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Abstract—Directed Self Assembly (DSA) is a very promising
candidate for the sub-7nm technology nodes. To print such small
dimensions, Multiple Patterning (MP) is likely to be used to print
the guiding templates for DSA. Therefore algorithms are required
to perform the DSA grouping at the same time as the mask
assignment. In this work, we present an optimal Integer Linear
Program (ILP) to solve this problem for two schemes of hybrid
DSA-MP process. Scalable heuristic algorithms are also proposed
to solve the same problem. In comparison to the ILP, the proposed
heuristics are 4x-213x faster, and result in an increase of total
number of violations by 4%-29%.
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I. INTRODUCTION

In continuous search for new technologies to enable the
sub-7nm nodes, Directed Self Assembly (DSA) has presented
itself as a strong candidate, especially with the continuous
delay of Extreme Ultraviolet Lithography (EUVL). Even if
EUVL gets into production, there are far more challenges
with the transition to high Numerical Aperture (high-NA)
EUVL which will be needed for sub-11nm resolution, making
the partnership of EUVL with Multiple Patterning (MP) an
alternative option [1]. Thus, Multiple Patterning is expected to
enable several sub-7nm nodes. With the cost being the main
drawback of MP and with DSA having native frequency mul-
tiplication properties, substituting one mask in an MP process
with DSA is a tempting cost reduction[2]. In addition, DSA
has been reported to possess significant rectification capability
in Critical Dimension Uniformity (CDU) and Edge Roughness
for contacts[3]. DSA has been successfully demonstrated for
contact holes (for e.g., [4]) and lamellae (for e.g., [5]). Since
DSA is capable of printing dense nano features of roughly
uniform dimensions [6], it is a very good fit for contact and
via layers.

In this work, we focus on the hybrid DSA-MP process
for contact/via holes and study the problem of simultaneous
MP decomposition and DSA grouping. DSA Grouping is the
task of assigning contacts into groups such that each group
is self assembled in the same guiding template (Figure 1a),
while MP decomposition is determining the mask for every
polygon (Figure 1b). The guiding templates for DSA are
assumed to be printed using 193nm Immersion Lithography
(193i). Simultaneous DSA Grouping and Mask Assignment
required for a DSA-MP process are shown in Figure 1c, and
are the objective of the algorithms in this paper. It is required
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to determine the DSA groups and choose the mask for each
group. Details about the hybrid DSA-MP process are presented
in Section II.

(a) Grouping in DSA, resulting in four
groups: one doublet and three singletons

(b) Mask Assignment in Triple Pattern-
ing.

(c) Simultaneous DSA Grouping and Mask Assignment in a Hybrid DSA-MP process,
using Double Patterning.

Fig. 1: Grouping required for DSA process, Mask Assignment required for MP process
and Simultaneous DSA Grouping and Mask Assignment required for a DSA-MP process.

Our contribution in this work is summarized as follows:
• An optimal Integer Linear Programming (ILP) formula-

tion is presented to perform the mask assignment and
DSA grouping simultaneously, for a hybrid DSA-MP
process in which all masks apply self-assembly. Heuris-
tic algorithms are also proposed and are benchmarked
against the ILP solution.

• An optimal ILP formulation is proposed to solve the
mask assignment and DSA-grouping for a hybrid pro-
cess in which not all the masks apply self-assembly.
Heuristics are also presented to solve the same problem.

A. Multiple Patterning (MP)
The semiconductor industry has managed to scale to the

22nm node and beyond using MP [7], where pitch multi-
plication is achieved by using multiple masks to print one
layer. There are two types of Multiple Patterning: the first
one is based on N repetitions of Litho-Etch (LE)N where
N is the number of masks, and the second is Self Aligned
Multiple Patterning [7]. A lot of work has been done for
mask decomposition for both types of MP, for example: [8],
[9], [10], [11]. In this work, we assume a hybrid DSA-MP
process which uses (LE)N along with DSA.

B. Brief Introduction to DSA
Self-Assembly is the phenomenon that occurs when block

co-polymers composed of immiscible blocks phase-separate
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Fig. 2: An example DSA process of a diblock co-polymer using Graphoepitaxy

into organized structures [12]. For example, a diblock co-
polymer can self-assemble into periodic structures of one type
of block into a matrix of the other. Lithographically-printed
patterns (in the Graphoepitaxy scheme) or chemically-treated
surfaces (in the Chemoepitaxy scheme) are used to direct the
self-assembly process and are called Guiding Templates. The
graphoepitaxy process for contact holes is shown in Figure
2, where trenches are lithographically printed first, and then
the surface is spin-coated with the block co-polymer (BCP).
Upon thermal annealing, the phase separation occurs, and
with a particular BCP and surface treatment of substrate [13],
cylinders are obtained within the guiding template. Then one
of the blocks is selectively etched, and the other block is used
to transfer the pattern to the substrate underneath [14]. Thus
pitch multiplication of the lithographically-printed patterns can
be achieved. The realizable assembled pitch depends on the
properties of BCP used.

C. DSA Capabilities
The BCP has a natural pitch L0, to which it assembles,

if not strongly guided by templates. To create a hole array
with a pitch different from the natural pitch of the block
copolymer, strong confinement is needed in the templates
[15]. Small templates achieve strong lateral confinement
for the block copolymer leading to more precise control
of the self assembly process [4], [16]. In addition, smaller
defects density can be obtained with smaller size of templates
[17], [18], [19]. Accordingly templates should be designed
such that a very small number of contacts are created per
template [2]. In addition, previous research has reported
that using peanut-shaped templates with a very narrow neck
between every pair of contacts can lead to less placement
error [2]. However well-modulated peanut shapes are hard to
print in 193i photolithography, therefore it is preferred to have
the pitch of grouped contacts close to the natural pitch of the
copolymer and to avoid 2D groups altogether [2]. Diagonal
groups (which have larger pitch than L0) are also not desired
because they need very strong confinement which can only be
achieved by very complicated peanut-shape guiding templates
which are also difficult to print in 193i photolithography [20].

D. CAD Flow for DSA
In a DSA process which prints the guiding templates in a

single exposure, the guiding templates need to be determined
based on the given contact/via layer. Figure 3 shows a typical
flow that is used to design the guiding templates. First, the
DSA grouping algorithm determines which contacts are to be
assembled using the same guiding template and hence the

Fig. 3: CAD Flow for a Single-Exposure DSA Process

DSA groups are generated. The grouping algorithm has to
consider the lithography-driven spacing constraints which the
guiding templates need to satisfy. For each DSA group, a
guiding template is synthesized; the synthesis process attempts
to reverse-engineer the self assembly process in order to come
up with the correct templates. The templates then undergo
the classical optical treatment like OPC and SRAF insertion
to enhance the resolution. Finally verification is performed,
to compare the expected assembled contacts (based on the
synthesized templates) to the target contacts.

However in a technology that has multiple exposures, the
DSA grouping method has to be coupled with the mask as-
signment method. In [21], it has been shown that cascading the
traditional DSA grouping method with the Multiple Patterning
Decomposer, which are both unaware of the hybrid nature of
the process, produces poor results.

In this paper we study the optimal formulation and heuristic
algorithms that can solve the DSA grouping and Mask assign-
ment problem for two different schemes of the hybrid DSA-MP
process.

The rest of the paper is organized as follows: section II
describes the two schemes of the hybrid DSA-MP process
assumed in this work and explains the rules of the hybrid
process. In section III, we introduce the graph structure used
in our algorithms. Sections IV and V present the optimal and
the heuristic algorithms proposed for the two schemes of the
hybrid DSA-MP process. Section VI shows and analyses the
results. Finally, conclusions and future work are presented in
section VII.

II. HYBRID DSA-MP PROCESS

A. Alternative Hybrid Schemes
There are two alternative schemes for a hybrid DSA-MP

process for contact/via holes[2]. In the first scheme, each of
the N masks prints the guiding templates for DSA, then the
self-assembly of the BCP will create the actual holes. We refer
to this scheme as All DSA. In the second scheme, some of
the masks will directly print the contact holes and thus do not
go through self-assembly, but the other masks will print the
guiding templates and use self-assembly to create the holes.
We refer to this scheme as Partial DSA. The main advantage
of the second scheme is that the masks bypassing DSA can
print shapes or sizes different from the uniform dimensions
determined by DSA, for example allowing rectangular (bar)
vias which have appeared starting from the 28nm node [22].
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Fig. 4: Legal DSA groups, if maximum group size (max g) is 3

In both schemes we assume that the same-mask minimum
allowed pitch that applies to any two DSA groups has the same
value as the same-mask minimum allowed pitch that applies
between any two contacts/vias on a mask which is not applying
self-assembly. This is the pitch we refer to as litho pitch.

Under these assumptions, for a via/contact layer with all
holes having the same square dimension required by DSA,
the Partial DSA process scheme is more restrictive than the
All DSA scheme. This is proved in the next lemma.

Lemma 2.1: Any via layer which is compliant with
Partial DSA scheme and whose vias are all squares of the
same dimension determined by DSA is also manufacturable
with the same number of masks in All DSA.

Proof: Assume that there is a via layer that is manufac-
turable (violation-free) in Partial DSA, but is not manufac-
turable with All DSA, and all its vias are squares with the
dimension compliant with DSA.

The conversion from Partial DSA to All DSA is per-
formed as follows: for each contact hole that has been assigned
to a mask bypassing self-assembly, a guiding template is
created on the corresponding mask in All DSA, with one
contact/via. All the masks that are applying self-assembly in
Partial DSA are used in All DSA without change.

Since there are no violations on the original masks for
Partial DSA, there must be no violations for the All DSA
masks resulting from the conversion above. Thus a contradic-
tion exists, and this design must also be manufacturable in
All DSA.

However, designs which have bar vias in addition to the
square vias may be manufacturable in Partial DSA but not
in All DSA. This is because self-assembly of the BCP can
only result in holes with a particular uniform dimension. Holes
of non-uniform dimensions can be patterned in Partial DSA
by being assigned to the masks which do not apply self-
assembly, assuming no coloring conflicts exist.

The work in this paper is only concerned with contact/via
hole patterning. We assume that 193i is used to print the
guiding templates. Accordingly, DSA-grouped contacts are
only allowed to be collinear and either vertically or horizon-
tally aligned, because the lithography variations in guiding
templates needed for more complex DSA groups can lead to
high defectivity level in self-assembly [23]. We assume there
is a maximum number of allowed contacts per groups, which
is an input value (max g). For example, for a max g value
of 3, the legal DSA groups are the ones shown in Figure 4.

Thus, given a process which has Multiple Patterning (N
masks) and DSA, it is required to do the DSA grouping and
decompose the contact/via holes onto the N masks; in order
to minimize the number of mask violations. In a violation-free
solution, any two contacts/vias whose centers are separated by
a distance less than the same-mask minimum pitch are either
assigned to different masks or in the same DSA group on

Fig. 5: Ranges of distance between two polygons, where DSA and/or MP can resolve
the spacing conflict.

the same mask. Stitch-free decomposition has been assumed
because most of the templates are expected to have small size.

B. Important Parameters in the Process
There are several important parameters in this problem:
1) Contact/Via hole DSA-manufacturable dimension

(hole dim): the width of contact/via that is manufac-
turable though the self-assembly of the BCP. Only the
square contacts/vias of this dimension are assumed to
be DSA-manufacturable, while contact/via holes not
adhering to this dimension can only be printed in the
Partial DSA scheme.

2) Minimum Grouping Pitch (min dsa pitch): mini-
mum distance that can exist between centers of two
contact/via holes in a DSA group. This distance is equal
to the natural pitch (L0) of the block copolymer.

3) Maximum grouping distance (max dsa pitch): max-
imum distance that can exist between centers of two
neighboring contacts/vias in one DSA group. This is
derived from the properties of the block copolymer,
because its self-assembly pitch can not be stretched
beyond a certain threshold.

4) Minimum Lithography Pitch (litho pitch): minimum
space that can occur between the centers of any two
shapes on a particular mask.

5) Maximum DSA Group Size (max g): maximum
number of holes that can be DSA-grouped together, and
hence manufactured using the same guiding template.

6) Number of masks (N ): number of masks/exposures in
the process. We use b to denote the minimum number
of bits required to encode N : b = ceil[log2(N)].

The distance range between centers of any two contacts/vias
is divided into three regions, showing whether DSA grouping
and/or assignment to different masks (MP) can be used to
resolve the spacing violation, as shown in Figure 5 . Outside
the DSA-allowed range [min dsa pitch, max dsa pitch],
only MP can be used to resolve the conflict between the
two contacts. Note that it has been assumed that litho pitch
has larger value than max dsa pitch, which complies with
the ranges in literature (for e.g. [4], [24]), assuming 193i
lithography is used to print the templates.

III. HYBRID GROUPING /SPACING GRAPH
REPRESENTATION

In this section, the new graph structure which considers both
DSA and MP is explained. We use a hybrid grouping/spacing
graph (GG/SG). Each contact/via is represented as a graph
node. There are two types of edges: spacing edges, and
grouping edges. A spacing edge exists between every two
contacts whose centers are within litho pitch from each



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH XX, 2015. 4

Fig. 6: Hybrid Graph between five contacts. Grouping edges are shown as solid lines,
while spacing edges are shown as dotted curves. Distance between any two contacts/vias
on this graph is at least greater than min dsa pitch. A spacing edge exists wherever
the distance between the centers of two contacts/vias is less than litho pitch and
a grouping edge exists wherever two direct-neighboring contacts can be grouped, i.e.
distance between their centers is in the acceptable DSA grouping range, and are aligned
on same X-axis or Y-axis.

other. A grouping edge is created between every two direct-
neighboring contacts/vias that can be grouped into the same
guiding template. These contacts/vias are aligned on the same
horizontal or vertical axis, and the distance between their
centers is within the DSA grouping interval: [min dsa pitch,
max dsa pitch]. An example of the hybrid graph is shown in
Figure 6. When we are only interested in the grouping edges,
we refer to the graph as Grouping Graph (GG), and we refer
to it as Spacing Graph (SG) 1 when only the spacing edges
are of interest. Sections IV andV will show how the hybrid
graph is used in the proposed algorithms.

Graph Division: Similar to [9], we apply the graph
division technique based on connected components. The in-
dependent connected components of the hybrid graph are
determined, and each independent component can be processed
independently in the following algorithms. In our implemen-
tation, we use OpenMP threads in order to process the graph
components in parallel.

IV. ALGORITHMS FOR THE All DSA SCHEME

In this section, we present the optimal ILP formulation and
heuristic algorithms for the simultaneous DSA grouping and
MP decomposition problem for the All DSA scheme.

A. ILP Formulation
In a hybrid DSA-MP process, a conflict between two

contacts/vias means that the distance between their centers is
less than the litho pitch, but are assigned to the same mask
and they do not lie in the same DSA group. In this formulation,
the objective is to minimize the number of conflicts. The
constraints are derived from DSA as well as lithography
requirements.

The constraints are generated based on the distance between
centers of contacts/vias, according to the distance number
line shown in Figure 5 which is summarized as follows:
if the distance is less than min dsa pitch or greater than
max dsa pitch, then the two contacts/vias have to to be
assigned to different masks. If the distance is greater than
min dsa pitch but less than max dsa pitch then the pair

1Note that the “Spacing Graph” is similar to the “Conflict Graph” used in
some mask decomposition works, for e.g. [8].

Fig. 7: Example for a connected component on GG. Contacts a and c do not have direct
grouping edge, but a grouping path exists between them. Yet, they must not be grouped.

TABLE I: Notation used in ILP Formulation

mk
i kth bit of mask index of ith contact/via

gij Flag indicating if ith and jth contacts/vias
are grouped

skij Similarity variable indicating if kth bits in
masks of ith and jth contacts/vias are identical

cij Flag indicating if ith and jth contacts/vias are
in conflict

SEs set of spacing edges in GG/SG
GEs set of grouping edges in GG/SG

conn(i, j) Flag indicating if ith and jth contacts
belong to same connected component in GG

fg(i, j) Flag indicating if grouping of ith and jth

contacts is forbidden because they are not aligned
or their inter-distance is not DSA-compliant (region
A or C in Figure 5)

ord(i, j, k) Flag indicating if ith , jth and kth contacts
are collinear and ordered,
i.e. jth contact lies between ith and kth contacts

overlap(i, j,m, n) Flag indicating if group containing ith and jth

contacts overlaps with group containing mth and
nth contacts

of contacts/vias are either to be assigned to different masks
or grouped together for DSA on the same mask. Otherwise, a
conflict occurs.

To represent the problem in linear constraints, binary vari-
ables are used to encode the mask number, like [9]. Our
ILP works for Double Patterning (DP), Triple Patterning (TP),
Quadruple Patterning (QP) and other higher powers of two.
However for simplicity of the notation, we only present it for
QP, and we explain later the differences in the generated ILP
when a different number of masks is used. For QP, two bits
are required to represent the mask.

To generate the ILP constraints, it is required to construct
the hybrid graph and then find the connected components in
the GG. If two contacts/vias belong to the same connected
component, then a path of grouping edges exists between them
and therefore they can get grouped through that grouping path.
However some of them may not be groupable because they
are not manhattanly aligned, and thus their grouping has to be
explicitly prohibited via special constraints. For example, in
Figure 7, contacts a and b are allowed to be in same group,
and contacts b and c can also be in same group, but these
two simultaneous groupings imply the grouping of a and c
which is disallowed because they are not manhattanly aligned.
Therefore constraints must be added to prohibit grouping of
non-groupable pairs that lie in the same connected component
like the case of contacts a and c in Figure 7.

The variables and notation used are explained in Table I.
The mathematical formulation is as follows:
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minimize ∑
i

∑
j

cij (1)

subject to :

s1ij + s2ij − gij ≤ cij + 1 ∀ (i, j) ∈ SEs (2)

s1ij ≥ 1−m1
i −m1

j ∀ (i, j) ∈ SEs (3a)

s1ij ≤ 1−m1
i +m1

j ∀ (i, j) ∈ SEs (3b)

s1ij ≤ 1 +m1
i −m1

j ∀ (i, j) ∈ SEs (3c)

s1ij ≥ −1 +m1
i +m1

j ∀ (i, j) ∈ SEs (3d)

s2ij ≥ 1−m2
i −m2

j ∀ (i, j) ∈ SEs (3e)

s2ij ≤ 1−m2
i +m2

j ∀ (i, j) ∈ SEs (3f)

s2ij ≤ 1 +m2
i −m2

j ∀ (i, j) ∈ SEs (3g)

s2ij ≥ −1 +m2
i +m2

j ∀ (i, j) ∈ SEs (3h)

s1ij ≥ gij ∀ (i, j) ∈ GEs (4a)

s2ij ≥ gij ∀ (i, j) ∈ GEs (4b)

gij = 0 ∀ fg(i, j) = 1 (5)

gia + gja ≤ 1 + gij
∀ conn(i, j) =1, conn(i, a) = 1, conn(j, a) = 1

(6)∑
j,conn(i,j)=1,i6=j

gij ≤ max g − 1 ∀ i (7)

gij ≤ gia, gij ≤ gja ∀ ord(i, a, j) = 1 (8)

gij + gmn ≤ 1 ∀ {i, j,m, n|overlap(i, j,m, n) = 1} (9)

The objective function in Equation (1) aims at minimizing
the number of conflicts.

Each of the constraints in Equation (2) is used to set the
conflict variable between two contacts/vias having a spacing
graph edge, if they are assigned to the same mask and are
not DSA-grouped. Constraints in Equations (3a-3h) are linear
representation of the XNOR boolean relationship between
two mask bits (e.g. s1ij=m1

i XNOR m1
j ) to set the similarity

variable if the corresponding mask bits are identical. For
example, for a pair of contacts i and j, if they are both assigned
to mask 3, then m1

i = m1
j = 1 and m2

i = m2
j = 1 and if

they are not grouped, then gij = 0. Accordingly, the similarity
variables s1ij and s2ij are set to 1 due to Equations (3a-3h). As
a result, Equation (2) sets the related conflict variable cij to
1, adding 1 to the cost function in Equation (1).

The constraints in Equations (4a) and (4b) ensure that
any grouping variable between two contacts/vias can only be
asserted if the two contacts/vias are assigned to the same
mask. Constraints in Equation (5) disallow grouping of pairs of
contacts/vias that do not satisfy DSA constraints. In addition
constraints in Equation (6) impose the semantics of transitive
grouping, i.e. if contacts x and a are grouped and contacts y
and a are also grouped, then contacts x and y are grouped as

Fig. 8: Example of overlapping groups, (a, b) and (c, d); overlap(a, b, c, d)=1. If
the two groups are assigned to two different masks, the selection of both groups can be
forbidden or allowed, according to the requirements of the process.

a result. The constraints in Equation (7) enforce the maximum
group size, since smaller group sizes have been found to lead
to more robust assembly [16], [4], [2] due to better lateral
confinement.

The constraints in Equation (8) make sure that DSA groups
are continuous, and not interleaving, meaning that if two
contact/via holes can only be grouped if the contact/via lying
between them is also in the same group. Finally the constraints
in Equation (9) ensure that the groups which overlap in space
are mutually exclusive, even if assigned to different masks.
Figure 8 shows an example of overlapping groups (a, b) and
(c, d), thus overlap(a, b, c, d) = 1. If overlap of groups is
disallowed by the process, then the selection of these two
groups simultaneously will not happen even if both groups
are assigned to different masks, due to Equation (9). Note that
even if overlap between groups on different masks is allowed
by the process, these two groups will never be assigned to the
same mask because the distance between the two groups is
less than litho pitch. The two sets of constraints of Equations
(8) and (9) are optional; they depend on whether the process
allows the overlap between templates on different masks. 2

In case of Triple Patterning, one more constraint is required
per polygon to prohibit using the unused mask combination
[9], as shown in Equation (10).

m1
i +m2

i ≤ 1 ∀ i (10)

Note that for ease of understanding, the presented formula-
tion hides some details which have been implemented to save
memory. For example, the grouping variables are only created
for pairs of contacts/vias which belong to the same connected
component.

B. Proposed Heuristics
Since the optimal ILP does not scale to dense full-chip

designs, we present heuristics to solve the decomposition and
grouping problem efficiently. The objective is to try to resolve
as many conflicts as possible by grouping or assignment to
different masks. To achieve this objective, we use heuristics
to maximize the chance of grouping in the whole contact
layer, which is in return expected to maximize the possibility
of being able to fix conflicts by DSA grouping. In other
words, our objective is to find the biggest number of non-
contradicting groupable pairs of contacts. These will be the
candidate grouping options; a subset of which will be chosen
by coloring. We propose the following two heuristics:

2In all our experiments, the overlap between templates on different masks
is forbidden.
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Fig. 9: The proposed DSA Grouping - MP Decomposition flow

1) Maximum Cardinality Matching Heuristic (MCM H):
On the grouping graph, the problem of finding the biggest
number of non-contradicting groupable pairs of contacts trans-
lates to finding the maximum number of grouping edges with
no common nodes (i.e. contacts), since every grouping edge
represents a grouping opportunity for the involved pair of
contacts. This formulation is exactly the Maximal Cardinal-
ity Matching (MCM) problem, which finds the maximum
number of disjoint edges and which can be solved in poly-
nomial time using Edmond’s algorithm [25]. We used an
O(mnalpha(m,n)) implementation of the algorithm, where
m is the number of edges, n is the number of vertices and
alpha(m,n) is the inverse Ackerman function and is upper
bounded by 4.

The flow of the proposed algorithm is shown in Figure 9.
At the beginning, the hybrid grouping/spacing graph structure
described in section III is constructed. Then the maximum
cardinality matching of the grouping graph is found. If the
technology does not allow overlap between the templates on
different masks, the MCM result is processed as follows:
if the MCM result includes two pairs of matched vertices
such that their resulting groups will overlap, one of the two
pairs is arbitrarily chosen and removed from the MCM result.
Then, the spacing edges between the matched vertices (i.e. the
spacing edges that are identical to the grouping edges in the
MCM result) are removed from the spacing graph 3, and we
have a modified spacing graph SG’. The idea is to drop the
spacing edges between polygons which can be grouped. When
the Multiple Patterning decomposer is then run on SG’, it need
not assign these groupable contacts to different masks because
they can be printed as one DSA group. Then, the matched
pairs of contacts are processed; if they got assigned to the
same mask, then a DSA group is created for them on their
mask. If they got assigned to different masks, then each is left
as a DSA group of a single contact on the mask it got assigned
to.

Group Merging and Post-processing: The algorithm up
to this point can only produce groups of singletons (only
one contact/via in a group) and doublets at the largest. We
attempt to resolve the remaining coloring conflicts by merging
the conflicting groups if they satisfy the DSA constraints,

3Every grouping edge is also a spacing edge, because we assume
max dsa pitch is smaller than litho pitch.

Fig. 10: Example of the group splitting step in MCM H, assuming max g=3. A group
of four gets split into two neighboring groups of size three and one. .

thus tentatively creating groups larger than two. The merging
is attempted as follows: a GG (defined in Section III) is
constructed for the contacts/vias assigned to each mask sepa-
rately. Connected components in this GG are then determined.
In each connected component, if all the contacts/vias are
collinear and the distance between the centers of all the
neighboring vias are within the allowed DSA pitch range
[min dsa pitch,max dsa pitch]), then one group is created
for all these vias; otherwise the groups determined previously
are unchanged and the merging does not happen for this
connected component.

The merging step can result in groups exceeding the max-
imum allowed number of contacts/vias per group (max g).
Thus, a post-processing step is needed in which each such
“large” group whose size exceeds max g is split into two or
more groups as follows: the contacts/vias in a “large” group
are sorted according to their left edge coordinate (if it is a
horizontal group), or bottom edge coordinate (if it is a vertical
group). New groups are created for the sorted contacts resulting
in groups of size max g and possibly one group of size smaller
than max g. Note that a conflict will exist between every two
neighboring groups resulting from the split. An example of
group splitting is shown in Figure 10, where a group of four
gets split into a triplet and a singleton because max g = 3.

Example: Figure 11 shows an example of the flow on
a layout snippet. First, the hybrid grouping/spacing graph
(GG/SG) is constructed where the red edges are the grouping
edges and the blue edges are the spacing edges. Then, the
MCM solution (not unique in this example) is computed, where
it is found to consist of the six edges: a - b, b - c, c - d,
e - f , c - e and d - f . After removing the spacing edges
corresponding to the MCM solution, the modified spacing
graph SG’ is obtained. The graph is then colored using two
colors (for Double Patterning), in this case assigning vias a, e
and f to one of the masks and assigning vias b, c and d to the
other mask. Since the matched contacts c and d were assigned
to the same mask, they form a DSA group together. Also vias
e and f form a DSA group. One conflict remains between vias
b and c, and thus the singleton group of b is merged with the
group of c and d. The final grouping and decomposition result
is: a singleton group containing via a, a group of e and f on a
mask; and a group of b, c and d on the other mask. None of the
resulting groups contains more vias than the maximum allowed
(max g), which was assumed to be four in this example, so
the post-processing step is not needed in this example and is
not shown in Figure 11.

2) A Trivial Heuristic (Trivial H): In some cases, a much
simpler heuristic algorithm can be used. This is to drop all
spacing edges that coincide with grouping edges. The rest of
the flow of Figure 9 remains the same except that MCM is not
computed, and the modified spacing graph SG’ is created as
SG−GG; i.e. all the spacing edges coinciding with grouping
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Fig. 11: Example of the proposed heuristic algorithm MCM H. The post-processing step is not needed in this example and is not shown. .

Fig. 12: Example of the trivial heuristic algorithm Trivial H. The post-processing step is not needed in this particular example and is not shown. .

edges are removed.
Figure 12 shows an example of the flow for the trivial

heuristic on a layout snippet. As shown in the figure, all
spacing edges that coincide with grouping edges are removed
from the spacing graph, in order to create the modified spacing
graph. The rest of the flow is the same as the one shown in
the example of Figure 11.

If the technology disallows overlap between the templates on
different masks (Figure 8), one of every two grouping edges
that correspond to overlapping groups is arbitrarily chosen and
deleted (the grouping edge is deleted but the corresponding
spacing edge is not deleted).

However, this heuristic requires a constraint to make sure
that by dropping these spacing edges, there is no chance
of ending up with illegal groups. 4 Let litho dist be the
minimum allowed distance between two vias on the same
mask, which is equivalent to litho pitch − hole dim, and
let max dsa dist be the maximum allowed distance between
two vias in the same DSA group, which is equivalent to
max dsa pitch−hole dim. The required constraint is then:

litho dist >
√
2 max dsa dist (11)

If the rule values violate this constraint (for example,

4Remember that the allowed groups in this work are collinear manhattan
groups only.

(a) Layout snippet with which the trivial
heuristic may fail

(b) Corresponding hybrid graph

Fig. 13: Example of a layout snippet with which the trivial heuristic may fail, and its
corresponding hybrid graph, assuming max dsa pitch=64 and litho pitch=84

max dsa dist=50 and litho dist=70), this trivial heuristic
can not be used because it can lead to illegal groups. For
example, this trivial heuristic may fail if run on the snippet
shown in Figure 13, because all the spacing edges will be
dropped and hence one possible solution is to assign the three
vias to the same DSA group (and the same mask), and result
in an L-shaped DSA group, which is illegal. However, if the
constraint in Equation 11 had been satisfied by the values
of max dsa dist and litho dist, there would have been a
spacing edge between shapes a and c, preventing their being
assigned to the same mask, and accordingly they would not
be grouped.

In comparison to MCM H, this heuristic performs the
graph coloring on a simpler, less constrained graph, since
all the spacing edges coinciding with grouping edges are
removed, while MCM H only removes the spacing edges that
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coincide with the MCM result (MCM result is subset of GG).
Thus, Trivial H can result in fewer conflicts. However, one
disadvantage is that in Trivial H, the graph coloring algorithm
can unnecessarily result in big groups, potentially exceeding
max g vias, since there is no notion of maximum group size
constraint, once the modified SG is used as input to the graph
coloring algorithm. Each group with number of contacts/vias
exceeding max g gets split into smaller groups on the same
mask, having spacing violations among them, in the post-
processing step. This can lead to unnecessary conflicts in
the result of the Trivial H. However, this is not a problem
in MCM H, because the initial result (before the conflicting
group-merging attempt) of MCM H contains groups of two
vias at most, thus if it results in a zero-conflict solution before
group-merging , it is guaranteed to produce a final conflict-free
solution.

V. ALGORITHMS FOR THE Partial DSA SCHEME

The Partial DSA process described in Section II can
allow more flexibility in the dimensions of the manufacturable
contacts/vias. In such a process, some masks will be used
to print the via/contact holes directly and will skip the self-
assembly step. These masks can be used to print the holes
whose dimensions are not compliant to DSA. We refer to
these masks as special masks and to the vias/contacts not
having the required DSA dimensions as special holes, i.e.
contact/vias which are not squares or whose dimension is
not equal to hole dim. The holes having the required DSA
dimensions are referred to as regular holes. Note that the
methods described in Section IV can not be used as is,
because the regular vias can also be patterned on the special
masks without groups; otherwise, the special masks are not
fully utilized and unnecessary violations can exist on the non-
special masks. This is why, the problem can not be solved by
assigning all special holes to special masks and using the same
ALL DSA methods for the regular holes on the non-special
masks only.

In this section, we present the optimal ILP formulation and
heuristic algorithms for the simultaneous DSA grouping and
MP decomposition problem for the Partial DSA scheme.

A. ILP Formulation

The same variables and notations shown in Table I are used.
In addition, we use SH to refer to the set of special holes.

The cost function and constraints explained in Section IV-A
are used in this ILP formulation. However a few constraints are
added in order to model the special case of the Partial DSA
process. Namely, special mask assignment constraints and
special grouping constraints are added. The special mask
assignment constraints ensure that each special hole can only
be assigned to one of the special masks. The special grouping
constraints prohibit the grouping of holes assigned to the
special masks since these masks will not apply self-assembly.
We assume that a process can have one or two special masks,
which will be mask 0 or masks 0 and 1, respectively. We

Fig. 14: Flow of the Partial MCM H: MCM-based heuristic for the Partial DSA
scheme

show the constraints here assuming four masks are used, for
simplicity of the notation.

m1
i = 0 ∀ i ∈ SH (12a)

m2
i = 0 ∀ i ∈ SH (12b)

m2
i = 0 ∀ i ∈ SH (13)

gij ≤ m1
i +m2

i ∀ (i, j) ∈ GEs (14)

gij ≤ m2
j ∀ (i, j) ∈ GEs (15)

The mathematical formulation of the special mask assignment
constraints in case of one special mask only are shown in
Equation (12). In this case, all special holes must be assigned
to mask 0. In case of two special masks, each special hole
can either be assigned to mask 0 (002) or mask 1 (012), thus
the least significant bit (m1

i ) is not constrained. The constraint
in this case is shown in Equation (13).

In case of one special mask only, the special grouping
constraints are added in order to allow grouping only for holes
assigned to non-special masks (masks 2 (102) and 3 (112)), as
shown in Equation (14). If a hole is assigned to mask 0 (002),
which is a special mask, then all its grouping variables are
forced to 0. In case of two special masks, the special grouping
constraints are shown in Equation (15), to allow grouping to
happen only if the involved holes are assigned to mask 2 (102)
or mask 3 (112)), which are the non-special masks .

B. Proposed Heuristics
We propose two heuristic flows which can perform the DSA

grouping and mask assignment for a via/contact holes layer,
knowing that no self-assembly will take place on the special
masks.
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1) MCM Heuristic for Partial DSA (Partial MCM H):
The first proposed flow is shown in Figure 14. First, we
construct a spacing graph to represent the contact/via layer.
The spacing graph for Special holes only is colored using the
special masks only.

Next, we create a pruned grouping graph of the regular
holes; a pruned grouping graph is a grouping graph which
excludes some of the vias for which grouping is not essential
to remove conflicts. Avoiding unnecessary grouping is a useful
heuristic in Partial DSA because grouped holes can only
be assigned to one of the non-special masks; while non-
grouped holes can be assigned to any of the masks, resulting
in higher flexibility and accordingly less conflicts. We use
the fact that if a graph is N-colorable, then adding a node
with degree (number of edges) less than N makes the new
graph N-colorable too [26]. Thus, similar to the layout graph
simplification in [9]; starting from the spacing graph of
the complete layer, we perform recursive deletion of nodes
representing regular holes with degree less than the number
of masks N , but we do not delete nodes which are direct
neighbors of special holes). This is because special holes have
an additional constraint that they can only be assigned to
special masks, and accordingly the coloring options for the
neighbors of special holes can be limited, and grouping can
be the only way to resolve their conflicts in some cases.

Grouping edges are added for the remaining holes only.
The resulting graph is the pruned grouping graph. MCM is
then computed on it. The edges in the MCM solution are
then removed from the spacing graph of the matched holes
(holes which have incident edges in the MCM). The resulting
modified spacing graph (SG’) of the matched holes is then
provided as input to a Graph Coloring algorithm, in order to
assign the matched holes to the non-special masks only. This
is because the matched contacts are the candidates for being
DSA-grouped, and special masks will not have self-assembly.
After the coloring, a DSA group is created for each pair of
matched holes that have been assigned to the same mask.

At this point, each special hole has been anchored to a
special mask and each regular hole involved in the MCM
result has been anchored to one of the non-special masks
and potentially grouped. The remaining non-assigned holes
are then decomposed onto all the masks, which will have
some anchored holes from the earlier steps. Then we attempt
to resolve any remaining conflicts on the special masks by
merging adjacent DSA groups, in the same way that has been
explained in Section IV-B1.

Post-processing: Group Splitting and Mask Flipping: Fi-
nally the result is post-processed with two objectives. First,
groups with more than max g holes are split into two or
more groups, in the same method explained in Section IV-B1.
Second, we attempt mask flipping to resolve conflicts. This
is especially important because before this step, the matched
holes were only allowed to be assigned to the non-special
masks in order to be DSA-grouped if needed, but these holes
can alternatively be assigned to the special masks without
grouping. Thus, the mask of some contact/via holes can be
changed in the post-processing step to reduce the number of
conflicts.

Algorithm 1 Group Splitting and Mask Flipping for Partial DSA

Require: break groups ( a boolean flag to allow breaking down groups to decrease
conflicts)

1: for m = 1 to number of masks do
2: for group g in groups[m] do
3: if size(g) > max g then
4: split g into groups of size max g or smaller (Section IV-B1)
5: else
6: if size(g) = 1 then
7: Attempt Mask Flipping (g[1])
8: else if break groups or size of g = 1 then
9: Attempt Mask Flipping (g[1])

10: Attempt Mask Flipping (g[size(g)])

Algorithm 2 Attempt Mask Flipping
Require: contact
1: min conf ← number of conflicts of contact on mask[contact]
2: for m = 1 to number of masks do
3: n conf ← number of conflicts of contact on mask m
4: if n conf < number of conflicts of contact on mask[contact] then
5: mask[contact]← m
6: min conf ← n conf
7: if min conf > 0 then
8: for neighbor n in neighbors[contact] in SG do
9: if n is not grouped then

10: curr conf ← number of conflicts of n on mask[contact]
11: if curr conf = 0 then
12: n conf =number of conflicts of contact on mask[n]
13: if (n conf − 1) < min conf then
14: swap(mask[contact], mask[n])
15: min conf ← n conf

The algorithms used in the group splitting and mask flipping
algorithm are shown in Algorithms 1 and 2. Each group
containing more than max g holes is split into smaller groups
as explained in Section IV-B1. If a group is a singleton,
then the mask flipping algorithm (Algorithm 2) is executed
on it. If a group is not a singleton but has fewer holes than
max g and it is desired to break down groups for the sake
of decreasing conflicts (break groups = 1 in Algorithm 2),
then the group gets broken and the two holes at both ends of
the group undergo mask flipping. We choose not to attempt
mask flipping on holes lying between two other holes in the
same group, since removing such a hole can render the group
invalid because the distance between the centers of the two
other holes can exceed the max dsa pitch, and it may also
lead to overlap between groups on different masks which is
prohibited in some processes.

Given, a particular contact, the mask flipping algorithm (Al-
gorithm 2) first tries to re-assign the contact to the mask where
it would have the fewest number of conflicts, without changing
the mask assignment of the other contacts. Finding the number
of conflicts of the contact on a mask includes the effect of
grouping the contact with the neighboring groups on the new
mask. If the number of conflicts of the contact is not zero,
then we attempt a mask exchange between the contact and its
neighbors in SG). Swapping masks does not take place unless
it will result in zero conflicts for the neigboring contact, and
the neighboring contact was not grouped with other contacts.
Several iterations of the whole flow of Algorithm 1 can be
executed, adding to runtime. In practice we found that three
iterations are usually enough, first with the break groups flag
set to false in order to attempt resolving the violations with
minimum change possible first. In the second iteration, we set
break groups to true and in the third, we set it to false.

2) A Trivial Heuristic for Partial DSA (Partial Trivial H):
The trivial heuristic proposed in Section IV-B2 can also be
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TABLE II: Number of vias in test cases used in Experiments for All DSA

Test case Number of Vias
AES 48123

CortexM0 35255
LEON3 93474
MIPS 34784

TABLE III: Parameter Values (in nm) used in Experiments

min dsa pitch 34
max dsa pitch 56

litho pitch 80
max g 4

hole dim 14
L0 34
N 2 (DP) and 3 (TP)

applied to the Partial DSA scheme, by following the same
flow shown in Figure 14 with few changes. Instead of finding
the MCM on the pruned grouping graph and removing all the
matched edges from the spacing graph, all the grouping edges
in the pruned grouping graph are deleted from the spacing
graph to obtain the modified spacing graph. All shapes having
grouping edges are considered as matched holes, and the rest
are considered as unmatched holes. The rest of the flow is the
same. The same constraint explained in Section IV-B2 must
be satisfied by the rule values, in order to be able to apply this
heuristic.

VI. EXPERIMENTS AND RESULTS

A. Experimental Setup
The ILP and the heuristics were implemented in C++. Open

Access was used for layout manipulation; IBM CPLEX was
used to solve the ILP and Boost Graph API was used for graph
operations. In addition, Mentor Graphics Calibre tool was used
for Multiple Patterning decomposition (Graph Coloring). All
the experiments were run on a shared cluster [27], using four
cores and using up to 70GB of memory.

The test cases we use are: AES and MIPS from [28], ARM
Cortex M0 processor and LEON3 Sparc processor. These have
been synthesized, placed and routed, as will be mentioned
later. The experiments were performed on the Via1 layer of
the layouts.

B. Results for the All DSA Scheme
The used layouts for the experiments for the All DSA

scheme have been synthesized, placed and routed using com-
mercial 45nm SOI libraries, then sized and scaled. After
modification of the layouts, the via width is 14nm and the
minimum spacing is 21nm, which is close to ITRS contact
pitch for 2025. The number of vias in each test case is shown
in Table II.

The values that we use for our experiments are shown in
Table III, unless noted otherwise for particular experiments.

1) Comparison between Different Approaches: We com-
pare the following approaches:
ILP: the ILP formulation explained in Section IV-A
MCM H: the MCM heuristic explained in Section IV-B1
Trivial H: the trivial heuristic explained in Section IV-B2

MP GP: MP decomposition followed by DSA grouping on
each separate mask[21]
GP MP: DSA grouping followed by MP decomposition[21]
DP only: DP decomposition, without DSA, using Calibre
Double Patterning tool
TP only: TP decomposition, without DSA, using Calibre
Triple Patterning tool
MP GP and GP MP are the two simple sequential approaches
discussed in [21]. These two approaches have been imple-
mented by using the conventional Calibre Multiple Patterning
and Directed Self Assembly tools, which are not aware of the
process being hybrid DSA-MP.

In Tables IV and V, we show the number of spacing
violations between the groups in each of the layouts for
different approaches. The runtime shown for MCM H includes
the complete flow in Figure 9. MCM H has a 17% increase
in the total number of violations for DP and TP and has a
speedup of 4x , in comparison to the ILP solution. The average
group size for MCM H is 1.026 vias and 1.014 vias for DP
and TP respectively, which means that most of the vias ended
up in singletons and thus are expected to result in relatively
high yield [2]. The average group size in the ILP solution is
1.016 vias and 1.007 vias for DP and TP respectively, even
though the ILP cost function does not minimize the group
size. In addition, MCM H outperforms produces 56% fewer
violations (in total) than GP MP and MP GP.

Trivial H has a 5% increase in violations in comparison to
the ILP, and has speed of 5x. The average group size for this
heuristic is 1.0273 vias for DP and 1.015 vias for TP.

The trivial heuristic did outperform MCM H in these
test cases. As discussed in Section IV-B2, this is because
Trivial H removes all the spacing edges that coincide with
grouping edges before the graph coloring, whereas MCM H
only removes at most one spacing edge for every shape.
Thus, the graph coloring algorithm needs to solve a less
constrained problem (graph with fewer edges) in case of
Trivial H. Although Trivial H is expected to form bigger
groups, the average group size generated by both MCM H
and Trivial H are found to be approximately equal. This is
because with the used rule values, the spacing graph is non-
planar, i.e. spacing edges existed between vias which are
not direct neighbors, and since grouping edges are between
direct neighbors only, these spacing edges were not removed.
Accordingly, the coloring algorithm assigned these non-direct-
neighboring vias to different masks, creating small groups as
a result, instead of big groups on the same mask. However,
as mentioned before the rules need to satisfy the constraint
explained in Equation(11) in order to be able to use this trivial
heuristic, and the set of rule values in this experiment satisfies
this constraint. Note that in Tables IV, V and VIII only, we
ran the heuristics MCM H and Trivial H using one thread,
since the single-threaded execution for them was already fast
enough, that the overhead of thread management did add to
the runtime, but the ILP is run using four OpenMP threads.

These results are expected to be pessimistic since the layouts
are not optimized for DSA. Since technology and design are
usually co-optimized, we should expect more DSA-friendly
layouts.
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TABLE IV: Results on Layouts with DP, for the All DSA scheme

DSA + DP: ILP DSA+DP: MCM H DSA+DP: Trivial H DSA+DP: GP MP DSA+DP: MP GP DP only
Violations Time (s) Viol. Time (s) Violations Time (s) Violations Time (s) Violations Time (s) Viol.

AES 257 59 298 25 291 21 696 1 641 1 815
CortexM0 154 33 195 12 128 21 487 1 488 1 671
LEON3 268 219 303 12 280 11 680 1 642 1 779
MIPS 115 59 133 49 131 32 324 1 315 1 391
Comparison 0.96 4.35 1.12 1.15 1.00 1.00 2.63 0.05 2.51 0.05 3.20

TABLE V: Results on Layouts with TP, for the All DSA scheme

DSA + TP: ILP DSA+TP: MCM H DSA+TP: Trivial H DSA+TP: GP MP DSA+TP: MP GP TP only
Violations Time (s) Violations Time (s) Violations Time (s) Violations Time (s) Violations Time (s) Viol.

AES 2 87 2 24 2 25 29 1 6 1 29
CortexM0 1 27 2 8 1 19 28 1 7 1 28
LEON3 0 207 0 24 0 17 7 1 1 1 7
MIPS 0 0 62 0 30 1 31 13 1 5 1 1 3
Comparison 0.75 4.16 1.00 0.93 1.00 1.00 19.25 0.04 4.75 0.04 19.25

(a) Number of violations using MCM H
for DSA+DP

(b) Number of violations using MCM H
for DSA+TP

Fig. 15: Number of violations using MCM H before group merging as well as at the end
of the complete MCM H flow, for DSA+DP and DSA+TP

Fig. 16: Number of Violations vs. max g in ILP in CortexM0 testcase with DP, for the
All DSA scheme

In Figure 15, we show the number of violations at two
points in the flow of MCM H: before group merging and
splitting, as well as the end of the whole flow shown in Figure
9. The group merging and splitting steps does help reduce the
number of violations significantly for DSA+TP case.

2) Change in the Number of Violations with the Maximum
Group Size: In Figure 16, we show how the number of
violations from ILP changes as the maximum group size
changes, on CORTEXM0 in DP. The size of the formed groups
did not exceed four. Moreover, by restricting the maximum
group size to two and three contacts per template, a 1.9%
and a 1.3% increase in the number of violations are acquired
respectively, which is a small penalty, given that the assembly
process is more robust for small groups.

Fig. 17: Number of Violations with TP only, TP + DSA using MCM H, QP only, for
the All DSA scheme

3) Possibility of Replacing a Mask, by using DSA :
Another experiment was performed in order to assess the
effectiveness of the assumed hybrid DSA-MP process. In
Figure 17, the number of violations for each of the complete
layouts is shown as a result of doing TP only, TP with DSA
using MCM H and finally QP only. Without the use of DSA,
it is likely that QP is needed, leading to a higher cost process.
However with DSA, at most two violations existed in each
test case and these violations are likely to be eliminated when
DSA-friendly design rules and layouts are available.

C. Results for the Partial DSA Scheme
In this section we show results for the second DSA-MP

integration scheme which is Partial DSA. To evaluate the al-
gorithms for Partial DSA we synthesized, placed and routed
the same designs with a 28nm library which has rectangular
vias, in addition to square vias. The resulting layouts were
sized and scaled. After modification of the layouts, the via
width is 14nm and the minimum spacing is 20nm. Moreover,
to be able to benchmark the heuristic against the optimal ILP,
a snippet was used from each layout because otherwise the
ILP either did run out of memory or did not finish within 12
hours using four threads.

The number of vias in each snippet and complete layout
is shown in Table VI. The test cases are named in this way
because “rv” indicates that these test cases have rectangular
vias, “s” indicates that a snippet of the layout is used and “srv”
indicates that the layouts have sparser usage of rectangular vias
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TABLE VI: Number of vias in test cases used in Experiments for Partial DSA

Test case Num. of Vias Num. of Rect. Vias Num. of Square Vias
AES rv s 1551 239 1312

CortexM0 rv s 1758 246 1512
LEON3 rv s 1608 178 1430
MIPS rv s 1691 204 1487

AES rv 124451 16585 107866
CortexM0 rv 107481 14295 93186
LEON3 rv 374993 47794 327199
MIPS rv 129659 17749 111910

AES srv s 7835 11 7824
CortexM0 srv s 2630 105 2525

LEON3 rv s 2678 126 2552
MIPS srv s 8296 384 7912

AES srv 116974 2457 114517
CortexM0 srv 98792 3053 95739
LEON3 srv 340156 21943 318213
MIPS srv 119238 5953 113285

TABLE VII: Parameter Values (in nm) used in Experiments for Partial DSA

min dsa pitch 33
max dsa pitch 56

litho pitch 80
max g 4

hole dim 14
L0 34
N 4 (QP)

than “rv”. The used rule values are shown in Table VII.

1) Comparison between Different Approaches: We use
Partial MCM H to refer to the flow described in Section V-B1
and Partial Trivial H to refer to the trivial heuristic described
in Section V-B2. Both are compared to the optimal ILP in Ta-
ble VIII with respect to the number of violations and runtime.
We assume a process with Quadruple Patterning where only
two of the four masks apply self-assembly (i.e. two masks are
special masks). The number of violations is counted between
the DSA-groups on the non-special masks and between the
via holes on the special masks. Partial MCM DSA has an
18% increase in the number of violations in comparison to the
ILP solution and has a speedup of 23x, and an average group
size of 1.33 vias on the non-special masks . Partial Trivial H
also has 14% increase in the number of violations and has a
speedup of 29x speedup and an average group size of 1.69 vias
on the non-special masks. The average group size on the non-
special masks for ILP is 1.21 vias on the non-special masks. In
the Partial DSA scheme, the trivial heuristic did outperform
MCM H, and did not have larger group size, due to the same
reasons explained in Section VI-B1.

We also show results of the sequential approaches Par-
tial GP MP and Partial MP GP in Table VIII. In Par-
tial GP MP, the regular holes are grouped using Calibre DSA
tools. The special holes are multi-patterned onto the special
masks only and the grouped regular holes are multi-patterned
onto the non-special masks and anchored. Finally the regular
holes which were not grouped are multi-patterned onto all the
masks. Whereas in Partial MP GP, the special holes are multi-
patterned on the special masks only, and the regular holes are
multi-patterned onto all the masks. The regular holes which get
assigned to each of the special masks undergo DSA grouping.
The number of violations using QP only without DSA (done

Fig. 18: Number of violations using Partial MCM H before group merging, after group
merging and splitting and finally using the complete flow.

using Calibre QP tool) is also shown in Table VIII.
The two heuristics Partial MCM H and Partial Trivial H

as well as the sequential approached Partial GP MP and
Partial MP GP have been run on four complete test cases. The
results are shown in Table IX, along with results of QP de-
composition, without DSA, using Calibre QP tool. The average
group size on the non-special masks for Partial MCM H
on the complete test cases is 1.39 vias, while that of
Partial Trivial H is 1.38 vias.

The big number of violations is attributed to two closely-
related reasons. First, these layouts are not DSA-aware. Sec-
ond, there is a lot of rectangular vias in the layouts, and there
are cliques of four rectangular vias in the layouts requiring
four masks, as opposed to two special masks only in these
experiments. This is why QP without DSA is more appropriate
for these layouts.

As shown in Table IX, Partial Trivial H sometimes has
longer runtime than Partial MCM H in relatively dense test
cases like LEON3 where the majority of the vias lie in the same
connected component of the graph. This is because the process
of checking for overlap between candidate groups takes more
time as the number of candidate groups increases.The candi-
date groups in Partial Trivial H are all the grouping edges
in the pruned grouping graph, while in Partial MCM H the
candidate groups are the MCM result set only. 5

Figure 18 shows the number of violations using Par-
tial MCM H before group merging; after grouping merging
and splitting but without mask flipping; and using the complete
flow Partial MCM H. The group merging and mask flipping
improve the quality of the heuristics by decreasing violations.

2) Results with Sparse Usage of Rectangular Vias:
The density multiplication feature of DSA can not apply to
rectangular vias. Thus in order to print rectangular vias using
a DSA-based technology, larger spacing design rules need to
be enforced between rectangular vias. To empirically test this
claim, we synthesized layouts after increasing the minimum
space design rule between rectangular vias by 87% and did not
instruct the router to exert high effort in using the rectangular
vias. The resulting layouts have fewer rectangular vias than
the ones used in Tables IX and VIII, as shown in Table VI.

The results are shown for the clips in Table X and for
the complete layouts in Table XI. With the sparse usage
of rectangular vias, Partial DSA can indeed help increase
the via density in comparison to QP; QP does produce a

5The process of checking overlap can be made faster by using a spatial
hashing technique similar to the method in [29].
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TABLE VIII: Results on Layout Clips with QP, for the Partial DSA scheme. p s is percentage of contacts assigned to special masks.

Partial DSA:ILP Partial MCM H Partial Trivial H Partial GP MP Partial MP GP QP only
Viol. Time(s) p s (%) Viol. Time(s) p s (%) Viol. Time(s) p s (%) Viol. Time(s) Viol. Time(s) Viol.

AES rv s 22 78 51 26 15 47 25 7 46 29 1 31 1 1
CortexM0 rv s 30 54 51 37 11 50 35 8 52 42 1 44 1 2
LEON3 rv s 8 378 47 8 9 40 8 10 39 19 1 9 1 0
MIPS rv s 5 416 46 6 5 39 6 7 50 18 1 21 1 0
Comparison 0.88 28.94 1.04 1.04 1.25 0.94 1.00 1.00 1.00 1.46 0.13 1.42 0.13 0.04

TABLE IX: Results on Complete Layouts with QP, for the Partial DSA scheme. p s is percentage of contacts assigned to special masks.

Partial MCM H Partial Trivial H Partial GP MP Partial MP GP QP only
Viol. Time(s) p s (%) Viol. Time(s) p s (%) Viol. Time(s) Viol. Time(s) Viol.

AES rv 1827 141 46 1835 136 45 2174 4 2286 3 60
CortexM0 rv 1214 268 46 1216 127 45 1543 4 1624 3 22
LEON3 rv 2842 881 38 2830 1962 38 5677 15 6264 7 93
MIPS rv 1362 143 44 1350 141 43 1952 4 2067 3 15
Comparison 1.00 0.61 1.02 1.00 1.00 1.00 1.57 0.01 1.69 0.01 0.03

TABLE X: Results on Layout Clips with Sparse Rectangular Vias with QP, for the Partial DSA scheme. p s is percentage of contacts assigned to special masks.

ILP Partial MCM H Partial Trivial H Partial GP MP Partial MP GP QP only
Viol. Time(s) p s (%) Viol. Time(s) p s (%) Viol. Time(s) p s (%) Viol. Time(s) Viol. Time(s) Viol.

AES srv s 0 8922 47 2 14 49 0 16 49 5 2 6 2 5
CortexM0 srv s 0 2335 43 1 10 43 0 13 43 3 2 3 2 3
LEON3 rv s 0 2607 41 2 14 43 0 14 42 3 1 4 2 1
MIPS srv s 1 4882 47 3 15 44 2 17 43 28 2 29 2 0
Comparison 0.50 312.43 1.00 4.00 0.88 0.52 1.00 1.00 1.00 19.50 0.12 21.00 0.13 4.50

Fig. 19: Number of violations using Partial MCM H before group merging; after group
merging and splitting but without mask flipping; and using the complete flow, on the
complete layouts with sparse rectangular vias.

number of violations which is 8 times larger than that of
Partial Trivial DSA on the complete layouts.

Figure 19 shows the number of violations using Par-
tial MCM H before group merging; after grouping merging
and splitting but without mask flipping; and using the com-
plete flow of Partial MCM H, on the layouts having sparse
rectangular vias.

VII. CONCLUSION

In this paper, we presented algorithms to solve the simul-
taneous DSA grouping an MP Decomposition required for
a hybrid DSA-MP process. Two schemes of such a hybrid
process were studied. Optimal ILP formulation for the problem
was presented for both schemes. Then we proposed efficient
heuristic algorithms to solve the same problem, on the full-chip
level, for each of the two schemes. The results of the heuristics
are benchmarked against the ILP results. In our future work,
we will generalize to other grouping structures that can be
enabled by using EUVL to print the guiding templates.
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