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Abstract—The lack of stability is one of the limitations that
constrains Physical Unclonable Function (PUF) from being put in
widespread practical use. In this paper, we propose a weak PUF
and a strong PUF that are both completely stable. These PUFs
are called Locally Enhanced Defectivity Physical Unclonable
Function (LEDPUF). A LEDPUF is a pure functional PUF that
does not require any kinds of correction schemes as conventional
parametric PUFs do. The source of randomness of a LEDPUF is
extracted from locally enhance defectivity without affecting other
parts of the chip. In this work we construct a weak LEDPUF
by forming arrays of Directed Self Assembly (DSA) random
connections, and the strong LEDPUF is implemented by using the
weak LEDPUF as the key of a keyed-hash message authentication
code (HMAC). Our simulation and statistical results show that
the entropy of the weak LEDPUF bits is close to ideal, and the
inter-chip Hamming distances of both weak and strong LEDPUFs
are about 50%, which means that these LEDPUFs are not only
stable but also unique.

We develop a new unified framework for evaluating the
security of PUFs, based on password security, by using in-
formation theoretic tools of guesswork. The guesswork model
allows to quantitatively compare, with a single unified metric,
PUFs with varying levels of stability, bias and available side
information. In addition, it generalizes other measures to evaluate
the security level such as min-entropy and mutual information.
We evaluate guesswork-based security of some measured SRAM
and Ring Oscillator PUFs as an example and compare them with
LEDPUF to show that stability has a more severe impact on the
PUF security than biased responses. Furthermore, we find the
guesswork of two new problems: Guesswork under probability
of attack failure, and the guesswork of strong PUFs that are used
for authentication.

I. INTRODUCTION

A Physical Unclonable Function (PUF) is a small piece of
circuitry such that its behavior, or Challenge Response Pair
(CRP) [2], is uniquely defined and it is hard to be predicted and
replicated because of the intrinsic random physical nature and
the uncontrollability of process variations. As a security prim-
itive, PUF can enable low overhead hardware identification,
tracing, and authentication during the global manufacturing
chain. The first PUF was introduced more than a decade ago
[3]. Since then, many silicon PUF implementations have been
proposed, such as Arbiter PUF [4], Ring Oscillator (RO) PUF
[5], SRAM PUF [6], and many other variations.

Since the key commonality between all current silicon PUF
implementations is their use of parametric manufacturing
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variations, two of the most challenging design tasks a PUF
designer will encounter are :

1) How to make the PUF unique and stable even under
extreme conditions without expensive implementation
cost?

2) How to evaluate the security level of a PUF given its
uniqueness and stability measurements?

A. Limitations of Parametric PUFs

1) Random Local Variation Extraction: One of the major
concerns of parametric PUFs is that local variation should be
the only entropy source for these PUFs [7]. However, from
our experiments on a large silicon data set [8], only 13% of
total variation is random local variation, which means that
most variation is coming from global or spatial variation. Any
attempt to use global or spatial variation as the source of
randomness can make them vulnerable to a class of process
side channel attacks. For instance, two PUFs on the same
(X,Y) location on different wafers are highly correlated (due
to large wafer-level systematics present in most modern fab-
rication processes). As a result, a few sacrificial wafers can
aid in developing a relatively straightforward side channel
attack. We tested this side channel attack on silicon RO PUF
measurements in 65nm technology across 300 wafers. Figure
1 shows that the inter-distance [7] on the same (X,Y) is much
smaller than the inter-distance across all PUFs. Therefore,
an adversary with possession of a reference PUF, which is
fabricated at the same (X,Y) location as the target PUF, would
have a higher probability of guessing the correct answer than
random guessing. The radial nature of systematic across wafer
variation [8] means that just a few reference PUFs drawn
carefully may be sufficient for attackers instead of keeping
full sacrificial wafers.

Fig. 1. The inter-distance of PUFs from same (X,Y) location on different
wafers is much smaller than that of across all PUFs, which demonstrates a
possible side channel attack.



1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2774761, IEEE
Transactions on Information Forensics and Security

2) Measurement Noise: Measurement noise could be an-
other big issue for parametric PUFs and needs to be carefully
compensated. For instance, metastability of the arbiter circuit
for Arbiter PUFs and accumulated jitter in RO PUFs can be
sources of measurement noises. For weak PUF measurement,
we evaluate the intra-distance [7] of SRAM PUFs using fifteen
commercial 45nm SOI test chips, where each consists 176kB
data memory. The power-up state is measured 10 times during
an 8-hour period, and the mean of intra-distance distribution is
2.57%. Since the experiment is done in room temperature with
exactly same settings, the difference is essentially contributed
by the measurement noise.

3) Environmental fluctuations and wearout: Existing sili-
con PUFs are in nature susceptible to environmental fluctua-
tions [9] and wearout [10]. To account for the instability issue,
techniques such as error correction code (ECC), helper data or
fuzzy comparator must be applied. A possible worst case sce-
nario is when the environmental factors change significantly,
for instance, the PUF is enrolled at 20°C and is verified at
80°C. In this case, a practical fuzzy extraction process needs
to have the ability to still recover the initial PUF response.

B. Techniques to Improve Parametric PUF Quality

A variety of techniques have been intensively studied over
the years to extract random local variations or to make a
PUF more stable and reliable. A Non-Volatile Memory (NVM)
based PUF without helper data is presented in [11]. However,
besides its hardware and calibration overhead, the results of
uniqueness and entropy analysis are also missing. In [12],
the local randomness is distilled by modeling and subtracting
the systematic variation. A similar technique is to subtract
the averaged frequency from multiple measurements to reveal
the true local random variation [13]. However, the calculation
and information storage requirement come with the cost of
addition latency and hardware. Taking the majority vote [14]
or finding stable responses [15] are possible techniques to
eliminate the measurement noise, however, at the cost of large
latency or reduced number of challenges. Other complex im-
plementations have been proposed to mitigate stability issues
that often induce lower hardware efficiency [7] or making the
PUF more susceptible to attacks [16]. Also, to protect PUFs
from the worst case scenario as described creates overhead as
it requires to employ strong ECC [17]. In [18] a reverse fuzzy
extraction technique is proposed, which can indeed reduce the
implementation cost of error correcting algorithm, however, a
hash function is still needed, and to prevent the attacker from
immersing the PUF in an stable environment, a True Random
Number Generator (TRNG) is required as stated in [19].

The issues of parametric PUFs, such as the described insta-
bility, wearout, measurement noise, limited local variation, and
limited side channel attack resiliency, clearly motivate the need
to design PUFs that do not rely on parametric performance
variations as the entropy source.

C. Quantifiable Security Evaluation Model

In order to impersonate the hardware, the PUF attacker
needs to respond to a challenge with a correct response (i.e.,

guess a secret). 1 Comprehensive security models for PUFs
are described in [20], including a precise identification of
required PUF properties, such as indistinguishably and tamper-
resilience. Though this specifies the security requirements, as
a “checklist”, we believe that a more quantitative assessment
of PUF security can be valuable for both PUF designers and
PUF users.2 Inter- and intra- fractional Hamming Distance
(FHD) [7], and other statistical tests for randomness [21],
have been used for quantifying PUF security. Though it is
reasonable that having larger inter-FHD is more secure, it
does not tell the PUF designer how much more secure it is.
For example, is it worth raising the inter-FHD from 40% to
49% at a cost of extra hardware? In this work we present a
more principled way to analyze PUF security by connecting
it to how one could evaluate password security, through a
guesswork framework. We derive a theoretical framework for
PUF security evaluation that brings together two important
properties of existing PUFs: predictability and reproducibility
[22]. This framework enables a unified security quantification
of several effects including bias, noise, and side-channels on
PUFs, as well as the security over multiple challenge-response
pairs, providing design guidance by quantifying the security
level of a PUF.

In the context of the question raised in the previous para-
graph, we show that in terms of guesswork the effect of
noise is far worse than the effect of bias. Therefore, the tools
presented in this paper to evaluate PUFs security, can be used
by a PUF designer to determine how to maximize the security
level at minimum cost in terms of resources. The actual answer
to this question depends on the tradeoff between the security
level in terms of guesswork, and the actual cost in resources
on the designer end, required to achieve this.

One can think of PUF signatures like passwords, and its
breakability should be evaluated by how strong it is, for
example, how many attempts (on average) does it take to
compromise it. This guessing framework has been studied in
the information theory literature and has recently been adopted
by NIST as a measure of password security [23]. We bring this
framework to evaluating the security of PUFs.

D. The Contributions of this Paper

In [1] we have presented (1) the first stability-guaranteed
silicon PUF through Locally Enhanced Defectivity (LED) and
(2) detailed constructions of the weak and strong LEDPUF
using random DSA connections. In this paper, we significantly
expand our work in [1] and the contributions of this paper are:
• We present a new unified framework for evaluating

the security of PUFs through guesswork analysis. This
framework enables us to evaluate and quantify the effect
of noise, bias and model attacks on security. We also
relate guesswork to other security measures such as
min-entropy, and mutual information. The model quan-
titatively measures the security of various PUFs under

1In this attacker model the adversary does not have access to the PUF, but
rather is trying to impersonate it.

2In this paper we do not study “machine learning” attacks, in which the
attacker has access to the PUF and is challanging the PUF to learn the
underlying randomness.
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different scenarios, and by doing so enables us to compare
the security level of different sorts of PUFs.

• Security of noisy SRAM PUF and RO PUF implemented
on real chips and Field Programmable Gate Arrays (FP-
GAs) are compared with a stable LEDPUF based on the
new model.

• Guesswork is derived for two new problems: Guesswork
under probability of attack failure; and the guesswork of
strong PUFs under model building attacks.

The rest of the paper is organized as follows: Section II
presents the motivation and importance of stable randomness
through LED. In Section III and Section IV, we summarize
the local randomness extraction from DSA and the structure
of the stable signal unit (SSU) proposed in [1]. The unified
guesswork framework is presented in Section V. In Section
VI, the evaluation results of weak LEDPUF and noisy weak
PUFs are presented along with a derivation of the guesswork
under probability of attack failure. The construction of strong
LEDPUF, as well as evaluation of its security are presented in
Section VII. Finally, we conclude the paper in Section VIII.

II. THE LEDPUF

When constructing a PUF, stability and sufficient amount
of randomness are two primary requirements. Exploiting per-
manent defects instead of parametric variations can provide
stability, but at the same time, these defects are detrimental
to other parts of the chip. In addition, it is difficult for a
PUF to extract randomness under the condition where process
variations are minimized during fabrication. To address such
limitations, we propose to exploit locally enhanced permanent
random defects to construct stability-guaranteed LEDPUFs.

LEDPUF is stability-guaranteed because its response is
extracted through locally manipulated physical layout designs,
where permanent defects are intentionally introduced as stable
sources of local randomness. To be more specific, LEDPUF
leverages intrinsic local randomness in fabrication processes to
generate permanent hard defects only at specific areas without
1) affecting other parts of the design and 2) being limited by
minimized variations during the fabrication process.

Once a permanent hard defect is formed, the effects of hard
defects is then transformed to digital signals, therefore a LED-
PUF is not a parametric PUF and it is stability-guaranteed.
The Boolean nature of the response without any parametric
dependence means that LEDPUF is not only immune to
measurement noise and wearout, but also offers a greater
level of reliability compared to existing PUFs as the output
is resistant to changes in the environmental factors.

Several techniques have been proposed to enhance local
variations. In [24] the authors propose to apply PUF-aware
Optical Proximity Correction (OPC) at the PUF circuitry
to enhance the variability, and [25, 26] propose to extract
randomness by utilizing forbidden pitches and poly-Si with
random grain boundaries at the PUF associated regions. How-
ever, these PUFs are unstable because they are still parametric
delay-based PUFs, and they may suffer from systematic vari-
ations, for example, between two PUFs printed by the same
mask. On the other hand, a LEDPUF is completely stable and

the formations of hard defects are independent to each other.
An example of LEDPUF is explained in details in Section III.

The strengths of a LEDPUF over existing PUFs can be
summarized as follows:

1) A LEDPUF is stability-guaranteed because its random-
ness is extracted from permanent hard local defects.

2) A LEDPUF is more secure against side channel attacks
because its randomness is extracted efficiently from
locally enhanced defectivity with less systematic effects
from fabrication process or other parts of the chip.

III. STABLE RANDOMNESS EXTRACTION THROUGH
DIRECTED SELF ASSEMBLY

Directed Self Assembly (DSA) is a mechanism that de-
scribes block copolymers (BCP) composed of immiscible
blocks phase-separate into certain structures [27]. The guiding
templates, which are used to guide the self-assembly pro-
cess, can be lithographically-printed trenches (Graphoepitaxy)
or chemically-treated surfaces (Chemoepitaxy). During the
graphoepitaxy process for contact or via holes, the guiding
templates are first lithographically printed, then the surface
is spin-coated with the BCP solution. The phase separation
occurs during the thermal annealing , and with a particular
BCP and surface treatment of substrate [28], cylinders are
formed of one block in a matrix of the other block [29].

In case of a diblock copolymer made of two blocks, say A
and B: at equilibrium, the microphase separation is established
by an energy balance between the stretching energy for the
polymer chains and the energy of interactions at the interface
between A and B microdomains [30]. Thermal equilibrium is
achieved when the free energy is minimized, and the minimum
energy state strongly depends on the level of confinement
achieved by the layout of guiding templates. In other words,
the size, shape, and critical dimension (CD) of the guiding
template can greatly affect the DSA defect density [31, 32].

For bigger-sized templates, it becomes energetically less
expensive to induce a defect than to achieve a defect-free
energy minimization [32–34]. Also, with less confinement
forces from the guiding template due to its large size, random
interactions from thermal fluctuation [35] or initial kinetics of
collective density and state fluctuations [36] begin to dominate
the assembly process. Therefore, final assembly results can
be random by designing guiding templates that are large
enough to cause random assembly errors even if there are no
lithographic variations.

Figure 2 shows conceptual energy distributions and sim-
ulation results of two guiding templates with an existing
DSA simulator [37], where the model of the PS-b-PMMA
copolymer has been validated in [38]. In Figure 2 (a), for
a proper guiding template shape, only one minimum energy
state exists, therefore the final DSA structure is predictable and
stable. The three layers inside the polygonal guiding template
are the top, middle, and bottom layers of a via. If a cylindrical
via hole is formed correctly, the three layers should be three
overlapped concentric circles. However, for a large guiding
template as shown in Figure 2 (b), many DSA structures have
similar minimum energy states, therefore the results of the sim-
ulations using the same guiding template are different, where

3
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random arrangement with different orientations begin to occur.
In other words, the randomness of DSA is confined within
predetermined local areas only by deliberately designing ”bad”
guiding templates.

Fig. 2. (a) The guiding template (yellow shape) guides the DSA process to
form the only on DSA structure with a clear minimum energy state. (b) The
guiding template (yellow shape) does not guide the DSA process to form a
specific structure because many DSA structures have similar minimum energy
states. The final DSA structure is random and unpredictable.

A. Hard Defective Connection Formation

We leverage the randomness extracted from DSA to form
randomly assembled connections, and these connections are
then used to fabricate LEDPUF. Though in conventional DSA,
the goal of the guiding template design is to achieve high
confinement and avoid regions of random phase transitions, we
use the same theory but to enhance randomness in assembly.
To construct a DSA random hard defective connection, we
configure the size of the guiding template so that two vias
are formed with a certain probability that they are connected
permanently. A DSA hard defective connection is composed
of the two vias along with the connection.

In our experiment, each simulation contains three guiding
templates with a same shape, and two vias are formed in each
of the guiding template. If the via pair in a same guiding
template is merged, the DSA hard defective connection is in
closed state; otherwise, the connection is in opened state. In
our statistical analysis, an open state is represented by a logic
“1”, and a closed state is represented by a logic “0”. 500
simulation were performed in our experiments, so 1500 bits
of raw data is obtained from the simulation. Based on our
simulated data, the empirical entropy of triples of bits is only
0.0063 bits smaller than the entropy of independent triple of
bits, which implies that the states of the three connections in a
simulation is independent with each other as expected in real
DSA process [38]. Examples of a simulation result in 2D and
3D views are shown in Figure 3 (a) and (b), respectively. In
the 2D view, the rectangular shapes with rounding corners are
the guiding templates, and the shapes inside of the guiding
templates are the vias. If the via pair in a same guiding
template is merged, the DSA hard defective connection is
formed as shown in Figure 3 (c), and it is in permanent
closed state; otherwise, the DSA hard defective connection is
in permanent opened state as shown in Figure 3 (d). In Figure

3 (a) and (b), two hard defective connections are in opened
state, and one connection is in closed state.

Fig. 3. (a) 2D view of 3 DSA hard defective connections. (b) 3D view
of 3 DSA hard defective connections. (c) Vias are partially merged, so the
connection is in permanent closed state. (d) Vias are not merged, so the DSA
hard defective connection is in permanent opened state.

IV. WEAK LEDPUF CONSTRUCTION

The weak LEDPUF [1] is composed of arrays of SSUs.
Each SSU is constructed from a DSA defective connection,
which can be considered as random switches with permanent
states that determine the unique and stable function of the
circuit. Figure 4 (a) shows the implementation of a SSU. Two
ends of the DSA connection are connected to VDD and GND
through opposite switches. Figure 4 (b) shows the abstraction
of a SSU. In standby mode or before the evaluation, the
evaluation signal EVA is low and the output is zero. During
evaluation mode, EVA becomes high, and the output is either
one or zero depending on the permanent state of the DSA
connection. If the DSA connection is closed, the output is
one; otherwise, the output is zero.

Fig. 4. (a) Stable signal unit implementation. When EVA is high, the output
is either one or zero permanently depending on the state of the DSA via. (b)
Abstraction of a SSU.

Figure 5 illustrates a weak LEDPUF with n rows and m
columns, where the number of SSUs is nm, and the number
of CRPs is n. Since only one of the rows is being evaluated
at a time, a one-hot decoder is used so that only one bit of
the EVA vector is logic 1. The challenge fed into the decoder
is a log(n)-bit input, and the response is a m-bit output.

Compared with existing weak SRAM PUFs, the weak
LEDPUF has several evident advantages:
• It is completely stable, so it has no area or latency

overhead. To generate a bit response, the weak LEDPUF
requires only one SSU and a transistor, or 3 transistors
equivalently, as for a standard SRAM cell, 6 transistors
are required. Once the state of the DSA via is determined,
the output is fixed permanently, so no additional ECC,
fuzzy extraction, or helper data is needed. As stated in
[39], for a SRAM PUF to generate a 128-bit response,

4
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Fig. 5. A weak LEDPUF with n challenges and m-bit response. Only one
bit of the EVA vector is logic 1 at a time.

more than 4k SRAM cells are needed under a condi-
tion with 15% bit error probability. Therefore, the total
number of transistors needed for SRAM PUF to generate
a 128-bit response would be 24k, where for the weak
LEDPUF, only 384 transistors are needed, which is more
than 600x less than a SRAM PUF, thus the area is also
much smaller even assuming that the hardware cost of
the peripheral circuits are similar.

• In addition to model building attacks [40], the weak LED-
PUF is also more resistant to existing attacks to SRAM
PUFs, such as laser stimulation [41] or Photonic Emission
Analysis (PEA) [42]. The laser stimulation attack focuses
on retrieving the on/off state of transistors, but for weak
LEDPUF, the states of the transistors, which depend on
the EVA signal, do not reveal secret information. The
PEA attack detects the photon emission, which only
occurs in saturation region for high drain-source voltages.
It can be effective to SRAM PUF because the loading of
the addressed SRAM cell can lead to a strong voltage
degradation of SRAM transistors and increase the time
spent in saturation region. However, PEA attack does not
work effectively for the LEDPUF because for each SSU,
the source voltage (VDD) of the NMOS is always higher
than the drain voltage, and the PMOS at the output will
not stay in saturation region after evaluation (EVA goes
from high to low) since the output will be pulled down
regardless of the DSA connection.

V. GUESSWORK AS A UNIFIED FRAMEWORK FOR
EVALUATING THE SECURITY LEVEL

A. Why Consider Guesswork?

Consider the following game: Bob draws a sample x from
a random variable X , and an attacker Alice who does not
know x but knows the probability mass function PX (·), tries
to guess it. An oracle tells Alice whether her guess is right or
wrong. This is the situation where an attacker tries different
passwords to access an account.

If Alice has only one guess, then the optimal strategy that
maximizes her chance of guessing x successfully is choosing
the most probable x. In this case the chance of guessing x is
maxx′∈X PX

(
x
′
)

and the predictability of X is given by its

min-entropy [43]:

H∞ (PX) = − log2

(
max
x′∈X

PX

(
x
′
))

. (1)

If Alice is allowed to make as many guesses as required
until she finds x, then the optimal strategy is guessing elements
in X based on their probabilities in ascending order [44]. It
has been shown that the average number of guesses it takes
Alice to find x (denoted by G (X) and termed guesswork)
is not given by the traditional Shannon entropy [44]. For
example, when drawing a random vector of length m, X ,
which is independent and identically distributed (i.i.d.) with
distribution P = [p1, . . . , pL], the exponential growth rate of
the guesswork scales according to the Renyi entropy Hα (X)
with parameter α = 1/2 [44]:

lim
m→∞

1

m
log2 (E (G (X))) = H1/2 (P ) = 2 · log2

(∑
i

p
1/2
i

)
(2)

where H 1
2
(P ) ≥ H (P ) with equality only for the uniform

probability mass function (in the context of Figure 5 m is the
length of the PUF response and L = 2m).

The security of a PUF is predicated by the inherent random
signature in the hardware. An attacker wants to either imper-
sonate a hardware by guessing its random signature, or to learn
it by eavesdropping.3 In order to impersonate the hardware,
the attacker needs to respond to a challenge with a correct
response. In order to evaluate the security of a PUF we connect
to the framework for password security [23]. For a dictionary
attack, a guessing framework quantifies security through the
number of guesses the impersonator has to make in order to
identify the password (or inherent randomness) and therefore
respond correctly to all possible challenges. Therefore, we
quantify the security level of a PUF through the number of
guesses required to break it.

In subsection V-C we show that guesswork can serve
as a unified framework for evaluating and quantifying the
security of PUFs. Essentially, other measures of evaluating
the security level such as min-entropy and mutual information
are special cases of guesswork (as shown in Subsection V-C
min-entropy is the probability of correctly guessing the PUF
response in a single guess, that is, the probability that the
guesswork is equal to 1, and so it does not capture the entire
probability mass function of the number of guesses; in terms
of guessing, guesswork is a more general security criterion
than min-entropy). Furthermore, guesswork allows to quantify
the security level under more elaborate scenarios such as the
security level when key stretching mechanism is used [45]
as well as when allowing an attack failure probability (this
problem is presented in Subsection V-C).

Characterizing the security of a PUF through guesswork
reveals an interesting interplay between the bias of a PUF
response, and the noise (due to instability) which is in-
corporated in each sample. Guesswork is very sensitive to
the presence of instability, but yet is not very susceptible
to bias. These properties are discussed in subsection V-E.

3In this attacker model the adversary does not have access to the PUF, but
rather is trying to impersonate it.

5
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Therefore, guesswork highlights the advantage of stable PUFs
over unstable PUFs, when evaluated through the number of
guesses required to break a PUF.

Moreover, we present a formal evaluation methodology for
PUFs security, while identifying the impact of bias, noise and
side-channels.

Note that the interplay between noise and bias, as well as the
advantage of stable PUFs have been reported in the literature.
For example, [46] discusses the advantage of stable PUFs,
and [47] considers the interplay between noise and the PUF
response in terms of efficient post-processing methods. How-
ever, our results provide methods to analytically evaluate the
security level of PUFs, based on their fundamental properties
(i.e., noise level and bias).

B. Background

The guesswork G (X) is a random variable that represents
the number of guesses required to guess a random variable x.
Therefore, the probability of having G (x) guesses is PX (x).
The ρth moment of guesswork is

E (G (X)
ρ
) =

∑
x

G (x)
ρ · pX (x) . (3)

The definition of guesswork can be extended to the case
where the attacker has a side information Y available. In
this case the average guesswork for Y = y is defined as
G (X|Y = y), and the ρth moment of G (X|Y ) is

E (G (X|Y )
ρ
) =

∑
y

E (G (X|Y = y)
ρ
) · pY (y) . (4)

Massey [48] noted that a dictionary attack minimizes the
expected number of guesses (i.e., guessing the values in the
decreasing order of PX (x)). Arikan [44] has bounded the ρth
moment of the optimal guesswork, G∗ (X|Y ), by

(1 + ln (M))
−ρ∑

y

(∑
x

PX,Y (x, y)
1

1+ρ

)1+ρ

≤

E (G∗ (X|Y )
ρ
) ≤

∑
y

(∑
x

PX,Y (x, y)
1

1+ρ

)1+ρ

(5)

where M = |X| is the cardinality of X . Furthermore, in [44]
it has been shown that when X and Y are strings of length
m, where the pairs (Xi, Yi) are drawn i.i.d.and 1 ≤ i ≤ m,
the exponential growth rate of the optimal guesswork is

lim
m→∞

1

m
log2 (E (G∗ (X|Y )

ρ
)) = ρ·H 1

1+ρ
(PX,Y (x, y)) (6)

where m is the size of X and Y , and

H 1
1+ρ

(PX,Y (x, y)) =
1

ρ
log2

∑
y

(∑
x

P (x, y)
1

1+ρ

)1+ρ

(7)

is Renyi’s conditional entropy of order 1
1+ρ [44].

Two remarks are in order regarding why considering the
growth rate is meaningful.

Remark 1 (The non-asymptotic behavior is also dictated by
growth rate). Note that although (6) is an asymptotic result,

TABLE I
THE AVERAGE GUESSWORK AS A FUNCTION OF m WHEN p = 1/2.

ρ = 1, p = 1/2 m=64 m=128 m=256 m=1024
Lower bound 1.4 · 258 1.4 · 2121 1.4 · 2248 1.4 · 21014
Upper bound 264 2128 2256 21024

it converges very quickly. This is because in [44] it was
shown that the guesswork of any moment is lower bounded
by (1 +m · ln (2))−ρ · 2m·ρ·H1/(1+ρ)(p) and upper bounded by
2m·ρ·H1/(1+ρ)(p), when X is of size m and is drawn i.i.d.
Bernoulli(p). Table I presents the lower and upper bounds
for various values of m.

Remark 2 (the operational meaning of growth rate). Based
on the bounds presented in Table I it can be shown that even
for finite values of m, a decrease in growth rate can have a
tremendous impact on the security level. For example, when
p = 0.0015, which leads to H1/2 (0.0015) = 0.1, the average
guesswork for m = 256 is lower bounded by 1.4× 217.6 and
upper bounded by 225.6 which is far smaller than 2256 (or a
lower bound of 1.4×2248 as presented in Table I) in the case
when p = 1/2.

Furthermore, growth and decrease rates are commonly used
when evaluating the security level. For instance the min-
entropy is a measure of the decrease-rate of the probability of
guessing a password.

Another extension of guesswork [49] considers a game in
which it is sufficient to guess x up to a certain level of
distortion D, according to some distance metric d (x, x̂ (i)) =∑m
i=1 d (xi, x̂ (i)). Essentially, when G (x) = i, the word x̂ (i)

is guessed such that d (x, x̂ (i)) ≤ m · D, that is, when the
attacker guesses a word which is within a Hamming distance
m ·D of x the game is over. The authors in [49] have solved
this problem for the general case; more specifically, for a
binary source which is drawn i.i.d. Bernoulli(p) and Hamming
distortion

d (xj , x̂j) =

{
1 xj = x̂j
0 xj 6= x̂j

(8)

where 1 ≤ j ≤ m, they have shown that the exponential
growth rate of the guesswork equals

lim
m→∞

1

m
log2 (E (G∗ (X,D)

ρ
)) = ρ · E (D, p) =

max
(
ρH 1

1+ρ
(p)− ρ ·H (D) , 0

)
(9)

where H (D) = −D log2 (D)− (1−D) log2 (1−D) is the
binary Shannon entropy [50].

Guesswork has been analyzed in many other scenarios such
as guessing under source uncertainty with and without side
information [51], [52], using guesswork to lower bound the
complexity of sequential decoding [44], guesswork for Markov
chains [53], and guesswork for multi-user systems [54].

C. Extending Guesswork

In this subsection we extend the definition of guesswork and
show that it can serve as a unified framework for evaluating
the security level of PUFs by incorporating noise and bias.
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In addition, we relate guesswork to other measures such as
mutual information and min-entropy.

We begin by finding the moments of the guesswork of a
noisy weak PUF.

Theorem 1. When the response of a weak PUF is noisy such
that the noise is additive and drawn i.i.d. Bernoulli(D), and
the original response is i.i.d. Bernoulli(p) , the ρth moment of
the guesswork increases at rate ρ ·E (D, p) as defined in (9).

Proof. The idea behind the proof is that guessing within
Hamming distance m ·D of the original response, enables the
attacker to find the original response by using the helper-data.

Essentially there are two options. The first possibility is to
construct a code to guess the original response up to Hamming
distance m ·D as is done in [49], and then use the helper-data
in order to find the original response, in which case the rate
of the ρth moment is ρ ·E (D, p). The second possibility is to
use the helper data (e.g., the coset of an ECC) to guess over a
subset. In this case, since the helper-data breaks up the space
into subspaces of size 2(1−H(D))·m [50], guessing through the
subspace can only bring the rate of the ρth moment down to
ρ · E (D, p). Therefore, the minimal rate is ρ · E (D, ρ).

Remark 3. ρ · E (D, p) is the maximum rate at which the
ρth moment of the guesswork of a noisy PUF can increase.
This can be achieved by employing an ECC that operates
very close to the channel capacity under the statistical profile
of the noise [50]. However, the hardware size required to
implement this ECC may be large, and so PUF designers may
resort to other ECCs that can be implemented more efficiently
in terms of their hardware size but yet cannot achieve the
channel capacity. In this case, the decrease in rate is expressed
in the amount of information revealed by the helper data,
W , whose entropy is larger than the noise entropy, that is,
H (W ) ≥ H (D). This in turn brings the guesswork down to
max

(
ρH 1

1+ρ
(p)− ρ ·H (W ) , 0

)
≥ ρ · E (D, p).

Remark 4. A meaningful way to compare the efficiency of
PUFs is by fixing their security level as well as the probability
of error of the ECC to certain values and then compare the
hardware size required to achieve these by different PUFs,
as presented in [46]. In [46] the security level is evaluated
through the Shannon entropy. However, Guesswork can also
be used in the method presented in [46] to evaluate the
security level. This in turn provides a measure that has a wider
operational meaning in terms of security than the Shannon
entropy. For example, the average guesswork is directly related
to the average number of guesses required to guess the PUF
response (this is highlighted in Theorem 2 and Remark 8).

Remark 5. In [47] and [55] the noise of a PUF is not
distributed Bernoulli(D), but rather is asymmetric and af-
fected by the bias level such that the conditional transition
probability is different when the PUF response is equal to
1 and 0, and the combined transition probability is D (see
subsection V-E for more details). In this asymmetric case the
rate at which the ρth moment of the maximum guesswork
increases is lower bounded by ρ·E (D, p) due to the convexity
of of E (D, p) in the noise distribution.

Before we present a new game that extends the traditional
definition of guesswork, let us define the type of a vector.

Definition 1. Consider a binary vector x of size m and assume
that N (x|1) is the number of elements of this vector that are
equal to 1. In this case when N (x|1) /m = q the vector x is
of type q.

We now define a new guessing game that captures different
measures for evaluating the security level.

Definition 2 (Guesswork under attack failure constraint).
Consider the following game: Bob draws a vector x of size
m i.i.d. Bernoulli(p). The attacker Alice has to guess x up
to Hamming distance m · D as defined in subsection V-B,
under the constraint that the probability of attack failure is
smaller than or equal to 2−α·m where α ≥ 0, that is, Alice may
decrease the number of guesses by guessing only a subset of all
possible words, which leads in turn to a certain probability
of attack failure. We define the optimal guesswork for this
game as G∗ (X;D,α). Furthermore, we define the guesswork
in the case where the probability of attack failure is zero as
G∗ (X;D,∞) = G∗ (X;D).

Remark 6. The relation between G∗ (X;D,α) and previous
works is as follows:
• Pr (G∗ (X; 0,∞) = 1) = 2−m·H∞(p), that is, the min-

entropy.
• limm→∞

1
m log (E (G∗ (X;D,∞)

ρ
)) = ρ · E (D, p) as

defined in (9).

The following theorem characterizes a lower bound for
G∗ (X;D,α) for any moment ρ > 0 in the case where the
attacker is allowed not to guess certain types.

Theorem 2.

limm→∞
1

m
log (E (G∗ (X;D,α = D (s||p))ρ))

≤

{
ρ ·
(
H 1

1+ρ
(p)−H (D)

)
s∗ ≤ s ≤ 1

ρ · (H (s)−H (D))−D (s||p) p < s ≤ s∗

0 ≤ D ≤ p ≤ 1/2, and

limm→∞
1

m
log (E (G∗ (X;D,∞)

ρ
))

= ρ ·
(
H 1

1+ρ
(p)−H (D)

)
where s∗ = p(1+ρ)

−1

p(1+ρ)−1+(1−p)(1+ρ)−1 , the probability of attack

failure decreases like 2−m·α,

D (s||p) = s · log2 (s/p) + (1− s) · log2 ((1− s) / (1− p))

is the Kullback-Leibler divergence [50], and Alice chooses a
set A = {q1, . . . , qL} of types whose vectors are not guessed,
such that the probability that N (x|1) /m ∈ A is smaller than
or equal to 2−α·m, that is, Alice guesses words in AC .

Proof. The proof is in Appendix A

Note that ρ ·H (s∗)−D (s∗||p) = ρ ·H 1
1+ρ

(p)

The next three remarks point out a few properties of
G∗ (X;D,α).

7
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Remark 7. When an attacker attempts to break a very
large number of independent PUF responses (or passwords),
where the probability of attack failure is 2−m·α, he is very
likely to break a fraction of 1 − 2−m·α of the PUF re-
sponses (passwords), and this in turn leads to ρth moment
of guesswork across PUF responses (passwords) that in-
creases at a rate limm→∞

1
m log (E (G∗ (X;D,α)

ρ
)) ≤ ρ ·(

H 1
1+ρ

(p)−H (D)
)

= ρ · E (D, p), when D ≤ p, that is,
the moments of guesswork decrease as the probability of attack
failure increases.

Remark 8. When s = p + ε the average guesswork is
approximately H (p) − H (D), which is the rate distortion
function of Hamming distortion [50].

Remark 9. Note that when p = 1/2 also s∗ =
1/2 and the upper bound of Theorem 2 is equal to
limm→∞

1
m log (E (G∗ (X;D,∞)

ρ
)), that is, when guessing

according to the method presented in Theorem 2 Alice does
not gain anything from having a failure probability larger than
zero.

We now derive an expression for the min-entropy when the
attacker has to guess a word that is within Hamming distance
m·D of the password. In this case the min-entropy of a binary
i.i.d. source subject to Hamming distortion D is equivalent to
choosing a word which is in a ball of radius m · D around
the most likely word (i.e., the probability of guessing a word
which is in the most likely ball). The asymptotic value of the
min-entropy subject to distortion D is given by the following
lemma.

Lemma 1. Consider a binary word of length m for which each
element is drawn i.i.d. from Bernoulli(p). The min-entropy
subject to Hamming distortion D converges to

− lim
m→∞

1

m
log2

(
P ballX

)
=

{
D (D||p) 0 ≤ D ≤ p

0 p < D ≤ 1
(10)

where p ≤ 1/2, P ballX =
∑m·D
i=0

(
m
i

)
pi (1− p)m−i.

Proof. The proof is in Appendix B.

Remark 10. Note that the result of Lemma 1 can also be in-
terpreted as Pr

(
G∗ (X; 0,∞) ≤ 2m·H(D)

)
when a password

of length m is drawn i.i.d. Bernoulli(p), where 0 ≤ D ≤ 1/2.

D. Examples for Quantifying the Security of PUFs

In this subsection we present a few examples that illustrate
how to use guesswork in order to quantify the security level
of PUFs. We address evaluations for unstable PUFs as well
as for stable PUFs. We incorporate into the expressions noise,
bias, and side information coming from other PUFs or from
side channel/model attacks.

The first step in calculating the guesswork of a PUF is
evaluating the probability function according to which it is
drawn, as well as the noise level. In this subsection we assume
that the bits are i.i.d. for which case the first step is evaluating
the bias of the stable bits and then estimating the noise level of
the unstable bits; evaluating the bias of the stable bits enables

us to state that the PUF response is drawn i.i.d. from the
probability function

P0 = p P1 = 1− p (11)

whereas the probability of transition of a bit when re-sampling
a PUF is q, such that

x(2) = x(1) ⊕ e (12)

where x(1), x(2) are the first and second samples of the
unstable (noisy) PUF, and Pr (ej = 1) = q, 1 ≤ j ≤ m.

For stable PUFs such as the one presented in this paper, it
is sufficient to calculate the bias and assign the probability
function to ρ · H 1

1+ρ
(P ) in equation (6), in order to get

the ρth moment of guesswork. For example, when the stable
PUF is drawn i.i.d. according to Bernoulli(0.47) the average
guesswork of a PUF of large enough size (m = 256, say) is
proportional to

2H1/2(0.47)·m = 20.9987·m (13)

whereas the largest guesswork that we can expect for is
achieved by an unbiased PUF for which each bit is drawn
i.i.d. Bernoulli(0.5), and is proportional to

2H1/2(0.5)·m = 2m. (14)

For unstable PUFs, re-sampling the PUF yields a noisy
version of the original response as presented in equation (12).
When the probability of transition is q, Theorem 1 shows us
that it is sufficient to guess the original response x(1) up to
Hamming distance m · q. The intra distance can be used to
evaluate the noise level. For example, when considering an
unbiased unstable PUF with a transition probability q = 0.1,
we get that the guesswork is proportional to

2m·(1−H(0.1)) = 20.531·m (15)

which means that noise decreases the average number of
guesses significantly.

The conditional guesswork (4) enables us to quantify the ef-
fect of side information on the security level of both stable and
unstable PUFs. In order to evaluate the conditional guesswork
we first need to characterize the conditional probability. The
conditional probability depends on the type of attack which
is being carried; in some cases characterizing its effect on the
randomness of the response requires some effort. A simple
example for a side information attack is one in which an
attacker has another PUF which is correlated with the original
one. For example, consider an unbiased stable PUF x for
which each element is drawn i.i.d. Bernoulli(0.5), and assume
that an attacker has another unbiased stable PUF, y, which is
correlated with x such that

P (y|x) = P (e) (16)

where e is drawn i.i.d. Bernoulli(0.2). In this case the uncon-
ditional guesswork G (X) is proportional to

2H1/2(1/2)·m = 2m (17)

whereas the conditional guesswork G (X|Y ) is proportional
to

2H1/2(0.2)m = 20.848·m (18)

8
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Fig. 6. The solid line presents the average guesswork of an unstable unbiased
PUF 1−H (D), whereas the dotted line is the average guesswork of a stable
biased PUF H1/2 (p).

because of the fact that in this case x given y is also drawn
i.i.d. Bernoulli(0.2). In general, the correlation between PUFs
can be evaluated through the inter distance.

Conditional guesswork subject to distortion enables to eval-
uate the guesswork of an unstable PUF when side information
is available. The method of evaluating the guesswork is similar
to the previously mentioned methods for evaluating conditional
guesswork and guesswork subject to distortion.

E. The Effect of Noise Vs. The Effect of a Bias

In this subsection we analyze the expressions for guesswork
as well as min-entropy subject to distortion, and quantify the
impact that noise and bias have on PUFs. Furthermore, we
show that the effect of noise is far worse than the effect of
bias in terms of average guesswork.

First, let us focus on the effect of noise and bias on the
expected value of the guesswork (i.e., the case where ρ = 1),
when the noise is Bernoulli(D). From Theorem 1 we get that
when the transition probability is D, the asymptotic growth
rate of the expected value of the guesswork is

H1/2 (PX)−H (D) . (19)

On the other hand the asymptotic growth rate of the expected
value of the guesswork of a stable PUF whose bits are drawn
i.i.d. from Bernoulli(p) is

H1/2 (p) = 2 · log2
(√

p+
√
1− p

)
. (20)

The first derivative of equation (19) equals

log2 (D)− log2 (1−D) (21)

which diverges as D approaches 0. Therefore, even when the
noise level (and D) is very small, it decreases the expected
value significantly. On the other hand the first derivative of
(20) is equal to zero at p = 1/2 (i.e., when there is no bias).
The first derivative around p = 1/2 is very small and therefore
bias does not affect the guesswork as much as noise. Figure 6
presents the guesswork of an unstable unbiased PUF and the
guesswork of a stable biased PUF.

For example, the asymptotic exponential growth rate of
the guesswork of an unbiased (p = 1/2) unstable PUF with
transition probability D = 0.1 (i.e., a 10% noise) is equal

TABLE II
THE AVERAGE GUESSWORK WHEN THE TRANSITION PROBABILITY OF THE
NOISE HAS STATES VERSUS THE CASE WHEN THE NOISE IS BERNOULI(D)

(IN PARENTHESES)

p/D D = 0.1 D = 0.2
p = 0.49 0.53 (0.53) 0.2781 (0.2779)
p = 0.4 0.5197 (0.516) 0.2707 (0.2634)

to 0.53 which is the guesswork of a stable biased PUF with
p = 0.05 (i.e., a 95% bias).

In terms of min-entropy as presented in Lemma 1,
the divergence D (D||p) = −H (D) − D log2 (p) −
(1−D) log2 (1− p) and therefore its first derivative also
diverge as D goes to zero. Therefore, min-entropy is also very
sensitive to the presence of noise. On the other hand, the min-
entropy of a stable PUF is equal to

−m log2 (1− p) . (22)

The first derivative of (22) equals m
1−p when 0 ≤ p ≤ 1/2 and

therefore it does not diverge. Hence, the effect of bias on the
min-entropy is also less significant than the effect of noise.

For example, the asymptotic min-entropy of an unbiased
(p = 1/2) unstable PUF with transition probability D = 0.1
is equal to 1−H (0.1) = 0.53 which is the min-entropy of a
stable biased PUF with p = 0.31 (i.e., a bias level of 69%).

Note that in general the first derivative of the min-entropy
does not equal to zero at p = 1/2, and therefore bias has a
stronger effect on min-entropy than on average guesswork.

Figure 7 presents the behavior of the min-entropy as a
function of p. It shows that it is more sensitive to bias than
H1/2 (p).

So far we have discussed the case where the noise is
Bernoulli(D). However in [47] and [55] it was shown that
the conditional probability of the noise can be as follows

P (e = 1|X = 0) =
D

2 · (1− p)
and

P (e = 1|X = 1) =
D

2p

which satisfies both P (e = 1) = D and P (X = 1) = p. In
this case as stated in Remark 5 ρ·E (D, p) is a lower bound on
the rate at which the ρth moment of the guesswork increases,
due to the concavity of the Shannon entropy. However, the
actual rate at which the ρth moment increases can be related
to the amount of information revealed by the helper data, that
is, H (D|X) such that the rate at which the average guesswork
increases is equal to H1/2 (P ) − H (D|X) ≥ H1/2 (P ) −
H (D). Table II presents H1/2 (P ) − H (D|X) for various
values of p and D versus H1/2 (P ) − H (D); these results
show that the behavior in both cases is very similar and that
the lower bound is very tight.

VI. EVALUATING THE SECURITY LEVEL OF WEAK PUFS
THROUGH GUESSWORK

A. Evaluation of Weak LEDPUF

We evaluate the probability mass function of a bit generated
by a weak LEDPUF based on simulation results for the

9
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Fig. 7. The min-entropy as a function of p. Note that the first derivative is
always larger than zero.

TABLE III
NOISY PUF MEASUREMENTS. ALL NUMBERS ARE PERCENTAGES.

intra-FHD inter-FHD Stability Bias Level
One Zero

SRAM PUF 2.26 48.33 93.42 49.13 50.87
RO PUF 2.48 47.13 91.19 51.38 48.62

formation of connections

pX (1) = 0.4626 pX (0) = 0.5374. (23)

The uniqueness is evaluated by calculating the fractional
inter-distance [7] of 1000 weak LEDPUFs, each producing
512 bits of response. The distribution is with mean=0.503 and
standard deviation=0.02. Since the variance value is propor-
tional to the inverse of the length of the response, as the length
of the response increases the variance value goes to zero while
the mean value goes to 0.505.

B. Measurements of Noisy Weak PUFs

Two noisy silicon PUFs: SRAM PUF and RO PUF, are
measured at 20°C in our experiments. For the SRAM PUF,
responses from 10 commercial 45nm SOI test chips with 176k
byte of SRAM cells each are obtained. Every SRAM PUF is
measured 10 times. The RO PUF is implemented on 15 Altera
DE2-115 FPGA boards. To avoid correlated CRPs, 90 CRPs
are generated from the 91 ROs in each RO PUF. Each RO
PUF is measured 10 times. No error correcting techniques are
applied on these PUFs.

The measurement results of noisy PUFs are summarized
in Table III. The intra-FHD and inter-FHD are given in the
second and third columns, respectively. Both PUFs show good
results of small intra-FHD and close to 50% inter-FHD. The
stability shown in the forth column gives the percentage of
stable bits through all 10 measurements, where a stable bit is
a bit that remains the same during all measurements. A 93%
stability for the SRAM PUF, for example, means that 7% of
the bits flip at least once during the 10 measurements. For
LEDPUF, the intra-FHD is 0% and the stability is 100%. The
bias level (percentages of ones and zeros) are given in the last
two columns.

For the RO PUF, in addition to the intra-FHD at 20°C, we
also compare the intra-FHD between 20°C and 60°C, which is
the reliability of the PUF if it is enrolled at 20°C but verified at
60°C. The results are presented in Figure 8. We can see that for

TABLE IV
GROWTH RATE OF THE EXPECTED VALUE OF THE GUESSWORK. WHEN
THE KEY SIZE OF THE PUF IS 32, THE AVERAGE GUESSWORK OF THE

SRAM PUF IS PROPORTIONAL TO 232×0.8442 , AND THE AVERAGE
GUESSWORK OF THE LEDPUF IS PROPORTIONAL TO 232×0.9980 .

PUF Type SRAM RO at 20°C RO at 60°C LEDPUF
Growth rate 0.8442 0.8323 0.4706 0.9980

most PUFs, the averaged intra-FHD at the extreme temperature
is about 12%, which implies that conventional ECC margin
with error reduction techniques for the PUF would be required.

Fig. 8. Intra-FHD at extreme temperature variation for 15 RO PUFs.

For noisy SRAM PUF and RO PUF, the expected growth
rate is calculated by plugging the intra-FHD to equation (19).
The expected growth rate of weak LEDPUF is obtained by
applying the bit probabilities given in (23) to equation (20).
The results are summarized in Table IV. We can see that
even though the weak LEDPUF is more biased than the
noisy PUFs, its guesswork growth rate is still higher than
noisy PUFs. For RO PUF at 60°C, the guesswork growth rate
becomes much worse compared with RO PUF at 20°C, which
implies quantitatively how insecure a PUF can become under
environmental variations.

To give an estimated area comparison if error correcting
techniques are applied, for a SRAM PUF to generate a secure
128-bit response with Equal Error Rate (EER) < 10−9, the
area required is about 1630µm2 using 65nm technology [46].
Using the same technology, for the weak LEDPUF to generate
a bit, the area of a SSU as shown in Figure 4 is 3.24µm2. From
Table IV we know that for weak LEDPUF to generate a secure
128-bit response, we need 128

0.998 bits (SSUs), which roughly
translates to an area of 415µm2. This shows that the area of
the SRAM PUF with EER < 10−9 is more than 3X larger than
the area of a weak LEDPUF. For the SRAM PUF with ERR
< 10−6, the area to generate 128 bits is about 604µm2, which
is still about 1.4X larger than the area of a weak LEDPUF.

VII. STRONG LEDPUF CONSTRUCTION AND
GUESSWORK ANALYSIS

A. The Construction of A Strong LEDPUF

One of the shortcomings of using memory-based PUFs for
CRPs, is the scaling of the hardware size as a function of the
number of CRPs [22]. In general, each channel response pair
requires a different set of circuits, and as a result the hardware
size is proportional to the number of CRPs. On the other hand
for strong PUFs the hardware size scales logarithmically as a
function of the number of CRPs.

In order to create a strong LEDPUF we consider a keyed
hash function along with a weak LEDPUF. The weak LEDPUF

10
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Fig. 9. A strong LEDPUF based on a keyed hash function (HMAC or NMAC)
and a weak LEDPUF.

response is used as a key for the keyed hash function. The
challenges serve as the input to the hash function, whereas
the response is the output of the keyed hash function. Figure
9 presents a strong LEFPUF based on a keyed hash function
and on a weak LEDPUF with N bits of input and L bits of
output.

It is important that the keyed hash function uses the key
in such a way that does not enable the attacker to predict
responses to unobserved challenges based on the observed
ones. Therefore, concatenating the key directly to the chal-
lenge, which is vulnerable to extension or collision attacks, is
not a good realization of the strong LEDPUF.

We create strong LEDPUF by using a weak LEDPUF as
a key for a keyed-hash message authentication code (HMAC)
[56]. Any cryptographic hash function, such as SHA-3 can be
used for HMAC. To give a rough estimation of the hardware
implementation cost of the strong LEDPUF, a lightweight
SHA-3 implementation requires about 5k gates [57]. It is worth
mentioning that in [58] the authors also propose the use of
PUFs with an HMAC in a somewhat similar manner; however,
they do not take into consideration the overhead incurred by
the instability of parametric PUFs.

The security level of a strong LEDPUF depends on the
underlying hash function and the quality of the weak LEDPUF
that serves as a key, whereas weak LEDPUFs rely solely on
the randomness in the manufacturing process.

For the simulation results, each strong LEDPUF consists of
a weak LEDPUF that provides 2x256 bits for the two initial
vectors (IV) of the nested hash, and each response is a 256-bit
stream because SHA-256 is used in the construction. The same
challenge is given to 1000 strong LEDPUFs, and the inter-
distance of the responses is a distribution with mean=0.500
and standard deviation=0.03.

To construct a strong LEDPUF, only the weak LEDPUF
can be used because of its 0% intra-distance. If other existing
weak PUFs with even small intra-distance are used, the intra-
distance of the strong LEDPUF would be increased dramati-
cally due to the avalanche effect. In other words, even a single
bit flip of the weak PUF can completely change the response
of the strong LEDPUF. Figure 10 (a) shows that the intra-
distance of the strong LEDPUF jumps from 0% to 50% as the
number of bit flips increases from zero to one.

Figure 10 (b) shows how the intra-distance of the strong
LEDPUF rises as the intra-distance of the weak PUF increases
in logarithmic scale. Since 2x256 bits of the IVs are from
the weak PUF, for a weak PUF with 0.1% intra-distance, the
probability that it generates a same 512-bit response twice is
about 60%, which translates to a roughly 20% intra-distance
of the strong LEDPUF. Therefore, only the weak LEDPUF

with a guaranteed 0% intra-distance can be used for the IV
generation.

Fig. 10. (a) A single bit flip from the weak PUF can induce a completely
different response of the strong LEDPUF due to the avalanche effect of the
hash function. (b) Intra-distance of the strong LEDPUF rises dramatically if
other weak PUFs with small intra-distances are used in the strong LEDPUF
construction.

B. The Guesswork of any Strong PUF

In this subsection we quantify the security of strong PUFs
in terms of the number of guesses required to break them.
Our results quantify the number of secure authentications
for which any strong PUF is good for. Furthermore, we
compare the guesswork of our proposed strong LEDPUF to
the guesswork of other strong PUFs that have been introduced
in the literature. Finally, to demonstrate the importance of
stability of a strong PUF, we show that the guesswork of a
stable XOR arbiter PUF is larger than the guesswork of noisy
ones, for the same number of observed CRPs.

We begin by defining the following game.

Definition 3. Consider a strong PUF, which is used by an
authentication scheme to authenticate n unique challenges
through observing their responses. The authentication problem
is defined as follows:

1) For each challenge the attacker has to guess with a
single response.

2) When the attacker does not guess correctly, it can mask
itself to receive a new challenge.

3) Once the attacker makes a correct guess it is authenti-
cated.

Remark 11. Note that when authenticating a strong PUF
through CRPs each challenge can be used only once. Fur-
thermore, the problem defined above captures a strict security
requirement that the system is compromised once the attacker
manages to deceive the verifier.

Remark 12. When the attacker fails to guess any response
correctly the attack fails. When the number of challenges is
large we show that this event decays exponentially fast.

We now find the average guesswork of the game presented
in Definition 3 as well the probability that the number of
guesses is smaller than or equal to a certain number.

Theorem 3. The average guesswork of the authentication
problem presented in Definition 3 is

E (G) = 2−H∞(1)+
n∑
i=2

i·2−H∞(i)·
i−1∏
k=1

(
1− 2−H∞(k)

)
(24)
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where 2−H∞(k) is the most probable response to the kth chal-
lenge either given that the guesses for challenges 1, . . . , k−1
were incorrect or given the previous k − 1 CRPs (these two
scenarios can lead to different min-entropy). Furthermore, the
probability that the number of guesses is smaller than or equal
to l is

Pr (G ∈ {1, . . . , l}) =

2−H∞(1) +
l∑
i=2

2−H∞(i)
i−1∏
j=1

(
1− 2−H∞(j)

)
Finally, the probability of attack failure is∏n
i=1

(
1− 2−H∞(i)

)
.

Proof. Each response has a certain statistical profile based on
the previous CRPs. When the attacker knows this profile the
optimal strategy to minimize the number of guesses is to guess
the most probable one. This in turn leads to 2−H∞(i) where
H∞ (i) is the min-entropy given that either the previous i− 1
guesses were not correct or that the previous i−1 CRPs were
revealed to the attacker. The results of the theorem follow
directly from this argument.

Corollary 1. When the statistical profile does not change
across challenges we get that

E (G) = 2H∞ −
(
1− 2−H∞

)n · (n+ 2H∞
)

(25)

and
Pr (G ∈ {1, . . . , l}) = 1−

(
1− 2−H∞

)l
. (26)

Remark 13. Note that the average guesswork (25) is equal
to

E (G) = 2H∞ − ε (27)

when n� 1, where ε� 1 decays exponentially fast.

Remark 14. When the attacker does not know the statistical
profile of the response (for instance when the structure is too
complex for him to infer it), all he can do is to guess a response
uniformly, which leads in turn to H∞ = 1.

Furthermore, in some cases the attacker can infer the
statistical profile based on the structure of a strong PUF and
a set of CRPs that have been revealed to him (see [59, 60]
for attacks on arbiter PUFs, XOR arbiter PUFs, etc.).

C. Quantifying the Security of Specific Strong PUFs

In this subsection we quantify the security level of various
strong PUFs in terms of their guesswork.

the result in (27) also applies to the case when an attacker
can observe multiple CRPs. For example model attacks over
strong PUFs [59, 60] enable attackers to accurately guess
responses based on previously observed CRPs. In terms of
guesswork it means that once an attacker observes a certain
set of CRPs, conditioned on the CRPs that have been revealed
so far, the most likely conditional probability can be very high.

The average guesswork in (27) allows us to quantify how
secure strong LEDPUF is compared to other strong PUFs from
the literature that are susceptible to model building attacks.

Strong LEDPUFs are based on HMAC, and so idealy an
attacker can not infer anything from observing CRPs in this

case. Therefore, when the number of bits at the output of a
strong LEDPUF is m, the average guesswork converges to
2m after observing any amount of CRPs. Even when the key
is biased such that each bit is drawn Bernoulli(0.53) [1], the
average guesswork when HMAC is a strongly universal set
of hash functions [61], is 2− log2(0.53)·m = 20.91·m based on
(27).

On the other hand, in [59] it has been shown for various
noise-free PUF simulations such as arbiter PUFs, XOR arbiter
PUFs and Feed-Forward Arbiter PUFs that the prediction rate
varies between 97% and 99%, after observing a few hundreds
of thousands of CRPs and implementing a model building
attack. Essentially, this type of attacks achieve a prediction
rate, which is an estimation of the probability mass function of
the next response, conditioned on a certain set of CRPs. In [59]
it leads to conditional probability of at least 2log2(0.97)·m =
2−0.04·m when the prediction rate is 97%, and so the average
guesswork under this model building attack is achieved by
assigning this probability to the average guesswork in (27) in
which case we get 20.04·m. Note that when the prediction rate
is 99% the average guesswork is 2− log2(0.99)·m = 20.014·m;
therefore, when m = 256 we get that at 97% the PUF is
20.026×256 = 100 times more secure than at 99%.

Therefore, guesswork provides a unified framework for
comparing the security level of different PUFs under model
building attacks. It can also be used as a means of understand-
ing what is the desired prediction rate for a model based attack,
and as a result how many challenge response pairs should be
observed.

Next, we compare the security of stable and noisy XOR
arbiter PUFs [59] under model based attacks in terms of the
number of guesses for which the probability of guessing the
correct response is 99%. We use equation (26) to derive the
results of this subsection.

The expression in (26) depends on the min-entropy, and so
for noisy PUFs we need to incorporate the effect of the noise
into the min-entropy. For this we use Lemma 1 in which the
min-entropy is extended to the noisy case. In Table V we
use guesswork to compare the security of stable XOR arbiter
PUFs to the one of noisy XOR arbiter PUFs with the same
number of XORs, under model based attacks. We assign the
prediction rates and noise levels reported in [59] to (26), and
find the number of guesses under model based attacks in which
the verifier has to take into account the noise as the PUF
owner observes noisy responses. The table shows how much
more secure stable XOR arbiter PUFs are when compared
to the noisy versions under model based attacks. Essentially,
it shows how susceptible such arbiter-based strong PUF is
after observing a certain number of CRPs. In fact, when the
noise level is over 5%, the probability of guessing the correct
response up to the noise level is very close to one (about 1−
10−10), which means that this PUF is completely broken. This
is because the prediction rate of each bit as reported in [59]
is 97.34%, whereas the noise level is 5% and so the chance
that the guessed response is not within the noise level of the
original response is extremely small for reasonable values of
m. Therefore, guesswork enables us to incorporate the effect of
noise and model based attacks into one framework that allows
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TABLE V
THE NUMBER OF GUESSES FOR WHICH THE PROBABILITY OF GUESSING
THE CORRECT RESPONSE IS LAGER THAN 99% WHEN m = 1024, FOR A

STABLE XOR ARBITER PUF (D = 0%), AND NOISY ONES, UNDER MODEL
BASED ATTACKS FOR WHICH 200 THOUSAND AND 500 THOUSAND CRPS

ARE OBSERVED. THE VALUES ARE BASED ON THE NOISE LEVELS AND
PREDICTION RATES REPORTED IN [59]. THE SECOND ROW PRESENTS

4-XORS, WHEREAS THE THIRD ROW PRESENTS 5-XORS.

CRPs (×103) D=0% D=2% D=5% D=10%
200 41 10 1 1
500 22 10 1 1

comparison between different PUFs and various scenarios.

VIII. CONCLUSION

In this paper we describe the stability-guaranteed LEDPUFs
that requires no stability enhancement techniques, where the
source of randomness is extracted from locally enhanced DSA
process. Inter-distance measurements on the LEDPUFs show
that both weak and strong LEDPUFs are ideally unique. The
area and latency of the weak LEDPUF is much smaller than
existing weak PUFs because no error correcting schemes
are needed. The strong LEDPUF provides large CRP space
because of its cryptographic hash based structure. The weak
LEDPUF used in the strong LEDPUF construction cannot
be replaced by existing weak PUFs because an absolute 0%
intra-distance is required for the weak PUF to avoid the
avalanche effect of the strong LEDPUF. We quantify the
security level provided by weak LEDPUF by calculating the
expected guesswork resulting from weak LEDPUFs empirical
probability function; the loss compared to a fair coin toss is
negligible.

Furthermore, we develop a unified guesswork-based anal-
yses for PUFs. We show through guesswork analysis that
stability has a more severe impact on the PUF security than
biased responses. In addition, we analyze guesswork for two
new problems: Guesswork under probability of attack failure,
and the guesswork of strong PUFs.

Our ongoing work includes exploring other sources of
LEDPUF that are more resilient to invasive attacks, such as
Scan Electron Microscopy (SEM) or Transmission Electron
Microscopy (TEM).

APPENDIX A
PROOF OF THEOREM 2

The proof relies on the method of types [50] as well as on
the following assumptions.

1) When α = D (s||p) and s > p the types for which
D (q||p) ≥ D (s||p) are p < s ≤ q ≤ 1 as well as any
0 ≤ q < p for which D (q||p) ≥ D (s||p).

2) Since the probability that a type is in A decays like
2−m·D(s||p), the conditional probability of drawing a
certain vector of type q given that q is not in A decreases
like 2−(H(q)+D(q||p))·m [50] (i.e., it decays at the same
rate as the original probability mass function).

3) When there are no constraints, the rate at which the
average guesswork of any moment increases, is the
solution to the following optimization problem

max
0≤q≤1

ρ ·H (q)−D (q||p) = ρ ·H1/(1+ρ) (p)

where ρ ·H (q)−D (q||p) is a concave function whose
maximum is at s∗.

First let us consider the case where D = 0. Since the rate at
which the conditional probability mass function decreases does
not change (as stated above), the average guesswork of any
moment is the solution to the following optimization problem.

max
q 6∈A

ρ ·H (q)−D (q||p) . (28)

When s∗ 6∈ A (i.e., when the attacker can guess s∗) which
occurs in the range s∗ ≤ s ≤ 1, the average guesswork does
not change although the probability of attack failure is no
longer zero. However, when p < s < s∗, s∗ ∈ A and since the
function is concave the solution to the optimization problem
is s, which is the closest element to s∗ among the elements
that are not in A.

In the case when D > 0 the proof follows along the same
lines as Theorem 1 in [49]. This is because the conditional
probability remains the same and therefore for the binary case
with Hamming distance, the problem can be reduced to the
following optimization problem

max
q 6∈A

(ρ ·H (q)−D (q||p))− ρ ·H (D) . (29)

APPENDIX B
PROOF OF LEMMA 1

The proof is based on the method of types [50]. We need
to find the exponential rate at which the sum

m·D∑
i=0

(
m

i

)
pi (1− p)m−i (30)

decreases. Let us define i = α · m. From the method of
types we know that the exponential growth rate of

(
m
α·m
)

is
H (α). On the other hand the rate at which pαm (1− p)(1−α)m
decreases is H (α) +D (α||p). We are interested in the most
dominant term in (30), and therefore we wish to find

min
0≤α≤D

D (α||p) . (31)

The solution to this optimization problem is the statement
of the lemma.

REFERENCES

[1] W. Wang, Y. Yona, S. Diggavi, and P. Gupta. LEDPUF:
Stability-Guaranteed Physical Unclonable Functions through
Locally Enhanced Defectivity. In IEEE HOST, May 2016.

[2] R. Maes and I. Verbauwhede. Physically Unclonable Functions:
A Study on the State of the Art and Future Research Directions.
In Towards Hardware-Intrinsic Security. 2010.

[3] B. Gassend, D. Clarke, M.V. Dijk, and S. Devadas. Silicon
physical random functions. In Proc. CCSC, 2002.

[4] G.E. Suh and S. Devadas. Physical Unclonable Functions for
Device Authentication and Secret Key Generation. In Proc.
DAC, 2007.

13



1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2774761, IEEE
Transactions on Information Forensics and Security

[5] C. Yin, G. Qu, and Q. Zhou. Design and implementation of a
group-based RO PUF. In Proc. DATE, 2013.

[6] D.E. Holcomb, W.P. Burleson, and K. Fu. Power-Up SRAM
State as an Identifying Fingerprint and Source of True Random
Numbers. IEEE Transactions on Computers, 2009.

[7] A. Maiti and P. Schaumont. Improving the quality of a Physical
Unclonable Function using configurable Ring Oscillators. In
International Conference on FPL, Aug 2009.

[8] Lerong Cheng et al. Physically Justifiable Die-Level Model-
ing of Spatial Variation in View of Systematic Across Wafer
Variability. IEEE TCAD, 2011.

[9] Lang Lin, S. Srivathsa, D.K. Krishnappa, P. Shabadi, and
W. Burleson. Design and Validation of Arbiter-Based PUFs
for Sub-45-nm Low-Power Security Applications. IEEE TIFS,
2012.

[10] D. Ganta and L. Nazhandali. Study of IC Aging on Ring
Oscillator Physical Unclonable Functions. In IEEE ISQED,
2014.

[11] W. Che, J. Plusquellic, and S. Bhunia. A Non-Volatile Memory
Based Physically Unclonable Function without Helper Data. In
Proc. ICCAD, 2014.

[12] C. Yin and G. Qu. Improving PUF security with regression-
based distiller. In Proc. DAC, 2013.

[13] L. Feiten, T. Martin, M. Sauer, and B. Becker. Improving RO-
PUF Quality on FPGAs by Incorporating Design-Dependent
Frequency Biases. In IEEE ETS, 2015.

[14] M. Majzoobi, F. Koushanfar, and S. Devadas. FPGA PUF using
programmable delay lines. In IEEE International Workshop on
WIFS, Dec 2010.

[15] T. Xu and M. Potkonjak. Robust and flexible FPGA-based
digital PUF. In International Conference on FPL, 2014.

[16] J. Delvaux and I. Verbauwhede. Key-recovery attacks on various
RO PUF constructions via helper data manipulation. In Proc.
DATE, March 2014.

[17] X. Zhang. VLSI Architectures for Modern Error-Correcting
Codes. 2015.

[18] Van Herrewege et al. Reverse Fuzzy Extractors: Enabling
Lightweight Mutual Authentication for PUF-Enabled RFIDs.
March 2012.

[19] J. Delvaux, R. Peeters, D. Gu, and I. Verbauwhede. A Survey on
Lightweight Entity Authentication with Strong PUFs. In ACM
Computing Surveys, Nov 2015.

[20] F. Armknecht et al. Towards a Unified Security Model for
Physically Unclonable Functions. In Topics in Cryptology.
2016.

[21] A. Rukhin et al. A Statistical Test Suite for Random and Pseu-
dorandom Number Generators for Cryptographic Applications.
2010.

[22] R. Maes and I. Verbauwhede. Physically Unclonable Functions:
a Study on the State of the Art and Future Research Directions.
Towards Hardware-Intrinsic Security, 2010.

[23] K. Scarfone and M. Souppaya. Guide to enterprise password
management. Recommendations of the NIST.

[24] Domenic Forte and Ankur Srivastava. On Improving the
Uniqueness of Silicon-based Physically Unclonable Functions
via Optical Proximity Correction. In Proc. DAC, June 2012.

[25] R. Kumar, S. N. Dhanuskodi, and S. Kundu. On Manufacturing
Aware Physical Design to Improve the Uniqueness of Silicon-
Based Physically Unclonable Functions. In VLSID, Jan 2014.

[26] H. T. Shen et al. Selective Enhancement of Randomness at the
Materials Level: Poly-Si Based Physical Unclonable Functions
(PUFs). In ISVLSI, July 2016.

[27] B. Xu et al. Self-assembly of liquid crystal block copolymer
PEG-b-smectic polymer in pure state and in dilute aqueous
solution. Faraday discussions, 2009.

[28] M. Kim et al. Interplay of surface chemical composition and
film thickness on graphoepitaxial assembly of asymmetric block
copolymers. Soft Matter, 2013.

[29] Y. Badr, A. J. Torres, and P. Gupta. Mask assignment and

synthesis of DSA-MP hybrid lithography for sub-7nm con-
tacts/vias. In Proc. DAC, June 2015.

[30] H. Kim, S. Park, and W. D Hinsberg. Block copolymer
based nanostructures: materials, processes, and applications to
electronics. Chemical reviews, 2009.

[31] H. Pathangi et al. Defect mitigation and root cause studies in
IMEC’s 14 nm half-pitch chemo-epitaxy DSA flow. Proc. SPIE,
2015.

[32] D. Sundrani, S. Darling, and S. Sibener. Hierarchical assembly
and compliance of aligned nanoscale polymer cylinders in
confinement. Langmuir, 2004.

[33] C. T. Black. Polymer Self-Assembly as a Novel Extension to
Optical Lithography. ACS Nano, October 2007.

[34] H. Kang et al. Degree of perfection and pattern uniformity in
the directed assembly of cylinder-forming block copolymer on
chemically patterned surfaces. Macromolecules, 2011.

[35] K. Yoshimotoa and T. Taniguchi. Large-Scale Dynamics of
Directed Self-Assembly Defects on Chemically Pre-Patterned
Surface. Proc. SPIE, 2013.

[36] M. Mller et al. Kinetics of directed self-assembly of block
copolymers on chemically patterned substrates. Journal of
Physics: Conference Series, 2015.

[37] B. L. Peters et al. Graphoepitaxial Assembly of Cylinder-
Forming Block Compolymers in Cylindrical Holes. In Journal
of Polymer Science, Dec 2014.

[38] F. Detcheverry et al. Monte Carlo simulations of a coarse
grain model for block copolymers and nanocomposites. In
Macromolecules, 2008.

[39] J. Guajardo et al. FPGA Intrinsic PUFs and Their Use for IP
Protections. In CHES, Sep 2007.

[40] C. Herder, M. Yu, F. Koushanfar, and S. Devadas. Physical
Unclonable Functions and Applications: A Tutorial. Proc. of
the IEEE, Aug 2014.

[41] D. Nedospasov, J.-P. Seifert, C. Helfmeier, and C. Boit. Invasive
PUF Analysis. In Workshop on FDTC, Aug 2013.

[42] C. Helfmeier, C. Boit, D. Nedospasov, and J.-P. Seifert. Cloning
Physically Unclonable Functions. In IEEE HOST, June 2013.

[43] Y. Dodis, A. Reyzin, and A. Smith. Fuzzy extractor, A brief
survey of results from 2004 to 2006. In Security with Noisy
Data. 2007.

[44] E. Arikan. An inequality on guessing and its application to
sequential decoding. IEEE Tran. on Inf. Th., 1996.

[45] J. Kelsey et al. Secure applications of low entropy keys. Proc.
of ISW, Sep 1998.

[46] Roel Maes. PUF-Based Entity Identification and Authenti-
cation, pages 117–141. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013.

[47] A. Aysu, Y. Wang, P. Schaumont, and M. Orshansky. A new
maskless debiasing method for lightweight physical unclonable
functions. In 2017 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pages 134–139, May 2017.

[48] J.L. Massey. Guessing and entropy. In ISIT, 1994.
[49] E. Arikan and N. Merhav. Guessing subject to distortion. IEEE

Transactions on Information Theory, May 1998.
[50] T.A. Cover and J.A. Thomas. Elements of Information Theory.

John Wiley& Sons, 2006.
[51] R. Sundaresan. Guessing under source uncertainty. IEEE

Transactions on Information Theory, 53(1):269–287, Jan 2007.
[52] R. Sundaresan. Guessing Under Source Uncertainty With Side

Information. In IEEE ISIT, July 2006.
[53] D. Malone and W. G. Sullivan. Guesswork and entropy. IEEE

Transactions on Information Theory, March 2004.
[54] M. M. Christiansen, K. R. Duffy, F. du Pin Calmon, and

M. Medard. Multi-User Guesswork and Brute Force Security.
IEEE Transactions on Information Theory, Dec 2015.

[55] Roel Maes, Vincent van der Leest, Erik van der Sluis, and Frans
Willems. Secure Key Generation from Biased PUFs, pages 517–
534. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

[56] M. Bellare, R. Canetti, and H. Krawczyk. Keyed Hash Functions

14



1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2774761, IEEE
Transactions on Information Forensics and Security

and Message Authentication. In Crypto, 1996.
[57] Peter Pessl and Michael Hutter. Pushing the limits of SHA-3

hardware implementations to fit on RFID. In CHES, Aug. 2013.
[58] S.W. Jung and S. Jung. HRP: A HMAC-based RFID mutual

authentication protocol using PUF. In ICOIN 2013.
[59] U. Ruhrmair, , et al. PUF Modeling Attacks on Simulated and

Silicon Data. IEEE TIFS, 2013.
[60] G. T. Becker. The Gap Between Promise and Reality: On the

Insecurity of XOR Arbiter PUFs. In IEEE HOST, Sep. 2015.
[61] J. L. Carter and M. N. Wegman. Universal Classes of Hash

Functions (Extended Abstract). In Proc. ACM STOC, 1977.

Wei-Che Wang received the B.S. degree in Com-
puter Science from National Taiwan University, Tai-
wan in 2007 and the M.S. degree in Electronics En-
gineering from National Taiwan University, Taiwan,
in 2009. He was with Taiwan Semiconductor Man-
ufacturing Company (TSMC) from 2009 to 2013 as
an engineer in standard cell library department. He
is currently a Ph.D. student in the NanoCad Lab
led by Dr. Puneet Gupta at University of California,
Los Angeles (UCLA) Electrical and Computer En-
gineering. His research interests include hardware

security and the development of computational techniques for optimizing
semiconductor technologies.

Yair Yona received a B.Sc. in electrical engineering
(magna cum laude), an M.Sc. in electrical engineer-
ing (magna cum laude), and a Ph.D. in electrical
engineering, all from Tel-Aviv University, Israel, in
2005, 2009 and 2014, respectively. He is currently
a research scientist at Intel Labs, Santa Clara, CA.
Between 2015 and 2017 he was a postdoctoral
scholar in the Department of Electrical and Com-
puter Engineering at the University of California Los
Angeles, Los Angeles, CA. Between 2003-2008 he
served as a DSP and algorithms engineer at several

companies, including Intel Corporation, Marvell Ltd., and Amimon Ltd.
Dr. Yona was a recipient of the Intel award for excellence in academic
studies and research (2009), a Motorola Scholarship in the field of advanced
communication (2009), and the Weinstein Prize (2010, 2014) for research in
the area of signal processing.

Suhas N. Diggavi received the B. Tech. degree
in electrical engineering from the Indian Institute
of Technology, Delhi, India, and the Ph.D. degree
in electrical engineering from Stanford University,
Stanford, CA, in 1998. After completing his Ph.D.,
he was a Principal Member Technical Staff in
the Information Sciences Center, AT&T Shannon
Laboratories, Florham Park, NJ. After that he was
on the faculty of the School of Computer and
Communication Sciences, EPFL, where he directed
the Laboratory for Information and Communication

Systems (LICOS). He is currently a Professor, in the Department of Electrical
and Computer Engineering, at the University of California, Los Angeles,
where he directs the Information Theory and Systems laboratory.

His research interests include wireless network information theory, wireless
networking systems, network data compression and network algorithms; more
information can be found at http://licos.ee.ucla.edu. He has received several
recognitions for his research including the 2013 IEEE Information Theory
Society & Communications Society Joint Paper Award, the 2013 ACM
International Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc) best paper award, the 2006 IEEE Donald Fink prize paper award.
He is currently a Distinguished Lecturer and also serves on board of governors
for the IEEE Information theory society. He is a Fellow of the IEEE.

He has been an associate editor for IEEE Transactions on Information The-
ory, ACM/IEEE Transactions on Networking, IEEE Communication Letters, a
guest editor for IEEE Selected Topics in Signal Processing and in the program
committees of several IEEE conferences. He has also helped organize IEEE
and ACM conferences including serving as the Technical Program Co-Chair
for 2012 IEEE Information Theory Workshop (ITW), the Technical Program
Co-Chair for the 2015 IEEE International Symposium on Information Theory
(ISIT) and General co-chair for Mobihoc 2018. He has 8 issued patents.

Puneet Gupta is currently a faculty member of the
Electrical and Computer Engineering Department at
UCLA. He received the B.Tech degree in Electrical
Engineering from Indian Institute of Technology,
Delhi in 2000 and Ph.D. in 2007 from University
of California, San Diego. He cofounded Blaze DFM
Inc. (acquired by Tela Inc.) in 2004 and served as
its product architect till 2007. He has authored over
100 papers, 16 U.S. patents, a book and a book
chapter. He is a recipient of NSF CAREER award,
ACM/SIGDA Outstanding New Faculty Award, SRC

Inventor Recognition Award and IBM Faculty Award. He currently leads
the C-DEN center (http://cden.ucsd.edu/index.php) which focuses on future
semiconductor technologies. Dr. Gupta’s research has focused on building
high-value bridges across application-architecture-implementation-fabrication
interfaces for lowered cost and power, increased yield and improved pre-
dictability of integrated circuits and systems.

15


