
1

Assessing Layout Density Benefits of Vertical
Channel Devices

Wei-Che Wang, Charles Zhao and Puneet Gupta
Department of Electrical Engineering, University of California, Los Angeles

Abstract—Vertical channel devices have been considered as
promising candidates for sub-5nm regime for the reduced area
and large driving current. Several styles of layout designs and
fabrication details of vertical channel devices have been proposed.
However, due to the fast-changing manufacturing constraints for
the advanced devices, the most efficient layout structures are still
yet to be explored. In this paper we study the efficiency in terms of
cell area of in-bound power vertical channel device layout, which
is potentially the most compact vertical layout style. We develop
and implement an efficient vertical layout generation framework
for in-bound power layout to provide a quick evaluation of cell
area given design rules and choices of folding strategies. The
results are compared to vertically stacked lateral channel devices
and out-bound power vertical channel devices. Both cell-level and
chip-level comparisons show that in-bound power layout is more
area-efficient than lateral devices and vertical out-bound power
layouts.

I. INTRODUCTION

As the demand of transistor scaling continues, conventional
planar transistors or even FinFETs are beginning to face their
limitations in the sub-5nm regime. Significant efforts have
been devoted to the searching of alternative devices, and verti-
cal devices have been considered as one of the most promising
devices for future technologies [1, 2]. Many different vertical
channel structures have been proposed in the past few years,
such as vertical double gate [3] and vertical gate-all-around
(VGAA) [4]. However, due to the fast-changing design rules
and manufacturing constraints, layouts of vertical standard
cells are constantly changing, making it difficult for layout
designers to efficiently evaluate and design the smallest layouts
given a new set of design rules.

A. Vertical Channel Devices
The main difference between a vertical channel device and a

planar or FinFET device is that the channel of a vertical device
is perpendicular to the wafer plane, so that the source and
drain terminals of a vertical device can be aligned vertically
to save cell area. Unlike vertical memory structure where the
design is essentially arranging memory cells with same layout
into arrays, the design of VGAA standard cells are much
more complex given that each cell has its own schematic
design, therefore an efficient design generation and evaluation
framework for VGAA standard cell is needed. For planar
CMOS, lateral gate-all-around (LGAA) [5], and FinFET, the
layout generation methodologies have been studied, including
search tree with lower bound pruning [6], or composition tree
representations that guarantee the optimal transistor ordering
[7]. The frameworks for an early stage design rule evaluation
were also proposed [8, 9] for planer FETs. However, these
algorithms cannot be applied to VGAA given that the structure
of VGAA is radically different from planar or lateral FETs.
In [10] a VGAA layout generation framework was proposed
and implemented. However, the framework focuses on the out-
bound power rail style, which may not be as area-efficient as

the in-bound power rail style [11], where the VDD/GND rails
are routed on top of VGAAs.

B. In-bound VGAA Standard Cell Layout Generation

The layout generation algorithm for the in-bound power rail
VGAA is completely different from the algorithm for the out-
bound VGAA presented in [10], in which the minimum edge
covering algorithm tries to utilize as many vertical efficient
structures as possible to minimize the number of diffusion
gaps with large spacing rules. However, for in-bound VGAA,
the power rails are routed in the middle of a cell, and intra-cell
routing is done on the top and bottom of a cell, therefore such
vertical efficient structures for out-bound VGAA do not exists
for the in-bound VGAA, and a different layout generation
algorithm for the in-bound VGAA is required.

In the layout generation framework, VGAA is considered
symmetric, meaning that the direction of current flowing
through the vertical channel can be either Source-On-Top
(SOT) or Source-On-Bottom (SOB). Three routing layers are
available: Metal1, Metal2, and bottom. Metal1 and Metal2 are
on top of the VGAAs and they are unidirectional. Metal1 only
routes along the Y-direction and Metal2 only routes the X-
direction. The bottom layer is at the bottom side of VGAAs
and its routing direction is not constrained.

The goal of in-bound VGAA layout generation is to find the
layout structure with minimum number of tracks [12], which
can be considered as a linear placement problem, where the
best placement gives the least number of tracks required for
each cell. Fig. 1 shows an example of how the placement of
transistors can affect the number of tracks used. Fig. 1 (a)
gives the schematic of the AOI standard cell. In Fig. 1 (b)
the placement order is A, B1, and B2, where in Fig. 1 (c) the
placement order is B1, A, and B2. Since B1 and B2 are parallel
on the PMOS side, it is area-efficient to place them next to
each other with both in SOT orientation to share the bottom
layer without occupying one extra track as shown in Fig. 1
(c). Similarly on the NMOS side, it is area-efficient to place
B1 and B2 next to each other to minimize the connection.
The cell area in Fig. 1 (b) is smaller compared to Fig. 1 (c)
with less number of tracks occupied. The goal of the layout
generation is to obtain the placement order with the minimum
number of tracks so that the area is minimized.

In this work we propose and implement a layout generation
framework that takes design rules and different design styles,
including the in-bound power rail, as inputs and generates
compact standard cell layout correspondingly. By providing a
quick evaluation of design constraints, the framework aims to
facilitate the development of vertical advanced devices through
effectively narrowing the gap between layout designers and
manufacturers. Key contributions of this work are summarized
as follows:



2

Fig. 1. In-Bound layout example. (a) AOI standard cell. (b) Placement with
order A, B1, and B2. (c) Placement with order B1, A, and B2. It requires one
extra track because B1 and B2 are not placed adjacently.

• We propose and develop a VGAA layout generation
framework incorporating the in-bound power rail design
style, which is a more area-efficient layout style than the
out-bound power rail design.

• Cell-level and chip-level layout efficiencies of 4-stack
LGAA, out-bound VGAA and variations of in-bound
VGAA are compared to FinFET. Results show that
VGAA has overall the best area efficiency, and in-bound
VGAA is even smaller than out-bound VGAA.

II. IN-BOUND VGAA LAYOUT GENERATION ALGORITHM

A. Cost Function
The cell area is obtained from the cell width and cell height,

which can both be affected by the orientation (SOT or SOB)
and placement of VGAAs as shown in Fig. 1. Therefore,
finding the smallest area of a cell layout is equivalent to finding
the thinnest and shortest layout placements.

The P cost and N cost between two transistors are defined
as the implementation cost of the corresponding PMOS and
NMOS structure, respectively. Finding the smallest cost is
equivalent to finding the most compact cell implementation.
The calculations of P cost and N cost include two parts:
neighboring cost and global cost. Fig. 2 shows examples of
neighboring cost and global cost.

Fig. 2. Neighboring cost and global cost examples.

1) Neighboring Cost Calculation: The neighboring cost
depends on the orientation and connections between the two
VGAAs. Therefore, to calculate the neighboring cost, a Cost
Look-Up-Table (C-LUT) is used. In C-LUT, the neighbor-
ing costs of all possible combinations between two adjacent
VGAAs in a placement are provided as shown in Table I. Eight
possible connections are listed with two VGAAs with stack
or parallel structures and SOT and SOB orientations.

The corresponding connections of the C-LUT is given in
Fig. 3. The cost of stack SOT+SOB is zero because the
connection is done through the shared bottom layer without

TABLE I
COST LOOK-UP-TABLE. THE COST OF PARALLEL SOT+SOT CAN BE

ZERO OR ONE DEPENDING ON THE SOURCE OF THE PARALLEL
STRUCTURE. IF IT IS THE POWER RAIL, THE COST IS ZERO; OTHERWISE,

THE COST IS ONE.

SOT+SOT SOB+SOT SOB+SOB SOT+SOB
Stack 1 1 1 0

Parallel 0 or 1 2 1 2

occupying a track. The cost of parallel SOT+SOT can be
zero or one depending on the source of the VGAAs. If the
source is the power rail, the track of Metal2 can be eliminated;
otherwise, a track for the Metal2 connections is needed to
connect the sources of the two VGAAs.

Fig. 3. Neighboring connections. NMOS type is used for illustration.

Please note that the connections of stack VGAAs shown in
Fig. 3 are for two VGAAs with current flowing from the left
VGAA to the right VGAA. For the cost of stack VGAAs with
current flowing from the right VGAA to the left VGAA, the
connections are mirrored horizontally with the same costs.

2) Global Cost Calculation: The calculation of global cost
is much simpler than neighboring cost calculation because
no bottom layer can be shared by two VGAAs in a global
connection. Since a global connection can be formed using
bottom layer or Metal2 layer, the global cost is 0.5 for each net.
If the cost is 1.5, then two horizontal tracks would be needed
for the global connection. When two global connections share
a horizontal track, the inner one will be using bottom layer,
and the outer one will be using Metal2 layer. Source-to-gate
and drain-to-gate connections are treated as global connections
because they require one connection to the top of polysilicon-
gate terminals.

B. Placement Tree Representation
In the layout generation algorithm, the search space of linear

placements of a cell is represented by a tree. Each node in the
tree represents a (partial) linear placement of transistors except
for the root node. Starting from the root node, which means
no placement is done yet, the tree is constructed in such a
way that the placement of a child node is the placement of
its parent node with the next transistor placed at the right.
Each node n contains a P cost and a N cost representing
the costs between the placement of its parent node and the
newly placed transistors on the right. Fig. 4 shows an example
of a tree representation of the AOI standard cell placement.
Node n{A,B1} contains the cost of the cut shown in Fig. 1 (b)
where B1 is placed at the right side of A, and the number of
tracks needed are one and zero on the PMOS and NMOS side,
respectively. A leaf node of the tree represents a completed
placement. The depth of a node is defined as the number of
edges from the node to the root node. The depth of a leaf node
is the number of transistors, and all nodes with depth=1 have
zero cost.



3

1) Path Cost Definition: Since the cell height is decided by
the connection with the most tracks needed, for each node n,
its path cost can be calculated, which is defined as

Path cost(n) = MAX P(n) + MAX N(n) + Adjustment(n)
(1)

where MAX P (n) and MAX N(n) are the maximum
P cost and N cost of nodes on the path from the root node
to n, respectively. Adjustment(n) checks if n is a leaf node.
If not, it returns zero; otherwise, the returned value depends
on the exact connection of the path, which will be detailed in
Section II-B2. In Fig. 4, the leaf node n{A,B1,B2} represents
the placement shown in Fig. 1 (b), where the numbers of tracks
between two transistors are shown in the corresponding nodes.
The final placement cost is 1 + 1 + 0 = 2.

Fig. 4. Placement tree example. For illustration purpose all VGAAs are
SOT in the example. The leaf node n{A,B1,B2} represents the smallest area
placement as shown in Fig. 1 (b). Note that the search of minimum cost will
not explore the entire tree.

2) Path Cost Adjustment: During the path cost calculation
of a leaf, one adjustment needs to be done to reflect the final
number of tracks needed to include output pins, for example
pin Z in Fig. 1. An output net is defined as the net connected
to an output pin, where an external connection to the net is
required for output pin access. In a path from root to a leaf
node, one of the nodes will be selected for the output pin and
the cost adjustment will be done on the node. The node will
be selected from the candidate nodes listed in the following
groups:

1) Nodes that consist of global connections where the
connections include output net.

2) Nodes with smallest P cost or N cost and the connec-
tions include output net.

Since an output pin needs to be connected externally, the
goal of the adjustment is to find the connection location with
the least impact to the path cost. For the candidates in the first
group, since a global connection will require one track already,
the output pin can be placed directly on the routing track
without adding cost to the path cost as an example shown in
Fig. 1 (c). If no candidates exist in the first group, a candidate
from the second group will be selected. In such case, the node
with the smallest P cost or N cost is selected and its P cost
or N cost is incremented by one. As shown in Fig. 1 (b) and
Fig. 4, the adjustment is added on the N cost of node n{A,B1}
which the cost becomes (1,1) after the adjustment. Since the
path cost of n{A,B1,B2} is 2 before the adjustment, adding the
N cost to n{A,B1}, which was (1,0), will not affect the path
cost. If all nodes on a path have equal costs, it is possible that
the path cost is incremented to accommodate the output pin.

From the tree we see that to implement the AOI standard
cell, at least two tracks are needed for the intra-cell routing.
Please note that the search of minimum cost will not explore

the whole tree as the details of the branch and bound search
algorithm will be provided in the following section.

C. Branch and Bound Search
The branch and bound search follows the Depth First Search

(DFS) principle. Given a placement tree the procedure of the
branch and bound search algorithm is described as follows:

1) An initial placement is created by a heuristic de-
scribed in Section II-D1. The leaf node corresponding
to the initial placement is set as the current minimum
cost node nmin. The search bound is Costmin =
Path cost(nmin).

2) Going from the root node, a DFS is performed. The
currently accessed node is defined as ncurrent and its
cost Costcurrent is compared with Costmin.

3) If the condition Costcurrent ≥ Costmin is satisfied,
ncurrent and all its children nodes will not be further
evaluated; otherwise, if ncurrent is a leaf, minimum
node and cost are updated as nmin = ncurrent and
Costmin = Path cost(ncurrent).

4) The search stops when all remaining nodes are visited.
The minimum number of tracks needed is Costmin and
the placement is nmin.

D. Search Space Reduction Techniques
To reduce the search space, during the implementation, the

placement tree is built dynamically as the branch and bound
search is in progress. In addition, many techniques are applied
to further reduce the search space, therefore the full branch and
bound is run on all cells to guarantee an optimal result.

1) Initial Placement Heuristic: Since only those nodes
with smaller cost than the minimum cost will be visited, the
majority of the tree will be pruned if a good initial placement
with small cost is used as the bound condition. It is clear to see
in Fig. 3 that if two transistors are stacked, it would be efficient
to put them next to each other with SOT+SOB to save one
track. Similarly if two transistors are parallel and connected to
power rail, it would be efficient to put them next to each other
with SOT+SOT, and in general SOB+SOB would be more
efficient than SOB+SOT or SOT+SOB for parallel transistors.
From the observations described, an initial placement heuristic
is implemented following these principles:

1) All transistors connected to power rails are SOT.
2) All transistors connected to outputs are SOT.
3) All transistors in a same paralleled structure on either

NMOS or PMOS side are SOB+SOB or SOT+SOT and
placed next to each other.

4) All transistors in a 2-stacked structure on either NMOS
or PMOS side are SOT+SOB and placed next to each
other.

These principles are not mandatory requirements but the
initial placement heuristic will try to meet as many principles
as possible to minimize the initial placement cost to effectively
reduce the search space.

2) Mirrored Placement Removal: Two placements are mir-
rored when the orders of transistors are reversed. For example,
a placement of transistor order A, B, and C is a mirrored
placement of transistor order C, B, and A. Since two mirrored
placements have the same number of tracks, only one of them
needs to be evaluated. The removal of mirrored placement is
equivalent to searching the left half of the tree only. As shown
in Fig. 4, the leftmost path A,B1,B2 and the rightmost path



4

B2,B1,A are the mirrored placements, therefore only one of
them should be evaluated.

E. Folding Strategy
One flexibility provided in the proposed layout generation

framework is the selection of folding strategy, which specifies
how many P-VGAAs and N-VGAAs a polysilicon shape can
hold. For each VGAA, since the effective width is its diameter
multiplied by π [10], the number of VGAAs required for
a cell depends on the driving capability of the cell, and
how these VGAAs are accommodated can change the area
of the cell. With more VGAAs on a polysilicon shape, the
cell becomes taller but thinner; on the other hand, with less
VGAAs on a polysilicon shape, the cell becomes shorter but
wider. Fig. 5 shows the AOI cell implementation of 5 folding
strategies examined in our experiments. The pair defines the
number of P-VGAAs and N-VGAAs on a polysilicon shape
as illustrated in the figure. In this example (3,2) is better
than (2,1) because (3,2) needs 6 polysilicon shapes but (2,1)
requires 10 polysilicon shapes. Please note that the generation
algorithm is the same for all folding strategies, where a folding
strategy can be transformed to another folding strategy by
extending connections or merging polysilicons. Also, folding
does not change the schematic of the original cell.

Fig. 5. AOI cell implementation with the 5 folding strategies compared in
our experiments. The number pair indicates the number of P-VGAAs and
N-VGAAs on a polysilicon. For example, (4,3) implies that a polysilicon can
hold 4 P-VGAAs and 3 N-VGAAs.

III. EXPERIMENTAL RESULTS

The proposed algorithm is implemented in C++ with the use
of OpenAccess API [13]. A 28nm standard cell library, which
contains no pass-gate or tri-gate structures, is scaled to a 7nm
standard cell library for our experiments, and the design rules
are given in Fig. 6 [12, 14]. For FinFET, the effective width
of each fin is FW+Fin Height×2 = 42, while the effective
width of each LGAA and VGAA is LGAA D×π ≈ 22
and VW×π ≈ 22, respectively. In our comparisons each
polysilicon holds up to 5 FinFETs or non-stack LGAAs, and
the number of VGAA on a poly is 5 because (3,2) is the best
folding strategy as presented in Section III-A.

FinFET is used as the baseline in our comparisons. We first
compare the 5 different in-bound VGAA folding strategies to
FinFET, and in-bound VGAA with the best folding strategy
is compared to vertically 4-stack LGAA [15] and out-bound
contact reduction VGAA [10]. We present both cell-level and
chip-level (after placement and route) comparison results since
cell-level results can be misleading due to routing congestion
[16]. The VGAA layout generation run time for the most

Fig. 6. Design rules of the scaled 7nm technology for our experiments.

complex cells, for example a scan DFF, is only a few seconds
for the effective search space reduction techniques presented
in Section II-D.
A. Folding Strategy Comparison

Fig. 7 shows cell-level areas of folding strategies normalized
to FinFET on 4 benchmarks [10]. In general, a better folding
strategy is when the number of P-VGAAs on a polysilicon is
larger than the number of N-VGAAs because the total width
of PMOS is larger than NMOS for most cells for balanced rise
and fall transition. (1,1) is not a good folding strategy because
the number of polysilicon gates now becomes the number of
VGAAs. (3,2) has the smallest area given the cells used in the
benchmarks. Our framework allows layout designers to decide
the best folding strategy given the cells used and design rules.
Please note that the cell height of in-bound VGAA is the same
for all cells and is determined by the cells with the highest
cost, which are scan DFF cells with cost=5. In the following
sections, the results of in-bound VGAA are based on (3,2)
folding.

Fig. 7. Folding strategy comparison. (2,1) has the smallest area given the
cells used in the benchmarks.

B. Single Cell Comparisons
Single cell comparisons to FinFET are presented in Table

II. The negative values are the area reduction ratio, where the
positive value indicates that the area is larger than FinFET.
We can see that 4-stack LGAA shows area benefits for larger
driving cells, but for small driving cells, since the required
FinFETs can be fit in a single polysilicon shape already, verti-
cally stacking LGAA does not contribute to area benefits. For
out-bound VGAA and in-bound VGAA, much area reduction
is observed for small driving cells, but for some large driving
cells, the area reduction begin to diminish. For INV X16 the
in-bound VGAA is even larger than FinFET due to the large
number of VGAAs needed. In general, in-bound VGAA is
smaller than out-bound VGAA except for the large driving
cell due to higher cell height.
C. In-bound and out-bound VGAA Comparison

The comparison results of cell-level and chip-level place-
ment and route using a commercial tool [17] are presented



5

TABLE II
AREA REDUCTION COMPARED TO FINFET.

4-Stack LGAA Out-bound VGAA In-bound VGAA
INV X1 0.0% -28.6% -57.3%
INV X2 0.0% -28.6% -57.3%
INV X4 -25.0% -30.2% -43.1%
INV X8 -33.3% -14.3% -14.7%
INV X16 -41.6% -3.4% 9.7%

NAND X1 0.0% -52.4% -71.6%
NAND X2 0.0% -7.9% -14.7%
NAND X4 -33.3% -18.1% -14.7 %
AOI21 X1 0.0% -30.2% -45.6%
MUX2 X1 0.0% -29.9% -45.9%
DFF X1 0.0% -61.2% -62.0%

in Fig. 8, where high speed implementations are presented in
Fig. 8 (a) and Fig. 8 (b), and low speed implementations are
presented in Fig. 8 (c) and Fig. 8 (d). Results show that 4-stack
LGAA provides area reduction for high speed implementations
when more cells with large driving strengths are used. On the
other hand, VGAAs show much area benefits for low speed
implementations where many small driving cells are used, and
in-bound VGAA is slightly better than out-bound VGAA. For
VGAAs, MIPS and USB show evident area reduction on both
implementations because most of the areas are occupied by
DFF cells, which is about 60% smaller than FinFET. For
chip-level comparisons, the area benefits of VGAAs are not as
much as cell-level due to the higher pin density of the smaller
VGAA cells. Table III shows chip-level utilization and the
percentage of over-congested gcells. We can see that VGAAs
in general have lower utilization and higher congestion than
LGAA due to smaller cell area, but overall the chip-level
area is still smaller than LGAA. In conclusion, 4-stack LGAA
shows area reduction when more large driving cells are used,
while VGAAs have smaller area for both low speed and high
speed implementations.

Fig. 8. (a) Cell-level high speed implementation. (b) Chip-level high speed
implementation. (c) Cell-level low speed implementation. (d) Chip-level low
speed implementation.

IV. CONCLUSIONS

In this paper, we develop an efficient in-bound vertical
layout generation framework for standard cells. The layout
generation problem is modeled as a linear placement problem
and solved by the branch and bound approach. 5 folding
strategies for in-bound VGAA are compared and the best

TABLE III
CHIP-LEVEL IMPLEMENTATION COMPARISONS

4-Stack LGAA Out-Bound VGAA In-Bound VGAA
Util. Cong. Util. Cong. Util. Cong.

MIPS 0.89 12.2% 0.82 23.3% 0.79 20.7%
FPU 0.85 20.1% 0.74 27.4% 0.66 49.1%
USB 0.95 9.79% 0.89 20.9% 0.71 27.2%
AES 0.77 19.4% 0.62 30.1% 0.58 42.8%

strategy is used in the comparison between 4-stack LGAA
and out-bound VGAA. Our results show that 4-stack LGAA
is beneficial for large driving cells while VGAAs are in general
more area-efficient than 4-stack LGAA, and in-bound power
rail would be a better design style than out-bound for vertical
devices.

ACKNOWLEDGEMENT

The authors would like to acknowledge the support of C-
DEN center and NSF funding. The authors would also like
to thank Dr. Praveen Raghavan (IMEC), Dr. Julien Ryckaert
(IMEC), Trong Huynh Bao (IMEC), and Rwik Sengupta
(Samsung) for their valuable inputs and discussions.

REFERENCES
[1] N. Collaert et al. Vertical devices for future nano-electronic

applications. In IEEE NMDC, Oct 2016.
[2] G Dewey et al. Fabrication, Characterization, and Physics of III-

V Heterojunction Tunneling Field Effect Transistors (H-TFET)
for Steep Sub-Threshold Swing. In IEEE IEDM, Dec 2011.

[3] Hoon Cho, Pawan Kapur, P. Kalavade, and K.C. Saraswat. A
Low-Power, Highly Scalable, Vertical Double-Gate MOSFET
Using Novel Processes. IEEE TED, Feb 2008.

[4] B. Yang et al. Vertical Silicon-Nanowire Formation and Gate-
All-Around MOSFET. IEEE Electron Device Letters, July 2008.

[5] Shaodi Wang et al. Analytical subthreshold channel potential
model of asymmetric gate underlap gate-all-around MOSFET.
In IEEE International Conference of EDSSC, 2010.

[6] Chi-Yi Hwang, Yung-Ching Hsieh, Youn-Long Lin, and Yu-
Chin Hsu. A Fast Transistor-Chaining Algorithm for CMOS
Cell Layout. IEEE TCAD, Jul 1990.

[7] T. Nakagaki, S. Yamada, and K. Fukunaga. Fast optimal algo-
rithm for the CMOS functional cell layout based on transistor
reordering. In IEEE ISCAS, May 1992.

[8] R.S. Ghaida and P. Gupta. DRE: A Framework for Early Co-
Evaluation of Design Rules, Technology Choices, and Layout
Methodologies. IEEE TCAD, Sept 2012.

[9] A. Mallik et al. TEASE: A Systematic Analysis Framework
for Early Evaluation of FinFET-Based Advanced Technology
Nodes. In Proc. DAC, May 2013.

[10] W. C. Wang and P. Gupta. Efficient Layout Generation and
Design Evaluation of Vertical Channel Devices. IEEE TCAD,
Sept 2016.

[11] Trong Huynh-Bao et al. Circuit and process co-design with
vertical gate-all-around nanowire FET technology to extend
CMOS scaling for 5nm and beyond technologies. In ESSDERC,
Sept 2014.

[12] Trong Huynh-Bao et al. Toward the 5nm technology: layout
optimization and performance benchmark for logic/SRAMs
using lateral and vertical GAA FETs, Feb 2016.

[13] Openaccess API. http://www.si2.org/.
[14] S. Sinha et al. Exploring sub-20nm FinFET design with

Predictive Technology Models. In Proc. DAC, June 2012.
[15] H. Mertens et al. Gate-all-around MOSFETs based on vertically

stacked horizontal Si nanowires in a replacement metal gate
process on bulk Si substrates. In IEEE Symposium on VLSI
Technology, June 2016.

[16] R.S. Ghaida, Y. Badr, M. Gupta, Ning Jin, and P. Gupta.
Comprehensive Die-Level Assessment of Design Rules and
Layouts. In Proc. ASP-DAC, Jan 2014.

[17] Cadence Innovus Implementation System.


