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As the adoption of Neural Networks continues to proliferate different classes of applications and systems, edge devices have been left
behind. Their strict energy and storage limitations make them unable to cope with the sizes of common network models. While many
compression methods such as precision reduction and sparsity have been proposed to alleviate this, they don’t go quite far enough.
To push size reduction to its absolute limits, we combine binarization with sparsity in Pruned-Permuted-Packed XNOR Networks
(3PXNet), which can be efficiently implemented on even the smallest of embedded microcontrollers. 3PXNets can reduce model sizes
by up to 38X and reduce runtime by up to 3X compared with already compact conventional binarized implementations with less
than 3% accuracy reduction. We have created the first software implementation of sparse-binarized Neural Networks, released as an
open-source library targeting edge devices. Our library is complete with training methodology and model generating scripts, making
it easy and fast to deploy.
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1 INTRODUCTION

With increasing need for intelligence in Internet-of-things devices, there is a growing interest in deploying neural
networks on mobile and edge devices. However, state-of-the-art deep learning models have sizes in tens or hundreds
of megabytes and require millions of multiply-accumulate operations, making them impossible to use on heavily
resource-constrained platforms.

To cope with this, various model compression schemes have been developed in recent years, chief among them,
quantization and pruning [15]. Multiple works have shown that decreasing precision of underlying computation
through quantization does not affect accuracy, while significantly improving storage and runtime [17, 25, 37, 38, 68, 77].
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In the most extreme case of precision reduction, binarization, can be used without significant drop in accuracy
[16, 19, 34, 40, 62].

Exploiting redundancy through sparsity has been studied since the advent of neural networks [20, 28], and recent work
[27] has shown over 10x compression on popular network models with same accuracy. Although model compression
through pruning significantly reduces the required computational complexity, it is hard to efficiently exploit, especially
on highly-parallel hardware [74]. Combining binarization and pruning, is the next logical step when pushing the limit
of model compression [73]. Unfortunately, naively induced sparsity makes exploiting binarization-enabled parallelism
prohibitively costly. To achieve actual performance gains over dense binarized implementation, a form of structured
pruning needs to be employed [54]. However, this enforced structure might in turn constrain pruning flexibility and
negatively affect the accuracy of the network, which in itself is undesirable.

1.1 A Case for Sparse XNOR Networks

Table 2 shows available memory in some of the common embedded microcontroller platforms. This is usually limited to
few hundred kilobytes at most. Such severe resource constraints make implementation of reasonable deep learning
networks on these platforms very challenging. For example consider few network models shown in Table 1. Most
floating point and even 8-bit fixed point implementations are 10-1000X off from where they need to be for these
platforms.

By constraining weights and activations to binary values, Binarized Neural Networks can perform 32 multiply-
accumulate operations using XNOR and population count (popcount) instructions in a 32-bit processor (with appropriate
“packing” of weights and activations), which gives it a potential 32x storage and computation saving compared to a
32-bit implementation (see Table 1). While this in itself is impressive, it might not be enough to use common models on
typical embedded development platforms. Further compression is therefore necessary to use large models on those
devices, or in case of the most memory-constrained ones, make it feasible to deploy them at all.

Table 1. Weight storage requirements of different networks depending on precision.

Network Weight Memory [MB]
F32 FP8 XNOR

ILSVRC VGG-D [64] 553.4 138.3 17.3
ILSVRC AlexNet [42] 227.5 56.9 7.1
MNIST MLP [19] 147.2 36.8 4.6
MNIST MLP Small (This work) 0.40 0.10 0.01
CIFAR-10 CNN [19] 56.1 14 1.7
CIFAR-10 CNN Small [45] 0.36 0.09 0.01

In this paper, we propose a Pruned-Permuted-Packed XNOR Neural Network (3PXNet) model aiming to combine
binarization and pruning in a way that is computationally efficient and does not significantly degrade accuracy. We
specifically target resource-constrained edge devices, and provide implementation results on a range of embedded
platforms. Our pruning method allows further model size reduction and speedup compared to a binarized networks.
Contributions of this work are as follows.

• We develop methods to prune binarized XNOR networks aware of the need for packing them into words for
computational efficiency.
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• We develop training methods for such 3PXNets and open-source the training routines using PyTorch framework
[60].

• We show that 3PXNets offer some of the most compact networks with good accuracy: 3x-38x (22x-307x) size
reduction versus dense binary (8-bit), with 0-5.2% (0.3-10.4%) accuracy drop on MNIST and 2.3-3.8% (3.5-5%) on
Google Speech dataset, depending on the level of sparsity.

• We develop the first software implementation of sparse binarized networks and open-source an implementation
of 3PXNets.

• We make multiple design optimizations, like loop ordering, fused kernels and implicit padding, which result in
very low memory footprint and runtime. 3PXNet implementation can be as much as 3X (25X) faster and more
energy efficient than dense binarized (8-bit fixed point) networks enabling real-time inference on IoT platforms.

2 RELATEDWORK

2.1 Binarized Neural Networks

Reducing computational complexity of Neural Network training and inference has become a major research topic in
recent years [15]. Multiple works have shown that decreasing precision of underlying computation through quantization
does not affect accuracy, while significantly improving storage and runtime [17, 25, 37, 38, 68, 77]. To reduce computa-
tional complexity to its limit, researchers have proposed a variety of implementations which binarized both weights
and activations [16, 19, 34, 40, 62]. Those Networks are commonly referred to as XNOR-Nets, because multiplication
can be implemented using a bitwise XNOR operation.

The promise of significant performance and storage improvements given by XNOR-Nets has resulted in multiple
software and hardware implementations. Umuroglu et. al. [67] have created FINN, a framework for binarized FPGA
accelerators, which was further expanded to larger models by Fraser et. al. [23]. Other binarized accelerators have
been proposed, both targeting FPGAs [49, 51, 72, 76], ASIC [2, 10, 18, 63], and in-memory compute [11, 36]. Yang et. al.
[71] have developed BMXNet, an extension of MXNet [13] based on binarized GEMM kernel. Depth-first binarized
convolution implementations have also been shown for both CPU and GPU [33, 56, 61]. Our implementation leverages
the same depth-first approach to convolutional layers, while also incorporating coarse intra-kernel pruning.

2.2 Weight Pruning

Weight pruning in Neural Networks was first proposed over 20 years ago as a way of improving generalization and
reducing computational complexity for both training and inference [20, 28]. Recently, Han et. al. [27] have shown
over 10x compression on popular network models with no increase in error rates. By further coupling pruning with
quantization and efficient coding, in a scheme called Deep Compression, they achieved up to 49x size reduction [26].
However, deploying pruned models on highly-parallel architectures has proven problematic due to storage overhead
and irregular memory access patterns of sparse matrix multiplication [65, 74].

To make pruning more regular, multiple forms of "structured" pruning have been proposed. Lebedev and Lempitsky
[46] proposed group-wise sparsification. Foroosh et. al. [55] hard-coded the sparsity patterns into the source code,
achieving up to 6.88x speedup on CPUs. Anwar et. al. [3, 4] explored different granularities of pruning: feature map,
kernel and intra-kernel and introduce kernel strided sparsity. Sredojevic et. al. [65] have proposed an algorithmic way of
inducing regularity in sparse networks. Yu et. al. [74] have developed a hardware-aware pruning method called Scalpel,
which matches the coarseness of pruning to the parallelism of underlying hardware. Our approach to packing is based
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on Scalpel, but applied to binarized models and using CPU bitwidth as packing granularity, while also permuting layer
inputs to improve packing opportunities. Wang et. al. [69] have used structured sparsity in unrolled kernels after im2col
conversion. Pruning has been successfully exploited in custom accelerators by using compressed storage, skipping
memory accesses, gating computation and exploiting novel dataflows [14, 39, 59, 75]. Crossbar-aware pruning has also
been proposed given recent emergence of analog crossbar-based accelerators [52].

2.3 Sparse Binary Networks

While traditional implementations of ternary networks can be considered as binary-sparse, they store numbers in
2-bit format and don’t skip computation, which makes it impossible to capitalize on the benefits of either binarization
(XNOR multiplication) or sparsity (storage and computation reduction) [1, 30, 44, 48, 57, 73, 78]. Thus we would like
to make a distinction between explicitly Ternary Networks, using 2-bit representation, and Binary-Sparse Networks,
leveraging XNOR multiplication and size compression, like ours. As an example of the latter, Lin et. al. [53], exploited
Singular Value Decomposition to reduce kernel sizes in BNNs. Certain software and hardware implementations rely on
operand-gating XNOR multiplication [21, 31], however they still require 2-bits of information per weight: value and
mask. Li and Ren [50] decomposed first-layer activations into "bit-slices" and explore pruning opportunities in those,
but their scheme does not extend over the whole network. Faraone et. al. [22] have discussed implications of exploiting
sparsity in binarized FPGA accelerators, but not software ones.

2.4 Machine Learning on Embedded Systems

Edge Machine Learning inference on embedded platforms has been explored in recent years as a way to remove
the communication energy and latency involved in offloading it to the servers. Due to severe memory and energy
constraints of such devices, various model compression techniques have been used to make such applications feasible.
Compressed Neural Network models like SqueezeNet [35] and MobileNets [32] have been developed, specifically
targeting low memory footprints. Lai et. al. [45], have developed CMSIS-NN, a software library for ARM Cortex-M
microcontrollers with 8- and 16-bit fixed-point support. Microsoft is developing EdgeML, a Machine Learning library
containing algorithms optimized for low storage, energy and latency [24, 43].

3 THE 3PXNET APPROACH

In the following sections we describe the principal components of the Pruned-Permuted-Packed XNOR Networks.

3.1 XNOR Networks

Binarized neural networks reduce network size by having only one bit for each weight, allowing multiple weights to
be packed in binary vector, e.g. a processor 32-bit word. By constraining activations to binary values, they can also
be packed, and 32 multiply-accumulate operations (MAC) can be performed in parallel using a bitwise XNOR and
popcount instructions on the activation and weight packs in a 32-bit processor (or 64 MACs in a 64-bit processor). In
theory, this can reduce weight storage and computation requirement by a factor of 32 compared to a 32-bit floating
point implementation.

3.2 Challenges in pruning XNOR networks

Dense binarized or XNOR networks are relatively straightforward to pack for both weights and activations thereby
getting close to the "32x" leverage [34]. However, introducing sparsity on top of binarization will not necessarily
Manuscript submitted to ACM
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improve the results further. We first illustrate how naively pruning binarized networks actually worsens storage and
runtime. Consider a "small" binarized MLP used for MNIST (see Table 1) classification with the input layer of size 784 ,
one hidden layer with 128 neurons, and an output layer of size 10, both followed by batch normalization. If we prune it
without any constraints and store the sparse weight matrix using compressed-sparse-row (CSR) format, binary weight
packing and "SIMD" XNOR multiplication cannot be leveraged easily. We refer to this scheme as Naively-Pruned (NP)
network. If the number of non-zero weights for each kernel is constrained to be the same multiple of 32, binary weights
can now be packed to save storage, but activations need to be fetched individually and packed separately for each
kernel during computation. We refer to this scheme as Naively-Pruned, Packed Network (NPP). NPP scheme has two
advantages over NP in terms of storage overhead. First is packing weights into binary vectors instead of storing values
individually. Second is getting rid of row extent values in the CSR format - having the same number of packs per kernel
means that only one row extent value per layer needs to be stored. This will have more profound impact on high levels
of sparsity, because while the number of column indices goes down with sparsity, the number of rows, and therefore
row extents stays the same. Figure 1 shows total storage required for NP and NPP implementations, compared to a
dense implementation. NPP offers significant storage reduction over NP, mainly through reduction in weight storage
itself. However, to break even with Dense XNOR, sparsity levels of over 90% and 95% are required for NPP and NP
respectively.
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Fig. 1. Storage requirements for Dense, NP and NPP XNOR "small" MNIST MLP for varying levels of sparsity.

While NPP allows for packing non-zero weights, there is no easy way to leverage input packing. As runtime is
usually a concern for convolutional layers, we implemented both Dense and NPP kernels for the Large CNN model
(Table 3) for CIFAR-10. Even with sparsity set to 87.5% for each convolutional layer, except for the first one, which is
kept as dense Binary-Weight ( BWN - using full-precision activations and binarized weights), NPP version is 15X-29X
slower compared to the unpruned dense XNOR Net on the different convolutional layers, running on a Raspberry Pi 3.
This clearly shows that naively pruning binarized networks, even with packing, is not beneficial at best, and possibly
detrimental to both their size and runtime.

3.3 Pruning a packed XNOR network

In order to make inference of pruned binarized neural network more efficient, inputs (activations) need to be fetched
in packs, and those packs need to work for all kernels in a layer. This leads us to constrain the non-zero, or "active",
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Fig. 2. Pruning with packing constraint of 4 bits a) without permutation, b) with permutation

weights of each kernel to packs of 32 consecutive positions. These 32-bit packs are aligned across all kernels of a layer
so that the activations only needs to be packed once. This packing constraint reduces the number of indices to store by
a factor of 32 compared to NPP implementation.

Forcing the packing constraint reduces the flexibility of the network, and can result in excessive pruning in some
packs and insufficient pruning in others. In order to alleviate this effect, we propose to permute the weight matrix
so that weights inside the 32-bit packs are more likely to be all zeros in the ternary network. Figure 2 illustrates
the effect of permutation on packing for pack size of 4. A similar approach is also used in [52] albeit in context of
crossbar neuromorphic systems. Weight permutations are performed on input channels (NI ) of a fully-connected or
convolutional layer. For a convolutional layer with weight shape (KN ,KZ ,KY ,KX ), the weight is first flattened in all
dimensions except KZ to (KN_f lat,KZ ), and then treated as a fully-connected layer.

Permutation tries to group similar input channels into packs of 32 in a method resembling Prim’s algorithm. Before
grouping, weights are first ternarized to {-1,0,+1}. For each pack, a random input channel is chosen as starting point. A
similarity score is calculated by counting the overlap of 0 positions between the existing input channels in the pack and
all other channels that have not been grouped, and the channel with the most overlap is added to the pack. If a group
has both 0s and {-1, +1} values in a position, it is considered as a non-zero position, as it’s unclear if weights in the pack
will be pruned or not, and either choice will result in some weights being forced to change. On the other hand, positions
filled with 0s in a pack will definitely be pruned, and the pruning action will not force any weight change. Once a pack
is filled, another random input channel is chosen as the starting position for the next pack. This process continues until
all input channels are grouped into packs. Input channel permutations can be directly translated to output channel
reordering of the previous layer, so it is completely free in terms of inference except for the first layer. Figure 3 shows
the effect of using permutation in a small MLP, where maximal benefit (>4%) is observed with very high sparsity.

3.4 Training 3PXNet

Network pruning is usually performed by training a dense network and then deleting some edges or kernels. Since 0
cannot be represented in a binarized network, and the binary values contain no information about the importance of
each weight, we start the training with ternary weights to introduce zero values. The training algorithm is adapted
Manuscript submitted to ACM
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Fig. 3. Comparison of training results with and without permutation for different sparsities.

from the one in [34] where full-precision weights are kept during training and binarized during inference, except that
the weights are ternarized using a threshold function instead of binarized.

Algorithm 1. Pseudocode for calculating threshold for NPP.

we igh t _ s o r t e d = s o r t ( weight , d e s cend ing=True )
index = c e i l ( (1 − s p a r s i t y ) ∗ s i z e / word_width ) ∗ word_width
t h r e s = we i gh t _ s o r t e d [ index −1]

The threshold used is calculated using Algorithm 1. The weight tensor is first flattened and sorted based on the
floating point values. Threshold value is then chosen to make sure that the sparsity roughly align with the sparsity
constraint of that layer, and that the number of active weights align with the word width of the processor (typically
set to 32). The result of this phase of training follows the NPP scheme, which allows efficient storage of weights but
requires high indexing overhead. We then permute the weight matrices using the method mentioned above, and enforce
the packing constraint.

Algorithm 2. Pseudocode for calculating threshold for packed pruning.

we i g h t _ s p l i t = s p l i t ( weight , s p l i t _ s i z e =word_width )
/ / For every s p l i t weight pack
f o r sp = 0 to s i z e / word_width

weight_sum [ sp ] = sum ( abs ( w e i g h t _ s p l i t [ sp ] ) )
we i gh t _ s o r t e d = s o r t ( weight_sum , de s cend ing=True )
index = c e i l ( (1 − s p a r s i t y ) ∗ s i z e / word_width )
t h r e s = we i gh t _ s o r t e d [ index −1]

Similar to the NPP phase, a threshold is calculated using Algorithm 2 to determine the packs to prune. For each
kernel in the weight matrix, we split the weight values into packs aligned to the word width of the processor, and sum
the absolute value of weights inside each pack. We then calculate the threshold so that the sparsity roughly matches
the sparsity requirement of the layer, and prunes away the packs with sums below the threshold. For packs that are not
pruned, the weights inside are forced into {-1, +1}, even if they were originally 0. Before pruning is fixed, the pruned
packs can still be unpruned if sum of another pack drops lower than the pruned pack. The network is trained for a few
more epochs to determine which packs to prune. Finally, the packs to be pruned are fixed, and the model is fine-tuned
to further improve accuracy. The final pruned, permuted and packed binarized network is referred to as 3PXNet.

As shown in Figure 3, forcing the packing constraint reduces network accuracy compared to unconstrained pruning,
and permutation cannot fully recover accuracy loss. Permutation of inputs changes the allowed topology of the final
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network, which is the case for MLPs. For CNN we are not pruning the input layer, so permutation doesn’t change the
achievable topology. Due to the fact that we are permuting entire kernel planes, permutation is also more restrictive
for convolutional layers. Immediately after permuting, packing and pruning a trained network, permutation has a
significant advantage in accuracy (as much as 20% from 23.0 to 43.2%) but we fine-tune the network after permutation
and it largely recovers irrespective of permutation indicating that the networks have significant redundancy unless
the sparsity is very high (>90%). Because of the negligible effect of permutation on training and inference runtime, all
networks are trained with and without permutation, and the better performing one is chosen as result.

4 THE 3PXNET IMPLEMENTATION

In this section, we detail the implementation choices which make 3PXNet one of the most compact and efficient neural
networks. Before doing that however, we want to establish a consistent terminology for describing both fully-connected
and convolutional layers. We will be using uppercase variables to describe dimensions, and lowercase ones to describe
indices within those dimensions. Fully-connected layer is essentially a matrix-vector product between a vector of NI
activations, or inputs, and a matrix of weights with size NOxNI, producing NO outputs, as shown on Figure 4. Number
of outputs is the same as the number of kernels, and each kernel is a row in the weight matrix, with a size equal to the
number of inputs.

Activations (1xNI)

Weights (NOxNI)

NI

NO

Outputs 

(NOx1)

Fully Connected Layer

Matrix-Vector

Product

Fig. 4. A schematic view of a fully-connected layer with NI inputs and NO kernels.

Convolutional layer is shown schematically on Figure 5. Input to the layer is a 3D activation tensor of height Y,
width X and depth Z. Activations are often padded in the X and Y dimensions, creating a "halo". Padding size, PD, is
applied on both sides of each dimension, creating a tensor of height Y+2PD, width X+2PD and depth Z. This tensor
is then convolved with KN kernels, each of them with height KY, width KX and depth KZ. We only consider cases
where input (Z ) and kernel (KZ ) depths are the same. Each kernel generates an output of height Y+2PD-KY+1, width
X+2PD-KX+1 and depth of 1. Those outputs are then "stacked" depth-wise, creating a tensor of height Y+2PD-KY+1,
width X+2PD-KX+1 and depth of KN. Certain convolutional layers will be followed by pooling operations to reduce
output dimensionality. Pooling, most commonly max pooling, uses a kernel with size and stride PL in the Y and X

dimensions, producing an output of height OY=(Y+2PD-KY)/PL + 1, width OX=(X+2PD-KX)/PL + 1 and depth KN. Those
equations can be used for any type of layer - if padding is not used, PD is set to 0, and if there is no pooling, PL is set to
1. For pooling operations, kernel size and stride might sometimes be different, but that is not the case for any of the
networks implemented here [42]. For simplicity we also do not discuss strided convolutions [29].
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Fig. 5. A schematic view of a padded convolutional layer followed by pooling operation.

4.1 Fully-Connected Layers

As mentioned above, a fully-connected layer is essentially a general matrix-vector multiplication (GEMV) kernel. As it
is easy to obtain close to theoretical speedups even with a straightforward GEMV implementation, we use it for our
dense binarized reference [71]. Activations and weights are packed into binarized vectors which size is a multiple of 32
or 64, depending on the bitwidth of the processor used. In all subsequent sections we assume a 32-bit pack width. The
exact alignment to the multiple of 32 is not necessary and could be handled by masking and adjusting the last pack to
arbitrary size. However, for common network topologies, like the one presented in this work, layer sizes are generally a
multiple of 32. We plan to support arbitrary layer sizes in future releases. We use the outputs/kernels as an outer loop,
and input packs as an inner loop, as shown in Algorithm 3 for 32-bit packs. After all popcounts for a given output are
completed, it needs to be adjusted. This is because popcount result is the number of ones, whereas the actual result is
the number of ones minus the number of zeroes, since zeroes represent -1. The advantage of using outputs as an outer
loop is that only one output is accumulated to at a time, and its partial result can be kept locally. On the other hand, it
can make input reuse in caches harder. However, binarized input vectors are usually in the order of few hundred bytes,
meaning even the smallest caches can fully fit them. After a single output is computed, we then perform on-the-fly
binarization, to pack outputs into vectors for the next layer, as shown on Algorithm 3.

Algorithm 3. Pseudocode showing dense FC layer processing.

/ / For every ou tpu t pack
f o r no = 0 to NO/32−1

/ / For every ou tpu t in a pack
oPack = 0
f o r pCnt = 0 to 32−1

ou tpu t = 0
/ / For every i npu t
f o r n i = 0 to NI /32−1

/ / XNOR mu l t i p l i c a t i o n
mult = xnor ( i n pu t s [ n i ] , we igh t s [ no ∗NI+n i ] )
/ / Popcount accumu la t i on
ou tpu t += popcount ( mult )

// Correct output value
output = output-(NI*32-output)
/ / B i n a r i z e
ou tpu t = ou tpu t >= 0
/ / S h i f t and pack
oPack | = ou tpu t << (31− pCnt )

ou tpu t s [ no ] = oPack

For 3PXNets, only active (non-zero) weights are stored. We constrain pruning in such a way that every kernel has
the same number of non-zero weight packs, NP. We did not enforce this constraint in the beginning, but we found that
introducing it does not hurt accuracy. Models trained with the same size of sparse kernels sizes never have more than
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0.5% lower accuracy than models with without that constraint. Additionally, it enables a further reduction in indexing
overhead, by not storing row extents of the CSR format. For example, for MLP-L with high sparsity we can achieve up to
50% reduction in indexing storage, and 16.7% overall. We call those active packs. Because we know the number of packs
for each neuron, only one index per pack needs to be stored, making it more efficient than e.g. CSR format. We use 8-bit
indices, which support layers of up to 8192 activations. A simplified representation of weight and index storage for
3PXNet FC layers is shown on Figure 6. The loop ordering is the same as for dense implementation, but the inner loop
iterates only through the active packs, instead of all inputs, as shown on Algorithm 4. Both Dense and 3PXNet FC layer
implementations have versions with and without output binarization, the latter used for the final classifier layer.

NO

NI/32 NP

denseWeights[NO*NI/32] sparseWeights[NO*NP]

0 4

2 7

3 5

1 6

sparseIdx[NO*NP]

Fig. 6. 256x4 fully-connected layer weight and index storage with 75% sparsity (NP=2x 32-bit packs per output).

Algorithm 4. Pseudocode showing 3PXNet fully-connected layer processing.

/ / For every ou tpu t pack
f o r no = 0 to NO/32−1

oPack = 0
/ / For every ou tpu t in a pack
f o r pCnt = 0 to 32−1

ou tpu t = 0
/ / For a l l a c t i v e packs
f o r np = 0 to NP−1

/ / F e t ch c o r r e c t i npu t pack
inpu t = i n pu t s [ i n d c s [ no ∗NP+np ] ]
/ / XNOR mu l t i p l i c a t i o n
mult = xnor ( input , we igh t s [ no ∗NP+np ] )
/ / Popcount accumu la t i on
ou tpu t += popcount ( mult )

/ / Co r r e c t ou tpu t va l u e
ou tpu t = output −(NP∗32− ou tpu t )
/ / Re s t as in Alg 1

4.2 Convolutional Layers

Convolutional layers can be unrolled into matrix-matrix multiplication, as proposed by Chellapilla et. al. [12], which
makes it possible to compute them in the same way as FC layers. However, the overhead of unrolling in binarized
implementations offsets the arithmetic speedup [33]. To address that, we implement dense convolutional layers directly
using the PressedConv approach proposed by Hu et. al.[33]. We capitalize on the fact that most convolutional layer
activations have a depth (Z ) which is a multiple of 32 and organize our data using depth as the innermost dimension for
both activations and kernels. Because of that we can easily pack the actiavations and kernel weights in vectors of 32,
Manuscript submitted to ACM



3PXNet: Pruned-Permuted-Packed XNOR Networks for Edge Machine Learning 11

irrespective of X and Y dimensions, which can have arbitrary values depending on the network. This is schematically
shown for a Y=3, X=3, Z=32 kernel on Figure 7. When implementing convolutional layers, loop ordering plays a
particularly important role. There are at minimum 6 loops: output height (OY ), output width (OX ), output depth (KN ),
kernel height (KY ), kernel width (KX ) and kernel depth (KZ ). For dense XNOR implementation, we use OY-OX-KN-KY-
KX-KZ ordering, as shown on Algorithm 5. Kernel (KN ) loop is split into two loops to facilitate packing, similarly to
the output loop in fully-connected layers. The advantage of of this ordering is that it provides good locality on both
activations and outputs. Figure 8 shows a comparison of speedups for a few different VGG-16D [64] for dense and
3PXNet with kernel as an outer (K-YX ) and inner (YX-K) loop, normalized to dense K-YX. Using kernel as an inner
dimension results in 8% geomean speedup.

KY

=

3

KX=3

KZ=32

Kernel

weights[0] y=0, x=0, z=0-31
weights[1]

y=0, x=0, z=0-31
y=0, x=1, z=0-31

weights[2]
y=0, x=1, z=0-31
y=0, x=2, z=0-31

weights[3]
y=0, x=2, z=0-31
y=1, x=0, z=0-31

...
weights[8]

...
y=2, x=2, z=0-31

Fig. 7. 3x3x32 kernel packed into depth-first binarized vectors.
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Fig. 8. Dense and 3PXNet (93.75% sparsity) speedups for kernel as an outer (K-YX) and inner (YX-K) loop for different VGG-16D [64]
layers, normalized to dense K-YX.

Algorithm 5. Pseudocode showing dense conv layer loop ordering.

/ / For every ou tpu t row
f o r oy = 0 to OY−1

/ / For every ou tpu t column
f o r ox = 0 to OX−1

/ / For every k e r n e l packe t
f o r kn = 0 to (KN/32 ) −1
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/ / For every k e r n e l i n a packe t
f o r ks = 0 to 32−1

/ / For every k e r n e l row
f o r ky = 0 to KY−1

/ / For every k e r n e l column
f o r kx = 0 to KX−1

/ / For every pack
f o r kz = 0 to KZ/32−1

/ / XNOR mu l t i p l i c a t i o n
/ / Popcount accumu la t i on

/ / Output c o r r e c t i o n
/ / Pack ing

Similarly to FC layers, for 3PXNets, we only store the non-zero weight packs, and their corresponding indices. We also
constrain each kernel to have the same number (KL) of active packs to simplify indexing. This is shown schematically
in Figure 9, for a kernel with KY=3, KX=3, KZ=32 and KL=3 active packs. We only use one index per pack, which
combines information on all 3 dimensions, compressing index storage by a factor of 3. It comes at a cost to runtime, as
indices need to be decoded for every kernel.

KX=3
KZ=32

Kernel

weights[0] y=0, x=1, z=0-31
weights[1]

y=0, x=1, z=0-31
y=1, x=0, z=0-31

weights[2]
y=1, x=0, z=0-31
y=2, x=1, z=0-31

indcs[0] = (y*KX*KZ + x*KZ + z)/32 = 

                    (0*3*32 + 1*32 + 0)/32 = 1

indcs[1] = (1*3*32 + 0*32 + 0)/32 = 3

indcs[2] = (2*3*32 + 1*32 + 0)/32 = 7

KY

=

3

KL = 3

Fig. 9. 3x3x32 Convolution kernel weight packs and indices with KL=3 active packs.

For 3PXNet convolutional layers, we change the loop ordering compared to the dense implementation. As shown
on Figure 8, for 3PXNet, using kernel as an outer dimension is actually faster. This is because it amortizes the cost of
fetching and decoding indices - this way it only needs to be done once per each kernel. The downside of this approach
is reduced output locality. Therefore we use kernels (KN ) as an outer loop, as shown in Listing 6.

Algorithm 6. Pseudocode showing 3PXNet conv layer loop ordering.

/ / For every k e r n e l packe t
f o r k = 0 to (KN/32 ) −1

/ / For every k e r n e l i n a packe t
f o r ks = 0 to 32−1

/ / Decode i n d i c e s
/ / For every ou tpu t row
f o r oy = 0 to OY−1

/ / For every ou tpu t column
f o r ox = 0 to OX−1

/ / For every a c t i v e pack
f o r k l = 0 to KL−1

/ / XNOR mu l t i p l i c a t i o n
/ / Popcount accumu la t i on

/ / Output c o r r e c t i o n
/ / Pack ing

For padding support, to further reduce storage requirements for intermediate activations, we opt to not store padded
regions explicitly in memory, as they don’t contribute to output values. During computation, we detect multiplications
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that fall under padded regions, and skip computation on those. This is possible, because convolution is done depth-first in
packs of 32 or 64 values, and therefore each pack falls completely inside or outside the padded region. Skipping decision
is therefore made on a single pack granularity. Other binarized works have proposed doing padding computation
explicitly, through -1 or +1 padding, without significantly affecting accuracy [23, 76] albeit with increased storage and
runtime. For example, using explicit padding in convolutional layers of CNN Large, listed in Table 3, adds between 12.8%
and 56.3% additional activation storage, and increases computation by 4.1% to 31.9%, depending on the layer. Because
padding is only ever applied in X and Y dimensions and packing is done along depth, every pack is either completely in
the padding region or not. Since this approach makes computation irregular, potentially worsening runtime, we further
split activations into 5 regions, where the middle one can be computed without padding related overheads, and the
"halo" regions use computation skip, as shown on Figure 10.
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X+2PD
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PD+

KX-1

Y+

2PD

Y-

2KY

+2

X-2KX+2

Fig. 10. Convolution splitting into padded and non-padded regions for efficient computation.

4.3 Fused kernels

Because we are targeting resource-constrained embedded devices, we want to limit intermediate storage used during
the computation. In XNOR Networks, outputs of a given fully-connected or convolutional layers are generally passed
through Pooling or Batch Normalization layers before they can be binarized, meaning that intermediate results need
to be stored in full precision. To alleviate this issue, we use fused kernels, similar to McDanel et. al. [56]. Operations
following fully-connected and convolutional layers, such as Pooling and Batch Normalization, are performed on-the-fly
for each output. Specifically, they are implemented as following:

• Max Pooling layers - to enable on-the-fly pooling, we process the outputs of convolutional layers in groups
matching the pooling patch size. For each patch we keep a running maximum value that is being updated as
outputs are calculated.

• Batch Normalization and Binarization - Umuroglu et. al.[67] made an observation that in binarized networks,
Batch Normalization followed by sign binarization can be reduced to a thresholding operation followed by a
conditional sign change. By using this approach only one floating-point parameter needs to be stored per kernel.
Signs can be stored in binary packed format and applied in batches using bitwise XNOR operations.

The idea behind fused kernels and threshold Batch Normalization is shown on Figure 11.
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Fig. 11. A 2x2 fused Max Pooling followed by threshold Batch Normalization.

4.4 ARM NEON Support

For devices with ARM Cortex-A processors, like Raspberry Pi, we utilize NEON SIMD extension [6] to leverage hardware
popcount support. Since our NEON-optimized functions use double- and quad-word (64- and 128-bit) support, we
restrict sparsity to have a number of 32-bit packs that is a multiple of 2 or 4 for every kernel. Special care needs to
be taken with padding in sparse convolutional layers, where within a single 64-/128-bit block, some packs may be
within the padded region, while others are not. There is no easy way of skipping computation in that case, so we mask
multiplication results that fall under the padding region. We use masking operations before popcounts to correct for
that.

4.5 Binarization of the First Layer

In case of image processing, usually the only layer with a depth that is not a multiple of 32 is the first one, which makes
it problematic to implement using depth-first convolutions. However, binarized implementations generally compute the
first layer using full precision activations and binary weights to retain accuracy [19]. MLPs are used for MNIST which
is almost black and white, so we binarize the inputs and keep the first layers as XNOR layers. For CNNs, we refrain
from sparsifying the first layer, due to limited storage benefits.

5 EXPERIMENTAL SETUP

Hardware and software platforms, benchmark datasets and neural network architectures we use for our experiments
are outlined below.

5.1 Platforms

We test our implementation on three different embedded development platforms from the STM Nucleo family [66], and a
Raspberry Pi, with the configurations shown in Table 2. Our implementation is written in C and compiled with ARMCC
version 5.06 for Nucleo devices, and GCC version 5.4 for Raspberry Pi, with -03 compiler optimizations enabled. For
Cortex-M7 and M3 devices ("NUC Large" and "NUC Medium") we use the built-in cycle counter to measure execution
time over 10 runs for each network [9]. For Cortex-M0 ("NUC Small") we use SysTick counter with a period of 1ms
over 100 runs [8]. For Raspberry Pi we use C library routines to measure execution time over 100 runs. We use an
off-the-shelf USB power meter with 2 decimal digit precision, to perform rough power measurement for each of the
boards.
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Table 2. Hardware platforms used for the runtime experiments. Only the Small platform has a DSP extension with hardware
multiply-accumulate unit. All three microcontrollers are from the ST Nucleo family.

Name Model SRAM Flash Core Clock
(KB) (KB) Type (MHz)

NUC Large F746ZG 320 1024 ARM CM7 216
NUC Medium F103RB 20 128 ARM CM3 72
NUC Small F031K6 4 32 ARM CM0 48

Name Model L2 DRAM Core Clock
(MB) (GB) Type (GHz)

RPi Model B+ 2 1 ARM CA53 1.2

5.2 Benchmarks

We evaluate our approach using two fully-connected networks (MLP) and a small convolutional neural network (CNN)
on MNIST dataset, and two convolutional neural networks on CIFAR-10 and SVHN dataset as shown in Table 3. All
datasets are image classification datasets with 10 classes. MLP-Large (MLP-L) and CNN-Large (CNN-L) are used in
[19]. CNN-Medium (CNN-M) uses the same convolutional layers as CNN-L, but only has one fully-connected layer.
CNN-Small (CNN-S) is a modified version of LeNet in [47], and MLP-Small (MLP-S) is a minimally sized MLP with one
hidden layer. We also tested the same CNN-M for Google Speech Command dataset [70]. Networks are trained with
PyTorch 0.4.1. All models are trained on the training set provided, and accuracies are measured on the testing sets. We
used Adam optimizer [41] for training, with batch size of 256 and initial learning rate of 0.001.

Table 3. Benchmark models and datasets

Dataset Model Architecture

MNIST

MLP Large [19] 784-4096-4096-4096-10
Small 784-128-10

CNN Small
32CONV 5 −MP2
32CONV 5 −MP2

10FC

CIFAR-10
CNN

Large [19] 128CONV 3 × 2 −MP2
256CONV 3 × 2 −MP2

SVHN Medium 512CONV 3 × 2 −MP2
Speech[70] (1024FC × 2) − 10FC

5.3 Baseline

On Nucleo boards, we use the ARM CMSIS-NN [7], version 5.3.0 optimized for Cortex-M processors. CMSIS-NN uses
DSP extension present M7 processor for SIMD multiplication and accumulation. On Raspberry Pi we use Arm Compute
Library [5], version 18.03, with NEON extension enabled, -O3 compiler optimizations, no batching and no multithreading
for a fair comparison with 3PXNet. For both CMSIS-NN and Compute Library we use 8-bit precision: q7_t and QS8
datatypes respectively. First layer in CNNs is implemented using CMSIS-NN/CL routines with binarization overhead,
since they are not packed and sparsified. We tried comparing to two existing Dense binarized implementations: BMXNet
[71] and EBNN [56]. Unfortunately we were not able to extract and compile underlying C implementations for BMXNet,
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and eBNN runtimes we obtained were worse then CMSIS-NN 8-bit precision1, therefore we refrain from reporting
them. All results are generated for a batch size of B=1. Larger batch sizes increase storage requirements, and can make
the models even more prohibitive to deploy on resource-constrained devices.

6 RESULTS AND DISCUSSION

We discuss results for 3PXNet accuracy separately from performance as only the latter depends on the hardware
platform.

6.1 Accuracy & Model Size

Table 4. Accuracy and network size (KB, in brackets) comparison.

Dataset MNIST CIFAR-10 SVHN Speech
Model MLP-L MLP-S CNN-S CNN-L CNN-M CNN-L CNN-M CNN-M
8-bit 98.67% (36.9k) 98.28% (102) 99.42% (32.7) 92.52% (14.1k) 92.51% (4.69k) 95.65% (14.1k) 95.15% (4.69k) 97.87% (4.70k)
XNOR 98.40% (4.64k) 93.15% (13.1) 97.83% (4.46) 89.07% (1.80k) 88.29% (592) 95.03% (1.80k) 95.00% (592) 96.64% (591)
3PXNetlow 98.37% (421) 90.35% (3.96) 96.60% (1.66) 84.74% (257) 82.49% (98.8) 93.51% (257) 92.57% (98.8) 94.32% (97.6)
3PXNethiдh 96.58% (120) 87.93% (2.08) 96.27% (1.46) 81.40% (143) 78.28% (61.7) 92.25% (143) 90.61% (61.7) 92.81% (60.5)

Figure 12 compares accuracy vs. model size of 3PXNet to a dense binarized network eBNN [56]. 3PXNet achieves up
to 4X (2.5X) reduction in MLP (CNN) model size with same or better accuracy than eBNN. While both implementations
use quantization, for eBNN, additional size compression comes from tweaking the network structure itself, whereas
for us it comes from pruning. In this work we only explore the interaction binarization and prunning, but we plan to
extend our approach to also optimize across the network structure itself.
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Memory (KB)

MLP-L+S CNN-S eBNN MLP eBNN CNN

XNOR MLP-S XNOR CNN-S

Fig. 12. Accuracy vs. Memory tradeoff compared to eBNN and dense XNOR.

Training results are shown in Table 4. Each network is trained with two sparsities, and the size of the network is
shown in parenthesis next to accuracy. For most models, the 3PXNetlow has target sparsity of 90%, while 3PXNethiдh is
targeting 95%. For MLP-L on MNIST, 3PXNetlow has target sparsity of 95%, while 3PXNethiдh is targeting 99%. Output
layers of CNN-M and CNN-L is kept to 50% sparsity due to its negligible impact on storage and computation. Because

1eBNN was 8X and >80X slower than our dense implementation for FC and CNN layers respectively, which we believe is partially because it uses 8-bit
packs for higher flexibility, but lower computational efficiency, and using floating-point accumulation.
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we’re not pruning entire neurons, batch normalization layers are also not pruned. Since these constant-sized layers
take up varied proportion of the entire model and doesn’t decrease in size with higher sparsity, actual compression
rate varies a lot across models and we think it’s more clear to list the actual sizes of the models, which are shown in
parenthesis next to accuracy numbers. For binary/3PXNet implementations, weights are binary or ternary depending
on sparsity of a layer, and activations are all binary except for inputs to the first layer in CNNs. While for some of the
networks there is a noticeable drop in accuracy when comparing 8-bit with 3PXNet as in the case of MLP-S on MNIST
and networks on CIFAR-10, we argue that the main benefit of 3PXnet is enabling deploying some of those models on
heavily memory constrained devices, which would not be possible with 8-bit and, in some cases, even dense binary. As
shown in Table 5 and 6, binarization enables implementation of the network in 3 cases, and 3PXNet enables another 2.
When the model loses noticeable accuracy when binarized, it tends to lose more when pruned. Accuracy loss can be
mitigated by using more permutations per layer in addition to the "free" one, or using smaller pack sizes like 8. For
MLP-S on MNIST, reducing pack size to 16 and 8 for "3PXNetlow " increases accuracy to 88.42% and 90.09% respectively.
The added indexing storage and runtime overhead is usually not a good trade-off when naively using packs of size
smaller than 32, but we plan on exploring more efficient implementations of such networks in the future.

Network pruning can also be performed on higher precision models, so we compared our performance to magnitude-
based weight pruning [27]. Apart from the processing difficulties resulting from irregular sparsity, the index of each
active weight also needs to be stored. Since size of a filter can easily surpass 255, which is the limit of 8-bit indexing,
we used 16 bits for each index, but 13 shows the accuracy comparison between sparse 8-bit networks and binarized
networks. For MNIST, sparse 8-bit networks have worse accuracy-size trade-off compared to dense binarized networks,
let alone the sparse ones. For CIFAR-10, sparse 8-bit networks have higher accuracy for the same size compared
to dense binarized networks, but are worse than 3PXNet implementations. To achieve the model size of binarized
networks, an 8-bit fixed-point network requires very high sparsity particularly due to the indexing required, and loses
too many connections to sustain accuracy. Methods to reduce indexing overhead for fixed-point networks is proposed
in [74], but is mostly limited to packing of 2, so the conclusion doesn’t change. Under the size constraints of very small
microcontrollers, 3PXNet offers better accuracy-size trade-offs, even when not accounting for the benefits in processing
efficiency our structured pruning method brings.

6.2 Performance & Energy

Runtime and energy results for 8-bit, XNOR and 3PXNet, are shown in Tables 5 and 6 for MNIST and CIFAR-
10/SVHN/Google Speech Command respectively. We report only one result for CIFAR-10, SVHN and Speech Command.
The first two have exactly the same network structure, which yields the same runtime. For Google Speech Command,
only the first and the last layers are different, and runtime differences are so small (<5%) we opt not to report them
separately. For MLP-S 3PXNet shows between 10.7x and 25.2x runtime improvement over CMSIS-NN, and 1.8x to 3x
over Dense XNOR implementation. MLP-L can fit one the NUC Large only after binarizing and sparsifying the network.
On Raspberry Pi, the speedups obtained for both MLP-S and MLP-L are much larger than what we’d expect (76x-400x).
For the former, the model is so small that overheads like memory management limit the performance of 8-bit (ARM
CL) implementation. For MLP-L which has a model size in tens of MBs, the large latency might be caused by memory
bandwidth limitations. This means that dense and sparse binary implementations can provide speedups beyond 8x (vs
8-bit binary) on memory bandwidth constrained models and architectures.

On CNN-S, 3PXNets show between 2x and 2.6x improvement over 8-bit implementations, and between 1.06X and
2.7x improvement over Dense XNOR, on Nucleo platforms, for low and high sparsity respectively. On Raspberry Pi,
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Fig. 13. Accuracy comparison between sparse 8-bit network and 3PXNet, for MNIST (a) and CIFAR-10 (b).

the speedups are 2.6x and 2.8x versus 8-bit, and 1.5x and 1.6x versus dense binary. 3PXNet CNN-M is 2.2x and 2.7x
faster than dense binary, on the largest Nucleo device, where the 8-bit model cannot fit at all. On Raspbeery Pi, 3PXNet
achieves 7.4-10.4x speedup vs ARM CL, and 2-2.75x speedup over dense binary. Energy reduction is proportional to
runtime, which means 3PXNets could greatly extend battery life of edge devices.

There are a few factors limiting achievable speedups, for both Dense and 3PXNets. First is the lack of hardware
popcount support on Cortex-M processors, which is the case for most embedded microcontrollers. Even heavily
optimized software implementation, which we use, is quite inefficient [58]. On the small MLP, especially sparse versions,
pure XNOR speedups are further limited by overhead of input binarization and batch normalization, particularly
on NUC Medium and Small platforms which don’t have hardware Floating Point Units. We plan on exploring fixed-
point batch normalization in the future to alleviate that. CNN speedups are heavily limited by Binary-Weight first
layer, especially for CNN-S, e.g. Dense XNOR on "NUC Large" spends 54% of total runtime in the first layer, whereas
for 3PXNethigh that number reaches 92%. In principle Binary-Weight layers have an advantage over full-precision
ones, because multiplication can be removed with an up/down counter. However this comes at a cost of introducing
data-dependent conditional statements, which are potentially worse than actual multiplication. An alternative is to
preserve multiplication and compressed weights, which achieves storage reduction at a very small cost to runtime
due to weight unpacking overhead. We plan on implementing more efficient BWN layers in the future work. Finally,
3PXNet performance improvements over dense XNOR implementations are limited by indexing-related overheads.
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Table 5. Runtime (ms) and energy (mJ, in brackets) for MNIST networks. A dash indicates a given model could not fit in memory.

MLP-S MLP-L CNN-S
8bit XNOR 3PXNlow 3PXNethiдh 8bit XNOR 3PXNetlow 3PXNethiдh 8bit XNOR 3PXNetlow 3PXNethiдh

RPi 2 (9.5) ≈5e-3 (0.02) ≈5e-3 (0.02) ≈5e-3 (0.02) 191.3 (908) 4.9 (23.2) 2.5 (11.8) 0.41 (1.9) 12.4 (58.9) 7 (33) 4.8 (23) 4.5 (21)
NUC Large 1.83 (2.03) 0.37 (0.41) 0.17 (0.19) 0.14 (0.15) — — 10.1 (11.2) 3.97 (4.41) 47.4 (52.6) 34.09 (37.8) 23.4 (26) 23.2 (25.7)
NUC Medium 19.9 (8) 2.4 (0.9) 1.05 (0.4) 0.79 (0.3) — — — — 1733 (693) 731.2 (292) 676.8 (271) 673.3 (269)
NUC Small — 2.9 (0.7) 1.6 (0.4) 1.3 (0.3) — — — — — 1176 (294) 1109 (275) 1102 (277)

Table 6. Runtime (ms) and energy (mJ, in brackets) for CIFAR-10/SVHN/Speech networks. A dash indicates a given model could not
fit in memory.

CNN-M CNN-L
8bit XNOR 3PXNetlow 3PXNhiдh 8bit XNOR 3PXNetlow 3PXNethiдh

RPi 551 (2.6k) 146 (700) 74 (350) 53 (250) 638 (3k) 154 (730) 75 (350) 54 (250)
NUC Large — 3625 (4k) 1630 (1.8k) 1346 (1.5k) — — 1632 (1.8k) 1347 (1.5k)

7 CONCLUSION

We have developed the first software implementation and corresponding training methodologies for sparse binarized
networks or 3PXNets. 3PXNets can deliver up to 300x (38x) smaller model sizes compared to 8-bit fixed point (dense
binarized) networks allowing us to fit complex deep learning models on smallest of microcontrollers for the first time.
Even in smaller models that can fit with conventional approaches, 3PXNets achieve up to 25x improvement in runtime
and energy. We show multiple sub-ms and sub-mJ models on commodity low-end microcontrollers, which would not
be possible without 3PXNet. We release 3PXNet as an open-source library targeting machine learning at the edge (link
omitted for blind review). We plan to expand our approach to other structures like recurrent neural networks, and more
carefully explore sparsity options within networks.
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