
1

A 4.4-75 TOPS/W 14nm Programmable,
Performance- and Precision-Tunable All-Digital
Stochastic Computing Neural Network Inference

Accelerator
Wojciech Romaszkan Student Member, IEEE, Tianmu Li Student Member, IEEE, Rahul Garg, Jiyue Yang, Student

Member, IEEE, Sudhakar Pamarti, Senior Member, IEEE, Puneet Gupta, Fellow, IEEE

Abstract—We present the first programmable and precision-
tunable Stochastic Computing (SC) neural network (NN) infer-
ence accelerator. The use of SC makes it possible to achieve
multiply-accumulate (MAC) density of 38.4k MAC/mm2, enabling
a level of spatial data reuse unachievable to conventional, fixed-
point architectures. This extensive reuse amortizes the cost of
SC conversion and reduces the number of memory accesses,
which can otherwise consume significant energy and latency.
Our accelerator is a stand-alone architecture, with a custom
instruction set architecture (ISA), and support for end-to-end
model inference with convolutional and fully-connected layers of
variable input and filter sizes. Further, it demonstrates extensive
accuracy-latency trade-offs by varying the stream length. The
14nm demonstration chip achieves 2.4 TOPS and 75 TOPS/W
peak throughput and energy efficiency, outperforming compara-
ble fixed-point accelerators.

Index Terms—Stochastic Computing, Neural Networks, Accel-
erator, CMOS.

I. INTRODUCTION

Growing demand for edge NN inference requires domain-
specific accelerators able to satisfy accuracy, latency, and
energy constraints. Multi-precision [1], as well as bit-serial
[2], designs have been proposed to enable such levels of
configurability. Unfortunately, the former incur area penal-
ties for separate arithmetic units for each precision, while
the latter provide only fractional improvements with minor
precision changes. Further, they often cannot fully capitalize
on extensive data reuse available in NNs due to the limited
number of relatively large processing elements (PEs). This
results in additional costly memory accesses, which can domi-
nate accelerators’ energy consumption and latency. Stochastic
Computing (SC) [3], which represents numbers using binary
streams, can alleviate the above issues. First, manipulating the
stream length used enables extensive latency-accuracy trade-
offs, on a much finer granularity than available in bit-serial
architectures. Second, its use of extremely compact, single-
gate arithmetic units makes spatial parallelism possible on
a scale unachievable to fixed-point designs. While individ-
ual SC components have previously been taped out [4], no
system-level designs have been shown to date. We present
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the first programmable SC neural network accelerator, with
a custom ISA supporting a wide range of layer types and
sizes, which demonstrates SC precision-tunability. It achieves
compute density of 38.4k MAC/mm2 enabling extensive data
reuse, amortizing the cost of conversion and memory accesses.

II. ARCHITECTURE

The block diagram of our SC accelerator is shown in Figure
1. To emphasize the benefits of using stochastic computing, we
highlight components that support variable precision in blue
and reuse-oriented design choices in red. Numbers associated
with each technique refer to the order used in Figure 4. The
accelerator consists of control logic, an activation scratch-
pad coupled with buffers and stochastic number generators
(SNGs), and six multiply-accumulate (MAC) block rows, each
with its weight memory (total 131KB), and output counters,
pooling, and activation logic. Control consists of instruction
memory (4KB), a dispatcher, and distributed control units. The
activation scratchpad is organized as a ping-pong buffer (2
banks of 16KB). SNG buffers are organized as shift registers
that emulate a vertically sliding convolutional window for
improved activation and weight temporal reuse [3]. After
conversion into stochastic streams, activation broadcast is
used across all six MAC rows, enabling a high level of spatial
reuse. All MAC rows use the same activations, but each can
compute a single output channel in a convolutional layer, or
3 rows can be coupled to compute one output channel in a
fully-connected layer. Values are stored in memory using a
fixed-point format and converted into stochastic streams only
for computation, meaning that variable-precision support is
transparent to memory and control logic. Our architecture can
be easily scaled up to a larger area to increase performance.
For example, the number of MAC rows, or the size and number
of MAC columns can be increased to handle more concurrent
filters or larger inputs. Likewise, the on-chip memory capacity
can be increased to enable larger models. Because of the
extensive memory data reuse of our accelerator, we expect
the efficiency to be maintained when the design is scaled
up, within the constraints of edge-class devices. Server-class
inference and training architectures are beyond the scope of
this work.
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Fig. 1. Overall accelerator architecture.
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Fig. 2. SC split-unipolar MAC and stochastic average pooling (top). Precision-
latency trade-off using different stream lengths (bottom).

III. SC COMPUTATION

Figure 2 explains how the underlying SC computation is
performed, through an example of a 2-way dot product using
8-bit long streams. We use comparator-based SNGs, with 7-bit
linear feedback shift registers [3]. Multipliers and adders are
implemented using AND and OR gates, respectively. Their
small size allows us to pack extremely wide dot products,
up to 200-wide, without timing or congestion issues present
in fixed-point designs. To support bipolar weights, split-
unipolar computation is used, which separates positive and
negative multiplication results, and adds them in separate,
duplicated accumulation trees [3]. After accumulation, positive
and negative streams are subtracted and fed into a counter
for conversion to fixed-point. Each up/down counter accepts
outputs of two neighboring accumulation trees to implement
X-dimension (horizontal, e.g. 1x2) part of stochastic average
pooling by concatenating the streams corresponding to two
adjacent outputs in the same output row. Y-dimension (ver-
tical, e.g. 2x1) part of pooling is implemented sequentially,
using the previously described sliding window. The choice of
average pooling is dictated by its efficient SC implementation,
which can reduce computation latency by up to 4x without
any loss in accuracy, by skipping the computation of bits
that would have otherwise not been used [3] Alternative
dimensionality reduction methods such as max pooling do not
have such efficient SC implementations. Pooling is only used
after convolutional layers. Counters are followed by ReLU
activation and a configurable power-of-2 scaling unit to handle
different stream lengths. Scaling factors range from 1/4 to 32,
is programmable, and can be set on a layer basis. Figure 2 also
shows how by changing the stream length, the computation
precision can be changed at runtime. Since values are stored
in a fixed-point format, and only converted to streams for

computation, our accelerator can support arbitrary precision
with negligible area overheads.

IV. COMPUTATION MAPPING

Convolution mapping is shown in Figure 3. We omit the
fully-connected layer explanation due to a lack of space.
Each MAC block row is organized into five columns, each
corresponding to one input and filter row across 4 or 8
input channels. Fixed-point input and weight rows are loaded
into the SNG buffers of its respective column. This way, a
complete 5x5 filter can be computed in parallel, generating
one complete row of outputs per MAC block row. Both sets of
SNG buffers are organized as shift registers, meaning that after
one iteration, a new input row is shifted in, and the subsequent
output row can be computed. This sliding activation reuse
behavior emulates a vertically-sliding convolutional window,
reducing the number of required memory accesses.

Each column is organized into eight SC MAC blocks, each
corresponding to one input channel, operating in a fully-
streaming manner. A block takes 16 inputs and 5 weights
and implements a sliding MAC window, generating up to
16 partial output streams depending on padding. Activation
stream multicast with overlap is used between successive
dot-products, and weight stream broadcast is used for all
dot products in a block, amortizing stream generation cost.
Every two neighboring blocks can be coupled to support wider
input rows. Corresponding output streams from all 8 blocks
are then reduced (Z-dimension stream reduction), after which
corresponding outputs from all 5 columns are reduced (Y-
dimension stream reduction). This hierarchical, SC reduction
enables wide dot products (up to 200-wide) to be unrolled
spatially, amortizing the cost of converting stochastic streams
to fixed-point outputs. Our reuse-oriented design choices make
it possible to perform over 130 MACs per memory access, and
over 40 MACs per stream generation, as shown in Figure 4,
lowering the relative energy cost of those operations. This high
level of data reuse was only possible by using very dense SC
computation – fixed-point designs have an order of magnitude
lower memory access reuse [3].

Since computation, highlighted in blue, operates purely
on stochastic streams, it can support arbitrary precision by
adjusting SC stream length, only limited by the width of the
output counters. Precision selection is possible on sub-layer
granularity, e.g., groups of filters. Our custom instruction set
enables selective gating of MAC block rows, columns, and
blocks to support smaller activation or filter sizes. Filters or
inputs that cannot be fully unrolled using existing resources
are computed sequentially. A set of hardware loops with multi-
stride memory accesses enables a variety of layer shapes and
dataflow choices. Our accelerator can therefore support end-
to-end inference with different types and shapes of layers.

V. EVALUATION & RESULTS

Figure 5 shows the SC training setup. To optimize the
accuracy of SC models, stream generation and SC computation
need to be accurately modeled during training, which can be
expensive if streams for each computation need to be generated



3

Fig. 3. Mapping of convolutional layers in MAC rows, and memory/stream generation amortization through data reuse. Shift-register organization emulating
sliding window (left), MAC block with input/weight reuse and padding support (center), block organization implementing different levels of reduction (right).

Fig. 4. Normalized ratio of MAC to memory accesses and stream generations
compared to fixed-point designs. Accelerator area scaled to 14nm is included.
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Fig. 5. SC-aware training using accurate stream modeling (top), OR-
addition approximation to recover accuracy enables the use of shorter SC
streams without sacrificing accuracy (middle), and model deployment pipeline
(bottom).

separately. To speed up the training procedure, models are first
trained using a fast generation scheme that maximizes stream
sharing and then fine-tuned using an accurate model of the
hardware. The effect of OR accumulation is modeled using
an additional activation function shown in Figure 5. Models
are trained on MNIST, CIFAR-10, and SVHN datasets, using
models shown in Table I. An output counter overflow issue in
the taped-out design causes the deployed models to use ag-
gressive scaling factors, which result in a 0.2-7.4 p.p. accuracy
drop compared to simulated results without the overflow. The
scaling factor is set to be 2⌈log2(max(|a|))⌉, where max(|a|)
is the largest magnitude observed in the output activations
of a layer. This scaling factor ensures that output activations
do not overflow after scaling, and that the scaling function
can be achieved using simple shifts. Accuracy could also be
improved through larger networks, or more recent SC accuracy
improving techniques, such as the ones proposed in [5]. Once
trained, models are translated into a sequence of accelerator
instructions using a compiler under active development, which
is then programmed onto the device, as shown in Figure 5.

The chip, shown in Figure 6, was fabricated in 14nm

TABLE I
DATASETS AND MODELS USED IN EVALUATION. MODEL SIZES ARE

LIMITED BY AVAILABLE ON-CHIP MEMORY.

Dataset Model Model Architecture Size [kB]

CIFAR-10, tinyConv CN5x32-CN5x32-CN5x64-FC10-BN* 89

SVHN tinyConv-L* CN5x32-CN5x32-CN5x32-CN5x32-FC10-BN* 81

MNIST LeNet-5 CN5x6-CN5x16-FC120-FC84-FC10 62

LeNet-3 CN5x6-CN5x16-FC10 7

Specifications

Technology 14nm LPP

Die Area 5 mm2

Core Area 0.5 mm2

Supply Voltage 0.6-0.9V

Frequency 250-500 MHz

Precision 8-64 bitstreams

Memory 167 KB

Power
16 mW@ 250 MHz, 0.6V

68 mW@ 500 MHz, 0.9V
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Fig. 6. Die shot and specifications.

LPP technology. The core of our accelerator occupies a 0.5
mm2 area and operates at 0.6-0.9V voltage and a maximum
frequency of 500MHz. Figure 7 shows the accuracy, latency,
and energy measurements on different networks and datasets.
We highlight that SC exposes a precision-performance tuning
knob, by adjusting the stream length. For example, on the
MNIST dataset, changing the stream length from 32 to 16
reduces the accuracy by only up to 0.3 p.p., while reducing
energy and latency up to 31%. On SVHN, accuracy can be
improved by up to 4.7 p.p. with a 50% increase in latency and
energy. Non-ideal performance scaling is caused by control
logic overhead and will be improved in the future. Thanks to
highly compact SC compute we achieve higher data reuse than

Fig. 7. Accuracy, latency (left), and energy (right) on the MNIST (top),
SVHN and CIFAR-10 (bottom) datasets.
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other accelerators, resulting in lower relative memory power
contribution, as shown in Figure 8.

Peak energy efficiency ranges between 9.4 and 75 TOPS/W
at 250MHz/0.6V, as shown in Figure 9. Table II shows a
comparison with prior work. Overall, SC offers unparalleled
computational density in terms of MAC units per mm2.
Our chip outperforms fixed-point accelerators [1] in energy
efficiency while enabling configurable precision. While bit-
serial architectures [2] can have high peak energy efficiency, it
is only achievable at single-bit precision. Mixed-signal, binary
design in [9], achieves extremely high energy efficiency, but
it comes at a cost of little configurability, supporting only one
convolutuional filter size. It requires using much larger, slower
models to improve accuracy. We also outperform, or approach
the efficiency of neuromorphic and analog designs [10], [11],
without suffering from their scalability and programmability
issues, on account of being purely digital.

TABLE II
COMPARISON TABLE.

ISSCC ISSCC JSSC ISSCC ISSCC This
’21 [1] ’18 [2] ’18 [9] ’19 [10] ’19 [11] Work

Type Digital Digital, Mix.-sig., Neuro- Time- Digital,
bit-serial binary morphic Domain SC

Purpose Train./ Infer. Infer.4 Train./ Infer.4 Infer.
Infer. Infer.3

Node 7nm 65nm 28nm 65nm 40nm 14nm
Area 19.6 16 4.6 17.6 0.124 0.5
[mm2]
Voltage 0.55- 0.63- 0.53- 0.8 0.375- 0.6-
[V ] 0.75 1.1 0.8 1.1 0.9
Clock 1-1.6 200 1.5-10 20 0.2-3.1 250-500
Power 3.2- 0.09- 23.1- 0.03 16
[mW ] 297 -0.9 23.6 68
#MAC 32k1 3.5k1-13.8k2 65k 19.2k
MAC 1.6k1 0.2k1- 14.2k 38.4k
/mm2 0.9k2

Mem. 8MB 256KB 328KB 167KB

Precision FP8-32 1-16 1 4-85
INT4/2

TOPS/W 8.9-16.51 11.61-50.62 532-7722 3.42 12.08 4.4-75
TOPS/ 3.27-5.221 0.0861- 0.015- 0.3-4.8
mm2 0.462 0.12 (0.75-12)6

GOPS 62K- 1.4K1-7.32 72-5322 0.365 150-
102.4K1 2.4k

MNIST
Perf. - -

97.8%, 97%, 95.1-98.7%,
3.4 4.65- 1.1-9.5,

TOPS/W, 12.08 TOPS/W, 25k-
100k Fr/s TOPS/W4 -215k Fr/s

CIFAR-
10
Perf.

- -

85.7-86.1%

- -

69.4-71.7%,
532-772 TO- 2-6.3 TO-
PS/W, 0.04k- PS/W, 2.8k-

0.24k Fr/s -8.3k Fr/s
1 Int4. 2 Binary. 3 Fixed-function, MNIST only. 4 Convolutional layers only. 5 Effective precision
with 8-64 bit SC streams and SC average pooling. 6 Without on-chip memory.

VI. CONCLUSION

We presented, to the best of our knowledge, the first stand-
alone, configurable, and programmable SC NN accelerator in
silicon. The chip, taped out in 14nm technology, achieves 2.4
TOPS and 75 TOPS/W throughput and energy efficiency. It
has a custom ISA and supports end-to-end inference with
convolutional and fully-connected layers of variable input and
filter sizes. The use of SC makes it possible to pack 19,200
MAC units in a small area, enabling a high degree of spatial
data reuse, amortizing the cost of SC conversion, and reducing
the number of memory accesses. By varying the stream length,
it enables extensive accuracy-latency trade-offs.
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