
Optimizing Multi-GPU
Parallelization Strategies
for Deep Learning
Training
Saptadeep Pal

University of California

Eiman Ebrahimi

NVIDIA

Arslan Zulfiqar

NVIDIA

Yaosheng Fu

NVIDIA

Victor Zhang

NVIDIA

Szymon Migacz

NVIDIA

David Nellans

NVIDIA

Puneet Gupta

University of California

Abstract—Deployingdeep learning (DL)modelsacrossmultiplecomputedevices to train large

andcomplexmodelscontinues togrow in importancebecauseof thedemand for faster and

more frequent training.Dataparallelism (DP) is themostwidelyusedparallelizationstrategy,

butas thenumberof devices indataparallel traininggrows, sodoes thecommunication

overheadbetweendevices.Additionally, a largeraggregatebatchsizeperstep leads to

statistical efficiency loss, i.e., a largernumberof epochsare required toconverge toadesired

accuracy.These factorsaffectoverall training timeandbeyondacertainnumberof devices,

thespeedup fromDPscalespoorly. Thisworkexploreshybridparallelization,whereeachdata

parallelworkercomprisesmore thanonedevice toaccelerateeach trainingstepbyexploiting

modelparallelism.Weshowthatat scale, hybrid trainingwill bemoreeffectiveatminimizing

end-to-end training time thanexploitingDPalone.Weproject that, for Inception-V3,GNMT,and

BigLSTM, thehybrid strategyprovidesanend-to-end trainingspeedupofat least26.5%,8%,

and22%, respectively, compared towhatDPalonecanachieveat scale.

Digital Object Identifier 10.1109/MM.2019.2935967

Date of publication 19 August 2019; date of current version

10 September 2019.

Theme Article: Machine Learning AccelerationTheme Article: Machine Learning Acceleration

September/October 2019 Published by the IEEE Computer Society 0272-1732 � 2019 IEEE 91

& DEEP LEARNING (DL) models continue to grow

and the data sets used to train them are increas-

ing in size, leading to longer training times.

Therefore, practitioners accelerate training by

using multiple devices (e.g., GPUs/TPUs) in par-

allel. Data parallelism (DP) is the simplest paral-

lelization strategy where replicas of a model are

trained on independent devices using indepen-

dent subsets of data, referred to as minibatches.

However, as the number of devices used to

exploit DP increases, the total batch size per

step also typically increases. This poses a funda-

mental problem for data parallel scalability

because there exists a global batch size beyond

which converging to the desired accuracy

requires a significantly larger number of itera-

tions. This is primarily due to reduced statistical

efficiency in training.1 Additionally, as the num-

ber of devices employed increases, the synchro-

nization/communication overhead of sharing

gradients across devices increases, further limit-

ing overall training speedup.

Model parallelism (MP) is a complementary

technique in which the model dataflow graph

(DFG) is split across multiple devices while work-

ing on the same minibatch. MP has

been traditionally used to split

large models (which cannot fit in

a single device’s memory), but

employing MP can also help speed

up each training step by placing

and running concurrent operations

on separate devices. Unfortunately

the amount of parallelism that

exists in today’s DL models is often

limited, either by the algorithm or

by its implementation. Therefore,

using MP alone to obtain perfor-

mance through parallelization typi-

cally does not easily scale to a large

number of devices. Additionally,

maximizing the speedup fromMP is

often nontrivial and requires careful partitioning

with knowledge of the model DFG and underlying

system hardware.

This article studies which parallelization

strategies to adopt to minimize end-to-end train-

ing time for a given DL model on an available

hardware. We ask the question: how can we

improve DP scaling by combining MP and DP to

achieve the best possible end-to-end training

time to a given accuracy? The novel insight of

this article is that when the number of devices

(and hence global batch size) grows to a point

where scaling from DP slows significantly, MP

should then be used in conjunction with DP to

continue improving training times. The speedup

obtainable via MP is critical to this tipping point.

We show that MP’s speedup can help overcome

DP’s scaling and statistical efficiency degradation

at a unique scale for each network. We make the

following contributions:

� We show that when DP’s inefficiencies

become large, a hybrid parallelization strat-

egy where each parallel worker is model par-

allelized across multiple devices will further

scale multidevice training.

� We develop an analytical framework to sys-

tematically find this cross-over point, in terms

of devices, to determine the most efficient

parallelization strategy on a given system.

� We show that hybrid parallelization outper-

forms DP alone at different scales for different

DL networks. We implement 2-way model

parallel versions of Inception-

V3, GNMT, and BigLSTM, and

project that using them, hybrid

training provides a speedup

of at least 26.5%, 8%, and 22%,

respectively, above DP-only

training at scale.

� We proposeDLPlacer, an inte-

ger linear programming based

tool to find optimal operation-

to-device placement thatmaxi-

mizesMPspeedup.We demon-

strate DLPlacer’s effectiveness

by deriving an optimal place-

ment for Inception-V3,2 show-

ing the obtained 1.32� model

parallel speedup with two

GPUs is within 6% of the optimal predicted by

DLPlacer.

RELATED WORK
In this article, we identify scaling and statisti-

cal efficiency losses as the greatest challenges

to scalable data parallel training. Many other

This article studies

which parallelization

strategies to adopt to

minimize end-to-end

training time for a given

DL model on an

available hardware. We

ask the question: how

can we improve DP

scaling by combining

MP and DP to achieve

the best possible

end-to-end training

time to a given

accuracy?

Machine Learning Acceleration

92 IEEE Micro

articles also focus on improving the scalability of

both data and model parallel training. We sum-

marize the most significant related advance-

ments here.

Hybrid Parallelization

Previous work3–7 has also used hybrid paral-

lelization for scaling DL training. To the best of

our knowledge, none of these articles provide a

systematic analysis to find what parallelization

strategy minimizes end-to-end training time

when a set of N compute devices are available

for training a given DL model. For example,

Yadan et al.4 showed that a hybrid (2-way DP, 2-

MP) approach performs better than both MP-

only and DP-only when training AlexNet on a 4-

GPU system, but do not discuss the cause of the

results or evaluate this effect across different

GPU counts. Dean et al.7 used hybrid parallelism

to train models that would not fit in a single

GPU’s memory. Therefore, in each data parallel

worker, the model replica is model parallelized

across multiple devices. However, using model

parallelism for models that do not fit in a single

GPU’s memory is largely orthogonal to the issue

we address in this article.

Orthogonal Parallelization Strategies

Exploiting model parallelism is just one way

to achieve per step speedup without increasing

global batch size. Other strategies exist that can

be combined with, or used in place of, model par-

allelism to augment data parallel scaling under

our proposed model. Jia et al.8 propose layer-

wise parallelism for CNNs where each network

layer can use an individual parallelization strat-

egy. A combination of the four-dimensional (4-D)

tensor dimensions can be used to parallelize a

given layer, and exploring multiple dimensions

may provide larger runtime benefits than MP.

However, such a technique is not yet supported

bymost frameworks and is evaluated using a cus-

tom framework. GPipe9 and PipeDream10 pro-

posed partitioning a DL model’s DFG into

multilayer stages and applying pipeline parallel-

ism. It is likely that one or a combination of the

layer-wise, pipeline, and model parallelism tech-

niques can be combined with the DP training to

maximize end-to-end training performance and

efficiency.

Reinforcement-Learning-Based

Device Placement

Prior work has shown that by using reinforce-

ment learning (RL)-based placement of opera-

tions onto devices, MP can achieve training

speedup and that the RL generated placement is

nontrivial.11 However, RL-based approaches can

be long-running and compute-intensive with no

notion of optimality. On the other hand, DLPlacer

can provide optimal device placement solutions,

though can still be compute intensive for com-

plex DL networks and when the system contains

a large number of devices. On the other hand, it is

worth noting that for the models with simple

DFGs, tools for finding device placement may be

unnecessary and simple heuristics may achieve

near-optimal placement results.

DECOMPOSING END-TO-END
TRAINING TIME

End-to-end training time for a DL model

depends on three factors: the average time per

step (T), the number of steps per epoch (S)

and the number of epochs (E) required to con-

verge to a desired accuracy. Therefore, the

total training time, i.e., time to converge (C)

can be expressed as

C ¼ T � S � E: (1)

T is determined primarily by compute effi-

ciency, i.e., given the same training setup, algo-

rithm, and minibatch size, T depends solely on

the compute capability of a device; better per-

forming hardware provides smaller T values.

The number of steps per epoch (S), is equal to

the total number of items in the training data

set, divided by the global batch size or the num-

ber of inputs per step. The number of epochs to

converge (E) depends on the global batch size

and other training hyperparameters.

Quantifying Data Parallel Training Time

In data parallel training, the network parame-

ters (weights) are replicated across multiple

worker devices and each worker performs a for-

ward and a backward pass individually on a dis-

tinct batch of inputs [shown in Figure 1(a)]. In this

article, we focus on synchronous stochastic gradi-

ent decent (sync� SGD) for weight updates. In

September/October 2019 93

sync� SGD workers are synchronized, i.e., the

gradients from workers are shared and the net-

work parameters are updated such that all work-

ers have the same parameters after each step. An

alternative approach uses asynchronous updates,

usually with a parameter server. When scaling to a

large number of devices, this approach performs

poorly.12 Therefore,we use a ring-based all-reduce

mechanism for data parallel training that provides

superior performance and scalability and primar-

ily supports sync� SGD. We call the batch of

inputs per worker a minibatch and the collection

of all the minibatches in a training step a global

batch. When using DP alone to accelerate training,

the speedup from employing N-way DP (SUN)

compared to training on a single device can be

expressed as

SUN ¼ T1

TN
� S1

SN
� E1

EN
: (2)

T1 is the average training time per step

when only one device is used for training,

whereas TN is the time per step when N data

parallel devices (with a constant minibatch

size per device) are used. TN is always greater

than T1 due to the additional time required to

communicate gradients among devices at the

end of each global step [see Figure 1(a)], strag-

gler effects due to slow workers, and I/O

bottlenecks. As such, T1=TN is typi-

cally less than one and we call this

ratio the scaling efficiency (SEN) of

N -way DP.

S1 and SN are the total number of

steps per epoch with one and N devi-

ces, respectively. With a single device,

the global batch size is equal to the min-

ibatch size. In N -way data parallelism,

we assume the global batch size is

N -times the minibatch size per device.

Thus, S1=SN is equal to N . (Differing

from CPU implementations,3 reducing

minibatch size to maintain a constant

global batch size can lead to under-utili-

zation of GPU compute resources.)

E1 and EN refer to the number of

epochs required to converge when

one device or N devices are used. At

larger global batch sizes (higher N),

the gradients from a larger number of

training samples are averaged, which results

in a tendency to get attracted to local minima.

This eventually leads to poor generalization13

and typically more epochs are required to

converge. As such, E1=EN is usually less than

one. Equation (2) can, thus, be simplified as

SUN ¼ SEN �N � E1

EN
: (3)

When training at larger device counts (N)

both SEN and E1=EN decrease. We describe

how we calculate the values for SEN , E1, and EN

in detail in the “Methodology” section.

Quantifying Model Parallel Training Time

In model parallel training, the model is split

by placing different operations of its DFG onto

different devices, as shown in Figure 1(b). This

enables more than one device to work on the

same minibatch and execute independent opera-

tions concurrently. While MP has been tradition-

ally used for large models whose parameters do

not fit on a single device,14 we focus on MP’s abil-

ity to improve per-step training time; improving

term T in (1). We call the speedup from M-way

MP SUM , and it includes the communication

cost of data movement between dependent oper-

ations placed across multiple devices.

Figure 1. Different training parallelization strategies. (a) Data parallel

training. (b) Model parallel training.

Machine Learning Acceleration

94 IEEE Micro

The inherent benefit of using MP to improve

per-step training is that it does not increase global

batch size. As such, the number of epochs requ-

ired to converge do not change. Hence, improving

SUM reduces convergence time by solely reduc-

ing term T in (1). We find that typically the

inherent parallelism of a given model or its imple-

mentation limits the achievable SUM . Therefore,

MP alone has not been considered a broadly appli-

cable scalable parallelization strategy. However,

we show that MP can be combined with DP to

extend training scalability beyond today’s limits.

Hybrid Data and Model Parallel Training

Let’s assume that we have scaled our training

system up to N devices using N -way DP. If addi-

tional devices (say M �N devices, where M is

an integer) were to become available for training,

how should we best use these devices for distrib-

uted training? Our goal is to identify when to use

DP alone, and when to combine DP with MP to

obtain the highest possible training speedup.

Using DP alone, the speedup fromM �N devices

compared to one device is [substituting M �N

forN in (3)]

SUM�N ¼ SEM�N �M �N � E1

EM�N
: (4)

A few observations are important when com-

paring the speedup from M �N -way DP (4) and

speedup from N -way DP (3): First, since global

batch size is larger at M �N devices (using a

constant minibatch size per device), the number

of steps per epoch is smaller by a factor M com-

pared to N -way DP. Second, SEM�N is smaller

than SEN because now all-reduce communica-

tion happens between a larger number of devi-

ces. Depending on the values of N , M, and

system configuration, all-reduce communication

potentially crosses slower internode links that

increases all-reduce times and reduces SEM�N .

Third, the number of epochs required EM�N , is

greater than or equal to EN .

When using M �N devices in a hybrid paral-

lelization strategy with N DP workers and each

worker being split usingM-way MP, overall train-

ing speedup can be expressed as

SUM
N ¼ SUM � SEN �N � E1

EN
: (5)

In the hybrid configuration, every M devices

are grouped into a single data-parallel worker, and

therefore, the global batch size, and as a result the

number of epochs to convergence remains the

same as that of N -way DP. Additionally, the

number of steps per epoch remains the same. As

such, the per-step speedup achieved through MP

increases the overall training speedup by a factor

ofSUM , when comparing (3) and (5).

Choosing the Best Parallelization Strategy

By substituting (4) and (5) into

SUM
N > SUM�N

SUM � SEN �N � E1

EN
> SEM�N �M �N � E1

EM�N

SUM > M�SEM�N

SEN
� EN

EM�N
ð6Þ

we determine the conditions under which using

hybrid parallelization will be better than DP alone

for M �N devices. Equation (6) shows that if the

speedup obtained fromMP (for a givenmodel par-

allel implementation) is large enough to overcome

the scaling and statistical efficiency losses that

come from increased synchronization overhead

and global batch size, employing a hybrid MP and

DP strategywill improve training time.

For a fixed device count P, the hybrid

approach would use M-way MP and P/M-way DP.

Depending on the speedup obtained from M-way

MP and P-way DP’s efficiency losses, the choice of

parallelization strategy would depend on the fac-

tors in (6). Therefore, depending on these relative

improvements at any device count, the choice of

parallelization strategy is critical to the training

speedup obtained while scaling to yet larger num-

ber of devices. This choice depends on the DL

network’s properties and system configuration

parameters, so there is no one size fits all solution

to efficient scale-outmultidevice training.

METHODOLOGY
We use the following DL models in our evalua-

tions with their default hyperparameters, unless

specified.

� Inception-V32 is an image recognition network

composed of multiple blocks, each with sev-

eral branches of convolution and pooling

September/October 2019 95

operations. We use the implementation pro-

vided with the public NVIDIA Tensorflow con-

tainer v18.07 and train the network using the

ImageNet data set. We scale the initial learning

rate linearly with the increase in global batch

size as originally proposed by Goyal et al.15

For measuring epoch counts, we train the

model until a training loss of 6.1 is achieved.

� GNMT14 is a language translation network

with attention mechanism. We use four LSTM

layers of size 1024 in the encoder and

decoder. The learning rate schedule is well

optimized for the global batch sizes of 512–

2048. We use exponential learning rate warm-

up for 200 training steps. The learning rate

decay is started after 6000 steps and decays

for a total of four times after every 500 itera-

tions with a decay factor of 0.5. Such a tech-

nique has been shown to scale well when

global batch size is scaled. We train the

network using the WMT’16 German–English

data set until a BLEU score of 21.8 is achieved.

� BigLSTM16 is a large scale language modeling

network. It consists of an input embedding

layer of size 1024, two LSTM layers with hid-

den state size of 8192, and a Softmax projec-

tion layer of size 1024. We implemented the

network in the public NVIDIA PyTorch con-

tainer v19.06, used a learning rate of 0.1, and

trained using the 1 billion word language

modeling data set to a perplexity of 67.

System Configuration and Evaluation Points

Our experiments mostly use an NVIDIA DGX-1

with 4 T V100 GPUs connected via NVLink with

16 GB of memory capacity. For the BigLSTM

experiments, we use GV100 cards with 32 GB of

memory, because this network requires more

capacity to execute on a single GPU. We use

NCCL2.0 based all-reduce communication for

gradient sharing.

To project when hybrid training will perform

better than DP alone, we measure the epoch

counts to convergence for DP at different GPU

counts. We also measure the speedup achieved

via MP when M GPUs are used for a model-paral-

lel worker in a hybrid strategy. Without loss of

generality, we fixM ¼ 2 to make a case for future

hybrid parallelization strategies. In practice, the

value chosen for M (for a DL model) will depend

on the speedup obtained from M-way MP and

the efficiency losses of DP alone at scale.

Measuring Epoch Counts to Convergence

Typically, epoch counts to convergence for

DP onN compute nodes are obtained by running

the training on N nodes. We select minibatch

sizes to saturate single GPU throughput or lower

if the desired minibatch size is limited by GPU

memory capacity. We gather epochs to conver-

gence on a 4-GPU system, so the maximum

global batch size possible to measure is 4�B,

where the minibatch size is B. To emulate larger

global batch sizes (corresponding to more than

four GPUs), we use the delayed gradient update

approach where multiple minibatches are proc-

essed per GPU before the gradients are shared

for weight update. It is worth noting that even

though we complete training of a DL model once

to find EN , in practice, many DL models are often

retrained many times during development or as

new data becomes available. Our proposed sys-

tematic modeling approach helps find the best

parallelization strategy for optimizing the turn-

around time of such subsequent training runs.

Learning rate schedules are sometimes opti-

mized to keep epoch counts to convergence low

at large global batch sizes. For example, the learn-

ing rate schedules we use for GNMT and Incep-

tion V3 were tuned for this purpose. However, in

general, hyperparameter tuning is time consum-

ing and requires many training runs. Similar to

prior work,15 we find that even with such tuning,

beyond a certain global batch size, the number of

epochs required to converge increases rapidly.

As such, the proposals of this work are orthogo-

nal to such efforts.

Estimating Scaling Efficiency

When using just four GPUs, we cannot obtain

the scaling efficiency (SEN) of data parallel train-

ing corresponding to larger number of GPUs.

Thus, we conservatively assume a scaling effi-

ciency (SEN) of 1. This assumption means the

time overhead of communication and synchroni-

zation after each step is negligibly small com-

pared to the time taken for the forward and

backward passes. This optimistic assumption for

DP-only training, minimizes the impact of hybrid

parallelization, but reflects the reality that

Machine Learning Acceleration

96 IEEE Micro

framework developers and system architects are

constantly working to improve overheads that

hinder DP scaling efficiency.

Model Parallel Splitting

Inception-V3’s implementation allows a tradi-

tional model parallel mapping of independent

operations to different GPUs. We split Inception’s

DFG across two GPUs using DLPlacer, described

in the “Maximizing MP Performance” section. For

GNMT and BigLSTM, we split their DFGs using

pipeline parallelism.9 Pipeline parallelism is

appropriate for implementing MP on these net-

works due to the use of optimized libraries and

fused RNN kernels in their implementations. Pipe-

lining could similarly be useful for models that do

not have parallel branches and are sequential in

nature (e.g., ResNet, AmoebaNet).

It is worth noting that the original GNMT

implementation14 uses 8-way MP. However, since

we use a system with V100 GPUs that have 14�
more FLOPs compared to the K80 GPUs used in

that prior work, the ratio of communication

overhead to computation is larger in our configu-

ration. We use up-to-date CuDNN libraries with

fused RNN kernels and observe that splitting the

model beyond 2-way provides marginal per-step

speedup because of kernel overheads and pipe-

line imbalance. In general, deeper pipeline paral-

lel MP implementations can be nontrivial, as

pipeline imbalance becomes more prevalent. We

similarly observe that splitting Inception-V3

beyond 2-way MP, results in marginal speedup

given the efficiency of DLPlacer for this model

(see the “Inception-V3 Case Study” section).

EVALUATION
Figure 2 shows the number of epochs

required to hit the desired accuracy versus the

number of GPUs (workers) used in data parallel

training. For Inception-V3, the number of epochs

increases sharply from four to seven, as the

global batch size increases beyond 2048 (i.e., 32

GPUs) and grows to 23 epochs at a global batch

size of 16 384 (i.e., 256 GPUs). For GNMT, the

epoch count decreases slightly when going from

two to four GPUs because the hyperparameters

used are tuned for large global batch sizes. Even

with these tuned hyperparameters, as the GPU

count increases beyond 64, the number of

epochs required grows rapidly. For BigLSTM,

beyond 16 GPUs (i.e., global batch size of 2048),

the number of epochs increases rapidly and in

fact, almost 3.2 times the number of epochs is

required for 32-way DP compared to 16-way DP.

Beyond 32-way DP, training did not converge in

meaningful time. Overall, as we increase the

number of GPUs used in DP training, E1=EN

becomes smaller, which ultimately hinders the

overall speedup achievable through data parallel

training alone.

Splitting each network across two GPUs using

model parallelism results in per-step speedup

when done successfully. Table 1 shows the mea-

sured MP speedups on our test system for our

evaluated networks. Using the number of epochs

required and per step speedup from MP,

together with the conservative estimates of scal-

ing efficiency, we calculate the minimum pro-

jected speedup (over DP alone) of a hybrid

parallelization strategy over DP alone for differ-

ent GPU counts.

Inception-V3: As shown in Figure 3(a), beyond

32 GPUs, a hybrid parallelization strategy per-

forms better than DP-only. This is because of the

sharp increase in the number of epochs required

when the global batch size grows beyond 2048,

Figure 2. Number of epochs required for the

networks to converge versus increasing global batch

size with increase in the number of GPUs. Minibatch

sizes are shown alongside the model names.

Table 1. MP splitting strategy and the speedup obtained when split

across two GPUs.

Network MP splitting strategy Speedup

Inception-V3 Partitioned w/ DLPlacer 1.32�

GNMT Pipeline parallelism 1.15�

BigLSTM Pipeline parallelism 1.22�

September/October 2019 97

which saturates the speedup obtainable from DP-

only parallelization. When moving from 32 GPUs

to 64 GPUs, it is better to use the additional

32 GPUs to do 2-way MP, and our conservative

estimates show that the hybrid-strategy will

outperform DP alone by at least 15.5%. As the

numbers of GPUs grow further, only marginal

speedup can be obtained fromDP-only paralleliza-

tion and at 256 GPUs, the hybrid-strategy will be

atleast 26.5% better than the DP-only strategy.

GNMT: As shown in Figure 3(b), GNMT

scales very well to a large number of GPUs

using DP alone. However, even with tuned hyper-

parameters for larger batch sizes, DP-only

speedup starts to slow down beyond 64 GPUs

and dramatically slows down when moving from

128 to 256 GPUs. The hybrid parallelization strat-

egy with 2-way MP and 128-way DP outperforms

256-way DP by 8%.

BigLSTM: As shown in Figure 3(c), beyond 16

GPUs, BigLSTM does not scale well with an

increasing number of GPUs using DP-only. This

is because the statistical efficiency of training

decreases rapidly with increasing global batch

size, and therefore, the significantly larger num-

ber of required epochs offsets the throughput

increase of multiple GPUs. At 32-GPUs, the large

loss in statistical efficiency impacts the overall

training speedup of DP-only strategy and the

speedup drops significantly. As a result, the

hybrid policy provides a 1.22� speedup over the

best performing scale of DP-only, which happens

at 16-GPUs, as shown in Figure 3(c).

In summary, these results show that when sta-

tistical efficiency loss reduces the effectiveness

of DP-only parallelization, hybrid parallelization

(combining DP with MP) will enable higher per-

formance than employing DP alone. Notably,

using real scaling efficiency loss values (we con-

servatively assumed SEN ¼ 1), the improve-

ments from hybrid parallelization would be more

pronounced since SE2N=SEN is often smaller

than 0.9. Based on (6), the smaller the ratio, the

higher the speedup from hybrid parallelism

(SUM
N) compared to DP alone (SUM�N).

MAXIMIZING MP PERFORMANCE
Maximizing the speedup obtained fromMP for

a given model improves the scalability of hybrid

parallelism. For some networks, optimal place-

ments are easy to find by examining a network’s

DFG. For others, finding the optimal operation-to-

device placement is nontrivial. Therefore, we

developed an integer-linear programming (ILP)

based device placement tool called DLPlacer.

DLPlacer extracts parallelismbetween operations

in a model and finds the placement to achieve

minimumper step execution time.

Figure 3. Projected speedup of hybrid MP-DP parallelization versus DP-only parallelization. (a) Inception-V3. (b) GNMT.

(c) BigLSTM.

Figure 4. DLPLacer flow diagram.

Machine Learning Acceleration

98 IEEE Micro

Figure 4 shows DLPlacer’s tool flow. We

express DL models as DFGs, with nodes corre-

sponding to compute operations and unidirec-

tional edges showing operation dependencies.

Each node contains the operation’s expected

execution time and memory footprint. An edge

weight corresponds to the number of bytes

exchanged between the operations it connects.

The node and edge weights can be obtained by

profiling a model on a compute device (e.g.,

GPU) or can be analytically calculated, with the

former approach being more robust and the lat-

ter more flexible. Using similar notation, we

express a system as a hardware graph where the

nodes are compute devices (e.g., GPUs) or net-

work switches that have bandwidth constraints

(e.g., NVSwitch), and edges are the physical links

between these nodes.

DLPlacer’s ILP solver minimizes per step

training time by providing an assignment of com-

pute DFG operations to the hardware graph

(placement), a schedule, and a communication

routing of activations, weights, and gradients.

The constraints DLPlacer satisfies are as follows.

� Each operation must be mapped to only one

device.

� Dependencies between operations must be

satisfied.

� Multiple operations can be mapped to a

device, but colocated operations must not

overlap in execution.

� The total amount of memory allocated

(inputs, weights, activations) cannot exceed

the device memory capacity.

In satisfying the above, DLPlacer assumes the

following.

1. Operations colocated on a device are exe-

cuted back-to-back, without any delay in

between the end of one operation and the

beginning of the other.

2. Communicating a data chunk of size S on a

link with bandwidth B and latency L takes

ðS=Bþ LÞ time.

3. Communication of tensors between devices

can be overlapped with computation.

Basedon these assumptions DLPlacer predicts

the training speedup for a givenMP solution. Note

that we considered operations at the granularity

of Tensorflow operations (e.g., conv2D, conv3D),

however, DLPlacer can be used to even find place-

ments when the operations are partitioned into

finer granularity operations (e.g., partitioned by

channels, filters, etc.). But, such fine grained oper-

ation splitting requires framework support for

correct back-propagation, and therefore, was not

a focus of this article. Also, note that we do not

model framework-induced overheads or operat-

ing system and runtime effects, which are chal-

lenging to model and can lead to prediction

inaccuracies. Despite these challenges, we believe

ILP based MP optimization is worthwhile to pur-

sue based on the observed improvements over

manual optimization.

Inception-V3 Case Study: To evaluate the use-

fulness of DLPlacer, we use Inception-V3 as a

case study. In Figure 5, the blue bars show the

normalized per-step speedup estimated by

DLPlacer for the optimal placement solution it

finds. DLPlacer’s runtime on an 18-core Xeon-E5

system to find Inception-V3’s placement solution

is �11–18 min depending on the number of

device nodes in the hardware graph. The orange

bars show speedup as measured on real silicon

with DLPlacer’s placement applied to the Ten-

sorflow implementation. The speedups pre-

dicted by DLPlacer are within 6% of the actual

speedup obtained from silicon runs. It is inter-

esting to note that the 1.32� speedup obtained

with the 2-GPU placement is almost the same as

what is optimally obtainable with three or four

GPUs. This is due to the limited parallelism avail-

able in the network, which DLPlacer almost

completely exploits with a 2-GPU placement.

Identifying a 2-GPU placement that gives this

Figure 5. Normalized per-step speedup frommodel

parallelism as estimated by DLPlacer and obtained

from silicon experiments for the Inception-V3 network.

September/October 2019 99

performance by simple observation of the net-

work andwithout using a tool like DLPlacer is non-

trivial. DLPlacer essentially finds the placement

with the shortest possible critical path among

many feasible place-

ment solutions and

places the opera-

tions on the critical

path in one GPU, so

as to avoid commu-

nication overhead.

This shows the

importance of such

a tool for maximiz-

ing performance

obtainable from MP

while using mini-

mum number of

GPUs. Further details about DLPlacer’s formula-

tion can be found in the article by Pal et al.17

CONCLUSION

This article demonstrates the benefits of

combining MP with DP to overcome the inherent

scaling and statistical efficiency losses that

data parallel training has at scale. We demon-

strate that when the global batch size in

DP grows to a point where DP-only training

speedup drops off significantly, MP can be used

in conjunction with DP to continue improving

training times beyondwhat DP can achieve alone.

We analyze the end-to-end training time of DP to

understand how scaling and statistical efficiency

loss impacts training scalability, and show that

the MP speedup achieved for a given DL model is

critical to the overall scalability of a hybrid paral-

lelization strategy. We evaluate the performance

benefits of such a hybrid strategy and project

that for Inception-V3, GNMT, and BigLSTM, the

hybrid strategy provides an end-to-end training

speedup of at least 26.5%, 8%, and 22%, respec-

tively, compared to what DP alone can achieve at

scale.

& REFERENCES

1. E. Hoffer, I. Hubara, and D. Soudry, “Train longer,

generalize better: Closing the generalization gap in

large batch training of neural networks,” in Proc.

31st Int. Conf. Neural Inf. Process. Syst., 2017,

pp. 1731–1741.

2. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and

Z. Wojna, “Rethinking the inception architecture for

computer vision,” 2015, arXiv:1512.00567.

3. D. Das et al., “Distributed deep learning using

synchronous stochastic gradient descent,” 2016,

arXiv:1602.06709.

4. O. Yadan, K. Adams, Y. Taigman, and M. Ranzato,

“Multi-GPU training of convnets,” 2013,

arXiv:1312.5853.

5. S. Sridharan et al., “On scale-out deep learning

training for cloud and HPC,” 2018, arXiv:1801.08030.

6. A. Gholami, A. Azad, P. Jin, K. Keutzer, and A. Buluç,

“Integrated model, batch, and domain parallelism in

training neural networks,” in Proc. 30th Symp.

Parallelism Algorithms Architectures, 2018, pp. 77–86,

doi: 10.1145/3210377.3210394.

7. J. Dean et al., “Large scale distributed deep

networks,” in Proc. 25th Int. Conf. Neural Inf. Process.

Syst., 2012, pp. 1223–1231.

8. Z. Jia, S. Lin, C. R. Qi, and A. Aiken, “Exploring

hidden dimensions in parallelizing convolutional

neural networks,” CoRR, vol. abs/1802.04924,

2018.

9. Y. Huang et al., “GPipe: Efficient training of giant

neural networks using pipeline parallelism,” 2018,

arXiv:1811.06965.

10. A. Harlap et al., “PipeDream: Fast and efficient pipeline

parallel DNN training,” 2018, arXiv:1806.03377.

11. A. Mirhoseini, A. Goldie, H. Pham, B. Steiner, Q. V. Le,

and J. Dean, “A hierarchical model for device

placement,” in Proc. Int. Conf. Learn. Representations,

2018.

12. J. Chen, R. Monga, S. Bengio, and R. J�ozefowicz,

“Revisiting distributed synchronous SGD,” CoRR,

vol. abs/1604.00981, 2016.

13. N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy,

and P. T. P. Tang, “On large-batch training for deep

learning: Generalization gap and sharpminima,”CoRR,

vol. abs/1609.04836, 2016.

14. Y. Wu et al., “Google’s neural machine translation

system: Bridging the gap between human and

machine translation,” 2016, arXiv:1609.08144.

15. P. Goyal et al., “Accurate, large minibatch SGD:

Training imageNet in 1 hour,” 2017, arXiv:1706.02677.

16. R. J�ozefowicz, O. Vinyals, M. Schuster, N. Shazeer,

and Y. Wu, “Exploring the limits of language

modeling,” 2016, arXiv:1602.02410.

17. S. Pal et al., “Optimizing multi-GPU parallelization

strategies for deep learning training,” 2019,

arXiv:1907.13257.

We analyze the end-to-

end training time of DP

to understand how

scaling and statistical

efficiency loss impacts

training scalability, and

show that the MP

speedup achieved for

a given DL model is

critical to the overall

scalability of a hybrid

parallelization strategy.

Machine Learning Acceleration

100 IEEE Micro

http://dx.doi.org/10.1145/3210377.3210394

Saptadeep Pal is currently working toward a PhD

in the Department of Electrical and Computer Engi-

neering at the University of California, Los Angeles.

His research interests include scale-out system

architectures and design of waferscale processors.

Contact him at: saptadeep@ucla.edu.

Eiman Ebrahimi is a senior research scientist at

NVIDIA, focusing on efficient scale-out performance of

multi-GPU systems for deep learning. Before joining

Research, he worked on both discrete and embedded

GPUmemory systems in product teams at NVIDIA. He

has a PhD in computer engineering from the University

of Texas at Austin, where his research focused on fair

and high-performance memory system architectures

for chip multiprocessors. Contact him at: eebrahimi@

nvidia.com.

ArslanZulfiqar joinedNVIDIA in 2014 and is currently

a senior GPU architect. He has authored/coauthored

numerous publications and patents spanning ‘ improv-

ing multi-GPU scaling performance of deep learning

models. He has a BS in electrical engineering from the

University of Illinois (Urbana-Champaign) and a PhD in

electrical engineering from the University of Wisconsin

(Madison). Contact him at: azulfiqar@nvidia.com.

Yaosheng Fu is a research scientist with the architec-

ture research team at NVIDIA. His research interests

include computer architecture, memory systems, and

deep learning acceleration. He received the B.S. degree

in electronic engineering from the Tsinghua University

and the Ph.D. degree in electrical engineering from the

PrincetonUniversity. Contact him at: yfu@nvidia.com.

Victor Zhang has been a senior deep learning

architect with NVIDIA since April 2018. His research

interests include sparsity and precision studies of

deep learning models. He has a PhD in theoretical

chemistry from the Fudan University. Contact him at:

viczhang@nvidia.com.

Szymon Migacz is a senior CUDA deep learning

algorithms software engineer at NVIDIA. He joined

NVIDIA in 2015, initially worked on CUDA Math

Libraries and then shifted his focus to deep learning

(DL). His research interests include DL inference in

reduced precision, efficient parallel implementations

of basic DL building blocks, and scaling computations

to many devices, currently focusing on NLP. Contact

him at: smigacz@nvidia.com.

David Nellans manages the system architecture

research group at NVIDIA. His team works to code-

sign scalable hardware and software architectures

that enable efficient strong and weak scaling for

future accelerated computing platforms. He has a

PhD in computer science from the University of Utah.

Contact him at: dnellans@nvidia.com.

Puneet Gupta is a professor with the Department

of Electrical and Computer Engineering, University

of California at Los Angeles. His research interests

include optimizing across hardware-software and

integrated circuit design manufacturing interfaces.

He has a PhD from the University of California, San

Diego. He cofounded Blaze DFM Inc., (acquired by

Tela Inc.) in 2004 and was its product architect till

2007. Contact him at: puneetg@ucla.edu.

September/October 2019 101

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

