This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2957359, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

Reverse Engineering for 2.5D Split Manufactured ICs

Wei-Che Wang, Yizhang Wu and Puneet Gupta
Department of Electrical and Computer Engineering, University of California, Los Angeles

Abstract—Integrated circuit (IC) split manufacturing has been shown
to be one of the most effective protection schemes to prevent reverse
engineering from malicious foundries. Among the existing split manufac-
turing approaches, the 2.5D split manufacturing using silicon interposer
has much less fabrication and testing costs compared to layer splitting
approaches. In this paper we propose a Boolean Satisfiability(SAT)-based
attack to reconstruct the wire connections of the 2.5D split manufacturing
netlists. Our SAT-based attack can fully reconstruct the missing wires
between modules with 100% correctness and therefore the functionality of
the chip can be completely reverse engineered. In addition, we show that
the runtime of attack is significantly reduced compared to existing 2.5D
split manufacturing SAT attacks by applying grouping hints obtained
from a Satisfiability Modulo Theories (SMT)-based grouping algorithm,
which is purely depending on the circuit functionality, so no physical
defensive mechanisms can prevent such attack. In our experiments we
show that our grouping algorithm can speed up the existing SAT attack
runtime by more than 1,000X and can successfully reverse engineer
reasonable size benchmarks even when the split nets contains more than
one fanouts and the total cut size is close to 1,000.

I. INTRODUCTION

The globalization of Integrated circuit (IC) supply chain due to
the higher fabrication cost and increasing complexity of modern
designs has led to new security threats including IC overproduction
and reverse engineering [1]. In the cost-effective fabless model, the
foundries that the IC/IP owner outsourced the design to might not be
trustworthy. Once the foundry obtains the whole GDSII of the design,
it can overproduce or perform reverse engineering to obtain all design
details, which leads to significant revenue lost. Split manufacturing, as
one of the most promising defensive mechanisms to prevent foundry
reverse engineering, has been studied intensively in recent years.

A. Layer-based Split Manufacturing

To protect ICs from the malicious foundries or attackers, Layer-
based Split Manufacturing (LSM) has been proposed as a protecting
mechanism to minimize the aforementioned risks [2]. LSM divides a
design into Front End of Line (FEOL) and Back End of Line (BEOL)
parts, and different parts are fabricated at different foundries. The
FEOL (higher complexity and cost) part is fabricated at an untrusted
foundry. Since the complete connections of the circuit are unknown to
the untrusted foundry, the design cannot be fully reverse engineered.
After the FEOL fabrication, the wafer is shipped back to an onshore
trusted foundry for the BEOL fabrication and integration. While LSM
may fit well with the advanced 3D IC fabrication model, however, the
yield loss due to wafer transportation, integration, and the requirement
of design rule compatibility of two foundries are still remaining as
the major challenges [3]. Also, the cost of splitting lower metal layers
can induce even higher cost [4], while splitting at higher layers may
not provide sufficient security [5].

B. Module-based Split Manufacturing

Another split manufacturing strategy is the Module-based Split
Manufacturing (MSM), which is a promising IC integration technol-
ogy that is designed to improve system performance by using silicon
interposers [6]. MSM offers a high density and low cost package
system [7] with inter-chip bandwidth benefits and power reduction
[8]. 2.5D interposer products are already commercially available, such
as AMD Radeon Fury GPU [9] and NVIDIA Tesla Accelerator [10].
Therefore, the security of MSM has become more and more important
for the maturity of the technology, and research efforts have been
devoted to this area, including security-purpose 2.5D integration [11],
attacking, and defending techniques of MSM [12], [13].

Compared to LSM, the advantages of MSM include:

1) Alignment and integration: The integration of LSM is more

challenging than MSM because of the larger pitch size of the
interposer compared to metal layers. Also, each module of

MSM can be packaged and tested as normal chip before being
sent to the integrator.

2) Fabrication compatibility: No design rule compatibility require-
ments for MSM since the connection is done through chip-to-
chip interposers.

C. Threat Model of the Proposed Attack

We focus on reconstructing the missing connections of the MSM
strategy given the following assumptions:

1) The adversaries are malicious foundries who have access to all
the MSM parts including both FEOL and BEOL of the design.

2) Once the design is integrated at a trusted facility and sold to
the open market, the adversaries can obtain the functional chip
to find out correct input/output pairs.

Our threat model is the same as existing SAT-based MSM attacks
[12], [13], [14], where no physical reverse engineering of the func-
tional chip is required. Please note that for the proximity attack
on LSM [15], the BEOL and complete function of the chip are
unknown and 100% correctness is not guaranteed. Our attack is on
MSM connections and guarantees 100% correctness assuming that
the complete function is available. The only thing the adversary does
not know is the connection or interposers between the splitting parts.
Since the splitting parts are known to the adversary, the intermediate
input/output at the splitting interface are also known by the adversary.

D. Problem Formation

The goal of our attack is to reconstruct the missing connections
of the MSM components without costly reverse engineering of the
interposers. Figure 1 shows an example of a circuit split using the
MSM strategy. Partition 1 and partition 2 can be either fabricated
at the same or different foundries but none of them know the final
connections between the two parts as indicated by the circles. The
split can have no-fanout as indicated in Figure 1 (a) or include the
fanout (3x4) as shown in Figure 1 (b). The cut nets of both fanout
and no-fanout splits can be the same but the cut sizes are different.
For both splits it is impractical for the adversary to brute-force all
connections to find a correct solution simply because of the size of
the solution space.

Part.1 Part.2 Part.1 Part.2

(a) (b)

Fig. 1: MSM example (a) without fanout and (b) with fanout split.
Partition 1 and partition 2 can be fabricated at the same or different
foundries but the connections between them are hidden. The goal of
the adversary is to connect outputs of partition 1 to the inputs of
partition 2 correctly.

To address this problem, we propose to use a Boolean Satisfiability
(SAT) solver with hints obtained from circuit function analysis. Dif-
ferent from the SAT attack proposed in [14], we introduce grouping
hints that can significantly reduce the runtime of the SAT attack. The
main contributions of this paper include:

o Two SAT-based attacks are compared. Results show that the
grouping hint is much more effective than the no-fanout hint,

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UCLA Library. Downloaded on February 15,2020 at 02:37:42 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2957359, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

which turns out to be even worse than without applying any hint
due to the increase of virtual gate counts.

o Hard grouping algorithm and soft grouping strategies are pro-
posed to significantly reduce the runtime of SAT attack. The hard
grouping algorithm is independent of physical implementation
of the split therefore no physical defensive mechanism, such as
place and route perturbation, can be effective. The use of soft
grouping strategies can further reduce attack runtime using the
hints obtained from physical implementations of the design.

II. THE SAT-BASED ATTACK
A. SAT Attack Modeling

In this section we model the reconstruction of missing connections
of split manufacturing as SAT-based attack proposed in [16], which
has been shown to be an effective attack to retrieve the correct
key of many logic obfuscation schemes. The SAT-based attack
algorithm allows the adversary to decrypt an obfuscated netlist using
a small amount of input patterns and their corresponding outputs
(distinguishing input/output pairs or DIPs) from a functional circuit.
The algorithm iteratively finds such DIPs and formalize them as a
sequence of SAT formulas to be solved by a SAT solver. Each DIP
can rule out a subset of wrong keys and the algorithm is guaranteed
to find an equivalent class of the correct key.

To formulate the problem the first step is to model the missing
connections with virtual multiplexer (mux) or demultiplexer (demux)
gates with selection keys. As shown in Figure 2, there are two
possible ways to model the connections with a cut size of 3 MSM.
Figure 2 (a) shows a connection network using 3 mux gates where
each of the mux is configured by a key k;. The network models that
m,; can be connected to anyone of the n; wires. Figure 2 (b) shows
a connection network using 3 demux gates representing a model that
each n; can only connect to one m;, which is the ORed value of all
demuxes. One of the demux outputs will be n; and others will be
zero depending on the key k; of the demux. This model constrains
the connection to be no-fanout while maintaining the same size of
keys as in Figure 2 (a), which is n x log(n) bits for a cut size of n.

ki

e 3

] my n1_ ’é my
| E s
F Y

ny x| M2 n | 3 my
3(— —E
— = 3
¥

x| Ms n; | 3 ms
N H - ‘,E,
| -}

(a) (b)
Fig. 2: Modeling example of no-fanout MSM with cut size of 3. (a)
mux network (b) demux network.

Combining the virtual connection network and the split parts we
can now apply SAT attack to the design to solve the keys. The
objective is to retrieve the correct values of all key bits in order
to reconstruct the missing connections. The attacking model assumes
we have access to following aspects:

1) The gate-level netlists of both partition 1 and partition 2.
Along with the model for missing wires from partition 1 to
partition 2, the conjunction normal form (CNF) C(X, K,Y)
of whole design can be obtained and the function of the design
is represented as Y = f(X, K), where X is the primary input
of the circuits and K = (k1, k2, ..., k;) is the selection keys to
all mux or demux gates.

A fully functional chip obtained from the market, from which
an adversary can observe the correct output of the circuit given
an input Y = eval(X)

2)

2

TABLE I: mux and demux network runtime results in seconds.

circuits | Cut size mux demux | Cut size mux demux
3540 52 90 159 115 1,588 TO
c3315 93 690 3,108 120 TO TO
7552 50 257 604 108 TO TO
seq 70 165 682 165 TO TO
apex4 47 26 25 251 20,666 TO
ex1010 T2 2,007 1,060 281 TO TO
DES 85 38 219 346 8,339 TO

TABLE II: mux network runtime results in seconds with grouping
hints.

circuits | Cut size | No Hint 50% 33% 20%
c3540 115 1,588 379 143 79
c5315 120 TO 907 128 39
7552 108 TO TO 10,824 378
seq 165 TO TO 895 244
apex4 251 20,666 4574 2,791 974
ex 1010 281 TO TO 6,568 3,923
DES 346 8,339 2,696 1,386 527

B. Runtime Results

In our experiments we use ISCAS85 and Microelectronics Center
of North Carolina (MCNC) benchmarks to evaluate the runtime of
two connection networks. All runtime results in our experiments are
measured on a 2.7GHz Intel Core i5 CPU with 8GB memory. The
attack terminates either when correct keys are found or the runtime is
larger than 24 hours (TO). Once a correct key is found, the circuit will
behave exactly the same as the original circuit before split. Different
sizes of cut nets are tried and the attack tries to find a key that
matches all outputs. Table I shows the runtime of the mux and demux
networks. There are multiple ways to cut nets for a design while
maintaining the balance of size of partitions but in general the runtime
is proportional to the cut size. For some benchmarks if the cut size
is larger than 100 then it becomes difficult to find the correct key.
The demux network models the connection in such a way that every
output of partition 1 can only connect to one input of partition 2,
which exploits the information to the adversary that the connections
are without fanout for the split shown in Figure 1 (a). However, except
for some small cut sizes, most runtimes of demux networks are much
larger than the mux network even though the size of the keys are the
same. One possible reason is that there are n OR gates each with n
inputs in the demux network, which increases the number of clauses
significantly in CNF and can slow down the SAT solver [17]. In the
rest of the paper we will focus on the mux connection work attacks.

C. Grouping Hints

From Table I we know that the runtime of solving the key can be
effected significantly by the complexity of the connection network in
addition to the cut size. Therefore, one way to reduce the runtime is
to use a simpler connection network that translates to fewer CNFs.
In other words, if the connections can be represented by smaller
mux gates the runtime can be significantly reduced. One approach to
reduce the mux network complexity is to apply a grouping hint to
each of the mux, which contains the information of the candidates
from partition 1 to partition 2.

With grouping hints the adversary can model the connection with
a smaller mux network because now the candidate connections of
m,; are not all n; but can be a sub-group of n,. For example, the
key length for the no-fanout split is not n * log(n) anymore but
becomes n xlog(pn) where p is the grouping hint percentage, which
means that an input of partition 2 can only be connected to p portion
of connections from partition 1. Table II shows the results when
different p’s are imposed to the mux connection network. We can
see that some testbenches show significant runtime reduction when
50% of p is imposed, and as p keeps getting smaller, all benchmarks
can be solved and most of the runtime are almost hundred times
smaller compared to the no-hint cases.

From Table II we know that grouping can help reduce the runtime
significantly. However a wrong grouping hint can cause the SAT
solver a long runtime yet still cannot find the correct solution,

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UCLA Library. Downloaded on February 15,2020 at 02:37:42 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2957359, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

therefore the grouping hints should be carefully computed. To address
this issue we propose an algorithm to find hard grouping hints that
are guaranteed to include correct groupings irrespective to physical
constraints and routing heuristics. Details of soft grouping hints,
which do not guarantee to include the correct connections, will be
discussed in Section IV.

III. HARD GROUPING HINTS AND RESULTS
A. Hard Grouping Algorithm

In this section we present the algorithm to find hard grouping
hints which guarantees to include correct connections. Protective
schemes that are effective to proximity attack [18] do not protect
the design from hard grouping algorithm because hard grouping
hints are completely independent of how the circuit is physically
implemented. For a cut size of n, define the n-bit output from
partition 1 as ZI=(zly,zl2,...21,) and input to partition 2 as
Z2=(221,222,...22,,). The goal of the hard grouping algorithm is
to find the candidate connections of each z2; from Z1.

The hard grouping algorithm is implemented in Python as a Satis-
fiability Modulo Theories (SMT) problem and solved by an existing
SMT solver [19], which is a verification engine that understands
a satisfiability problem at a higher level of abstraction other than
Boolean formulas while still retaining the speed and efficiency of
modern SAT engines.

The hard grouping algorithm first assigns Z1 with fixed number of
bits being one (or zero), which we note as hot bits, to SMT solver
and it finds a valid input-output pair (X,Y") of the whole complete
design obtained from open market to generate such Z1 for partition 1.
Next step is to find all possible patterns of Z2 with the same number
of hot bits which can reproduce the same Y of the whole complete
design. The grouping information can then be found by mapping hot
bits in Z1 to hot bits in each of Z2.

In our attacking model, the adversary has access to (1) gate-level
netlists of both partition 1 and partition 2 such that partitions can
be represented as a set of SMT formula, S(X,Z1,72,Y), and
(2) a fully functional chip obtained from the market which can be
used to observe the correct output given an input, Y = eval(X).
The algorithm for finding hard grouping hints for n-bit ZI using a
specified number of hot bits hb, and hot bit type (1 or 0), hb_type,
is shown in Algorithm 1. It returns a map from each net in Z1I to all
possible candidates in Z2.

A simple example to illustrate the idea of the algorithm is given in
Figure 3: a ZI=(11000) and its corresponding (X, Y") is found. Under
such constraints, assume Z2=(00110) is the only solution found to
generate the same Y for partition 2. Now we know that z1; and z1»
can only connect to z23 and 224 (all locations with 1’s in Z2), and all
other connections of Z1 can only connect to 221, 222, and 225 (all
locations with 0’s in Z2). If there are multiple solutions of Z2 for the
same ZI and (X,Y’), the union of the groupings should be the final
grouping found for the Z1. For every Z1 with different solutions we
take the intersection of the groupings found so far to obtain smaller
grouping sizes because a correct connection should always exist no
matter what inputs or ZIs are.

Part.1 Part.2
z1, —122,
z1, —1Z2,
e B4l —122;, P>
X1 z, \ —z2, |Y
Z1, [0]—Z25

Fig. 3: Hard grouping example.

To enhance the speed of this algorithm, we introduce the concept
of Distinguishing Z2(Z2%). For a fixed Z1, it is only necessary to
find Z2 which can reveal new grouping information instead of all
possible solutions of Z2. For instance, if Z1 = 01100 and we have
found Z2 = 00110 and 01010, from the perspective of bits of value
1in Z1, we know that possible candidates are 222, 223 and 224. The
next Z2 to be found is distinguishing if and only if it can reveal new

3

candidates, which are z2; and 22s5. Thus, Z2 = 10100 is a 7929 as it
reveals Z2; as an additional possible candidates while Z2 = 01100 is
not distinguishing. Applying the constraints of finding distinguishing
Z2 after a new Z2 is found speeds up the algorithm significantly.

Algorithm 1 SMT Find_Grouping Algorithm

: function FIND_GROUP(ewval, hb_type, hb)
: 1 =1
. F=S(X,71,22,Y) A (Y = eval(X))
F = F A (number of hb_type in Z1 and Z2 = hb)
while sat[F] do
Z1; = smit_assignment z1[F]
X; = smt_assignmentx |F)
: Frew =FA(Z1 = Z1;) A (X = X3)
9: 7=1

1
2
3
4:
5:
6.
7
8

10: while sat[Fyc.| do

11: Z2; = smt_assignment z1 [Frew]

12: for 1’s in Z1; do

13: Groupone = Groupone U (1's in Z2;)

14: for 0’s in Z1; do

15: Groupzero = Groupzero U (0’s in Z2;)
16: Frew = Frew N (Z2 # Z23) N (Z2 is a Z2%)
17: j=Jj+1

18: F=FA(Z1+# Z1;)

19: t=1+1

20: for all z1; in Z1 do

21: Group[z1k] = Groupone[z1x] N Group.ero|z1k]

return Group

B. Number of Hot Bits

In cases of large cut size, constraints in line 4 of Algorithm 1
are usually unsatifiable if desired number of hot bits kb in Z1 and
Z2 is small. For example in DES with no-fanout cut size 346, it is
unsatifiable to find an input X to generate only one 1 and 345 0’s at
the output of partition 1. Therefore starting with one hot bit may be
an inefficient approach.

Figure 4 shows the decoupled runtime of different ending hb of
DES with 346 cut size starting from 173 hot bits to the ending hot
bits indicated. Note that we start with number of hot bits being half
of the cut size because we try both 1’s and 0’s as hot bit types. We
can see that the smaller the ending hb is, the faster it is for the SAT
attack to find the connection because the size of groups are smaller,
however the time spent on the grouping algorithm also become longer
simply because the number of iterations the algorithm is executed.
For some small ending hb the grouping time itself is already longer
than the total time. Therefore from empirical observations we propose
to start Algorithm 1 with hb being half of the cut size and decrease
hb by one until more than half of group sizes are smaller than 20%
or when the overall group sizes are not getting smaller. The complete
algorithm for finding hard grouping is shown in Algorithm 2.

1200

|SAT
1000 M Grouping
140
3 800
Q
E 600 109
]
& 400 oo 812
” .
o B
168 163 153 143 133
Hot Bits
Fig. 4: DES runtime with 346 cut size and different ending hot bits.

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UCLA Library. Downloaded on February 15,2020 at 02:37:42 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2957359, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

Algorithm 2 Complete SMT Grouping Algorithm

Input: SMT_formula and eval
Output: Final_Group

1: for i =half of cut size do

2: Groupone_i = FIND_GROU P(eval, 1, 1)
3: Groupzeroi = FIND_GROU P(eval, 0, 7)
4: Group = Group N Groupone_i N Groupzero_i
5: if Group < 20% then

6 break

7 i=1—1

TABLE III: Runtime (seconds) and hot bits of hard grouping hints
and reduction ratio compared to no hints. The total runtime compared
is the sum of grouping and SAT time.

circuits | Cut size | hot bits | Grouping SAT Ratio
c3540 115 53 51 5 284
c5315 120 55 23 37 >1,440.0
c7552 108 50 15 210 >384.0
seq 165 71 169 493 >130.5
apex4 251 117 482 233 28.9
ex1010 281 125 648 6,173 >12.7
DES 346 163 294 312 138

C. Hard Grouping Results without Fanout

In Table III we show the runtime of the hard grouping algorithm
and SAT attack algorithm after applying hard grouping hints. The
reduction ratio is defined as the runtime of SAT time with no hints
divided by the summation of grouping runtime and the SAT runtime
after grouping. The reduction ratio for designs with original runtime
larger than 24 hours (TO) is calculated as if the original runtime is 24
hours, which gives the lower bound of the reduction ratio. Compared
to original SAT runtime in Table I, the total runtime with hard hints
has been improved by 13X to more than 1,440X. Number of hot bits
are also presented in the table. In general, the algorithm stops when
the number of hot bits is within 10 bits less than the starting point,
which is half of the cut size.

Figure 5 shows the group size distribution of DES with 346 cut
size after running Algorithm 2. Most group sizes are smaller than
20% of 346. More than 58% of nets have size less than 10 and about
40% of the connections have group size of 1, which means that these
connections are already determined during the grouping procedure.

250
200
g
£ 150
QJ
3
o
2 100
50
o B - m e 0 e a _
10 20 30 40 50 60 70 80 90 100 110 120
Group Size

Fig. 5: Group size distribution of DES.

D. Hard Grouping with Fanout

When splitting with fanout with number of bits in Z2 is larger than
Z1 as shown in Figure 1 (b), line 4 in Algorithm 1 can be modified
to F = F A (number of hb_types in Z1= hb) A (number of 1’s/0’s in
Z2>=number of 1’s/0’s in Z1) to solve for the grouping. The idea
is that the number of 1’s/0’s in Z2 should be greater or equal to the
number of 1’s/0’s in ZI. For example, if Z1 = (100), and there are
five bits of Z2, then all possible solutions of Z2 containing one to
three 1’s need to be found to construct the grouping from ZI to Z2.

Table IV shows the runtime of fanout split with and without hard
hints. Compared to Table II, the runtime of split with fanout on
the same nets are much longer than split without fanout. For most

4

TABLE IV: Runtime (second) of fanout split with hard grouping hints
and reduction ratio compared to no hints. The total runtime compared
is the sum of grouping and SAT time.

circuits | Cut size [No hint | Grouping SAT Ratio
c3540 TT15x187 4,706 186 27 22.1
c5315 120x269 TO 157 877 >83.6
c7552 T08x188 TO 108 299 >212.3
seq 165x239 TO 226 2,839 >28.2
apex4 251x710 TO 36,501 9,727 >1.9
ex1010 | 281x677 TO 70,240 5,838 >1.1
DES 346x455 TO 1,794 245 >42.4

benchmarks the key cannot be resolved in 24 hours without hints, but
with hard grouping hints the runtime can be significantly improved.

IV. SOFT GROUPING HINTS AND RESULTS
A. Soft Grouping Strategy

Besides hard grouping hints, another way to reduce the mux net-
work complexity is to apply soft hints from physical implementation
constraints. Similar to proximity attacks [15], the adversary knows
that a wire of partition 1 is likely to connect to the wires that are
physically close to itself in partition 2 due to the interposer delay.
Figure 6 shows simulated results of interconnect delay and transi-
tion slew using a commercial 65nm technology. Each interconnect
connecting to the input of an inverter cell is driven by the largest
buffer cell available in the standard cell library. Metal 8 with Sum
width is used to emulate the interposer interconnect wire. We can see
that as the wire becomes longer the delay and slew become larger.
This information can be exploited by the adversary to narrow down
possible connections and thus simplify the connection network. For
example, a 2GHz design would require the path delay to be smaller
than 500ps. In the 65nm technology we used, a normal setup time for
a D flip-flop is about 100ps, which leaves 400ps margin for the total
gate delay. As shown in Figure 6 if the wire is longer than 20mm, the
wire delay is already larger than 400ps, therefore such connection can
be pruned out in the connection network model. Another information
is the transition slew. The library defines that the max slew is about
385ps, and if a wire is longer than 10mm the slew becomes larger
than 385ps, which tells the adversary that a connection longer than
10mm is not likely to be made.

500
-#-Rise delay
—A—Rise slew

Fall delay
Fall slew

450

400

350
PS 300
250
200
150

100

2mm 3mm 5mm 10 mm 20 mm

1.5mm

1mm

Fig. 6: Interconnect delay and transition slew.

Given the modern GPU design specifications [10], which contains
billion of gates and die size as large as about 600mm?, having a cut
size of hundreds of thousands between the two partitions is expected
from our empirical observations. Assume the design is split into two
parts, each with the dimension of 10mm by 10mm. With existing
interposer technology of 50um pitch [20], the allowable number of
interposers on each partition is about 40,000, therefore it is possible
that most interposer sites will be used after split. The exemplary
analysis of delay and transition constrains present in Figure 6 tells
the adversary that connections from the left edge of partition 1 to the
right edge of the partition 2 is not likely to be made as illustrated
in Figure 7, which shows an unlikely connection marked as ”X” and
possible connections marked as "O”.

The difference between hard hints and soft hints is that when soft
hints are applied, the correct connections are no longer guaranteed

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UCLA Library. Downloaded on February 15,2020 at 02:37:42 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2957359, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

wwot

Fig. 7: Interposer soft grouping example. The ”X” connection is not
likely to happen due to interconnect delay and transition constraints.

TABLE V: Runtime (seconds) of fanout split of hard grouping first
followed by 50% soft grouping.

circuits | Cut size | Solved Nets SAT Ratio
c3540 T15x187 30% 15 234
c5315 120x269 12% 401 >154.8
c7552 108x188 16% 99 >417.4
seq 165x239 11% 290 >167.4
apex4 251x710 50% 2,591 >2.2
ex10T0 | 281x677 64% 4,409 >1.2
DES 346x455 56% 60 >46.6

to be included after the grouping, and the keys of the connection
network may not be found. This is because the IC/IP designer can
perform routing or placement perturbation to violate the physical
design principles [15].

B. Results

To integrate soft grouping with hard grouping, the adversary can
first apply hard grouping to obtain connections for partial nets and
then apply soft hints to the rest of the nets to further reduce the
runtime. Table V presents the percentages of solved nets (nets with
grouping size one) after hard grouping and runtime results when
50% soft grouping is applied after hard grouping. The 50% soft
grouping means that each net can only be connected to the closest
50% possible candidates. We can see that about 11% to 64% of the
connections are already solved without even applying SAT attack, and
these connections are guaranteed to be correct because they are found
by hard grouping algorithms. For those unsolved nets, the runtime of
SAT attack is significantly reduced compare to Table IV because of
the soft grouping.

Table VI shows the results of 50% soft grouping hints applied
before executing the hard grouping algorithm. The runtime is further
reduced compared to hard grouping only in Table IV, but the grouping
is not guaranteed to include the correct connections. In practical the
adversary can apply hard grouping hints first to find solutions for
partial nets that are guaranteed to be correct and then apply soft
hints to the rest of the nets, or apply the soft groupings that are highly
likely to be true before the hard grouping to reduce the runtime. The
grouping sequences can be applied in an arbitrary order depending
on the actual implementation of the victim design.

V. DEFENSE STRATEGY

Create floating connections. To defend the hard grouping algo-
rithm, the IC/IP designer can create redundant floating connections at
the output of partition 1 to cause confusion or even create unsolvable
grouping solutions of Algorithm 1. For example, say Z1=(1001) for a
no-fanout split, z14 is the redundant floating net that does not connect
to partition 2 and a corresponding input X of partition 1 is found.

TABLE VI: Runtime (seconds) of fanout split of 50% soft grouping
first followed by hard grouping.

circuits | Cut size | No hint | Grouping [SAT Ratio
c3540 | TI5x187 4,706 179 10 249
c5315 | 120x269 TO 140 158 >289.9
c7552 | 108x1I88 TO 99 39 >626.1
seq 165x239 TO 224 407 >136.9
apex4 [251x710 TO 4,277 8,078 >64
ex1010 | 281x677 TO 37,961 4,061 >2.3
DES 346x455 TO 1,723 71 >48.2

The algorithm tries to find Z2 with two 1’s to generate Y = eval(X),
but since z14 is floating, such solution for Z2 may not exist, so the
grouping hints may not be generated. From our experiments we can
see that the ability of SAT attack itself is limited, therefore without
the help of hard grouping algorithm the overall performance of the
attack is significantly weakened.

Split the design into more partitions. To model the connection
network the adversary needs to know the topological order of the
partitions. When there are only two partitions the order of the
partitions can be easily figured out. If there are more than two
partitions, finding the topological order becomes a more difficult
task and there is no straightforward way to translate our attacking
algorithm to solve partitions with unknown orders. The complexity
may be too high for the attack to solve the key in practical runtime.

VI. CONCLUSION AND FUTURE WORK

In this paper we present SAT attacks to 2.5D split manufacturing
based on the hard grouping hints obtained from SMT-based grouping
algorithms. We first show that the runtime of SAT attack can be
significantly affected by the complexity of the connection network,
therefore a simplified network should be used to reduce the runtime.
Then we propose hard grouping algorithms to find grouping hints
that guarantee to include correct connections to effectively simplify
the connection network and reduce the runtime of SAT attack
significantly. Our experiments are done on both fanout and no-
fanout splits and results show that the runtime is improved by more
than hundred times for some testbenches compared to SAT attack
without hints. Finally we discuss defense strategies to protect the split
manufacturing from our attack. Our future work aims to experiment
larger circuits and solve such defense strategies with more powerful
grouping algorithms, such as incorporating the LSM proximity attack
to the MSM soft grouping algorithm.

REFERENCES

[1] Randy Torrance and Dick James. The State-of-the-Art in IC Reverse
Engineering. In CHES, Sep. 2009.

[2] J. Valamehr et al. A 3-D Split Manufacturing Approach to Trustworthy
System Development. IEEE TCAD, April 2013.

[3] M. Jagasivamani et al. Split-fabrication obfuscation: Metrics and
techniques. In JEEE HOST, May 2014.

[4] K. Xiao, D. Forte, and M. M. Tehranipoor. Efficient and secure
split manufacturing via obfuscated built-in self-authentication. In /EEE
HOST, May 2015.

[5] K. Vaidyanathan others. Building trusted ICs using split fabrication. In
IEEE HOST, May 2014.

[6] V. Sundaram et al. Low cost, high performance, and high reliability
2.5D silicon interposer. In ECTC, May 2013.

[7]1 Y. Sun et al. Modeling and fabrication of the redistribution layer on the
2.5D Si interposer. In ICEPT, Aug 2017.

[8] Yang Xie, Chongxi Bao, and Ankur Srivastava. Security-Aware Design
Flow for 2.5D IC Technology. In International Workshop on TrustED,
October 2015.

[9] C. Lee et al. An Overview of the Development of a GPU with Integrated
HBM on Silicon Interposer. In ECTC, May 2016.

[10] NVIDIA Tesla P100. The Most Advanced Datacenter Accelerator Ever

Built. In NVIDIA White Paper, 2016.

Yang Xie, Chongxi Bao, and Ankur Srivastava. 3D/2.5D IC-Based

Obfuscation. In Hardware Protection through Obfuscation, Jan 2017.

[12] Satwik Patnaik et al. Best of Both Worlds: Integration of Split
Manufacturing and Camouflaging into a Security-Driven CAD Flow for
3D ICs. In Proc. ICCAD, 2018.

[13] Peng Gu et al. Cost-efficient 3D Integration to Hinder Reverse Engi-
neering During and After Manufacturing. In Proc. AsianHOST, 2018.

[14] Y. Xie, C. Bao, and A. Srivastava. Security-Aware 2.5D Integrated
Circuit Design Flow Against Hardware IP Piracy. Computer, May 2017.

[15] Y. Wang et al. The cat and mouse in split manufacturing. In Proc.
ACM/IEEE Design Automation Conference, June 2016.

[16] P. Subramanyan, S. Ray, and S. Malik. Evaluating the security of logic
encryption algorithms. In JEEE HOST, May 2015.

[17] C. Yu et al. Incremental SAT-Based Reverse Engineering of Camou-
flaged Logic Circuits. /EEE TCAD, Oct 2017.

[18] S. Patnaik, M. Ashraf, J. Knechtel, and O. Sinanoglu. Raise Your
Game for Split Manufacturing: Restoring the True Functionality Through
BEOL. In Proc. DAC, June 2018.

[19] Leonardo de Moura and Nikolaj Bjrner. Z3: an efficient SMT solver.
In Tools and Algorithms for the Construction and Analysis of Systems,
April 2008.

[20] K. Cho et al. Signal Integrity Design and Analysis of Silicon Interposer
for GPU-Memory Channels in High-Bandwidth Memory Interface. IEEE
TCPMT, Jan. 2018.

[11]

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UCLA Library. Downloaded on February 15,2020 at 02:37:42 UTC from IEEE Xplore. Restrictions apply.

