
1

DRDebug: Automated Design Rule Debugging
Irina Alam, Tianmu Li, Sean Brock, and Puneet Gupta

Abstract—Design Rule Checking (DRC) is an important step
in the physical design flow that checks if a design meets the
manufacturing constraints or design rules imposed by the process
technology. It allows the foundry to ensure high acceptable
manufacturing yield. Design rule verification is one of the most
challenging steps because of the sheer size of the rule decks and
the lack of standardization among these design rule manuals. One
way of efficiently discovering missed rule checks is by comparing
the rule deck with that of another mature or well-established
process. In this work, we develop two complementary techniques
for comparing process design rule decks and automatically
establishing a one-to-one correspondence between rules from
two different Process Design Kits (PDKs). The first approach,
Random Layout Generation (RLG), creates random layouts of
different shapes and sizes. The generated layout is checked
using both rule decks. The rules are then matched based on
the violations generated. The second approach, based on rule
language processing (RLP), matches rules based on the similarity
between rule commands. Rules are directly matched based on
the layer names and keywords present in the DRC commands.
The two approaches are complementary and together they can
correctly match more than 80% of the rules in two design rule
manuals.

Index Terms—Design Rule, Manufacturing, Random Layout
Generation, Natural Language Processing, Machine Learning

I. INTRODUCTION

In circuit design, a design rule is meant to impose geometric
constraints on the layout to ensure that the design can be man-
ufactured with yield and functions as expected. Design rule
checking (DRC) is an important step during design verification
signoff along with other checks such as LVS (layout-versus-
schematic), ERC (electrical rule check), etc. The design rules
are developed by foundries based on the characteristics and
capabilities of the particular process to realize design intent.
These rules can have a significant impact on manufacturability
and design characteristics and performance [1], [2]. Some of
the basic design rule checks are shown in Figure 1.

Foundries need to create a unique set of design rules for
every new process. Besides, with time, as the process matures,
the design rules get updated accordingly. When creating or
updating the design rule deck, the biggest challenge is to verify
the design rule deck to ensure that the rules are implemented
as desired and the rule updates get reflected correctly. This
verification is cumbersome as the rule deck is a large body
of software and often spans multiple fab acquisitions, pro-
gramming standards, etc. It is one of the most complex and
time consuming step when developing a new process [3]. As
a result, there is ample room for missing important checks in
the final deck, leading to significant yield manufacturing yield

I. Alam, T. Li and P. Gupta are with the Department of Electrical and
Computer Engineering, University of California, Los Angeles.
E-mail: {irina1, litianmu1995, puneetg}@ucla.edu

S. Brock was with ON Semiconductor, Austin, TX.

Figure 1: Some of the common design rule checks.

loss which often invokes costly cross-layer debug process. For
example, most rule definitions are complex involving multiple
layers, use multiple variables and create several derived layers.
A minor mistake in the definition can easily go undetected
when using standard unit tests. As technology scaling slows
down, customized foundry technologies are going to become
more common. These foundry technologies are usually deriva-
tives of existing processes and contain similar rules. As a
result, developing, debugging, and maintaining design rule
decks has become a challenge.

One efficient way of discovering missed rules or ensuring
the changes in the rule definitions are as expected is by
comparing the rule deck with that of an older process or an
older rule deck version of the same process. A typical DRM
can contain several thousand rules. We try to find one-to-
one (or one-to-many) functional correspondence between rules
from different DRMs. The first problem we try to address
is that the same rule can be written in a variety of ways in
the rule description language (e.g., SVRF), and establishing
correspondence between equivalent rules is an important aid
to debugging design rule decks. The second problem we
try to address is establishing correspondence between two
technologies that are independently or partly independently
developed. This can happen, for example, when a foundry
acquires an existing process technology from another foundry
or when it creates a derivative technology for a different
market niche, developed and maintained by a different team.
The third issue we address is to identify inadvertent errors
that can creep into different revisions of the same process
(e.g., DRM v1.1 vs. DRM v1.2). Many of these changes under
these revisions may not be minor and require a substantial
rewrite of the design rule deck (e.g., for efficiency reasons,
convention changes, etc). Nevertheless, no usable ”diff” of
design rule decks exists, which makes the problem of finding
and debugging design rule decks a tedious, challenging manual
task. Regression tests for rules, usually manually designed,
can only help for known rules. They cannot identify rules

2

Figure 2: The same spacing rule is expressed differently in
two different design rule manuals.

that were missed or are there unnecessarily. Comparing rule
decks across multiple processes is extremely challenging as
there is no standard format of creating rule decks and they
greatly vary between process nodes and/or foundries. Because
of the lack of standardization, every foundry expresses design
rules differently. For example, as shown in Figure 2, both rules
are spacing rules and specifies the minimum distance between
adjacent shapes in metal1 that are wider than X and longer
than Y (X and Y values are different for different technology
nodes). But the rules are expressed differently in the two
design rule manuals. This makes the comparison challenging.
In fact, comparing two rule deck versions of the same process
can also be challenging if the number of changes between
the two versions is large as it has to be ensured that all
the differences are correctly highlighted so that they can be
verified.

In order to efficiently compare two design rule decks and
establish a one-to-one correspondence between rules from
two different Process Design Kits (PDKs), we developed two
complementary techniques in DRDebug. The first approach,
Random Layout Generation (RLG), creates polygons of dif-
ferent shapes and sizes and places them on a grided layout.
The generated layout is passed through design rule check
using both rule decks and the rules are matched intelligently
based on the locations of the violations generated. The second
approach, based on rule language processing (RLP), matches
rules based on the similarity of the rules commands being
used. The first approach is agnostic of the format and syntax
of rule commands and performs exceptionally well even
when the rules in the PDKs are expressed very differently.
The second approach, on the other hand, does not require
appropriate layout generation that would violate all target
rules in order to be able to correctly match them and hence,
is best suited for density/coverage rules and rules that span
across multiple layers. Given the complementary nature of
the two techniques, they combined can correctly match more
than 80% of rules in two different commercial design rule
manuals. The techniques are significantly effective (upto more
than 70% correct matches) even when the design rule manuals
are for two different technology nodes and from two different
foundries.

II. RELATED WORK

DRC rules are verified by creating test patterns for each
design rule and verifying the output of the rules for those pat-
terns. It is tested whether the passing and the failing structures
are as per expectation. The process of generating a complete
set of test structures for each design rule deck is difficult
and time consuming. There has been past work on improving
and automating design rule evaluation and verification. In [3],
the authors enhance the PCELL Verification method [4] by
using a parameterized pattern generation methodology. They
reduce the number of test patterns generated for each design
rule category by limiting the parameters that are varied across
the different shaped polygons to create the final set of test
structures. While they reduce the time and complexity of the
design rule verification process, the proposed technique does
not help to catch any critical rules that might be missing
from the rule deck. Similarly, in [5], the authors do a line-
by-line analysis to check if every component in a design
rule has a corresponding test pattern in the regression suite.
Doing so helps to make sure every part of a design rule that
already exists in the manual is being verified. But, unlike
DRDebug, it does not help to figure out if any necessary
checks have been left out in the manual. Some other past
works [6], [7] have looked into early design rule evaluation
before exact process and design technologies are known.
While the proposed framework systematically explores area-
manufacturability-variability tradeoffs in design rules, it does
not debug and verify design rule decks.

III. METHODOLOGY

A. Random Layout Generation

The first approach we use for design rule matching is ran-
dom layout generation (RLG). The overall idea is to generate
a single layout with geometries of different sizes and shapes in
each layer. This generated layout would be checked using rule
decks from both PDKs. The violations corresponding to same
or similar rules between the two decks are expected to be in the
same locations in the layout. For example, if both rule decks
have the exact same minimum width criteria for each layer, the
list of violation locations highlighting all shapes with width
smaller than the minimum width would be identical in both
cases. No other rule is expected to have the exact same list of
violation locations and, therefore, using this, the two rules in
the two PDKs can be matched with each other. However, in a
real scenario, two rule decks are never identical, making the
matching process more complicated.

In the following sections we will discuss the challenges
we faced when matching violation locations using RLG and
the corresponding solutions to these problems. Finally we
summarize the flow in Section III-A5

1) Generating polygons of different shapes and dimensions:
We used C++ based OpenAccess to create shapes in each layer
of the generated layout. We then used Mentor Graphics tool
Calibre to perform design rule check using the two target
design rule manuals (DRM). Generating completely random
polygons with random number of edges and corners results in
illegal shapes that end up failing only a certain subset of rules

3

Figure 3: Four different shapes generated using 3x3(=9) tiles.
Each of the 9 rectangular tiles are either filled or empty
depending on the shape being constructed.

in the manual. In order to ensure that all rules in a particular
layer get violated, a huge variety of polygons of different
shapes and sizes would have to be created that would make
the whole RLG flow unscalable. As a result, we introduced
some structure to the random layout generation methodology.
We first created a scalable shape library. Each polygon in the
library is generated using a tile based approach. Each shape
consists of NxN rectangular tiles as shown in Figure 3. Each
tile is of different dimension. Based on the polygon shape that
we are constructing, each tile is either filled or empty. For this
work, we generated each shape using 3x3(=9) rectangular tiles.
The shape library supports polygons of certain shapes and can
be easily extended to add more shapes in the future. There is
also an option of generating a random shape in the library by
randomly choosing which of the 9 tiles will be filled.

Using the shape library ensures that polygons are generated
somewhat systematically in the layout and hence, helps to
dramatically reduce the number of polygons required per
layer to violate all rules in the DRM. The next challenge
in polygon creation is the dimension of each polygon. For
each shape in the library, tile dimensions follow a random
normal distribution. We created a tri-modal distribution of
shape dimensions for creating small, medium and large sized
shapes in order to limit the number of shapes required. The
shape dimensions for each layer are chosen based on a mature
technology and scaled up or down appropriately. Besides, the
width and length distributions of the polygons are defined
separately. This helps to better control the polygon types, e.g.,
ensure most shapes are rectangular than square while using
limited number of shapes. Thus, using an easily extendable
shape library supporting polygons of different shapes and a
tri-modal distribution of grid length and width helps to limit
the total number of shapes required to be generated per layer
to violate all rules in the DRM.

2) Matching PDKs for two different technology nodes:
Foundries often want to establish a one-to-one correspondence
between rules from a newer technology node against rules
from a mature, older technology node. When comparing rules
from design rule manuals (DRM) of two different technology
nodes, the rule dimensions are expected to vary. Thus, even
if the rule definition is exactly the same, the violation list for

the deck with stricter dimensions would be a superset of that
of the other rule deck. For example, the minimum wire width
required in metal layer 1 (M1) is 70nm in rule deck 1 and
45nm in rule deck 2. Therefore, the shapes failing minimum
width in deck 1 would be a superset of the shapes failing
the same rule in deck 2. If we do an exact matching of the
violation locations, the rules will not be matched.

As a result, the generated layouts have to be appropriately
scaled using scaling factors. When comparing two different
technology nodes (X nm node vs. Y nm. node, where X>Y),
we use a range of scaling factors. The scaling factors range
from X

Y − 1 to X
Y + 1 in increments of 0.5 or 0.1. All shape

dimensions and locations in the layout generated for X nm
node is scaled down by the scaling factor when creating the
same layout for Y nm node. The scaled down layout is checked
against the DRM of Y nm node. The list of violation locations
generated after the design rule check (DRC) are scaled back
up before comparing them against the DRC violations of X
nm node. This is done at each scaling factor. The reason
behind considering multiple scaling factors is that different
rule dimensions scale by different factors between the two
DRMs. Hence, a single scaling factor is not expected to work
across all the rules in the manual. After running the same flow
for each scaling factor, every set of matches are considered
across all scaling factors and ultimately, the best matching pair
or the pair of rules with the maximum number of matching
violation locations is declared as a match.

3) Same rules with different rule commands: The other
challenge that we faced in RLG is that the same rule is defined
differently. As a result, the violation markers generated after
design rule check may highlight the same shape, but the exact
violation polygon generated would be different. One such
example is a parallel runlength spacing rule. This rule typically
checks for the minimum spacing between two geometries on
the same layer that run parallel for length L. The minimum
width required is different for different ranges of L. When
a pair of geometries violate this rule, the violation marker
either highlights the two geometries violating this rule or it
highlights the spacing between these two geometries. The
violation polygon depends on how the rule has been exactly
defined. Examples of two different definitions of such a rule
is provided in Figure 2 and an example of showing the two
different violation marker outcomes is shown in Figure 4.
While both rules are identical, the difference in the way the
rule command is written changes the violation polygon shape
and location and hence, they cannot be matched.

In order to tackle this problem, we changed our layout gen-
eration technique to a grid based approach. The entire layout is
divided into PxQ grid segments. Length of grid segment =
N × (max. length of tile). Same is true for width of grid
segment. Here, tile refers to each of the NxN rectangles that
are used to construct a shape (as shown in Figure 3). Therefore,
P/Q = Total length/width of layout

Length/width of each grid segment . Every shape that
is created in the layout is placed at a randomly selected grid
intersection point that is unused (a layout snippet is shown
on the left in Figure 5). In this work, P=30 and Q=10 was
used for each layer. All rules in the DRM that a particular
shape violates would fall in the same grid segment. Therefore,

4

Figure 4: Example showing how the same polygons violat-
ing the same parallel runlength rule ends up with different
violation markers post design rule check. The violation mark-
ers/polygons are shown in red. This happens because the same
rule was defined differently in the two design rule files.

even if the violation marker locations and shapes are not the
same, as is shown for Shape 6 in Figure 5, if two rules violate
the same set of polygons (situated in the same grid position),
they would be considered a match. Thus, in the examples
in Figures 4 and 5, the two rules would be considered a
match since the violation markers fall within the same grid
segment. The matching is done based on the grid segment
origin coordinates inside which the violation marker(s) reside.

The downside of this approach is that multiple different
rules might be violated in the same grid position (for example
minimum width and minimum spacing) and they would be
indistinguishable on given grid location. However, a particular
rule is expected to get violated in multiple different grid
locations. The probability of the same set of rules violating in
all of the exact same grid locations is extremely low. Besides,
to further negate the impact of this, we use an autoencoder
based approach to get rid of violating grid locations that have
too many rule violations and hence, might not provide any
useful information. We explain this next.

4) Using Autoencoders to extract useful information from
the violation list: Once the design rule check is done using
all rules in the respective DRMs for the target layers, a binary
results vector is generated for each rule before conducting
similarity check. The length of the vector is equal to the
total number of unique violation locations after the design
rule checks combined across both sets of DRMs. Each bit in
the vector represents a particular grid location that has at least
one violation. If a particular rule gets violated in a certain
location, the bit corresponding to that location in the result
vector of that rule is equal to ‘1’. The results vectors for all
violating rules are constructed accordingly. Each violating rule
in DRM1 is compared against every violating rule in DRM2 by
computing the cosine distance between the two vectors. For
two non-zero result vectors v1 and v2, their cosine distance
is calculated as 1 − (v1 · v2)/(||v1||||v2||), where a smaller
distance means higher similarity and a distance of 0 means
completely matching. The rule(s) in DRM2 with the minimum
cosine distance that is below a certain fixed threshold value is
considered a match with the target rule in DRM1.

Figure 5: A small snippet of an actual generated layout (6
grid segments out of 30x10 [P=30, Q=10] segments) is shown.
Each grid segment has a unique shape or polygon placed inside
it. Each polygon is constructed using 3x3(=9) tiles where some
tiles are filled and the rest are empty depending on the shape
of the polygon. On the right, Shape 6 violates the same rule
in two different DRMs. But the violation markers, in red, are
placed differently. To catch such cases, we match based on
grid segment origin inside which the violation marker(s) reside
instead of actual violation marker locations.

Figure 6: Variational autoencoder used in RLG and RLP.

While some shapes in the layout violate a single or a few
rules in the DRM, there will be some random shapes that
would violate a lot of rules. The bit positions corresponding
to these locations in the results vector would be ‘1’ for
a large number of rules. As a result, these locations only
increase the results vector length and add to the computation
complexity when matching violations without providing much
useful information. In order to remove such violation locations,
denoise data and reduce dimensionality before matching, we
use autoencoder [8]. Autoencoder is an unsupervised neural
network that compresses the data to lower dimension and
and then reconstructs the input back. Compared to traditional
dimensionality reduction techniques like principal component
analysis (PCA), multi-layer autoencoders allow non-linear
mapping between the original and encoded space and achieve
better reduction performance. Autoencoders are trained so that
the difference between input and output vectors is minimized,
thereby maximally preserving the input information given a
small encoded vector. Since our approach aims to minimize

5

manual efforts during the matching process, autoencoder is a
good choice to reduce dimensionality of data without knowing
the matching information. Autoencoders can be of different
types. Since in our case we do not have any spatial information
to extract from the generated violations, we use a multi-layer
fully connected variational autoencoder as shown in Figure 6.
The autoencoder is trained every time in the flow using input
vectors corresponding to each violating rule. If there are ‘n’
unique violations in the flow and there are 5 iterations, each
input vector is of length ‘5n’ and the output vector is also of
the same length. Post autoencoder training, every input vector
is passed through the first stages of the autoencoder to obtain
the reduced vector z. In our experiments, we used a 30x10
grid size. Thus, the maximum number of violating locations
could be 300. We also generated 10 layouts for each set of
layers (explained in the next section). Thus, the maximum
number of unique violating locations possible is 3000. Every
layer is halved and the final latent space, z, is 8x compressed.
The final cosine similarity is computed using the compressed
z vectors. Using a simple filtering based approach to simply
remove violating grid locations that have a large number of
violations comes with a much higher probability of getting rid
of useful information that some of these locations might have.

5) Overall Flow: The overall random layout generation
flow is shown in Figure 7. The overall runtime is dominated by
the layout generation and the design rule check part of the flow.
For a set of three layers (Metal1-Via1-Metal2), if there are 10
layouts generated (10 iterations of steps 2-6 in the flow), the
overall runtime for a pair of commercial PDKs with ∼15-20
rules per layer is ∼15-20 minutes. If larger number of layers
are compared together, this runtime increases significantly.
For a set of 7 layers, the runtime for the same number of
iterations increases to almost an hour. Hence, we limit RLG to
checking upto 4 layers simultaneously. Per iteration, per layer,
the number of grid segments was 30x10 (PxQ). At each grid
location, a 3x3 (N=3) tile-based shape is generated and placed.
The total size of the layout depends on the maximum length
and width of each rectangular tile used to generate the shape.
These dimensions, in turn, depend on the technology node and
the target layer(s). For example, for the 45nm DRM, the total
size of the layout generated per iteration was ∼ 1.2mm×1mm
as the maximum width and length of each of the rectangular
tile was set at 13µm and 33µm respectively. For each set
of layers, steps 3-6 in Figure 7 are repeated 10 times. Based
on commercial DRMs, the number of rules per layer roughly
varies between 40-80. Thus, DRC per iteration is performed
on ∼40-320 rules per DRM depending on the number of target
layers.

B. Rule Language Processing Based Approach

While random layout generation allows matching rules
based on violations each rule identifies on generated layouts,
it is not perfect. Some rules may cause no violation with the
generated layouts. E.g.: density rules may never be violated if
the generation algorithm does not generate layouts with very
high densities. As a result, some other means of layout match-
ing is necessary. This leads us to rule language processing

Figure 7: Overall workflow of random layout generation
(RLG) based design rule matching. This is shown for a single
scaling factor. If multiple scaling factors are used for the
same set of layers, repeat steps 1-9 for each scaling factor
and perform cosine distance matching (step 10) on the final
combined result across all scaling factors.

(RLP). Even without parsing the rule files through a DRC
tool and relying on rule violations, the individual rules written
in DRC tool language (for e.g. Standard Verification Rule
Format or SVRF) and the accompanying descriptions should
include enough information for rule matching. Figure 2 shows
examples rules written in the SVRF format. The description of
a rule (beginning with @) is typically written in plain English
and can be processed using traditional natural language pro-
cessing (NLP) [9] techniques. However, the rule descriptions
are usually not standardized. So training of the language
embedding and/or classifier is needed for every set of PDKs
that we want to compare in order to achieve good performance.
However, these PDKs do not contain enough rule descriptions
to train an NLP classifier with good generalizability. Besides,
labeling matching pairs manually for training the network
defeats the purpose of an automatic design rule matching
tool. In our experiments, matching rules based on SVRF
keywords has > 10% higher matching accuracy compared
to NLP based on rule descriptions. Hence, we use keyword

6

matching approach in this work and we describe it in detail
in the subsequent subsections.

1) Data processing: For the rest of the paper, we use
SVRF as a placeholder for any DRC tool language. The
SVRF keywords are first embedded into one-hot vectors using
a dictionary for ease of processing, with each location in
the vector representing a unique SVRF keyword. The SVRF
keywords can be divided into two types, inherent SVRF
commands and others. The inherent SVRF commands are
operators on variables, and the number of unique commands
is the same regardless of the PDKs being compared. As a
result, the dictionary used for embedding initially contains a
fixed-length portion containing all inherent SVRF commands,
and equivalent commands are mapped to the same vector. An
example of this is the “EXTERNAL” and “EXT” commands,
which are different versions of the same command. Other
SVRF keywords include layer names and values. Since they
differ between different PDKs, the dictionary size varies
depending on the PDKs being compared. To deal with this
issue, we allow the dictionary to expand when a keyword
that has not been seen before appears. For example, if the
dictionary already contains k keywords and a new keyword
appears, it will be mapped to {(k 0’s), 1}. If the two PDKs
being matched contain n unique keywords and values other
than the inherent SVRF commands, the total size of the of
the dictionary becomes n + n0, where n0 is the number of
inherent SVRF commands. Once all rules are processed in the
two PDKs, all keyword embeddings shorter than n + n0 are
padded with 0’s to the same n+n0 length for easier processing.
The embedding of a rule is then taken as the sum of the all
the keyword embeddings in the rule.

2) Initial matching with embedded data: Once all rules are
embedded, they’re first grouped based on the layer they belong
to, which can typically be found in the name of the rule. A rule
belonging to a particular layer like metal 1 or via 1 will only be
matched to rules in the same layer in the other PDK, therefore
simplifying the matching procedure. Even though it’s possible
for a rule to include variables from different physical layers,
like the enclosure of nearby via layers on a metal layer, all
rules we’ve encountered are named based on the main layer it’s
concerned with, and no rule has been found to match with rules
of another layer. Within the same layer, rules are matched by
computing the cosine distance between pairs of rules, similar
to the method in Sec. III-A. Pairs with cosine distance below
a fixed threshold are considered matches. This allows finding
multiple matches to the same rule, while also increasing the
chance of false matches.

3) Using Autoencoders to compress information: The sim-
ple scheme mentioned above can find too many false matches
or miss matching rules depending on the characteristic of
the PDKs. Since variable names and SVRF commands are
weighted equally, two rules can be considered matched if
they differ in a single variable but use the same commands.
Conversely, even if two rules achieve the same effect, they
can be considered unmatched if one of them uses a different
way of writing the rule. To compress the unnecessary parts of
the vector and focus on the salient parts, we use a variational
autoencoder (VAE) similar to the one in Figure 6 to compress

One-hot Embedding

FC

FC

FC

FC

VAE Training

One-hot Embedding

VAE Encoding

Cosine Distance

matching

Rule Matching

Figure 8: Overall workflow of rule language processing and
the associated neural network architecture.

and then decompress the embeddings of all rules in the two
PDKs. The autoencoder is trained to minimize the reconstruc-
tion loss, and the latent vector generated by the encoder is
used for matching.

4) Overall flow: Figure 8 shows the overall flow of
keyword-based rule matching. FC stands for fully-connected
layers, and the two numbers following it represent the number
of input and output neurons of each layer. N is the number
of keywords after processing all the rules from both PDKs,
which equates to 3000-5000 depending on the PDKs being
compared. n is chosen to be 128 in all experiments, so the
autoencoder achieves a compression ratio between 2% and 4%.
z = µ + σ � ε where ε ∼ N(0, I). This reparameterization
step is used to constrain the z vector to a normal distribution.
Doing so helps with classification after VAE training in our
experiments. Most of the time is spent on the initial data
embedding and training of the autoencoder model. Overall
run time depends on the size of the PDKs, but is typically
< 5 minutes when training the VAE on a 14-core CPU using
PyTorch.

IV. RESULTS

For evaluating our approaches we compared the following
sets of design rules manuals:

• Alpha and mature DRMs belonging to a commercial
process design kit (PDK) for the same technology node
(180nm)

• Two different commercial DRMs for the same technology
node (180nm)

• Two commercial DRMs for different technology nodes
(40/45nm vs. 65nm)

Unless specified otherwise, results are obtained after process-
ing using Autoencoders, and the threshold used for matching
is set to be 0.05 for both RLG and RLP. 800-1200 rules from
15-20 layers are used for matching from each DRM. While
DRDebug can provide one-to-many correspondence between
the rules, for the sake of simplicity, we use the top matching

7

pairs (pairs with the lowest distance below the set threshold)
when evaluating accuracy.

A. Overall Matching Accuracy - RLG and RLP

To evaluate Random Layout Generation technique, we com-
pared multiple sets of design rule manuals as listed previously.
Due to computation complexity, for RLG, we limited ourselves
to rules that span across at most 4 layers. For each iteration
of the flow, we first generated 10 different random layouts for
the same set of layers that we are comparing. Each layout is
sent through design rule check using the two sets of DRMs.
The list of violations for each of the 10 layouts are compiled
and the results vector is either generated (for the first layout)
or appended to the already existing vector (for the remaining
layouts). The final results vector obtained after running DRC
on all 10 layouts is used for training the autoencoder. The
encoded vector, post autoencoder training, is taken and the
cosine distance is computed for each pair of vectors across
the two target DRMs being compared. Lower the cosine
distance, higher is the matching confidence. In Rule Language
Processing (RLP), both DRMs are sent through the flow to
match all rules across all layers. The final RLG and RLP
results are provided in Table I. The layers are broadly classified
into two groups: (1) metal/via layers, (2) non-metal/non-via
(other) layers. The results are categorized as correct, false
and missed matches. Given that there is no industrial standard
on matching design rules, matches are determined by hand,
where pairs of rules that are sufficiently similar are considered
matches. False matches include the rules that were incorrectly
matched while missed matches include rules that should have
been matched but were not matched by either RLG or RLP.
Our manual inspection was spot-checked by an expert design
rule deck developer at our collaborating foundry. The missed
matches in RLG happen when the generated layouts do not
violate certain rules and hence, they cannot be matched. In
RLP, missed matches happen when similar rules in two DRMs
use different variable names or rule definitions.

1) Alpha and mature DRMs for same technology node:
We first compared two versions (alpha and mature) of the
DRM belonging to the same technology node from the same
commercial PDK. As provided in Table I, for metal and via
layers, we saw that 73.20% of the rules were violated. the
remaining 26.8% of the missed matches include all density
related rules. All violating rules matched correctly, with high
confidence (more than 98% of the rules had cosine distance
of zero). The generated layouts had polygons placed at every
grid location, hence, none of the 10 generated layouts violated
any of the density rules. Generating appropriate layout to
violate density rules is extremely hard and needs to be done
separately from the rest of rules. On the other hand, density
rules are mostly defined similarly between design rule manuals
and, hence, RLP based approach does exceptionally well in
matching these rules, with only 8% missed matches. The
missed matches in RLP typically differ in the values or
constraints used for the rule. Since all keywords are treated
equally, the algorithm sometimes gets confused when slightly
different values are used in the two PDKs or when new

constraints are added for the mature DRM. For the non-metal
layers, RLG could only create shapes in four layers in a single
iteration of the flow. Thus, during DRC, only rules spanning
four or lesser layers could be violated. For matching more
complex rules involving more than four layers, we use RLP
based approach. For layers such as poly, active, n-well, n/p-
implant and their derived layers, RLP correctly matched 82%
of the violated rules. The remaining 18% of the rules had false
matches, where two rules were incorrectly shown as matches.
However, all of these matches had non-zero cosine distance.
If only matches with cosine distance of zero is considered for
these layers, then all false matches get filtered out. However,
17% of the correct matches also now get filtered out and get
considered as rules that have no equivalent matches. If the
cosine distance is set to a non-zero threshold value (for this
pair of DRMs we considered a threshold value of 0.05), then
all correct matches are retained while 80% of the false matches
get filtered out.

2) Two commercial DRMs for same technology node: We
then compared two different commercial design rule manuals
(DRMs) for the same technology node. The results were
similar. All metal and via rules matched correctly except
the density related rules as the generated layouts did not
violate any of the density rules. When a cosine distance
threshold of 0.05 is set, all metal and via rules in DRM-1
that does not have matching rules in DRM-2 are correctly
flagged as no corresponding matches are found. This shows
that for the metal and via rules, RLG not only correctly points
out the matching rules, it also highlights the rules that are
missing in the decks, which is required during the verification
process. For non-metal and non-via layers, efficacy of RLG
is limited to rules that span across 4 or lesser layers. For
such rules, the correct matches are flagged as high-confidence
(low cosine distance) matches. Some of the false matches
can be successfully eliminated by choosing the right cosine
distance threshold. Without any threshold, ∼16% of the rules
are incorrectly flagged as matches. With a threshold of 0.05,
this significantly reduces to less than 2.5%. But, with the
threshold set, ∼2% of correct matches now get flagged as rules
that have no corresponding matches. This result will change
depending on the threshold value that is set. For a threshold
value of 0, the number of false matches become 0, while 6.7%
of the correct matches get incorrectly tagged as rules with no
matches. RLP performance in non-metal and non-via layers
remain similar to the performance in Sec. IV-A1

3) Two commercial DRMs for two different technology
nodes: For the final set of results, we wanted to check how the
techniques perform when comparing DRMs for two different
technology nodes. Hence, we used one 65nm commercial
PDK and another 40nm LP commercial PDK. Since these
two PDKs were for two different nodes, the layers, rule
definitions and the rule dimensions were very different. As a
result, matching the rules for each layer was more challenging.
For RLG we first compared the metal and via layers. We
used scaling factors from 1.25 to 1.65 in increments of 0.1.
While the overall matching accuracy is 65.30% using RLG,
the performance varies depending on the type of rule. All
(four in total) density rules and five spacing rules related

8

Table I: Overall results when using Random Layout Generation and Rule Language Processing. Autoencoders are used.

Random Layout Generation Rule Language Processing
Alpha and Mature

DRMs (180nm)
Two commercial
DRMs (180nm)

Commercial DRMs
(40/45nm vs. 65nm)

Alpha and Mature
DRMs (180nm)

Two commercial
DRMs (180nm)

Commercial DRMs
(40/45nm vs. 65nm)

Layers Metal & Via Other Metal & Via Other Metal & Via Other Metal & Via Other Metal & Via Other Metal & Via Other
Correct Matches 73.20% 69.10% 89.50% 67.80% 65.30% 42.96% 87.10% 81.17% 88.17% 82.21% 58.95% 47.87%
False Matches 0.00% 3.60% 0.00% 4.70% 14.70% 17.04% 5.38% 1.95% 6.45% 3.02% 0.00% 0.00%
Missed Matches 26.80% 27.30% 10.50% 26.60% 20.00% 40.00% 7.53% 16.88% 5.38% 14.77% 41.05% 52.13%

to nets connected to different voltage domains could not be
matched as they did not generate any violations. For such
rules, RLP performs better than RLG as actual layouts with
different voltage domains and densities are not required in
RLP. For the rest of the metal layer rules, across all scaling
factors, 71.4% of the violating rules were matched correctly.
The remaining 28.6% of the rules that resulted in false matches
are parallel run-length spacing rules. Due to the difference in
spacing and length dimensions between the two rule decks, it
is challenging to correctly categorize these rules as correct and
incorrect matches. If the exact dimensions are ignored and they
are all broadly categorized under the same parallel run-length
spacing rule bucket, then these 28.6% rules all match correctly.
Since the rule decks are from the same foundry, the rules have
similar names. If they are matched by names, then 2 out of 6
rules match correctly and the rest end up with false matches.
For the via layers, 1 out of 18 rules per layer did not generate
a violation as it checks for connections between via layer and
neighboring metal dummy layers. The number of violating
rules show that the current pattern library used in RLG is
comprehensive as it manages to violate most of the rules.
On an average, across all via layers, 81.25% of the violating
rules match correctly. The remaining rules are spacing rules
which, similar to the metal layers, match with other spacing
rules having different rule names. So they can be classified as
correct matches if all spacing rules are categorized under the
same bucket, and incorrect if matched using the exact rule
names. We then compared poly, implant, well and contact
layers. In spite of the rule dimension mismatches between
the two technology nodes, these layers had an accuracy of
71.6%. However, the fraction of violating rules in these layer
is lower than that of metal and via layers. On an average,
across all the non-metal/non-via layers tested, ∼60% of the
rules can be successfully violated using RLG. The ones that
do not get violated are either density rules, rules for different
voltage domains or rules interacting across multiple layers.
These rules are matched using RLP. Table II compares the
performance of RLG and RLP across different layer types for
these two commercial DRMs. RLP is able to match some rules
that cannot be violated using RLG, but RLG achieves higher
accuracy for violating rules.

B. Interesting Result Highlights: RLG vs. RLP

The two proposed techniques are complementary in nature.
RLP helps to highlight subtle changes in rule definitions which
might have a big impact on the correctness of the rule deck.
When comparing the alpha and mature versions of rule decks
belonging to the same node we found instances where the
alpha version had values (for instance min. width dimension)
assigned to variables and these variables were used in the rule

Table II: Accuracy breakdown for commercial DRMs
(40/45nm vs 65nm).

Non-violating Rules Violating Rules
Metal Layers

RLG 0.00% 71.43%
RLP 44.44% 64.26%

Via Layers
RLG 0.00% 81.25%
RLP 0.00% 42.86%

Other Layers
RLG 0.00% 71.60%
RLP 48.53% 46.15%

definitions. In the mature version, the variables were still there
but they were not used in the rule definition. Instead the values
were hard-coded in the definition. This can lead to potential
problems if the engineer changes the value assigned to the
variable only. The change will not get reflected in the final
rule check. RLP helped to highlight these subtle differences
that do not get caught when using RLG.

RLG, on the other hand, helps to establish correspondence
in the case of complex rules where the rule definitions might
widely vary between the two design rule manuals. For such
rules, RLP fails to match them but RLG correctly points out
the correct matches since it does not depend on the exact
SVRF rule definition. This is especially true when compar-
ing rules from DRMs belonging to two different foundries.
However, RLG requires layout generations that would result
in rule violations. If rules do not get violated, RLG will
not be able to match them. RLG also requires generating
grids that can represent the rule. Spatially expansive rules,
either spanning multiple layers or covering a large area,
demand correspondingly large grids, which hurts matching
performance or takes more time to generate the grids and
perform DRC checks. RLP does not require that and hence,
works better for density rules and rules involving multiple
layers (more than 4/5 layers).

To combine the benefits of both approaches, we set a rule
where a pair of rules is considered matched if either RLG
or RLP consider it to be matched. The results are shown
in Tab. III. Combining the two approaches improves the
average percentage of correct matches by 11.6%. Even with
the combined approach, matching accuracy is generally lower
for the two commercial DRMs for different technologies, but
we believe the missed and false matches are also valuable.
The missed matches highlight the differences between the
two DRMs that may need further examination. The false
matches highlight pairs of rules that should not be matched but
appear similar in terms of function or syntax. The accuracy
is also limited by the training data available, since DRDebug
only uses data from the two DRMs being compared. Better

9

generalization performance is possible by first training a larger
autoencoder model using violation patterns and matching pairs
from other similar DRMs, and then only fine-tuning the model
with the target DRMs.

Table III: Combined results using both RLG and RLP.
Alpha and Mature

DRMs (180nm)
Two commercial
DRMs (180nm)

Commercial DRMs
(40/45nm vs. 65nm)

Layers Metal & Via Other Metal & Via Other Metal & Via Other
Correct Matches 88.17% 82.32% 88.24% 83.39% 77.32% 57.84%
False Matches 5.38% 2.89% 6.95% 3.99% 2.06% 5.88%
Missed Matches 6.45% 14.79% 4.81% 12.62% 20.62% 36.27%

C. Benefit of Using Autoencoders

Autoencoders are used both for RLG and RLP to improve
matching performance. Autoencoders are trained from scratch
for different pairs of PDKs being compared, since different
PDKs can have different violation patterns and styles of SVRF
rules. Given the small size of the models used, training time of
the autoencoders constitute a small portion of the the runtime
for both RLG and RLP even when training on a CPU. The
performance with and without the autoencoder is compared
in Table IV. We compared the two commercial DRMs for
different technology nodes to measure the benefit of autoen-
coders since we found this to be the most difficult scenario
because of significant differences in rule definitions and rule
dimensions. For RLG, using autoencoders improves matching
accuracy by 11.7% points. Also, the cosine distance difference
between correct and false matches increases significantly. As
a result, it becomes easier to set a distance threshold that
helps to separate false and correct matches. For RLP, using
autoencoders improves accuracy by 10.8% points. Most of
the additional matches from using autoencoders are width
rules with parallel length constraints. With an autoencoder,
some of the unnecessary value and layer name differences
are compressed, and thus more matches can be achieved.
Compared to using a more traditional dimensionality reduction
technique like principal component analysis (PCA), using an
Autoencoder improves matching performance by 5.18 percent-
age points for RLG and 1.4 percentage points for RLP.

Table IV: Accuracy comparison between matching with and
without autoencoders. The results are for matching DRMs of
two different technology nodes (40/45nm vs 65nm) and using
the aggregated results of all layers.

RLG RLP
Without autoencoder 43.7% 42.6%
With PCA 50.2% 52.0%
With autoencoder 55.38% 53.4%

V. CONCLUSION

Design Rule Checking (DRC) is an important step in the
physical design flow. Creating and verifying the design rule
deck is one of the most challenging tasks during technology
development. In this work, we develop two complementary
techniques for comparing process design rule decks and au-
tomatically establishing a one-to-one correspondence between
rules from two different Process Design Kits (PDKs). Doing

so helps to verify the rule decks and can catch any missing
rules that can lead to yield loss. The first approach, Random
Layout Generation (RLG), generates a set of random layouts
and sends them through design rule check using both rule
decks. The violation locations are matched intelligently to
generate the final list of matched rules. The second approach,
based on rule language processing (RLP), matches rules based
on rule commands. While RLG is agnostic of the format and
syntax of rule commands unlike RLP, it heavily depends on
the polygon dimensions and shapes. RLP, on the other hand,
is best suited for density/coverage rules and rules that span
across multiple layers as it does not require running design
rule check and is not limited by the generated layouts or incur
high runtimes for rules spanning across multiple layers. The
two techniques combined can correctly match more than 80%
of the rules and does exceptionally well even for different
technology nodes.

REFERENCES

[1] Y. Zhang, J. Cobb, A. Yang, J. Li, K. Lucas, and S. Sethi, “32nm design
rule and process exploration flow,” in Photomask Technology 2008,
H. Kawahira and L. S. Zurbrick, Eds., vol. 7122, International Society
for Optics and Photonics. SPIE, 2008, pp. 1250 – 1261. [Online].
Available: https://doi.org/10.1117/12.801593

[2] V. Joshi, B. Cline, D. Sylvester, D. Blaauw, and K. Agarwal, “Leakage
power reduction using stress-enhanced layouts,” in 2008 45th ACM/IEEE
Design Automation Conference, 2008, pp. 912–917.

[3] M. Tantawy, R. Guindi, M. Dessouky, and M. Al-Imam, “Parameterized
test patterns methodology for layout design rule checking verification,”
in 2015 IEEE International Conference on Electronics, Circuits, and
Systems (ICECS), 2015, pp. 588–591.

[4] survey results by Mentor Graphics consulting division using the data
provided by 3 Asian fabs, “Process development and QA,” Jan 2014.

[5] Y. Lee, J. Park, M. A. Elsayed, M. E. Gadallah, and M. Alimam,
“Drc code coverage test a novel qa methodology,” in 2018 International
Conference on IC Design Technology (ICICDT), 2018, pp. 93–96.

[6] R. S. Ghaida and P. Gupta, “A framework for early and systematic
evaluation of design rules,” in 2009 IEEE/ACM International Conference
on Computer-Aided Design - Digest of Technical Papers, 2009, pp. 615–
622.

[7] R. Ghaida and P. Gupta, “DRE: A Framework for Early Co-Evaluation
of Design Rules, Technology Choices, and Layout Methodologies,” in
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 31, no. 9, 2012, pp. 1379–1392.

[8] D. P. Kingma and M. Welling, “An introduction to variational autoen-
coders,” arXiv preprint arXiv:1906.02691, 2019.

[9] G. G. Chowdhury, “Natural language processing,” Annual review of
information science and technology, vol. 37, no. 1, pp. 51–89, 2003.

https://doi.org/10.1117/12.801593

	Introduction
	Related Work
	Methodology
	Random Layout Generation
	Generating polygons of different shapes and dimensions
	Matching PDKs for two different technology nodes
	Same rules with different rule commands
	Using Autoencoders to extract useful information from the violation list
	Overall Flow

	Rule Language Processing Based Approach
	Data processing
	Initial matching with embedded data
	Using Autoencoders to compress information
	Overall flow

	Results
	Overall Matching Accuracy - RLG and RLP
	Alpha and mature DRMs for same technology node
	Two commercial DRMs for same technology node
	Two commercial DRMs for two different technology nodes

	Interesting Result Highlights: RLG vs. RLP
	Benefit of Using Autoencoders

	Conclusion
	References

