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Abstract—Stochastic computing (SC) has recently emerged as a
promising method for efficient machine learning acceleration. Its
high compute density, affinity with dense linear algebra primitives,
and approximation properties have an uncanny level of synergy with
deep neural network computational requirements. However, there is a
conspicuous lack of works trying to integrate SC hardware with sparsity
awareness, which has brought significant performance improvements
to conventional architectures. In this work, we identify why common
sparsity-exploiting techniques are not easily applicable to SC accelerators
and propose a new architecture - SASCHA - Sparsity-Aware Stochastic
Computing Hardware Architecture for neural network acceleration
that addresses those issues. SASCHA encompasses a set of techniques
that make utilizing sparsity in inference practical for different types SC
computation. At 90% weight sparsity, SASCHA can be up to 6.5X faster
and 5.5X more energy-efficient than comparable dense SC accelerators
with a similar area without sacrificing the dense network throughput.
SASCHA also outperforms sparse fixed-point accelerators by up to 4X
in terms of latency. To the best of our knowledge, SASCHA is the first
stochastic computing accelerator architecture oriented around sparsity.

Index Terms—Accelerators, Machine Learning, Stochastic Computing

I. INTRODUCTION

New classes of machine learning mobile applications, like virtual
assistants, translation, and image recognition, continue to emerge, am-
plifying the demand for fast, efficient, and secure inference [23], [46],
[47]. Increasingly, this demand cannot be satisfied by offline, cloud-
based processing due to substantial and unpredictable network laten-
cies as well as privacy concerns [23], [51]. To enable online machine
learning, mobile devices increasingly incorporate custom accelerators,
broadly known as neural processing units, or NPUs [47]. Those
devices are deployed under strict area, power, and energy constraints.

To improve the throughput and energy efficiency, researchers
have increasingly looked into model compression methods, like
quantization and pruning [6], [7], [49], [50]. Non-conventional
computing methods, like in-memory or stochastic computation,
have also been gaining popularity [2], [12], [26], [38]. Hardware
support for some of those techniques has already made its way into
commercially available devices [9].

Stochastic computing (SC) in particular has been shown as a
very promising approach to approximate computing acceleration,
particularly for dense, compute-heavy models like convolutional
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neural networks [28], [29], [38], [48]. Recent works have shown
significant improvements in both the accuracy of SC computation
as well as the area and energy efficiency of the arithmetic units [20],
[28], [48]. There is now a plethora of possible SC flavors, spanning
the accuracy-efficiency Pareto curve, depending on application
requirements. However, there is a conspicuous lack of SC architectures
trying to take advantage of neural networks’ resilience to pruning [49],
something that could enable further performance improvements. To
address this gap, we propose SASCHA - Sparsity-Aware Stochastic
Computing Hardware Architecture for Neural Network Acceleration.
SASCHA consists of computational units design, accelerator
architecture, and a scheduling method that improves the efficiency
of executing sparse neural networks using SC computation without
sacrificing high parallelism and data re-use opportunities.

The key contributions of this work are:
• We introduce the multi-group, parallel stream sparse SC SASCHA

processing element (PE), agnostic of underlying SC computation
style, and perform a thorough evaluation of its extensive design
space.

• To the best of our knowledge, we propose the first stochastic
computing neural network accelerator architecture that takes
advantage of parameter sparsity. SASCHA can achieve up to
6.5X throughput and 5.5X energy efficiency improvement at 90%
sparsity level, compared to a dense SC accelerator with a similar
area, while maintaining the throughput and suffering only up to
31% energy efficiency in the dense case.

• We propose a weight bit-slicing technique using asymmetric
streams unique to SC that can extract weight sparsity even in dense
networks, improving SASCHA throughput and energy-efficiency
by up to 1.75X on unpruned networks.
The rest of this paper is organized as follows: Section II provides a

brief introduction to stochastic computing and neural network pruning.
Section III explains why conventional approaches to exploiting
sparsity are not easily applicable or beneficial in the case of SC
accelerators. Sections IV introduces the sparse SASCHA PE and
explores its design space. Section V describes the architecture of
the SASCHA accelerator and its asynchronous scheduler. Section
VI discusses a bit-slicing method that can extract high effective
sparsity in unpruned networks. Section VII shows the benefits of the
SASCHA accelerator. Finally, Section VIII summarizes related work.

II. BACKGROUND

A. Stochastic Computing
Stochastic computing is a number representation using a proportion

of 1’s in a binary stream to represent fractional numbers [13]. Com-
pared to conventional fixed- or floating-point formats, SC makes it
possible to implement certain arithmetic operations, like multiplication
and addition, using single logic gates. For example, two values can be
multiplied by passing their stochastic streams through an AND gate.
However, the compact arithmetic offered by SC comes at the cost
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of random errors and precision issues, which make it unsuitable for
certain applications [2]. Fortunately, neural networks’ error-tolerant
nature, as well as heavy reliance on linear algebra kernels and multiply-
accumulate (MAC) operations, make them perfect candidates for SC
acceleration [20], [38], [48]. Because of that, SC has been enjoying
a renaissance, with many different flavors of computation proposed,
spanning various points on the accuracy-efficiency spectrum - some of
them maximizing the density and efficiency, while others maintaining
the accuracy close to fixed-point designs [20], [28], [29], [38], [48].
Below we briefly outline the most relevant components of SC.

Stochastic computing offers two alternative number representation
formats: unipolar and bipolar. In the former, a value in the range
of [0,1) is represented as the proportion of 1’s in a binary stream
of arbitrary length, as shown in Figure 1 a). The latter, shown in
Figure 1 b), represents a number in the range of (−1,1) using the
difference between the number of 1’s and 0’s in the stream. Bipolar
representation has twice the effective range of the unipolar, and
therefore lower precision when using the same stream length. To
maintain the higher accuracy of unipolar streams as well as the ability
to represent both positive and negative values, various techniques have
been proposed [20], [38], [48]. In this work, we use the split-unipolar
implementation, where the negative and positive multiplication results
are accumulated separately using replicated adder trees, and partial
sums are subtracted in the fixed-point domain [38].

One of the main considerations of SC architectures is the conversion
cost. To enable efficient, single-gate stream processing, values stored
in integer format must be converted into stochastic streams. Conver-
sion is achieved using the Stochastic Number Generator (SNG) circuit.
It most commonly consists of a random number generator (RNG),
a fixed-point value buffer, and a comparator, as shown in Figure 1 c).
The implementation of this circuit can be very costly, depending on the
type of RNG used. Previous works have used either linear-feedback
shift registers (LFSRs), or low-discrepancy (LD) sequence generators,
such as Halton or Sobol [28], [48]. Conversion from stochastic streams
back to fixed-point values is achieved by counting the number of 1’s in
the output stream. Due to high costs, SC architectures often try to amor-
tize conversion by using high spatial reuse [38], [48]. Figure 1 also
shows an example of unipolar multiplication using an AND gate multi-
plier, like the one used in [20], [38]. Additions can be performed using
multiplexers [37], binary adders [20], [37], [48] or OR gates [38].

Fig. 1. Examples of unipolar (a) and bipolar (b) SC representation, and a unipolar
Stochastic Number Generator Circuit (SNG) with an AND gate SC multiplication (c).

B. Sparse Neural Networks
Pruning superfluous weights in neural networks has been exten-

sively explored as a way of reducing the model size and latency, as well
as improving generalization [16], [17]. Potential performance benefits
come from the fact that multiplications involving zero-valued weights
do not change final results, hence the operation itself, as well as
associated memory accesses can, in theory, be skipped. If the hardware
can take advantage of it, storage, runtime, and energy consumption
can be reduced, at some cost to network accuracy. Previous works

have demonstrated that weights can be pruned by up to 90% without
increasing model error [16]. Unfortunately, the hardware commonly
used to accelerate deep learning execution, particularly GPUs, is
frequently optimized toward dense linear algebra kernels and cannot
deal efficiently with unconstrained sparsity. Because of that, various
forms of constrained, or structured, pruning have been introduced, in-
cluding filter-wise sparsity [18], group-wise sparsity [49], and pattern
sparsity [31]. While structured sparsity can be efficiently executed on
parallel architectures such as GPUs, constraining pruning flexibility in
training can have a large impact on network accuracy, counteracting
the generalization benefits mentioned above [49]. Because of that,
structurally pruned networks generally achieve lower overall sparsity
compared with unstructured ones with the same accuracy [49]. Due to
the very high potential benefits of pruning, particularly unconstrained,
multiple custom sparse accelerator architectures have been proposed
in recent years [11], [14], [19], [30], [35], [50].

III. MOTIVATION

Given the recent popularity of stochastic computing and sparsity-
aware accelerators, there is a surprising lack of attempts to combine
both approaches. This section explains why taking advantage of
sparsity in stochastic computing hardware cannot be tackled by the
same techniques as conventional, floating- or fixed-point accelerators.

Most common attempts to exploit sparsity in hardware rely on
matching non-zero input and weight values that need to be multiplied
together to avoid ineffectual computations, i.e. ones where at least
one operand is zero [11], [14], [15], [19], [25], [30], [35], [36], [50].
To avoid an issue where no non-zero operands are available, causing
stalls and poor utilization, larger staging buffers that can spatially
or temporarily advance operands are frequently used [15], [25],
[30], [36]. While pre-trained weights can often be scheduled offline,
simplifying the hardware, exploiting input sparsity must be performed
dynamically, incurring non-negligible hardware overheads. For
example, [25] increases the area of the compute core by 2.8-5.9x to
support sparsity compared to the dense baseline. In other approaches,
matching can be achieved by calculating an intersection operation
between input and weight values on an output-by-output basis
[14], [19], [35], or coupling custom dataflows with sparse storage
format choices [34], [43]. Those techniques can also incur significant
overheads. For example, in [14], the intersection calculation module
is more than 10x larger than the compute. In [35], a large crossbar
network is required to route the outputs, exceeding the size of
compute units by more than 3X. Similarly, in [43], more than 95%
of the processing element area is consumed by the sorting queues.

For devices operating with conventional floating- or fixed-point
values, high area, and energy cost of computation can justify such
overheads. However, that is not the case in SC-based architectures. As
mentioned before, conversion circuitry, including SNGs, RNGs, and
buffers, is frequently the dominant area and power contributor in SC
accelerators. Analyzing the accelerator area breakdowns in [28], we
can see that the SC MAC arrays (multipliers and adders) occupy as
little as 6% of the overall area, while the conversion circuitry consumes
51%, with similar energy contributions. While the techniques
mentioned above could be applied to SNGs, the high spatial data
reuse introduces an additional level of complexity [20], [29], [38].
Commonly, thousands (or more) of multiply-accumulate operations
can be scheduled concurrently, with individual operand streams being
broadcast across many multiplications in parallel. Therefore, a given
operand could only be skipped if all corresponding operands it is
meant to be concurrently multiplied with are zeros. Such extensive
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reuse would limit ineffectual computation skipping opportunities
and dramatically increase the cost of already expensive dynamic
intersection calculation, dwarfing low-cost SC computation. Further,
conventional sparse accelerators require complex sparsity detection
logic to improve the utilization of the limited number of their large and
complex processing elements [25]. SC’s high parallelism and low cost
make underutilization less of a problem compared to architectures with
a limited number of large floating- or fixed-point PEs [38]. In short,
for SC architectures, detecting sparsity is more costly than ignoring it.

Taking advantage of sparsity in stochastic computing architectures
by using conventional approaches can therefore yield minimal benefits
or could end up being detrimental. To this end, we make a few
guiding observations. First, any attempt at exploiting sparsity should
not compromise the high level of parallelism enabled by SC [38].
Therefore any approaches requiring fine-granularity, dynamic schedul-
ing, or other sources of hardware overheads are highly undesirable.
Particularly, individual dynamic intersections between both sparse
weights and activations are not compatible with spatial data reuse
employed by SC. To this end, whenever possible, we want the burden
of exploiting sparsity to lie on the offline, static side, so as not to intro-
duce unnecessary hardware overheads. Because of that, we focus only
on the sparsity of weights, which are static and known a priori, while
keeping activations dense. Second, explicitly avoiding the ineffectual
SC computations, as opposed to floating- or fixed-point ones has
limited benefits and should not be the goal in itself. Instead, we believe
sparsity should be used to improve the dominant area and energy
contributors in SC-based architectures: memory and SNGs [28], [38].

IV. SASCHA SPARSE SC PE
A. Sparse PE Design Objectives

In this section, we outline the design of a sparse SC processing
element, implementing a parallel dot product operation. Our PE is
agnostic of the underlying style of SC computation. To demonstrate
that, we evaluate three different implementations: split-unipolar AND-
based multiplication with partial-binary OR-based accumulation used
by GEO [28], modified GEO-style PE with full binary accumulation,
and the uMUL multiplier with binary accumulation proposed by
uGEMM [48]. We will refer to them as GEO-, GEO+- and uGEMM-
style PEs, respectively. Those PEs offer progressively higher precision
at an increased area/power cost, as discussed in Section VII. While
full-binary accumulation refers to adding all individual bits of SC
multiplication results, preserving their full fidelity, partial-binary refers
to performing the first part of accumulation using streaming, OR-based
adders for more compact area, and the rest using binary accumulation
[28]. Alternative SC computational components are fundamentally
compatible with SASCHA, but they are beyond the scope of this work.

Our goal is to design a sparse SC compute unit, given SC hardware
peculiarities outlined in Section III. First, as explained in Section III,
our prime target for optimization is the cost of converting the numbers
between fixed-point and stochastic representations. Second, we need
to make a choice whether we should target weight or input sparsity.
As explained in Section III, we want to avoid any dynamic approaches
that incur high hardware overheads relative to cheap SC compute.
Because of that, we avoid trying to exploit both weight, and activation
sparsity due to costly intersection calculations [11], [14], [35]. Even
exploiting just activation sparsity would require spatial and temporal
operand advancement [15], [30] performed dynamically in hardware.
Instead, we focus solely on the sparsity of network weights, which
is known a priori for inference accelerators and enables static, offline
scheduling. It allows us to exploit sparsity with minimal hardware
changes that do not compromise SC density and high spatial reuse.

B. G:C Sparse PE

Similar to [9], we exploit structural sparsity in parameters. We
believe this simple approach is well suited to our requirements as a)
it can be statically scheduled, b) allows us to reduce the overhead of
stochastic number generation, c) does not exploit or make any assump-
tions about input sparsity, and d) does not require high multiplexing
overheads, as we will show shortly. However, we make three important
distinctions between the sparse compute units of [9] and our Sparse
SC PE. First, we explore other sparsity structures - in general, for every
group ofG parameters, we allowC non-zero ones. We will henceforth
be referring toG as a group size, andC as capacity. Second, where [9]
can only accelerate networks pruned to their exact sparsity structure,
we design a scheduler capable of mapping networks with arbitrary lev-
els and structure of sparsity onto the compute fabric built using sparse
PEs. Finally, we focus specifically on stochastic computing, which
enables different design trade-offs compared to conventional compute.

Fig. 2. Sparse PE with group size G and capacity C (a). Decomposing 3 arbitrary param-
eter groups of size G=4, into groups satisfying the capacity requirement of C≤2 (b).

A block diagram of a generic, i.e., supporting any format of
underlying computation, sparse PE with a group size G and capacity
C is shown in Figure 2 a). It performs a spatially parallel dot product
operation between a dense vector of G activations and a sparse vector
of C weights and their corresponding indices. A weight’s index
indicates its position in the dense vector and is used to select an
activation that needs to be multiplied by the weight’s value. Compared
to an equivalent dense PE, it requires G−C fewer multipliers and
adders, at the cost of C additional G :1 multiplexers.

Using this PE is only possible when there is a guarantee that every
group of G weights contains only up to C non-zero ones. We refer
to such groups as balanced. When the balancing is enforced on the
network parameters, as is the case with [9], with G=4 and C=2,
the computation can be scheduled in the same way as on hardware
using dense PEs while reducing storage and ineffectual operations. To
schedule a network with an arbitrary level and structure of sparsity, we
can decompose any weight vector of size G to between 1 and ⌈G/C⌉
vectors. This is shown schematically in Figure 2 b), where 3 groups
of size G=4 get decomposed into 4 balanced groups, each satisfying
C≤2. The decomposed groups can then be scheduled on a sparse PE
with G=4 and C=2. However, this computation will require 33%
longer runtime compared to a dense processing element. We refer
to the ratio of the number of decomposed to original weight groups as
the iteration overhead. The maximum iteration overhead for a given
sparse PE configuration is ⌈G/C⌉. It is one of the main metrics for
evaluating the efficiency of different sparse PE configurations. For
simplicity, we restrict both G and C to be powers of 2.

A stochastic computing equivalent using GEO-style PE [28] is
shown in Figure 3 a). The main concern in the SC case is the
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Fig. 3. Sparse GEO-style SC PE with group size G and capacity C (a). Split-Unipolar
[38] logic is omitted case for readability. Area breakdown of fixed-point (left) and
GEO SC (right) sparse PEs with G=4, and C=2 (b).

overhead of additional conversion circuitry. We have implemented and
synthesized a set of sparse SC PEs using a commercial TSMC 28nm
library and Cadence Genus synthesis tool to evaluate this. Figure 3
b) shows the breakdown of a fixed-point and GEO SC sparse PE
with G=4 and C =2, excluding input and output buffers. While
the fixed-point PE is dominated by the area of multipliers, in the SC
one, the arithmetic occupies only about 2% of the area. While the
cost of conversion can be amortized through input broadcasting and
wider dot-products, it presents us with different optimization priorities
compared to a fixed-point sparse PE. We have also compared the
area of sparse SC PEs with different G and C, shown in Figure 4,
for different styles of SC. For GEO-style PEs with C<8, the area
of the sparse SC processing element is roughly equivalent to half of
the dense one, even for large group sizes. This reduction is because
conversion circuitry dominates the overall area, and the sparse SC PE
structure eliminates roughly half of the overall SNGs when C is small.
uGEMM sparse PE shows much higher area reduction compared
to dense, due to the fact that weight buffers and SNGs are bundled
together with the multiplier, resulting in a larger size of a dense PE.
The close coupling of stream generation and computation is done for
decorrelation purposes, resulting in higher multiplication precision
[48]. If the sparsity structure can be enforced, this area reduction shows
great potential for synergy between SC and sparse neural networks.
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Fig. 4. Area of sparse and dense SC PEs, given different group sizes and capacities,
for GEO (a), GEO with full binary accumulation (b), and uGEMM (c) style SC.

C. Multi-Group Sparse SC PE
Given the proposed sparse SC PE design, we need to choose

the best G and C for a sparse SC accelerator. There are three main
considerations here. First, as mentioned above, is minimizing the
iteration overhead. We explore it in detail in Section V. The second
is maximizing the hardware efficiency and amortizing SC conversion
costs. SC accelerators often employ highly parallel dot product units,
ranging from 16 to hundreds of concurrent MAC operations [28],
[29], [38], [48]. High parallelism allows them to amortize the cost of
converting streams corresponding to partial sums back to fixed-point
representation. From this standpoint, using sparse PEs with large
group sizes like 16 or 32 is desirable. However, this is where the third
consideration comes into play - storage compression efficiency.

While we focused our discussion on sparse computation until
now, another benefit of sparsity is reducing required storage - one
of the main contributors to the area and energy consumption of neural
network accelerators [4], [5], [50], including SC ones, [28], [38].
Sparse accelerators often employ compressed memory formats like
compressed sparse row (CSR) to reduce storage and throughput
requirements [19], [30], [36], [43]. In this work, we explore a simple
compression scheme, where each weight is coupled with an index
indicating its position in the group. The group’s relative position in
a given filter is then handled by the scheduler as described in Section
V. While more efficient compression schemes may be available, they
are beyond the scope of this work.

The index size is determined by the group size G and is equal to
log2(G). Since indices are required on a per-value basis, they are
independent of C. Larger group sizes will therefore incur higher
indexing overheads. Figure 5 shows storage compression, the ratio
between the memory required for storing all dense weights and storing
only the sparse weights and their indices. It is an ideal case, where we
assume only the sparse weights are stored, and there are no additional
overheads, for example, coming from alignment requirements. Using a
group size of 64 requires 1.44X more storage than a group size of 2. At
a sparsity level of 90%, this translates to 5.7X and 8.9X compression
for G=64 and G=2, respectively. More importantly, when running a
dense network, going from a group size of 2 to 64 reduces compression
from 0.89X to 0.57X. We want SASCHA to be flexible and support
networks with different sparsity levels with high efficiency, even in the
dense case. Because of that, large group sizes are highly undesirable.

Fig. 5. Ideal ratio of dense to sparse storage cost for different PE group sizes, and
sparsity levels. Gray line shows the break-even point between sparse and dense storage.

However, there is a way of implementing wide SC dot products
while maintaining better compression ratios enabled by smaller
group sizes. Up until now, we have only considered dot products
consisting of a single group, referred to as single-group sparse SC
PEs. Alternatively, we can construct a wide dot product using multiple
smaller PEs. For example, a dot product of width K =32 can be
constructed using L=4 PEs with G=8 or eight with G=4. We refer
to those as multi-group sparse SC PEs, where the number of groups
L is equal to K/G. An example of single- and throughput-equivalent
multi-group sparse processing element with L groups is shown
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on Figure 6 a) and b) respectively. They are not strictly equivalent
because the sparsity structure required for the multi-group PE is
more restrictive - the capacity is now uniformly distributed among
individual groups instead of the whole dot product width.

Fig. 6. Single-group sparse PE with a group size G, capacity C and dot product width
K (a), and a throughput-equivalent multi-group sparse PE with L groups.

D. SASCHA PE Analytical Model
While the sparse SC PE is expected to be more area and

energy-efficient than the dense one when weight groups are balanced,
i.e., highly sparse, the opposite will happen when running a dense
network. In the worst-case scenario, iteration overhead will cause
a ⌈G/C⌉ times longer runtime when the same number of dense
and sparse PEs is used. To evaluate potential benefits at different
sparsity levels, we develop a simple analytical SASCHA PE iteration
overhead model. For simplicity, we assume that sparsity is uniformly
distributed among weights. The iteration overhead of a multi-group
sparse PE of size K, with L=K/G groups, will be determined by
the group with the largest number of non-zero weights. Therefore we
want to find out the expected maximum number of non-zero values
in a group of size G, across L groups. For a group of size G, the
probability of having O non-zero weights given sparsity S is:

PNZ=O=

(
G

O

)
(1−S)OSG−O (1)

Where S∈⟨0,1⟩ indicates the ratio of zero weights to all weights.
Probability that across L groups of size G, one or more have O
non-zero values, and non have more than O:

PLGO=

L∑
i=1

(
L

i

)
P i
NZ=OP

L−i
NZ<O (2)

Where PNZ<O is the probability that a group of size G has fewer
than O non-zero values:

PNZ<O=

O−1∑
i=1

(
G

i

)
(1−S)iSG−i (3)

The average maximum number of non-zero values A across L
groups of size G is therefore:

A=

G∑
i=0

iPLGi (4)

And the expected iteration overhead I, given group capacity C is:

I=
A

C
(5)

In our model, we assume that dot products where all weights are
zero can be skipped entirely in the sparse PE example, as explained
in Section V. This allows the iteration overhead to become less than
1. We used the above model to estimate iteration overheads of a
multi-group sparse SC PE of width K=16, at different group sizes,

capacities, and sparsity levels. Results, normalized by the area, are
shown in Figure 7 a), with a reference line showing the latency
break-even point compared to a dense PE with the same K. It shows
that configurations with larger group sizes are not as efficient at low
sparsity levels but much better on highly sparse networks. For example,
while sparse PE with G=8 and C=1 is on average 22% slower than
the one with G=2 and C=1 at sparsity below 40%, it is on average
63% faster at higher sparsity levels. Further, increasing the capacity
is an efficient way of improving the throughput: PE with a group size
of 8 and capacity of 4 is on average 32% faster than the one with the
capacity of 1 when normalized to the area. Based on those results, we
will opt for larger group sizes, e.g., 4 and 8, compared to smaller ones.

Figure 7 b) compares the iteration overhead obtained through
the model with the one obtained using an ideal scheduler described
in Section V on the CIFAR-10 TinyConv network, for a PE with
G=4. Our model achieves a 0.996 correlation with the scheduler
results, which justifies our choice of modeling weight sparsity using
a uniform distribution. While our design could be optimized better
towards forms of structured pruning, we want SASCHA to be
flexible enough to handle any form of unstructured sparsity without
putting the burden on machine learning researchers to conform to
the underlying hardware. Using capacity >1 seems like an obvious
choice given its area-throughput benefits. This might explain the
configuration chosen by [9], since the above analytical model is
also applicable to fixed-point PEs. However, we will now discuss
an alternative way of improving the throughput of sparse PEs that
is unique to SC and enables yet another design axis to explore.

Fig. 7. Multi-group K=16 sparse SC PE iteration overheads normalized to dense PE
area (GEO-style), for different group size G and capacity C, at different sparsity levels,
estimated using the analytical model (a). Gray line shows the latency break-even point
with a dense PE. Iteration overhead difference between the model and an ideal scheduler
described in Section V on the CIFAR-10 TinyConv network, for a PE with G=4 (b).

E. Parallel Stream Processing
As Figure 4 shows, sparse SC PEs can be as much as 2.7X

smaller than dense ones. The straightforward way of using this area
advantage to increase the throughput is by packing more PEs in the
same area. Unfortunately, in the case of sparse SC computation, this
approach would yield only limited improvement. As shown in Figure
7, depending on the group size and capacity, iteration overheads can
be as high as 4 or 8 times. Doubling, or tripling, the number of PEs
would not be enough to compensate for it. Another way, as shown
in the previous subsection, is to increase the capacity, which shows
a good area-throughput trade-off.

However, stochastic computing provides us with another option
of increasing the computation throughput. Until now, we assumed
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that stochastic streams are processed sequentially - one bit at a time.
However, by using multiple SNGs, multipliers, and adders per weight,
the computation can be parallelized by a varying degree, cutting down
the stream processing time and improving throughput [8], [39]. An
example of a sparse SC PE with group size G, capacity C=1 and
P=2 parallel streams is shown in Figure 8. Stream parallelism factor
P can be varied to improve the throughput at the cost of additional
area. This area-throughput trade-off space is unique to SC and not
applicable to conventional fixed- and floating-point architectures,
except for bit-serial ones [22], [25].

Fig. 8. Sparse SC PE with group size G, capacity C=1, and P=2 parallel streams.
Split-unipolar accumulation fabric is omitted for readability.

If it is possible to apply parallel stream processing to sparse SC
PEs to improve their throughput, the same technique could be applied
to dense ones. However, the cost of increasing the stream parallelism
is much higher for the dense PEs. Figure 9 shows the area of a 32x32
array of K=32 PEs, for dense and sparse PEs with different group
sizes. Capacity is fixed at 1. Buffers, SNGs, and output counters are
included. The area of the dense compute grows at a much faster rate
withP than the sparse ones because the dense implementation requires
many more SNGs, LFSRs, and compute units than sparse. For exam-
ple, GEO-style array with G=2, C=1, and P=2 is only 5% larger
than the dense one with P=1, while providing the same throughput
in the dense case. Dense implementation with parallel streams scales
particularly poorly for the uGEMM-style implementation where each
parallel stream path requires a local decorrelating SNG. Because of
that sparse uGEMM-style arrays are significantly smaller, up to 9.5X.
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Fig. 9. Total area of a 32x32 array of K =32 GEO (a), GEO+ (b) and uGEMM
(c) PEs, dense and sparse, with different stream parallelism factors. C = 1 for all
sparse configurations.

From now on, we will refer to the multi-group, parallel-stream
sparse SC PE as SASCHA PE. SASCHA PE can be uniquely identified
by a set of parameters K,G,C,P , where K is the dot product size,
G is the group size, C is the capacity, and P is the stream parallelism
factor. We will restrict our evaluation to group sizes of 8 and smaller,
which guarantees high storage compression ratios. To further restrict
the design space, we will use SASCHA PEs with PC/G=1.

V. SASCHA ARCHITECTURE

A. SASCHA Accelerator
SASCHA accelerator block diagram is shown in Figure 10. It

uses a highly parallel PE array similar to [48] and [8]. It relies on
broadcasting and spatial data re-use, where all PEs in the same row
share the same set of weights, and all PEs in the same column share
the same set of activations. As explained in [48], this structure is
uniquely suited for SC computation given small PE sizes and low
wire congestion, as opposed to conventional fixed- and floating-point
computation. The major distinction in our architecture is the use
of SASCHA PEs, instead of dense processing units, using a sparse
weight storage format and additional indexing and circuitry required
to support asynchronous scheduling as described below. We refer to
the number of rows as M , the number of columns as N , and the dot
product width as K. Each of the M rows operates on a set of CK/G
weights (WGT), their corresponding indices (IDXW), and the parent
filter index (IDXF). The latter is needed to support asynchronous
scheduling as described in Section V-B. Apart from SASCHA PEs,
it contains a weight memory and PCK/G SNGs for parallel stream
generation and merger units required for asynchronous scheduling.
All N columns share the activation memory, which is organized as a
ping-pong buffer [10] to facilitate simultaneous input reads and output
writes. Similarly to [28], we use a near-memory vector unit to handle
additional partial sum accumulation, batch normalization, scaling,
and activation functions. We assume the use of ReLU activation, but
the vector unit could be modified to support different ones.

Fig. 10. SASCHA accelerator architecture block diagram. Partial sum output
connections were omitted for readability.

The architecture in [48] focuses on accelerating general matrix
multiplication (GEMM) operations, which can be used to implement
both fully-connected and convolutional layers in neural networks.
Since those two types of layers frequently consume > 90% of
inference runtime [21], optimizing the efficiency of GEMM
computation is highly desirable. However, while fully-connected
layers yield themselves to GEMM representations naturally,
convolutional layers need to be transformed. There are two common
ways of doing that: image to column (im2col) and kernel to row
(kn2row) [45]. In most cases, the latter is desirable, as it does not
result in the input replication required by im2col. On the other hand,
kn2row can result in compute underutilization on layers with a small
number of input channels, Z [45]. For our SASCHA architecture and
scheduler, we opt to implement layers that satisfyZ<K using im2col



7

to maintain high utilization, while layers that satisfy Z≥K using
kn2row. In both scenarios, filters are partitioned into partial filters
whose sizes match the dot product width K. Partial filters that come
from different parent filters, but correspond to the same spatial extents,
can be scheduled concurrently in multiple rows of the SASCHA array
as they can be multiplied with the same sets of inputs, producing partial
sums corresponding to the same row and column in the output tensor.

B. SASCHA Asynchronous Scheduler
We now discuss the strategy for scheduling computation in a

SASCHA architecture defined by M,N,K,G,C,P parameters.
Naively, after performing im2col or kn2row unrolling, we can assign
each partial filter to a specific row in the array and co-schedule M par-
tial filters at a time. For the dense architecture, an example schedule of
five partial filters, each with K=4, using an architecture with M=4
rows, is shown in Figure 11 a). We refer to this as dense synchronous
scheduling since the execution of each group ofM partial filters has to
be synchronized. However, in the SASCHA case, as shown in Figure
2 c), depending on the level and structure of sparsity, as well as K,G,
and C parameters, a given partial filter can be decomposed into a dif-
ferent number of balanced groups. If multiple partial filters are sched-
uled synchronously, their overall execution time will be constrained
by the one with the lowest sparsity, as shown in Figure 11 b), for
K=G=4, and C=1, referred to as sparse synchronous scheduling.
In this toy example, synchronous scheduling leads to I=2 iteration
overhead (assuming P=1) and 50% compute underutilization.

Fig. 11. Three schedules of 5 partial filters, with K =G= 4 and C = 1, on an
architecture with M =4 rows: dense synchronous (a), sparse synchronous (b) and
sparse asynchronous (c). Crossed out boxed indicate compute underutilization.

To improve scheduling efficiency, we propose the SASCHA sparse
asynchronous scheduling. In essence, while the sparse synchronous
approach operates on partial filters before decomposition into
balanced groups, the SASCHA asynchronous scheduler works with
individual balanced groups after decomposition. For all partial filters
that correspond to the same spatial subset of original filters, their
decomposed balanced groups are combined into a single list. The
list elements are then sequentially scheduled onto available rows
while keeping track of which partial filter they belonged to initially.
The resulting SASCHA asynchronous schedule for the same set
of partial filters as before is shown in Figure 11, resulting in the
same iteration count as the dense schedule and 100% utilization.
Using the asynchronous scheduler comes at the cost of additional

storage. Each balanced group now needs to carry information about
which parent filter it belongs to so that it can be written to the correct
location in memory. However, we estimate this penalty to be modest
- the worst-case overhead, given K=32 and G=8, would be 30%,
while for G=2, it would be below 10%. The resulting compressed
weight storage format is shown in Figure 10. Weight bank word size
will depend on G,K,C parameters, but since those are dictated by
PE configuration and fixed for a given SASCHA implementation,
weight memory width can be explicitly provisioned for it. We assume
a 10-bit parent filter index, allowing us to index up to 1024 filters,
which is enough for commonly used neural network models.

We have implemented both the sparse synchronous and
asynchronous schedulers in software. They take as an input a trained
network and SASCHA configuration and output iteration counts.
The asynchronous scheduler cannot guarantee perfect utilization
if the total number of balanced groups corresponding to a set of
partial filters is not divisible by M . To assess the effectiveness of the
asynchronous scheduler, we also consider the ideal scheduler, which
is the asynchronous scheduler for a single row, which can always
be perfectly utilized. Combined results for all three schedulers for the
convolutional layers of the CIFAR-10 TinyConv network [24], using
a N = 32,M = 32,K = 32 SASCHA array with different group
sizes are shown in Figure 12 a). All configurations have C=1, and
CP/G= 1 (iso-throughput PEs). When parallel streams are used
to compensate for the loss of MAC throughput, larger group sizes
are better at converting sparsity into lower iteration overhead. Using
a group size of 8 has, on average, 1.3X and 1.6X lower iteration
overhead than when using group sizes of 4 and 2, respectively. With
G=8, iteration overhead starts decreasing at as low as 10%, sparsity,
while G=4 and G=2 require sparsity of at least 40% and 70% to
start showing benefits. In the best case of G=8, our asynchronous
scheduler has on average 1.4X lower iteration overhead than the
sparse synchronous one, up to 2.2X at 90% sparsity. It is also, on
average, within 11% of the ideal scheduler.

Figure 12 b) compares the iteration overhead with different group
sizes and capacity while maintaining CP/G= 1 when using the
asynchronous scheduler. It shows that using parallel stream processing
is a more efficient way of using the additional area than increasing the
capacity. SASCHA with G=8, C=1,P=8 is on average 1.2X and
1.46X faster than C=2,P =4 and C=4,P =2 configurations, re-
spectively. For group size of 4,C=1,P=4 is on average 1.15X faster
than C=2,P =2. This conclusion is unique to SC - conventional
fixed- and floating-point accelerators do not have access to stream par-
allelism design trade-offs. Therefore, we will focus on configurations
with C=1 and P=G, as the optimal SASCHA PE choices.

Fig. 12. Iteration overhead using different sparse scheduling methods (a) and different
group sizes and capacity using the sparse asynchronous scheduler (b).
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C. Memory Organization

While beneficial from the point of view of runtime, using the asyn-
chronous scheduler comes at a cost. Synchronous scheduling allows
simple combining of partial sums from different balanced groups cor-
responding to the same partial filter, as they are assigned sequentially
to the same row, as shown in Figure 11 b). It means that individual bal-
anced groups do not generate multiple partial sum memory accesses,
which can be very costly. For the asynchronous scheduler, partial filters
can now be distributed across multiple rows, making such combining
non-trivial. To avoid generating unnecessary memory accesses, we
implement merging logic on the datapath used for flushing partial
sums out of the PE array, as shown in Figure 10. By having parent
filter indices (IDXF) associated with partial sums, those corresponding
to the same parent filter can be accumulated when being flushed out
of the array and before being written back to activation memory.

We used our scheduler to model the number of memory accesses
for activations, weights, and partial sums, for dense and sparse archi-
tectures using different schedulers and dataflows. Results of the con-
volutional layers of the CIFAR-10 TinyConv network, at 90% sparsity,
are shown in Figure 13. Output stationary dataflow is impossible when
using the asynchronous scheduler due to balanced groups belonging
to the same parent filter being potentially distributed across different
PE units. Input stationary dataflow is, therefore, the best choice of the
dataflow for the SASCHA asynchronous scheduler, cutting down the
number of memory accesses by 18% compared to weight stationary, at
high sparsity levels. It is also within 7% and 13% of the best achievable
dataflow for dense and synchronous scheduling, respectively.

Fig. 13. Number of memory accesses in bytes for the convolutional layers of
CIFAR-10 TinyConv network at 90% sparsity, depending on the choice of scheduling
and dataflow. All results for M = 32,N = 32, and K = 32. Sparse results for
G=8,C=1, and P=8.

VI. BIT-SLICING WEIGHTS

While SASCHA architecture, discussed in the previous section,
shows high latency improvements on sparse networks, it can at best
maintain the same throughput when running dense ones. In this section,
we show how higher effective sparsity and more efficient hardware
can be extracted by exploiting intra-value sparsity of unpruned weights
through bit-slicing. By bit-slicing, we mean decomposing weights
into smaller slices, and processing them individually, then scaling the
results depending on the LSB position of a given slice. For example,
two-way slicing involves splitting the fixed-point weight value into
equally sized MSB and LSB slices, multiplying them individually with
each corresponding activation, scaling the MSB result, and adding both
results. A similar technique has been proposed in the context of SC in
[8], however, it is used only as a means of reducing the computation
stream length, and not exploiting additional operand sparsity. For
SASCHA, we assume an equal split between the number of most
significant and least significant bits. While other split sizes and gran-
ularities are possible, their analysis is beyond the scope of this work.

The idea behind improving sparsity with bit-slicing comes from the
observation that if we divide a set of values into bit-slices, the resulting

sparsity, i.e., the percentage of slices that are completely zero, will
be at worst the same, and at best higher than sparsity of non-sliced
values. Given that weights in neural networks exhibit zero-centered
bell-shaped distributions, we would expect the sparsity of MSB
bit-slices to be even higher. To verify this, we evaluated the overall,
MSB and LSB sparsity in the convolutional layers of the CIFAR-10
TinyConv network, at different network pruning levels. Results
are shown in Figure 14 a). We can see that even for the unpruned
networks, MSB slices exhibit very high sparsity - 64%. While the high
MSB sparsity could help when processing dense networks, we expect
the benefits to be minuscule at high sparsity levels - the MSB and LSB
sparsity of the network pruned to 90% is 90% and 90.1% respectively,
meaning there is not a lot of additional computation savings available.
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Fig. 14. Overall, MSB and LSB sparsity for (a) and reduction in sliced multiplication
area x delay cost relative to non-sliced cost for SC and fixed-point (b), at different
pruning levels for CIFAR-10 TinyConv.

We assume that only one of the operands, weight, is sliced, as
we mainly care about extracting more sparsity on the weight side.
In a naive implementation, where each slice is computed with the
native stream length, e.g., 64, this would lead to a minuscule runtime
reduction at best, since most of the LSB slices are not sparse. However,
we can capitalize on the fact that the MSB slice contribution to compu-
tation will be much higher than the LSB one. By computing the MSB
part with the original stream length, e.g., 64, and the LSB part with
a shorter one, e.g., 8, and then scaling the LSB result and adding it to
the MSB one, we can approximate the original result. We refer to this
as asymmetric-stream slicing, as opposed to prior works which used
symmetric stream lengths [8]. The comparison of non-sliced and sliced
unipolar multiplication is shown schematically in Figure 15 a) and
b), respectively. As can be seen, when using sliced operands, the size
of the SNG and its buffers can be reduced, which improves the area.

Fig. 15. SC unipolar multiplication a), and sliced multiplication b).
The slicing technique is also applicable to fixed-point computation.

However, while in the fixed-point case it would result in the
same precision used for both the MSB and LSB parts, SC makes
asymmetric precision possible. In terms of area-delay product cost of
a multiplier, 4-bit MSB/LSB slicing results in a 2.24X reduction for
each of the parts, compared to a regular multiplier. Assuming 64-bit
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long MSB streams and 8-bit long LSB streams in the SC case, there
is no reduction in the cost for the MSB part, but there is an 8X cost
reduction in the LSB part. When considering the sparsity levels of
each part in Figure 14 a), we see that at low pruning levels the number
of LSB slice multiplications dominate, and we expect the asymmetric
SC precision to give us higher benefits than symmetric fixed-point
slicing. To evaluate this hypothesis, we multiplied the proportion
of non-zero MSB and LSB slices by their area-delay cost reduction
factors when slicing, and combined the results to show an overall
ideal reduction in multiplication cost. Results, normalized to ideal
non-sliced sparsity computation reduction, are shown in Figure 14 b).
For low and moderate levels of pruning, SC slicing achieves higher
cost reduction than fixed-point one - 2.6X on average, compared
to 1.8X, respectively. While not as effective at high sparsity levels,
asymmetric precision of slicing allows us to show improvement even
at low sparsity levels, as shown in Section VII.

There is a concern about how slicing will affect computation
precision. To evaluate that, we analyzed the root mean square error
(RMSE) of stochastic unipolar multiplication in both the non-slicing
and slicing scenarios using the same stream lengths as shown in
Figure 15. The operands are drawn from activation and weight
distributions of the CIFAR-10 TinyConv model, where weight
distribution is used for the sliced operand. Average RMSE across
1000 trials is shown in Table I, and the sliced multiplication error
is within 30% of the non-sliced one. We will discuss network-level
accuracy and performance impact of slicing in Section VII.

TABLE I
RMSE OF UNIPOLAR MULTIPLICATION WITH AND WITHOUT BIT-SLICING, W.R.T.
FLOATING-POINT PRECISION, FOR DIFFERENT STREAM LENGTHS (1000 TRIALS).

LSB STREAM LENGTH IS 8.

Stream Length 16 32 64 128 256

RMSE No Slicing 4.49 3.14 2.26 1.531 0.98
With Slicing 4.97 3.28 2.78 1.867 1.31

To summarize, bit-slicing allows us to expose higher levels of
sparsity present in weights to SASCHA compute. By utilizing
the asymmetric sparsity of MSB and LSB slices, lower relative
precision required for the latter, and SC’s unique precision-latency
trade-off space, bit-slicing enables SASCHA to show performance
improvements even on dense networks, as shown in Section VII.
Bit-slicing can be handled natively by SASCHA, at the cost of
underutilizing the sparse storage and SNG buffers (provisioned for
8-bit values). However, for completeness’ sake, we also evaluate the
SASCHA-S variant, which is dedicated to weight-sliced networks, by
having reduced weight storage and SNG buffers. From the scheduler’s
point of view, each sliced part can be treated as a separate layer. The
outputs of those layers are then scaled and added element-wise.

VII. EVALUATION & RESULTS

A. SASCHA Accuracy
All models are trained using PyTorch. The training setup is similar

to the one used in [28], but with added layer-wise magnitude-based
pruning. TinyConv, VGG-11 and VGG-16 [42] are trained on the
CIFAR-10 dataset, and ResNet-18 and -34 are trained on ImageNet
dataset. The fully-connected layers of VGG-16 are reduced to 512
to accommodate the small CIFAR-10 dataset. All models are trained
with 64-bit streams. Bit-slicing has little effect on accuracy on
VGG-11, and the accuracy with and without bit-slicing differs by
less than 0.7%, as shown in Figure 16.

Figure 17 summarizes the results on CIFAR-10. Compared to
[28], and [38] which also use OR accumulation, accuracy has been
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Fig. 16. Accuracy of CIFAR-10 VGG-11 with different sparsity levels. 0% sparsity
means no sparsity constraint.

improved by switching the order of ReLU, pooling, and batch
normalization (bn). While previous works use pooling-bn-ReLU order
to achieve spatial pooling, SASCHA does not have the same constraint
and can use the more optimal bn-ReLU-pooling. This change
improves accuracy by 2% for both TinyConv and VGG-16 on CIFAR-
10. Due to its small size, TinyConv is less resilient to sparsity. At 60%
sparsity, accuracy drops by 0.3-0.8%. Accuracy drop using VGG-16 is
milder, with no noticeable drop in accuracy when using 60% sparsity
and ≈4.5% using 90% sparsity. While slicing reduces accuracy when
the models are dense, the accuracy gap reduces with increased sparsity.
While the gap is 1-1.7% for the dense models, the gap is negligible
or even reverses at maximal sparsity usable for each model.
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Fig. 17. SASCHA CIFAR-10 Top-1 accuracy with dense and sparse networks.

Figure 18 summarizes the results of Resnet-18 and Resnet-34 on
ImageNet. We use a higher accuracy version of stochastic computing,
denoted as GEO+. In GEO+, full binary accumulation replaces partial
binary accumulation, eliminating OR accumulation. Since only inputs
within the same OR accumulation window require different seeds,
all multiplications can use the same seed pair. We further improve the
multiplication accuracy by choosing the seed pair that produces the
lowest error. With this modification, SASCHA achieves comparable
accuracy to 8-bit fixed-point throughout different sparsity levels.
Because uGEMM achieves accuracy comparable to 8-bit fixed-point
without retraining, as reported by [48], we expect it will behave
similarly with pruning. Since no efficient stream simulation functions
are available for uGEMM, we have not trained it separately.
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Fig. 18. SASCHA ImageNet Top-5 accuracy with dense and sparse networks.

B. Performance Results

To evaluate SASCHA performance, we implement the entire
GEMM array, including individual components such as SASCHA
PEs, SNGs, LFSRs, merge blocks, vector unit, and the necessary
glue logic using Verilog HDL, and synthesize them using TSMC
28nm library and Cadence Genus synthesis tool, at 400MHz clock
frequency. We use the results to estimate the overall area, power, and
energy consumption of different SASCHA configurations. We use
the scheduler described in Section V to estimate runtime and memory
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accesses required for different networks and levels of sparsity. We
use the CACTI tool to estimate the cost of memory accesses [32].
To demonstrate how SASCHA is agnostic to the underlying style of
SC computation, we evaluate three configurations: SASCHA-GEO,
-GEO+, and -uGEMM, using the PEs as described in Section IV.

We compare SASCHA to GEO ULP [28], which uses the same un-
derlying computation as SASCHA-GEO but is optimized towards con-
volutional layers. We use the same simulator as described in [28] to es-
timate performance. Also, for each of the SASCHA versions, we com-
pare it with a corresponding dense version, with the same number of
PEs, and no stream parallelism, referred to as GEMM-GEO, -GEO+,
and -uGEMM. The last one is very similar to the original uGEMM
architecture [48] but uses binary instead of streaming accumulation.
To keep the results consistent with uGEMM, we only report the logic
area without including memories. For a comparison with sparse fixed-
point accelerators, we use SCNN [35] and Laconic [40]. For a fair
comparison with SASCHA, we omitted the area of on-chip memories,
based on the area breakdowns provided by the original works, and
scaled the area of compute and buffers to account for the change in
precision from 16 to 8 bits. We also scaled the technology node to
28nm using the scaling equations provided in [44]. We then config-
ured the number of each accelerator’s PEs to roughly match the area of
SASCHA. We refer to those configurations as SCNN-M and Laconic-
M, respectively. Their execution is modeled using DNNSim [1]. We
omit ResNet-34 results on Laconic-M, as the simulator was not able to
schedule the computation successfully. All designs are iso-frequency.

Based on the results discussed in the previous sections, we limited
our exploration to configurations with G=4 or 8, as they are better
at extracting sparsity benefits than G=2. We also limit ourselves
to configurations with C = 1 and G = P , since they provide a
better area-throughput trade-off than ones with C > 1 and lower
parallelism. This choice, enabled by parallel stream processing unique
to SC, allowed us to arrive at a different design point that would be
optimal for fixed-point PEs, as exemplified by [9]. Based on area
estimates, for the SASCHA-GEO and -GEO+ versions we picked
M=32,N=16,K=32,G=4,C=1,G=4, referred to as SASCHA-
GEO and SASCHA-GEO+ 4/1/4 as they are within 8% of the logic
area of GEO ULP. We also include SASCHA-GEO and -GEO+
configurations with the sameM,N,K, andC, but withG andP equal
to 8, referred to as SASCHA-GEO and SASCHA GEO+ 8/1/8. Those
configurations, while consuming only 23-42% larger area than the
4/1/4 configurations, are much better at extracting sparsity benefits, as
we will show shortly. Figure 19 shows the area and power breakdown
of SASCHA-GEO 8/1/8, based on individual module synthesis,
showing a more balanced, and not SNG-dominated, distribution
compared to [28]. SASCHA achieves this through the combination
of GEMM-style architecture and sparsity-oriented design. For the
uGEMM variant, due to a much larger PE area, we size the array with
M =16,N =16,K=16, for both 4/1/4 and 8/1/8 versions, which
brings them close to the iso-area with the GEO and GEO+ variants.
Finally, we include two SASCHA-GEO and GEO+ configurations
with the same parameters as the ones above, but with bit-slicing
support, referred to as SASCHA-GEO-S and SASCHA-GEO+-S. We
do not include SASCHA-uGEMM slicing configurations, as the
impact of slicing on the uGEMM-style PE accuracy is beyond the
scope of this work. All non-slicing configurations use a stream length
of 64, while the slicing ones use 64-bit long streams for the MSB
computation and 8-bit long streams for LSB. We assume that memory
bandwidth is provisioned for maximum expected throughput. When
reporting sparse results, we pick maximum sparsity at which SC
accuracy is within 4% of fixed-point, GEO for CIFAR-10, and GEO+

for ImageNet, sliced or non-sliced, whichever is higher.

Fig. 19. Area (a) and power (b) breakdown of SASCHA GEO 8/1/8.

Final results are shown in Table II, for the TinyCONV and
VGG-11 and -16 networks on the CIFAR-10 dataset, and ResNet-18
and -34 networks on the ImageNet dataset. Results are shown at two
different levels of sparsity. We first analyze the performance of dense
networks. Compared to the dense GEMM versions with the same
array size, non-slicing SASCHA configurations maintain a similar
throughput while suffering at most 31% loss in energy efficiency. This
is expected - while stream parallelism is used to recover runtime, it
lowers PE energy efficiency through lower SNG reuse. Further, in the
dense case, SASCHA will require more overall memory accesses due
to indexing overheads and asynchronous scheduling. The exception is
SASCHA-uGEMM, where going from dense to sparse-parallel PEs
can actually reduce area and power, due to the large size of the former,
which results in marginally higher energy efficiency in the dense
case. In the case of CIFAR-10 VGG networks, where the network has
high natural weight sparsity without pruning, throughput, and energy
efficiency are improved by up to 3.6X and 4.4X, respectively. Bit
slicing SASCHA-S configurations perform much better on unpruned
networks, as expected. By exploiting high inherent MSB slice sparsity,
they can improve the throughput by up to 1.33X over GEMM Dense
and improve energy efficiency by up to 1.2X, except in the CIFAR-10
VGG case, where improvements are higher. GEO achieves higher
throughput and energy efficiency on the dense TinyConv, which
comes from the fact that its architecture is highly optimized towards
convolutional layers. Compared to SCNN-M, SASCHA-GEO and
GEO+ can improve the throughput by 4X-8.7X, owing to the higher
efficiency of SC compute over fixed-point. SASCHA-uGEMM
configurations, despite having 4x fewer PEs than the other
configurations, still outperform SCNN-M by 2.2X. Compared to
Laconic-M, GEO and GEO+ configurations have up to 19X, while
the uGEMM ones have up to 7.8X speedup on dense networks.

When running moderately sparse (60%) TinyConv, SASCHA
accelerators improve the throughput by up to 1.92X compared
to the dense variants and up to 1.94X compared to the unpruned
network on the respective SASCHA configurations. At 90% sparsity,
SASCHA configurations can be up to 6.5X faster and 5.5X more
energy-efficient than the dense versions. Compared to their respective
versions running dense networks, they improve runtime by up to
8.8X and energy efficiency by up to 10.1X. SASCHA-GEO and
GEO+ maintain a 1.5X to 4X throughput advantage over SCNN-M
on sparse convolutional networks, despite SCNN taking advantage
of both weight and activation sparsity, while SASCHA only utilizes
the former. SASCHA-uGEMM 8/1/8 outperforms SCNN-M by up
to 2.2X on convolutional networks. While sliced configurations are
not as efficient at high sparsity, they still achieve up to 4.7X and
3.4X throughput improvement over GEMM Dense and SCNN-M,
respectively, on sparse convolutional networks. Laconic-M extracts
most of its benefits on a bit-sparsity level even without pruning and
does not show large improvements when small weights are removed.

In Table III we show the achieved weight compression ratio for all
four evaluated SASCHA configurations and three evaluated networks.
For weight compression, the underlying PE architecture does not
matter. As expected, at high sparsity, bit-slicing configurations have
lower effective compression due to indexing overhead affecting both
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TABLE II
AREA [mm2], POWER [MW], THROUGHPUT [FR/S] AND ENERGY-EFFICIENCY [FR/J] FOR DIFFERENT ACCELERATORS, MODELS AND DATASETS, AND SPARSITY.

CIFAR-10 TinyConv CIFAR-10 VGG-11 CIFAR-10 VGG-16 ImageNet ResNet-18 ImageNet ResNet-34
Sparsity 0% 60% Sparsity 0% 70% Sparsity 0% 90% Sparsity 0% 80% Sparsity 0% 90%

Area Power Fr/s Fr/J Fr/s Fr/J Fr/s Fr/J Fr/s Fr/J Fr/s Fr/J Fr/s Fr/J Fr/s Fr/J Fr/s Fr/J Fr/s Fr/J Fr/s Fr/J
Architecture [mm2] [mW] [k] [k] [k] [k] [k] [k] [k] [k] [k] [k] [k] [k]

SCNN-M 0.3 - 1.7 - 3.0 - 0.11 - 0.42 - 0.11 - 0.42 - 8 - 79 - 4 - 46 -
Laconic-M 0.2 - 3.4 - 3.6 - 0.07 - 0.07 - 0.12 - 0.12 - 46 - 49 - - - - -
GEO ULP 0.24 50 10.6 240 - - - - - - - - - - - - - - - - - -

GEMM-GEO 0.20 78 6.6 72 - - 0.5 5.5 - - 0.26 2.9 - - 50 499 - - 27 299 - -
SASCHA GEO 4/1/4 0.21 75 6.7 73.5 8.8 93.5 0.8 8.2 1.1 10.5 0.65 7.0 0.95 9.8 50 525 105 969 27 301 76 754
SASCHA GEO 8/1/8 0.30 93 6.7 60.2 12.2 102.7 0.9 7.2 1.5 11.1 0.81 7.0 1.39 11.2 50 435 151 1078 27 246 121 921
SASCHA-GEO-S 4/1/4 0.19 62 6.8 76.2 7.5 83.7 1.3 10.8 1.5 11.9 0.68 7.3 0.84 8.4 46 481 97 821 29 357 68 736
SASCHA-GEO-S 8/1/8 0.26 80 8.8 73.6 10.3 86.1 1.6 10.1 2.1 11.6 0.91 7.3 1.21 8.9 47 435 140 863 36 331 108 894

GEMM-GEO+ 0.24 81 6.6 70 - - 0.5 5.3 - - 0.26 2.8 - - 50 485 - - 27 289 - -
SASCHA GEO+ 4/1/4 0.23 78 6.7 71.0 8.8 90.4 0.8 8.0 1.1 10.2 0.65 6.8 0.95 9.5 50 508 105 941 27 290 76 731
SASCHA GEO+ 8/1/8 0.32 99 6.7 56.1 12.2 96.1 0.9 6.7 1.5 10.5 0.81 6.5 1.39 10.5 50 406 151 1019 27 229 121 867
SASCHA-GEO+-S 4/1/4 0.21 65 6.8 75.4 7.5 82.8 1.3 10.7 1.5 11.8 0.68 7.2 0.84 8.3 46 476 97 814 29 353 68 755
SASCHA-GEO+-S 8/1/8 0.27 83 8.8 72.5 10.3 84.8 1.6 10.0 2.1 11.4 0.91 7.2 1.21 8.8 47 375 140 854 36 325 108 881

GEMM-uGEMM 0.34 112 2.1 17.5 - - 0.1 1.0 - - 0.06 0.55 - - 13 106 - - 7 57 - -
SASCHA uGEMM 4/1/4 0.26 82 2.0 23.0 2.9 32.5 0.2 2.3 0.3 3.4 0.19 2.1 0.36 3.9 13 148 33 354 7 77 26 272
SASCHA uGEMM 8/1/8 0.27 86 2.0 21.7 4.0 40.8 0.2 2.2 0.4 4.1 0.23 2.4 0.57 5.5 13 142 48 475 7 72 42 399

the LSB and MSB slices. The exception is the VGG-11 network,
where a combination of high natural sparsity and relatively low pruned
sparsity allows the slicing configurations to come out ahead. SASCHA
8/1/8 has a higher compression ratio at 90% sparsity compared to
4/1/4, despite higher indexing overhead. This is due to more efficient
weight storage - for the same dot product width, it will store half of
the weights in each memory word compared to SASCHA 4/1/4. For
the latter, at high sparsity, many of those words will be underutilized.

TABLE III
WEIGHT COMPRESSION RATIO FOR DIFFERENT SASCHA CONFIGURATIONS,

NETWORKS, AND SPARSITY LEVELS.

Model TinyConv VGG-11 VGG-16 ResNet-18 ResNet-34
Sparsity 60% 70% 90% 80% 90%

SASCHA 4/1/4 1.09 2.00 4.22 1.43 2.11
SASCHA 8/1/8 1.22 2.27 5.34 1.75 2.85
SASCHA-S 4/1/4 0.90 2.34 4.07 1.22 1.68
SASCHA-S 8/1/8 0.93 2.52 5.19 1.38 2.10

VIII. RELATED WORK

Sparse Accelerators. Exploiting sparsity to improve performance
in hardware has been extensively studied for floating- and fixed-point
accelerators. Some of the prior works only try to exploit the sparsity
of one operand type, like Cnvlutin (activations) [3], or Cambricon-
X (weights) [50]. Others, like Cambricon-S [52], SCNN [35], Bit-
Tactical [25], or TensorDash [30], can exploit both activation and
weight sparsity, often through a combination of static and dynamic
scheduling. While most accelerators opt for some form of operand ad-
vancing through a staging window [15], [25], [30], others like SCNN
[35] or MatRaptor [43] rely on multiplying all non-zero operands and
mapping the results to appropriate partial sums afterwards. Due to the
high cost of detecting and supporting sparse execution, the majority
of sparse accelerators focus on higher precision arithmetic like 32-bit
and 16-bit floating-point or 16-bit fixed-point [15], [30], [35], [43],
[50]. Such datatypes and accelerators are more suited towards training
neural networks. In contrast, SASCHA focuses on approximate edge
inference, where quantized, 8-bit, and lower fixed-point precision
has become a standard [7]. Despite only focusing on weight sparsity,
it can outperform fixed-point accelerators that also exploit sparse
activations, thanks to highly efficient stochastic computation.

Stochastic Computing Accelerators. While stochastic computing
has been enjoying a recent renaissance due to its synergies with
deep learning algorithms; there is a surprising lack of configurable,
system-level designs available. Few examples include ACOUSTIC
[38], which is an accelerator targeting convolutional neural networks
specifically, GEO [28], which improves on ACOUSTIC’s accuracy

and performance, uGEMM [48] and StoRM [8] , which are flexible
general matrix multiply engines, and SCOPE [27], and in-memory
DRAM accelerator. We compare SASCHA with GEO and uGEMM,
which target similar, low-precision edge inference. StoRM can be
considered a specific case of uGEMM with specialized PEs. While
it explores operand slicing, it processes them in a spatially unrolled
manner, requiring symmetric stream lengths and not being able to
utilize additional sparsity exposed by it, unlike SASCHA. SCOPE is
a data center accelerator with area requirements orders of magnitude
higher than SASCHA. Other works, like HEIF [29], or SC-DCNN
[37] have proposed generating custom hardware for specific neural
network models. Those approaches often lead to the impractically
high area and are of limited utility in the rapidly changing neural
network landscape. BISC-MVM [41], and SkippyNN [20], propose
more accurate stochastic multiplier designs but are limited to
fixed-point addition and do not present system-level elaboration.
Finally, some recent works propose methods of doing stochastic
computing in a deterministic manner, without introducing any error
[33]. However, they often require long stream lengths for processing
and are not competitive in terms of latency and energy.

IX. CONCLUSION

In this work, we present SASCHA - a sparsity-aware neural network
accelerator architecture using stochastic computing. SASCHA exploits
sparsity in a way that synergizes with the main advantages of SC.
It encompasses a sparse multiply-accumulate block design, GEMM
accelerator architecture, and asynchronous scheduling method.
Further, we propose a bit-slicing method unique to SC that can exploit
sub-operand sparsity even in dense networks. At 90% weight sparsity,
SASCHA can be up to 6.5X faster and 5.5X more energy-efficient
than comparable dense SC accelerators with a similar area, and up
to 8.7X faster than sparse fixed-point accelerators, without sacrificing
performance on dense networks. Our future work will explore the
interplay between sparsity and bitstream length in the context of SC.
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