (S) adder-trees for all configurations except the OR
addition. The non-saturating configurations have adder width
provisioned such that no truncation ever occurs. Saturating
configurations limit the width of all adders to 6-bits. We will
further elaborate on the importance of saturation in Section
III. Results, synthesized using a commercial 28nm technology
and Cadence Genus synthesis tool, are shown in Fig. 3.

Compared to the fixed-point baseline, SC offers significant
area improvements. Non-saturating parallel counter implemen-
tation has 22.5X area improvement over the corresponding
fixed-point design, while for a dot product with OR accu-
mulation that advantage is 58.4X. The accumulator-based dot
product can have a 2X area advantage, despite less efficient ad-
dition, because of the huge advantage provided by AND-based
multipliers. This explains why previous works have focused
on optimizing SC multiplication since it is where most of the
benefits of SC come from. However, the impact of addition
cannot be ignored due to the SC’s latency penalties. The non-
saturating accumulator, parallel counter, and OR dot products
have a 3.2X, 1.6X, and 3.8X critical path advantage over fixed-
point. When accounting for stream length and combined with
area in the form of area-delay product, OR implementation
has a 7X advantage, while the parallel-counter one has only
1.2X. The accumulator one has 5X worse throughput, showing
that its use is not competitive without additional techniques
reducing the stream length [11], [12]. The ADP difference
between OR and parallel-counter dot-products leads us to two
important conclusions. First, SC with binary accumulation has
a fundamental limitation in possible performance improvement
over fixed-point. The small ADP margin can easily be whittled
down when other system-level considerations come into play.
Second, there is a substantial performance gap between SC
with binary and OR-based accumulation. This performance
gap, combined with the precision gap described in the previous
section, opens up an extensive design space of efficient and
precise SC accumulation methods that has not been given
sufficient attention. In the next section, we will describe how
this efficiency-precision gap can be bridged.

Finally, we want to acknowledge that the above analysis will
depend on the dot-product size, precision and stream length
chosen, and different configurations might be more or less
advantageous to certain implementations.

III. RANGE-EXTENDED OR ACCUMULATION

A. Increasing the accuracy of OR accumulation

Given the importance of maintaining SC accumulation per-
formance II-C, we want to find a way to improve accumulation
accuracy without sacrificing the benefits it offers. Between the
three possible baseline implementations, MUX-based adders
suffer from scaling on the inputs. Improving MUX accuracy
requires increasing input stream length, which also affects the
performance of multiplication and stream generation. Accumu-
lator and counter-based adders achieve accurate addition and
have performance issues instead of accuracy issues. OR-based
adders suffer from the lack of output range. Adjusting the
output range keeps the stream generation and multiplication
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components constant, and is thus the most plausible candidate
for improvement. The accuracy deficit of OR accumulation
comes from the bitwise computation nature. The outputs of an
OR accumulation have the same stream length as the inputs.
Fixed-point accumulation adds all input bits together. It is
equivalent to concatenating the input bit streams together,
resulting in much longer effective stream length at the output.
Therefore, to increase the output precision of an OR gate, we
want to increase the number of output bits corresponding to
each input bit to n. We denote the resulting range-extended
OR gate as OR n, and a regular OR gate can be seen as a
special case where n = 1. A comparison of an OR n gate
and a regular OR gate is shown in Fig. 4. In theory, any logic
operation that takes 1 bit from each input and outputs n bits is
a valid OR n gate, leading to 2512 unique truth tables exist for
OR 2 with 256 inputs (256 input bits, 2 output bits). We will
discuss how we determine the OR 2 gate, and then extend the
derivation to larger OR n.

Given the large number of possible OR 2 configurations,
we limit our search space through the following steps:

1) Limit the search to two-input OR n gates. Fig.5a illus-
trates the idea of a 2-input OR n gate. An represents n
bits, and this notation will be used in later discussions to
represent n input or output bits. A two-input OR n gate
takes two An inputs and creates an An output. Larger
OR n gates can be built by cascading multiple levels of
two-input OR n gates, as shown in Fig. 5b). Focusing
on two-input gates ensures that the cost of large accumu-
lations scale linearly with the size of accumulation, and
reduces the search space for OR n to 2n2

2n

(2n input
bits, n output bits), or 232 for OR 2.

2) Focus on the transfer function between the sum of
input bits and the sum of output bits. In other words,
instead of trying to find the function An

o = f(An
1 , A

n
2 ),

we try to find the sum transfer function
∑

(An
o ) =

fs(
∑

(An
1 ) +

∑
(An

2 )). The exact form of the function
will be determined later after considering other con-
straints. This concept is illustrated in Tab. II, which
depicts one possible implementation of OR 2. The sum
transfer function loses positional information of the
individual input bits and instead forces the computation
to be associative. In other words, the order of the input
bits does not affect the sum of the output bits, and the
output bits can be adjusted as long as the sum does
not change. As discussed in Sec. III-C, the associative
constraint allows for more efficient training of models
using OR n accumulation. The sum transfer function
constraint reduces the search space to (n+1)2n+1 (n+1
output sum values from n output bits, 2n+1 input sum
values from 2n input bits), or 35 for OR 2.

3) The sum transfer function should be non-decreasing,
and should use all possible sum values of the n output
bits. The former ensures that OR n behaves similarly
to normal accumulation, which simplifies training. The
latter ensures that the output bits are fully utilized.
These two constraints limit the search space to

(
2n
n

)
(n

increments in 2n entries), or 6 for OR 2.

Tab. III shows the 6 candidate transfer functions for the
OR 2 gates that satisfy all the constraints.

To find the best among the 6 candidate transfer func-
tions, we examine their behaviors when expanded to 3
OR 2 inputs shown in Tab. IV. Of the 6 candidates, half
of them loses the associative property, and the output de-
pends on the position of the input. Take candidate 2 as an
example. OR 2 2(OR 2 2({0, 1}, {0, 1}), {0, 0}) = {0, 0}
whereas OR 2 2(OR 2 2({0, 0}, {0, 0}), {1, 1}) = {0, 1},
even though the input bits add up to 2 for both cases. For
the rest of the three candidates, candidate 1 only activates
when almost all input bits are 1, which is unlikely for neural
networks with very wide accumulations. Candidate 4 faces
a similar issue where the second bit only activates when all
input bits are 1. We expect OR 2 using candidate 1 or 4 to
perform poorly, and this is confirmed in Tab. V. For the same
4-layer CNN (TinyConv) used in [16], candidate 1 does not
converge, candidate 4 barely offers any benefit over OR 1, and
only candidate 6 is a noticeable improvement over OR 1. As
a result, we choose candidate 6 as the sum transfer function
of OR 2.

The transfer function of OR 2 can be written as∑
(A2

o) =

{∑
(A2

1) +
∑

(A2
2),

∑
(A2

1) +
∑

(A2
2) < 2

2, otherwise
(3)

where A2
o is the output tuple and A2

1 and A2
2 are the input

tuples. Larger OR n can be derived similarly by replacing
2 in Eq. 3 with n, as shown in Eq. 4. Alternatively, OR n
can also be viewed as a saturating adder that saturates at
n. A key feature that sets OR n apart from other designs
with a saturating adder/accumulator is that it saturates after
every addition and operates only on unipolar inputs. The
former ensures that an OR n gate does not introduce ad-
ditional bits, as an OR 2 gate will always generate 2 bits
and an OR 3 gate will always generate 2/3 bits, depending
on the implementation. This linear scaling with the size of

Input Bits Input Sum Output Bits Output Sum
a b c d e f
0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 1
0 0 1 0 1 1 0 1
0 0 1 1 2 1 1 2
0 1 0 0 1 0 1 1
0 1 0 1 2 1 1 2
0 1 1 0 2 1 1 2
0 1 1 1 3 1 1 2
1 0 0 0 1 1 0 1
1 0 0 1 2 1 1 2
1 0 1 0 2 1 1 2
1 0 1 1 3 1 1 2
1 1 0 0 2 1 1 2
1 1 0 1 3 1 1 2
1 1 1 1 4 1 1 2

TABLE II: Comparison between a full truth table and a sum
transfer function. This is one possible truth table of a two-input
OR 2 gate that corresponds to Candidate 6 in Tab. III. This
particular truth table sets the two output bits to e = a+ c+ bd
and f = b + d + ac respectively, assuming a, b, c, and d are
the four input bits, and e and f are the two output bits.
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accumulation is advantageous. The latter feature ensures that
saturation is well-defined. Hardware implementations saturate
the outputs after each OR n accumulation, minimizing the
number of wires out of an OR n gate and allowing the
same OR n gate to be reused for larger accumulations. In
software modeling of OR n, saturation can be delayed to the
end to better utilize dot-product instructions present in recent
CPUs and GPUs while still being functionally identical to
the hardware version. A bipolar saturating adder, on the other
hand, lacks this convenience. For example, if we consider a
saturating addition that saturates at {5,-5} between 3, 4, and -
5, saturating after adding 3 and 4 will produce a different result
compared to saturating after adding all three values together.
The accumulation result from a bipolar saturating adder will
depend on the order of computation and will be more difficult
to model, particularly if saturation occurs frequently.∑

(An
o ) =

{∑
(An

1 ) +
∑

(An
2 ),

∑
(An

1 ) +
∑

(An
2 ) < n

n, otherwise
(4)

Despite focusing on the ease of implementation when de-
ciding between candidates, the final OR n offers lower error
compared to OR when normalized to the same total output
stream length. This means using k input bits for OR n and
kn input bits for OR, resulting in kn output bits for both
cases. Assuming different bits in a stream have independent
and idential distribution (IID), the output value follows a
binomial distribution, with root-mean-squared (RMS) error

being
√

v(1−v)
kn , where v is the expected error and kn is

the stream length. This is a concave function over v 3.
Due to the concavity of the error function, having different
probability values in different parts of the stream reduces the
final average error. For OR n, each group of k output bits

3This error function assumes using a true random number generator
(TRNG) for generation. Using a more accurate generator reduces overall error,
but the error is still a concave function with respect to the expected output
value

Candidates 1 2 3 4 5 6
Input Sum Output Sum
0 0 0 0 0 0 0
1 0 0 0 1 1 1
2 0 1 1 1 1 2
3 1 1 2 1 2 2
4 2 2 2 2 2 2

TABLE III: Candidate transfer functions between input and
output sums for 2-input OR 2.

Candidates 1 2 3 4 5 6
Input Sum Output Sum
0 0 0 0 0 0 0
1 0 0 0 1 1 1
2 0 0,1 0,1 1 1 2
3 0 0,1 1 1 1,2 2
4 0 1 1,2 1 1,2 2
5 1 1 2 1 2 2
6 2 2 2 2 2 2

TABLE IV: Candidate transfer functions between input and
output sums for 3-input OR 2.

represents a different value. As a result, we expect even OR 2
to outperform OR in accuracy when using half the input stream
length.

B. Efficient OR n implementation

AND ORa

b

c

d ORAND

e

f

Fig. 6: OR 2 circuit implementation. Similar to Tab. II, a, b,
c, and d are the four input bits, and e and f are the two output
bits.

While Section III-A defines the optimal transfer function
between input and output sums for OR n, the transfer function
does not uniquely define the truth table. Take OR 2, for
instance. Given two A2 inputs 00 and 01, the transfer function
determines that the A2 outputs sum up to 1 but does not decide
whether the outputs should be 01 or 10. For OR 2, there are
four output positions that can be either 01 or 10, resulting in 16
possible choices truth tables similar to the Tab. II. Fig.6 shows
a possible circuit implementation of OR 2 with the truth table
in Tab. II. We synthesized 256-wide adder trees for all 16
choices truth tables, and the area-delay product comparison is
shown in Fig. 7. Configuration 4 is the best performing option,
and we used that for all performance evaluations of OR 2. It is
also 3.3X better in terms of ADP compared to non-saturating
parallel-counter based addition.

OR 3 uses a saturating adder instead of the parallel im-
plementation of OR 2. From Eq. 4, OR n behaves like a
saturating adder that saturates at n. Instead of adding the
three parallel output bits after accumulation, every three input

Candidate OR 1 1 4 6
Accuracy 74.81% 10% 75.31% 78.92%

TABLE V: TinyConv Neural network accuracy of Candidate
1, 4, and 6 for OR 2. Models are trained using 32-bit streams
on CIFAR-10.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

OR 2 Configuration

0

200

400

600

A
D
P

[1
e3
]

Fig. 7: ADP comparison between different OR 2 truth table
implementations.
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bits are added together using a full adder, and 2-bit saturat-
ing adders perform the rest of the accumulation. The two
implementations are illustrated in Fig. 8. Tab. VI and Tab.
VII show the truth tables for the parallel and saturating adder
implementations respectively. We synthesized both options,
and the saturating adder version has ADP 2X lower than the
parallel implementation, so we use the saturating adder version
for performance evaluations of OR 3. Its ADP improvement
over parallel-counter addition is 1.6X. Because of that, we do
not explore n > 3, since we do not expect it to have better
performance than fixed-point accumulation.

C. Efficient training for OR n accumulation

While we focus on improving inference performance with
SC and OR n, we need to ensure that models are trained so
that they work well for OR n SC during inference. Training
is an important aspect of deep learning, and modifications
to the compute algorithm during inference need to be easily
trainable on commodity hardware. Our training setup is based
on the idea of straight-through estimators (STE) [17]. Fig. 13a
shows the basic STE setup for training inaccurate neurons. The
forward pass accurately models the inaccurate computation (in
our case SC stream computation), while the backward pass
ignores the inaccuracies. For REX-SC, we use an efficient
simulation framework to simulate SC-based computation in
the forward pass. This ensures that the training results are
representative of what we will get on SC hardware. Every
32 bits in an SC bitstream is packed to a 32-bit integer to
maximize performance. The simulation framework is written
in CUDA C++[18] to maximize performance on Nvidia GPUs
and utilizes AVX2 intrinsics[19] with OpenMP [20] to max-
imize performance on x86 CPUs. WMMA functions[21] are
used for Nvidia GPUs with Compute Capability ≥ 8.0.

Backpropagation uses floating-point computation during
training, and the non-linearity of OR n accumulation requires
modeling in the backward pass. To understand the need for
additional modeling during the backward pass, we need to
consider the saturation behavior of OR n. As OR n saturates
at n, output values close to n should result in lower gradient
values on the corresponding inputs and weights. The vanilla
STE setup ignores the saturation behavior during the backward
pass and thus degrades the accuracy of the final trained

OR_3

OR_3

OR_3

(a)

2-bit

Add

2-bit 

Add

2-bit 

Add

FA

FA

FA

FA

(b)

Fig. 8: (a) Parallel and (b) saturating adder implementation of
OR 3.

Input Bits Input Sum Output Bits Output Sum
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 1 1 2 0 1 1 2
0 0 0 1 0 0 1 1 0 0 1
0 0 0 1 0 1 2 1 0 1 2
0 0 0 1 1 0 2 1 1 0 2
0 0 0 1 1 1 3 1 1 1 3
0 0 1 0 0 0 1 0 0 1 1
0 0 1 0 0 1 2 1 0 1 2
0 0 1 0 1 0 2 0 1 1 2
0 0 1 0 1 1 3 1 1 1 3
0 0 1 1 0 0 2 1 0 1 2
0 0 1 1 0 1 3 1 1 1 3
0 0 1 1 1 0 3 1 1 1 3
0 0 1 1 1 1 4 1 1 1 3
0 1 0 0 0 0 1 0 1 0 1
0 1 0 0 0 1 2 0 1 1 2
0 1 0 0 1 0 2 0 1 1 2
0 1 0 0 1 1 3 1 1 1 3
0 1 0 1 0 0 2 1 1 0 2
0 1 0 1 0 1 3 1 1 1 3
0 1 0 1 1 0 3 1 1 1 3
0 1 0 1 1 1 4 1 1 1 3
0 1 1 0 0 0 2 0 1 1 2
0 1 1 0 0 1 3 1 1 1 3
0 1 1 0 1 0 3 1 1 1 3
0 1 1 0 1 1 4 1 1 1 3
0 1 1 1 0 0 3 1 1 1 3
0 1 1 1 0 1 4 1 1 1 3
0 1 1 1 1 0 4 1 1 1 3
0 1 1 1 1 1 5 1 1 1 3
1 0 0 0 0 0 1 1 0 0 1
1 0 0 0 0 1 2 1 0 1 2
1 0 0 0 1 0 2 1 1 0 2
1 0 0 0 1 1 3 1 1 1 3
1 0 0 1 0 0 2 1 1 0 2
1 0 0 1 0 1 3 1 1 1 3
1 0 0 1 1 0 3 1 1 1 3
1 0 0 1 1 1 4 1 1 1 3
1 0 1 0 0 0 2 1 0 1 2
1 0 1 0 0 1 3 1 1 1 3
1 0 1 0 1 0 3 1 1 1 3
1 0 1 0 1 1 4 1 1 1 3
1 0 1 1 0 0 3 1 1 1 3
1 0 1 1 0 1 4 1 1 1 3
1 0 1 1 1 0 4 1 1 1 3
1 0 1 1 1 1 5 1 1 1 3
1 1 0 0 0 0 2 1 1 0 2
1 1 0 0 0 1 3 1 1 1 3
1 1 0 0 1 0 3 1 1 1 3
1 1 0 0 1 1 4 1 1 1 3
1 1 0 1 0 0 3 1 1 1 3
1 1 0 1 0 1 4 1 1 1 3
1 1 0 1 1 0 4 1 1 1 3
1 1 0 1 1 1 5 1 1 1 3
1 1 1 0 0 0 3 1 1 1 3
1 1 1 0 0 1 4 1 1 1 3
1 1 1 0 1 0 4 1 1 1 3
1 1 1 0 1 1 5 1 1 1 3
1 1 1 1 0 0 4 1 1 1 3
1 1 1 1 0 1 5 1 1 1 3
1 1 1 1 1 0 5 1 1 1 3
1 1 1 1 1 1 6 1 1 1 3

TABLE VI: Truth table for the parallel implementation of
OR 3.
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Input Bits Output Bits
0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 1 1
0 1 0 0 0 1
0 1 0 1 1 0
0 1 1 0 1 1
0 1 1 1 1 1
1 0 0 0 1 0
1 0 0 1 1 1
1 0 1 0 1 1
1 0 1 1 1 1
1 1 0 0 1 1
1 1 0 1 1 1
1 1 1 1 1 1

TABLE VII: Truth table for the saturating adder implementa-
tion of OR 3
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100%
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Fig. 9: TinyConv accuracy of with fixed-point computation
using different intermediate precision.

model. This is an issue even for fixed-point quantization with
limited accumulation precision, as shown in Fig. 9. When there
is not enough intermediate precision and the accumulation
saturates, accuracy drops significantly when the saturation
is not modeled. [3] shows that it is possible to model OR
accumulation as normal accumulation + activation function.
This allows the usage of optimized convolution and linear
kernels in popular deep learning frameworks. OR n modeling
uses a similar concept to modeling OR 1, so we will go
through the derivations for OR 1, and then extend the idea to
OR n. For an OR 1 gate with inputs ak, the expected output
value is equal to

OR 1 = 1− prob(0 input is 1) = 1−
∏

(1− ak) (5)

By assuming all inputs are the same, Eq. 5 simplifies to 1 −
(1− s/n)n, where s is the normal sum of the inputs. When n
is large, it further simplifies to

OR 1 ≈ 1− e−s (6)

Similar concepts can be applied to OR 2. The OR 2 output
can then be approximated as

OR 2(ak) ≈ 2− 2e−s − se−s (7)

The same idea can be extended to higher-degree OR n, which
is shown in Eq. 8.

OR n(ak) ≈ n−
n−1∑
i=0

(n− i)si

i!
e−s (8)

0 2 4 6 8
Normal Sum
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Fig. 10: Modeling performance of (a) OR 2 and (b) OR 3.

The backpropagation through a neural network layer using
OR n accumulation is modeled as a normal convolution/linear
backward pass (layer bwd) with an added pointwise function,
as is shown in Eq. 9 and 10, where go is the output gradient

OR n layer bwd(go) = layer bwd(OR n bwd(go)) (9)

OR n bwd(go) = go ∗ (1 +
n−1∑
i=0

si

i!
e−s) (10)

Fig. 10 shows the modeling performance of OR n approx-
imations. 100 inputs are used in the accumulation, each
having a stream length of 1024. Our proposed approximation
correctly captures the trend of OR n accumulation. Since the
approximation is only a function of normal accumulation sum
S, it can also be modeled as a single activation function and
is efficient to implement during training. Such models are
only possible when the OR n function satisfies the associative
property mentioned in Sec. III-A. Consider partial binary accu-
mulation [10] (PB) which also tries to extend the range of SC
accumulation. In PB, large accumulations are broken up into
multiple groups. Each group uses OR gates for accumulation,
and results from different groups are added together using
binary adders. Using two kinds of accumulators make PB non-
associative, which is demonstrated in Fig. 11. Compared to
OR 2 that maintains its accumulation behavior regardless of
order of computation, PB has different behaviors depending
on how the accumulation is broken up. The output response is
very different when the two groups are roughly equal (pb r)
and when the two groups are very different (pb s). While
pb r behaves similar to OR 2, pb s barely offers any benefit
over OR 1. Given the randomness of neural networks, it is
impossible to predict how balanced the groups are, and thus
impossible to use a single activation function. This will have
profound impact on training performance, as we will show in
Sec.IV-C.

While the stream simulation improvements for the forward
pass reduce forward propagation time, it is still expensive
compared to normal forward pass using single/half-precision
floating-point numbers. To further reduce the training overhead
for REX-SC, we propose to replace stream simulation with
activation calibration and error injection (a+e for short) for
most of the training epochs. Since the activation approximation
is sufficient for the backward pass, one may ask why it
is not sufficient for the forward pass. The main issue is
that the activation functions cannot completely capture the
characteristics of OR n accumulation. Fig. 12 shows the mean
and standard deviation of the difference between actual stream
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Fig. 11: Modeling performance comparison of OR 2 and 2-
way partial binary accumulation. pb r and pb s use the same
inputs, and only the order of computation is changed, such that
for pb r partial sums are roughly equal, and for pb s they are
very different.

output and activation output for the same 4-layer CNN used in
Tab. V. The average error (denoted as bias in the figure) is non-
zero, implying that the activation function is not perfect. Since
the average error is different for each layer, it is impossible
to use a single activation function for all layers. The standard
deviation of the error (denoted as std in the figure) means it is
impossible to capture all the properties of OR n accumulation
with only the activation function. Fortunately, both mean and
variance of the error are smooth functions of the activation
value. We can thus approximate the two parts of the error
with polynomial functions using standard linear least squares
regression [22], as is shown in the curves. The fitted mean
curve is then added to the post-activation value as a calibration
step for the activation, and the variance curve is used to inject
random error to each activation with variance equal to the
value predicted by the curve. Fig. 13 compares the training
setup of stream and a+e training step. While a+e step seems
more complicated, the additional operators are all point-wise
operations and can be fused to reduce overhead. The step to
update the error curves for a+e is performed only a few times
per epoch of training to amortize its relatively large cost.

With the optimized stream computation simulation, back-
ward propagation using activation function, and a+e step, the
overall training setup is shown in Alg. 1. Models are first
trained using the a+e training step, and then fine-tuned with
stream training for a few epochs.

IV. RESULTS

A. Evaluation

To measure the accuracy benefits of extended-range SC,
we evaluate accuracy on image classification datasets CIFAR-
10 and ImageNet [4]. For CIFAR-10, we use a 4-layer con-
volutional neural network (TinyConv) [16] and VGG-16 [1].
For ImageNet, we use Resnet-18 and Resnet-34 [2]. Models

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
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(a) Layer 1
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(b) Layer 2
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Fig. 12: Difference between outputs from stream computation
and from normal computation+activation.

Algorithm 1 Training setup for OR n.

Require: Epochs with a+e training ne, epochs with stream
training ns, number of training steps between a+e update
ke, total number of training mini batches k0, dataset d.
n← 0
while n < ne do ▷ a+e training phase

k ← 0
while k < k0 do

x← d[k]
if k mod ke = ke−1 then ▷ update a+e parameters

for all layers do
xl ← layer input
ya+e ← layer forward a+e(x)
ystream ← layer forward stream(x)
Update layer mean and variance curves

end for
else

x← model input
y = model forward a+e(x)

end if
model backward a+e(y,model target)
k ← k + 1

end while
n← n+ 1

end while
while n < ne + ns do ▷ stream training phase

k ← 0
while k < k0 do

x← d[k]
y ← model forward stream(x)
model backward a+e(y,model target)
k ← k + 1

end while
n← n+ 1

end while
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Fig. 13: Comparison between (a) vanilla STE [17], (b) stream
with OR n activation and (c) a+e training step.

are trained using PyTorch 1.12.0. For a+e, the error curves
are adjusted 5 times per epoch. Lower frequency is possible
but does not yield additional performance benefits as the
calibration time is sufficiently amortized. CIFAR-10 models
are trained for 100 epochs, where 80 epoch use a+e and 20 use
stream simulation. ImageNet models are trained for 70 epochs,
where 65 epochs use a+e and 5 use stream simulation. Models
are trained using maximal-length LFSRs as the RNG and use
the same RNG sharing scheme proposed in [10]. LFSR seeds
are shared between different filters and between different input
batches. The sharing scheme is demonstrated in Tab. VIII for
a layer with 4x4 input and 3x3 weight and a stream length of
8 (3-bit LFSR). Seeds are also shared within the same input
and weight filter due to the limited number of unique seeds
for a maximal-length LFSR (2n − 1 for an n-bit LFSR) and
are correctly modeled. Streams are converted to fixed-point

numbers using a counter between layers. The training code is
available at https://github.com/nanocad-lab/rex-sc.

TABLE VIII: LFSR seed sharing scheme demonstration.

Position Seed values
Input 1 0,1,2,3,4,5,6,0,1,2,3,4,5,6,0,1
Input 2 0,1,2,3,4,5,6,0,1,2,3,4,5,6,0,1
Filter 1 6,0,1,2,3,4,5,6,0
Filter 2 6,0,1,2,3,4,5,6,0

B. Accuracy improvements

Accuracy comparisons between OR n and other alternatives
are shown in Fig. 14a for TinyConv [16] on CIFAR10. OR 1
uses OR gates for accumulation similar to the setup used in [3].
SC-Bin uses parallel counters for accumulation, similar to the
setup in [11]. It can also be seen as an upper bound of accuracy
for uSADD and uNSADD proposed in [13], as the latter two
also trie to reduce multiplication error while sacrificing some
accumulation accuracy in the pursuit of streaming compute.
MUX-based additions suffer from scaling issues on the weight
values, which prevents convergence even with the improve-
ments from CeMux[15]. PB uses partial binary accumulation
setup used in [10]. Accuracy of OR 2 is comparable to PB
at both stream lengths, while OR 3 outperforms both. SC-
Bin has a 2-4% point accuracy advantage over OR 2 and 1-
3% point advantage over OR 3. Compared to FXP6 baseline
using 6-bit fixed-point multiply-accumulate, OR 2 has a 4-6%
point accuracy deficit, while OR 3 narrows the gap to 3-5%
points. Fig. 14a also shows the results of the same concept
applied to AND multiplication, denoted as ”AND 2” and
”AND 4”. AND n takes groups of n bits from each of the two
multiplicands and multiplies all bits from the first group with
all bits from the second group. Traditional AND multiplication
can thus be seen as AND 1. AND 2 and AND 4 increase
multiplication stream length by 2X and 4X respectively and
increase overall area and energy by the roughly same amount.
While AND n can also improve accuracy, it is not energy- or
area-efficient. AND 4 roughly matches OR 1 when using half
the stream length, but consumes ≈ 2X the area and energy.

Accuracy results of VGG-16 on CIFAR-10 and Resnet-
18/34 on ImageNet are shown in Fig. 14b) and 14c)/14d). Both
OR 2 and OR 3 achieve similar accuracy to 6-bit fixed-point
on VGG-16. While OR 2 and OR 3 improves Top-5 accuracy
by 3-5% points compared to OR 1 on ImageNet, they are
2-5% points lower than FXP6. Accuracy of OR N is likely
limited by the training hyperparameters. For instance, doubling
the number of epochs from 35 to 70 improves accuracies by
1.5-2% points for OR n, and longer training times should
improve accuracies even further. Compared SC-Bin that has
unlimited accumulation precision, OR 2 and 3 reduces the
accuracy gap while requiring at most 2 bits of accumulation
precision. Compared to fixed-point computation and SC-Bin,
OR N enables scaling to higher performance levels. While
SC-Bin using 16-bit streams has accuracy between 32-bit and
64-bit OR 3 on TinyConv, it is not a useful setup for the other
models. Both fixed-point and SC-Bin have convergence prob-
lems in VGG and Resnets when dropping precision further,

https://github.com/nanocad-lab/rex-sc
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Fig. 14: Accuracy comparison for (a) TinyConv and (b) VGG-16 on CIFAR-10, (c) Resnet-18 and (d) Resnet-34 on ImageNet.
16-bit SC-Bin only has an accuracy result for TinyConv as it does not converge for other larger models.

TABLE IX: Array size, compute area and power, clock period, inference latency, energy, and energy improvement compared
to 6-bit fixed-point, for different models and datasets with different types of SC accumulation.

CIFAR-10 TinyConv CIFAR-10 VGG ImageNet ResNet-18 ImageNet ResNet-34

Architecture N Area Period Power Stream Latency Energy E. Impr. Latency Energy E. Impr. Latency Energy E. Impr. Latency Energy E. Impr
[mm2] [ns] [mW] Length [us] [uJ] vs FXP6 [us] [uJ] vs FXP6 [us] [uJ] vs FXP6 [us] [uJ] vs FXP6

FXP6 9 2.97 4.5 692 4.5 7.9 1.0 76.5 132.2 1.0 446.8 772.8 1.0 817.5 1413.2 1.0

SC Bin 41 3.12 1.6 3282 32 2.6 12.3 0.6 44.6 207.1 0.6 246.0 1145.4 0.7 449.8 1666.0 0.8
64 5.3 21.0 0.4 89.2 353.5 0.4 492.1 1953.0 0.4 899.6 3142.4 0.4

SC uSADD 12 2.93 1.1 970 32 20.6 31.5 0.2 347.8 530.3 0.2 2032.3 3101.2 0.2 3718.2 4243.8 0.3
64 41.3 51.6 0.2 695.7 867.7 0.2 4064.6 5072.5 0.2 7436.5 7850.5 0.2

SC uNSADD 12 2.95 1.2 1026 32 21.8 33.9 0.2 368.2 570.7 0.2 2151.3 3337.1 0.2 3936.0 4675.4 0.3
64 43.7 56.3 0.1 736.4 948.5 0.1 4302.6 5544.4 0.1 7872.0 8713.7 0.2

SC OR 1 64 3.21 2.4 488 32 1.5 1.0 8.0 27.4 17.8 7.4 155.9 101.4 7.6 285.5 267.2 5.3
64 3.0 1.7 4.6 54.8 31.1 4.2 311.7 177.4 4.4 571.0 406.4 3.5

SC OR 2 51 3.2 2.2 596 32 2.7 2.1 3.7 43.2 34.8 3.8 227.8 183.8 4.2 417.8 404.7 3.5
64 5.3 3.7 2.1 86.4 60.5 2.2 455.6 319.6 2.4 835.5 653.6 2.2

SC OR 3 50 3.12 2.2 650 32 2.6 2.3 3.4 42.4 37.3 3.5 231.6 204.5 3.8 424.1 437.0 3.2
64 5.2 4.0 2.0 84.7 64.9 2.0 463.1 355.1 2.2 848.1 712.8 2.0

as weight values tend to underflow the smallest representable
value with 5-bit fixed-range quantization (16-bit stream for
SC).

TABLE X: Iteration time comparisons between OR n and
partial binary accumulation. Time is measured in s/256 images
on an RTX 3090. The numbers before “PB” are the sizes of OR
accumulation, with smaller numbers leading to more binary
accumulations.

TinyConv (CIFAR-10) Resnet-18 (ImageNet)
Stream Length 5x8 PB OR n 5x8 PB OR n a+e
32 0.092 0.041 8.08 1.09 0.26
64 0.108 0.052 9.24 1.64 0.26
128 0.135 0.081 11.61 2.72 0.26

C. Training speed improvements

While partial binary accumulation and OR 2/3 have similar
accuracy benefits over OR 1 as shown in Section IV-B, partial
binary accumulation complicates the training process of neural
networks. In contrast to OR 2 and OR 3, it is not feasible
to approximate partial binary accumulation with a single
activation function, since partial binary accumulation is not
associative by design.

Iteration speed comparisons between OR n and partial
binary accumulation are shown in Tab. X. Different n values
for OR n only changes the activation function used during
training and does not significantly affect training time. For
smaller models like TinyConv where the memory requirement
is not an issue, PB is between 1.5X and 2.2X slower. Larger
models like Resnet-18 suffer more due to the memory size
limitations. Higher levels of binary accumulation exacerbate
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Fig. 15: Convergence behavior of stream only and a+e. The
drop in accuracy at epoch 31 for a+e is when switching to
using streams for the forward pass.

this effect, making PB up to 7.4X slower than OR n to train.
a+e further reduces iteration time by at least 4X. Since the
runtime of a+e not dependant on stream length, it is especially
useful when training for longer streams.

Fig. 15 compares the convergence behaviors of training
with stream only and with a+e replacing most of the epochs.
Training is limited to 35 epochs for both cases, as stream
training with the full 70 epochs takes too long. a+e has similar
convergence behavior as stream only, and achieves similar
accuracy in the end. Overall training time is reduced by at
least 3X with a+e compared to stream only and at least 22X
compared to training with PB as shown in Tab. XI.

D. Performance

To evaluate the performance benefits of using OR n im-
plementations, we use the previously synthesized adder and
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TABLE XI: End-to-end training time comparison in hours
between OR n and partial binary accumulation. Results for
OR n and PB are estimated as they take prohibitively long to
train.

Stream Length 5x8 PB OR n a+e
32 710.9 95.9 31.6
64 812.4 144.2 35.0

dot product results together with buffers and SNG results
using a commercial 28nm technology and Cadence Genus
synthesis tools. SNGs are based on maximum-length LFSRs,
shared across different processing elements, and comparators.
We use 6-bit fixed-point (FXP6) as a baseline, and compare
its performance with SC implementations. Besides, SC with
binary accumulation (SC Bin), OR 1, OR 2, and OR 3, we
include uSADD and uNSADD (scaled and non-scaled adders)
from [13]. Both uSADD and uNSADD use uMUL multipliers,
which offer high accuracy without retraining, but at a signifi-
cant hardware cost. To evaluate system-level performance, we
assume dot-product processing elements are organized as a
N-by-N GEMM array, similar to recently proposed SC accel-
erators [23], [13], [24]. We assume the individual PE to have a
width of 256. We use a N = 64 array using OR-based SC dot
products as a baseline, which occupies an area of 3.2mm2, and
we size up all other configurations to be as close to this area
budget as possible. We then try to normalize the throughput
w.r.t. FXP6 for all configurations, assuming 64-long streams,
by increasing or lowering clock frequency, and corresponding
power to take advantage of voltage-frequency scaling. SC with
binary accumulation and OR 1 accumulation cannot be fully
throughput normalized to FXP6 due to impossibly high and
low resulting voltage requirements, respectively. As a result
of throughput normalization, OR n configurations can use
lower clock frequency, and consume lower power than other
SC configurations with similar area. We use an analytical
model that takes the array size and layer parameters, such
as input and filter size, number of filters etc., and calculates
both the number of compute iterations as well as memory
accesses required to process a given layer, assuming output
stationary dataflow. We focus on convolutional layers, as they
dominate runtime and energy for all explored models. Our
model assumes the memory bandwidth is provisioned such
that computation is never stalled and that computation has
maximum valid utilization. We use the clock period, stream
length, and iteration count estimate the latency of each model’s
inference. We estimate inference energy using the latency,
synthesized design power, memory access count, and energy
obtained using the CACTI 6.5 tool [25].

Performance results including improvement over 6-bit fixed-
point are shown in Tab. IX. First, we show that SC with
parallel counter accumulation has 1.6-2.7X worse energy
consumption than fixed-point. This is because the larger area
and latency of parallel counter addition cannot compensate for
the increased latency. The proposed OR 2 and OR 3 designs
successfully bridge the performance gap between OR 1 and
binary accumulation. OR 2 achieves up to 4.2X energy and 2X
latency improvement over fixed-point at 32-long streams, and
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Fig. 16: Comparison of multiplexer- and OR n-based adders’
root mean squared error (RMSE) with respect to normal
addition. We use sums of 1000 positive inputs with outputs
having an average of 1 and a variance of 0.5.

up to 2.4X at 64-long streams, with similar latency. OR 3 fares
marginally worse, with up to 3.8X energy and 1.9X latency
improvement at 32-long streams, and 2.2X improvement at
64-long streams. Both designs outperform SC with binary ac-
cumulation, even at twice the stream length. OR 2 and OR 3
with 64 long streams have up to 3.6X and 3.2X lower energy,
respectively, than the parallel counter implementation with 32
long streams. They also outperform uSADD and uNSADD
configurations at the same stream lengths, although it comes
mainly from the high cost of accurate uMUL multipliers. With
an AND-based multiplication, uSADD and uNSADD would
be very similar to regular binary accumulation, as they are
based on parallel counters.

E. OR n for non-trained applications

Most of the results focus on deep learning performance
of OR n with training involved. This is valid for neural
networks that rely on training, and where the non-linearity
of OR n accumulation can be accounted for. In applications
where training is not allowed, OR 1 already offers lower
error compared to Multiplexers for relatively short streams
as shown in Fig. 2. OR 2 and OR 3 extends this lead to
even larger values, as shown in Fig. 16. MUX requires stream
length ≥ 4096 to have lower error than OR 1 before factoring
training. For OR 2 and OR 3, that threshold becomes 32768
and 131072 respectively.

We also compared the error of OR n accumulation with
unary computing accumulators proposed in [13]. Despite not
having the non-linearity of OR n, the scaled addition version
(uSADD) only beats OR 2 and OR 3 with stream length
≥ 4096 and 8192 respectively. On the other hand, the non-
scaled version (uNSADD) quickly saturates and is comparable
to OR 1. Both versions are more expensive than SC Bin
discussed previously. At stream lengths used for accuracy and
performance evaluations (32 and 64), OR 2 and OR 3 offers
1.57x to 8.10x lower average error.
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V. CONCLUSION

In this work, we presented REX-SC - Range-Extended
Stochastic Computing for neural network acceleration. REX-
SC improves the accuracy of SC accumulation by increasing
the number of output bits after accumulation. It reduces the
accuracy gap between SC using OR accumulation and fixed-
point computation. While SC with binary accumulation has
almost no performance advantage over fixed-point, REX-SC
remains competitive in performance with fixed-point neural
networks while preserving the benefits of stochastic comput-
ing, including variable precision [3] and early termination[13].
REX-SC also improves the training performance of SC-based
neural networks with optimizations to both the forward and
backward propagation components. Our future work will focus
on further improving accuracy of SC while maintaining its
performance benefits.
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