
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON RELIABILITY 1

MEMRES: A Fast Memory System
Reliability Simulator

Shaodi Wang, Student Member, IEEE, Henry (Chaohong) Hu, Hongzhong Zheng, Member, IEEE,
and Puneet Gupta, Member, IEEE

Abstract—With scaling technology, emerging nonvolatile de-
vices, and data-intensive applications, memory faults have become
a major reliability concern for computing systems. With various
hardware and software approaches proposed to address this issue,
a comprehensive evaluation is required to understand the effective-
ness of these solutions. Considering the complex nature of various
memory faults as well as interactions between various correction
mechanisms, we propose MEMRES, a fast main memory system
reliability simulator. It enables memory fault simulation with error-
correcting code (ECC) algorithms and modern memory reliabil-
ity management, including memory page retirement, mirroring,
scrubbing, and hardware sparing. MEMRES is computationally
efficient in obtaining memory failure probabilities in the presence
of multiple failure mechanisms and complex correction scheme,
allowing the optimization of memory system reliability, the pre-
diction of emerging memory reliability, and designing a reliability
enhancement technique. The accuracy of MEMRES is verified by
an existing analytical model and an existing memory fault simu-
lator. We performed a case study on spin-transfer torque random
access memory (STT-RAM)-based main memory, and the results
indicate that in-memory ECC can significantly mitigate the write
error rate of STT-RAM, demonstrating the capability of handling
emerging memory system.

Index Terms—Memory fault, memory mirroring, memory page
retirement, memory reliability, magnetic random access mem-
ory (MRAM), reliability management, retention error, simulator,
sparing, spin-transfer torque random access memory (STT-RAM),
write error.

NOMENCLATURE

λ Failure rate.
BL Burst length.
k Number of faulty symbols.
M Memory size.
MapSsize Number of addresses in an FM/AM.
NS Number of symbols in an ECC word.
NMFS Maximum correctable symbols of an

in-controller ECC.
NPFB Number of possible faulty bits in

a symbol.

Manuscript received December 17, 2015; revised April 25, 2016; accepted
August 24, 2016. This work was supported by the NSF Variability Expedition
under Grant CCF-1029783. Associate Editor: E. Pohl.

S. Wang and P. Gupta are with the Department of Electrical Engineering,
University of California, Los Angeles, CA 90095 USA (e-mail: shaodiwang@
g.ucla.edu; puneet@ee.ucla.edu).

H. (C.) Hu and H. Zheng are with Samsung Semiconductor, San Jose,
CA 95134 USA (e-mail: henry.hu@ssi.samsung.com; hz.zheng@ssi.samsung.
com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TR.2016.2608357

Pcorrect symbol Probability that a symbol covered by an
FM is ECC correctable.

PFB Probability that a bit covered by an FM is
faulty.

PwrErr fail ctrECC Probability that an in-controller ECC
failure is caused by the intersection of
write/retention error and memory faults.

PwrErr fail memECC Probability that an occurrence of a
write/retention error in an accessed
symbol causes an in-memory SECDED
failure.

SL Symbol length (number of bits output
from a chip in an access).

Pcorrect word Probability that a word covered by an FM
is ECC correctable.

Pfail Probability that memory failure is caused
by an intersection of one memory fault
and one transient fault.

Pintersect Probability that two injected faults
intersect.

Pperm (t1) Probability that a permanent fault occurs
at time t1 .

Pperm (t2) Probability that a transient fault occurs at
t2 .

AM Access-map, a data structure that statis-
tically models memory read/write opera-
tions on a memory space in a period of
time.

Chipkill ECC codes that can correct any errors
from single chip.

Cover-Rate Percentage of valid addresses in an
FM/AM.

DDDC Double-device data correction.
DIMM Dual in-line memory module.
DRAM Dynamic random access memory.
ECC Error-correcting code.
FIT Expected number of failures in one billion

device-hour.
FM Fault-map, the basic data structure in

MEMRES, describing the address, cov-
erage, and number of faulty addresses in
a faulty memory space.

I Intersection of A and B.
SBT Single-bit transient errors, including data-

link error, retention error of STT-RAM
and write error of STT-RAM.

SBTER Single-bit transient error rate.

0018-9529 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

http://www.ieee.org/publications_standards/publications/rights/index.html


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON RELIABILITY

SCCDCD Single-chip-correction-double-chip-
detection.

SECDED Single-error-correction-double-error-
detection.

STT-RAM Spin-transfer torque random access
memory.

I. INTRODUCTION

R ECENTLY, many datacenter studies [1]–[4] point out that
main memory reliability is becoming a crucial problem

in computing systems. Although the per-bit memory failure
rate improves with technology development, the improvement
cannot compensate the growing memory density required by in-
creasing data-heavy applications, and hence worsened memory
failure rate has been observed [4]. Moreover, the possible in-
troduction of emerging nonvolatile memories in the future will
exacerbate the reliability problem [5], [6]. The consequences of
memory failure are frequent system failure recovery and faulty
memory replacement, which result in reduced serviceability
and increased costs. Improving the reliability of a future mem-
ory system requires a good understanding of memory failure
mechanisms and reliability enhancement techniques.

Evaluation of modern memory systems is nontrivial, because
memory failure is caused by a large variety of memory fault
types [1], [2], [4], and various sophisticated techniques (see
Fig. 1) have been proposed to repair the faults. Most previous
evaluation studies have relied on analytical models, e.g., [7]. As
is illustrated in Fig. 1, the models are insufficient to handle a
variety of memory fault types simultaneously, to capture the
effects of reliability enhancement techniques and to incorporate
application influence. First, memory failure is caused by multi-
ple fault types and their interaction; however, developing mod-
els that include all fault types and interactions is an impractical
task, and missing a fault type may result in significant accuracy
loss. For example, the data-link error [8], [9] and nonpersistent
error of emerging memories [10], [11] are not considered in
any existing models, and their interaction with other memory
faults can induce the most failures that crash memory systems.
Second, a memory failure model is strongly dependent on relia-
bility enhancement techniques; sophisticated ECC, e.g., DDDC
[12], [13], and memory reliability management (see Fig. 1) dra-
matically add to the modeling difficulty. Third, fault rate varies
with application and time [3], [4], but analytical models assume
a constant fault rate.

Experimentally analyzing memory faults requires a large sta-
tistical experiment setup. Field studies [1]–[4] have recorded
and analyzed memory errors in data centers for over a year.
Despite the high cost, conflicting conclusions exist in these
studies for lacking the access to finer granularity of memory
fault interaction and uncontrolled hardware design variables. In
addition, due to the dependence of memory fault on application
and memory architecture [3], the conclusion from a field study
is difficulty to use to predict the reliability of other computing
systems. Therefore, efficient and flexible simulation method-
ologies that can perform finer analyses are required in memory
reliability study.

Fig. 1. Limitation of analytical models and FaultSim on memory reliability
evaluation. The reliability enhancement techniques in gray boxes can only be
evaluated by MEMRES.

Various memory fault simulators have been developed and
used in industry and academia [14], [15]. However, these simu-
lators are unsuitable for the purpose of obtaining memory fail-
ure probability. They focus on fault propagation, which involves
great computation of logic circuit topology simulation [16]. To
obtain failure probability requires many Monte Carlo simula-
tions, which lead to unacceptably run time (e.g., million device-
years). FaultSim is a recent developed high-speed Monte Carlo
DRAM fault simulator [17]. It takes a few hours (seconds in
the event mode) to obtain years-long DRAM failure probability.
However, FaultSim does not support modern memory system
fault simulation due to several missed models, e.g., memory
access behavior and memory reliability management.

An effective memory reliability simulator should be able
to handle the advanced techniques used in state-of-the-art
memory systems while minimizing the computation involved
in the simulation. We propose MEMRES, an efficient mem-
ory reliability simulator that satisfies this need. It performs
long-term (i.e., month-year) memory system reliability simu-
lation. Table I compares the analytical model [7], FaultSim
[17], and MEMRES. In addition to supporting all features of
the analytical model and FaultSim, MEMRES enables sim-
ulation with varying fault rate/density and memory access
density/distribution, in-memory and in-controller ECCs, and
modern reliability enhancement techniques. As examples,
MEMRES differently models fault with faulty bit density ac-
cording to the truth that a fault usually has < 1% faulty bits in its
coverage (e.g., a bank fault only affects < 1% rows) [1], [4], and
MEMRES adds the memory access into fault simulation, where
a fault is only activated after being accessed. To support finer
granularity of memory system fault simulation without involv-
ing large run time overhead, we developed statistical models for
most of new features in MEMRES, which are described in the
following sections. they enable MEMRES to run as fast as Fault-
Sim’s interval mode (see run time in Table I). Due to the finer
memory modeling and new features, MEMRES would not be
sped up like FaultSim by the event mode. However, MEMRES
supports parallel computation, which takes 50 min to complete
100 000 5-year of memory reliability Monte Carlo simulations
using eight threads.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: MEMRES: A FAST MEMORY SYSTEM RELIABILITY SIMULATOR 3

TABLE I
COMPARISON WITH EXISTING MEMORY FAULT ANALYSIS METHODS

Analytical FaultSim MEMRES
model [7] [17]

SECDED, Chipkill � � �
Advanced ECCs, e.g.,

ECC V-ECC [18], × � �
SWD-ECC [19]
In-controller ECC � � �
In-memory ECC × × �
Constant FIT � � �

Fault Temporal variation × × �
model (Fig. 16)

Spacial variation × × �
(FIT) Data-link and × TSV errors �

retention errors

Memory Uniform access � � �
access Temporal variation × × �
model Spacial variation × × �

(Fig. 12)

Scrubbing × � �
Memory Hardware sparing × × �
reliability (Fig. 13)
management Page retirement × × �

(Fig. 14)
Mirroring (Fig. 15) × × �

6.6 h 5.2 h
Run time < 1 ms (interval) (1 thread)

6.7 s 50 min
(event) (8 threads)

Run time is measured using single-core on AMD Opteron Processor 2380. FaultSim
has event mode, which uses analytical models to partially replace Monte Carlo fault
injection in regular interval mode to speedup simulations.

Compared with existing silicon-based memories, emerging
memories potentially suffer more severe reliability problems.
MEMRES is capable of predicting the reliability of emerging
memories. To demonstrate this capability, we use STT-RAM
[20]–[22] as a vehicle to explore optimized designs of dif-
ferent memory reliability enhancement techniques. STT-RAM
promises the speed, area, and endurance of DRAM [23] while
holding the nonvolatility, and hence, is identified as a possi-
ble replacement of DRAM [24]. However, STT-RAM faces the
challenge of write errors and retention errors due to process
variation [11], [25]–[29]. Adding models of the new memory
errors are convenient in MEMRES.

Our contributions are summarized as follows:
1) We implement an fast memory reliability simulator. This

simulator takes minutes to obtain precise memory failure
probability and reasons.

2) MEMRES can model memory access behavior, which dif-
fers from applications. The access behavior was ignored
by existing models and reliability simulators, but has been
demonstrated to significantly impact fault characteristics.

3) To our best knowledge, memory reliability management is
for the first time modeled and simulated including mem-
ory scrubbing, row/column/rank sparing, memory page
retirement, and memory mirroring.

4) Multiple failure mechanisms including data-link errors
[8], [9] and nonpersistent errors [10] are modeled and

Fig. 2. Framework overview of MEMRES.

demonstrated to affect the effectiveness of reliability en-
hancement techniques. These transient errors are ignored
by previous studies.

5) New models are derived including the failure probability
model of memory system with both in-memory ECC and
in-controller ECC (see Fig. 7) and the interaction between
transient faults and permanent faults.

6) We improved the data structure used in [17] by adding the
parameters Cover-Rate and Access-Rate, which improve
simulation accuracy.

7) The reliability of an STT-RAM based main memory and
effectiveness of memory reliability enhancement tech-
niques (ECC designs, algorithms, and memory reliability
techniques) are evaluated.

The paper is organized as follows. Section II describes data
structures, basic operations, and models used in MEMRES.
Section III validates MEMRES by the analytical model
[7], derived models for transient faults, and FaultSim [17].
Section IV evaluates the reliability of STT-RAM designs with
different retention time, write time, ECC designs, and algo-
rithms, memory reliability managements, and fault models.
Section V concludes our work.

II. MEMRES SOFTWARE FRAMEWORK

Fig. 2 illustrates the overview of MEMRES tool flow. MEM-
RES comprises of two components: pre-sim processing and the
Monte Carlo simulator.

A. Presim Processing

The presim processing is a one-time procedure for modeling
memory fault and memory access behavior. Simply incorporat-
ing memory traces in simulation is impractical due to the fact
that the memory traces occupy large memory space (one-second
memory traces require several GB storage space) and dramati-
cally affects simulation speed. In MEMRES, pre-sim processing
extracts memory access density distribution from memory ac-
cess traces and passes it to the Monte Carlo simulator in the form
of AM, which is a basic data structure in MEMRES. An AM
models the access density on a specified memory address space
(e.g., one column, one bank, one channel, etc.) in a specified



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON RELIABILITY

Fig. 3. Memory reliability simulation. The simulation divides years-long memory lifetime into short intervals. In each interval, events of random fault injection,
ECC checks, and memory reliability management are simulated. The simulation terminates when an uncorrectable fault occurs or it reaches the end of preset
simulation time.

period. As is shown in Fig. 2, memory access spacial variation
in a time period (e.g., some space is more intensively accessed)
can be captured by multiple AMs, and temporal variation (e.g.,
memory access density differs from time) can also be described
by having more AMs. Hence, access behavior of one application
can be captured by a set of AMs. In addition, a server running
multiple applications can be described by passing multiple sets
of AMs alternatively to simulator. The presim processing also
calculates fault failure-in-time (FIT, expected number of failures
in one billion device-time) for each AM individually according
to the memory fault model (e.g., more frequently accessed AM
has higher write error rate).

B. Monte Carlo Simulator

The Monte Carlo simulator performs a number of memory
reliability simulations, and every simulation simulates a mem-
ory’s lifetime (over years) reliability behavior. These simula-
tions differ from each other due to random event modeling
like fault injection, and hence the memory failure rate and rea-
sons can be statistically extracted from them. The configuration
of memory architecture, reliability designs including ECC de-
signs, ECC algorithms, and memory reliability management is
input of MEMRES. The procedure of one memory’s lifetime
simulation is shown in Fig. 3. The simulation divides mem-
ory lifetime into short intervals and then simulates one interval
after another. In each interval, four events are simulated includ-
ing random fault injection, in-memory ECC check, in-controller
ECC check, and memory reliability management. In the module
of random fault injection, the probability of fault occurrence in
one interval is first calculated according to fault FIT rate. Then,
faults are randomly injected based on the calculated probability,
and injected faults are stored in a memory fault-collection. In-
memory single-bit transient errors like retention errors and write
errors are also injected, which may intersect with the faults in
the memory fault-collection. The fault injection models are de-
tailed in Section II-E1. In the module of in-memory ECC check,
injected faults are checked whether they can be corrected by
the in-memory ECC. The uncorrectable in-memory ECC faults

are added to an uncorrectable in-memory ECC fault-collection.
These faults may intersect with injected data-link errors to pro-
duce uncorrectable errors. The faults and data-link errors are
checked together against in-controller ECC. Once an uncor-
rected in-controller ECC fault is accessed by an AM, a memory
failure is produced and terminates current simulation. The de-
tailed ECC model is discussed in Section II-E2. The detectable
faults are added to a detected fault-collection. In the module
of memory reliability management, repairing techniques can
be triggered by detected faults to physically repair memory de-
vices or to systematically block accessing to the detected faults.

C. Fault-Map and Access-Map

In the field studies [1], [2], detected faults are classified to
several fault types, e.g., a row, a column, and a bank. A fault
type defines a faulty region where multiple memory errors are
produced. Examples of fault types are illustrated in Fig. 4. Larger
fault types are likely caused by logic circuit failure. For example,
a sense amplifier fault may lead to read errors in a column
(column fault), or a particle hitting a bank decoder may cause
errors in a bank (bank fault). Individually storing the affected bits
in the simulator data structure requires a huge memory space.
Such a large fault can be represented by a single data structure.
This structure is comprised of Mask and Address. Mask specifies
the fault size, and Address locates the fault in memory space.
This data structure is efficient in terms of computation speed and
memory consumption. However, this structure assumed that all
addresses in a fault are faulty, which is incorrectly. Most fault
types have only < 1% faulty addresses in their covered memory
space [1], [2]. In order to accurately model the fault behavior,
we add another statistical parameter, Cover-Rate (ranging from
0 to 1), to represent the percentage of faulty addresses in a fault.
The Mask, Address, and Cover-Rate comprise a FM, which is
the basic data structure in MEMRES to represent faults.

In order to catch application-dependent fault behavior and
model system-level reliability enhancement techniques, MEM-
RES uses AM to model memory access behavior. It has five
parameters, including Mask, Address, and Cover-Rate, which



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: MEMRES: A FAST MEMORY SYSTEM RELIABILITY SIMULATOR 5

Fig. 4. Memory architecture and memory fault types. A bank is constructed by
columns and rows (several rows are grouped in a mat, which is not shown in the
figure). Eight banks are built in a chip (device), and nine × 8 chips (8 data chips
+ 1 ECC chip) or eighteen × 4 chips (16 data chips + 2 ECC chips) construct a
rank. Several ranks are built in a channel. In a write or read operation, a channel
and a rank is firstly selected by a decoder, and then a word is written/read
across all chips in the selected rank, e.g., every × 8 chip in a rank outputs
8 bits to comprise a 72-bit word (64 data bits + 8 ECC bits), where all chips in a
rank share the same addresses. A fault type is defined by the component that is
affected, e.g., a bank fault indicates multiple faulty rows/columns in the bank.

have the same definitions as in FM except that they model ac-
cessed memory space not faulty space. In addition, AM also
contains another two parameters: Access-Rate representing ac-
cess rate in an AM (number of read/writes in an hour) and FIT
representing fault rate (expected number of faults in a billion
device-hour). As is mentioned in Section II-A, memory access
behavior changes over time and memory space creating the need
of a set of AMs for different simulation intervals and memory
space. Finer division in time and space leads to higher modeling
accuracy, but results in more AMs, calculations, and simulation
time. The tradeoff between speed and accuracy is analyzed in
Section II-F.

Fig. 5 shows examples of FM/AMs A, B, and C. Address
and Mask are sets of binary bits, which represent a region of
device addresses (i.e., physical location in memory). In Fig. 5,
FM/AM A only occupies the column 100, so its column address
is 100. To tell MEMRES that A’s three column address bits are
valid (i.e., all these the three bits are required to determine A’s
location, so they are valid), A’s column mask should be set to
000, where mask bit 0 means that the corresponding address
bit is valid, and mask bit 1 means that the corresponding bit
is invalid (masked). As A covers all rows from row address
000 to 111, row address bits are not necessary to determine
A’s position, its row mask is 111 to set all corresponding row
address bits invalid. For calculation simplicity, address bit is
set to 0 when it is invalid. Similarly, B locates in the row 011,
hence, its row address is 011 and valid, and row mask is 000.
As B covers columns 000, 001, 010, and 011, and only the
first address bit determines B’s position and is valid. Therefore,
its column mask and address are 011 and 000, respectively,
where the first address bit 0 indicates that B covers the left four
columns. FM/AM C is a single bit, and all address bits are valid.
The Cover-Rate is the percentage (or probability) of addresses
being faulty in a fault. For instance, three out of eight addresses
are faulty in A resulting in a Cover-Rate of 0.375.

Fig. 5. Examples of FM/AMs A, B, and C. A is a column FM/AM, B is a
4-bit FM/AM, and C is a single-bit FM/AM.

The number of addresses covered by an FM must be a power
of two. Most fault types can be represented by an FM, e.g.,
the number of addresses in all fault types shown in Fig. 4 are
powers of 2. A fault with size S not exactly equaling a power
of two can be divided into no more than log2S parts such that
each part is represented by an FM. FM helps MEMRES to save
memory space by orders of magnitude compared to traditional
simulators.

D. Basic Operations

MEMRES’s most operations are constructed by three ba-
sic bitwise operations: INTERSECT, MERGE, and REMOVE.
They use FM/AM and have the closure property (i.e., both the
operands and results of these operations are FM/AMs).

INTERSECT calculates the intersection between two
FM/AMs. For examples, when a fault (represented by an FM) is
accessed by an AM, the intersection between the FM and AM
exists, and when two faults from different chips are ac-
cessed simultaneously in a word, their intersection exists.
Basically, when two FM/AMs cover some same addresses,
they intersect. The bit-wise formula (AMask + BMask) +
AAddress ⊕ BAddress tells whether two FM/AMs intersect; only
if the formula outputs all “1”s, A and B intersect. The intersec-
tion I between A and B is obtained using (1). Fig. 6(a) shows an
example of calculating INTERSECT(A, B):

IMask = AMask&BMask (1)

IAddress = AAddress + BAddress .

REMOVE is used to clear faults (FMs) or to block access
(AMs) to certain addresses. For instance, after a rank repair-
ing (i.e., replacing a faulty rank with a spare one), the faults
in the rank address are cleared from MEMRES’s database.
Another example is that when a page is retired, the page address



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON RELIABILITY

Fig. 6. Basic operations used in MEMRES: (a) INTERSECT, (b) MERGE, and (c) REMOVE. Cover-Rates of A and B are 0.6 and 0.5, respectively.

Fig. 7. Memory with in-memory SECDED and in-controller ECC. In a mem-
ory chip, every eight columns of data bits are protected by one column of ECC
bits. The in-memory ECC logic can correct a single-bit error in a 72-bit ECC
word (64 data and 8 ECC bits), where a burst length of 8 accesses is required
for a × 8 chip to have 72 bits together for in-memory SECDED correction.
A × 8 chip inputs/outputs 8 data bits in an access, and totally eight × 8 data
chips and one × 8 ECC chip input/output 72 bits from/to the memory controller
in an access, where data errors in the 72 bits can be corrected/detected by the
in-controller ECC.

is removed from AMs and will never be accessed. Fig. 6(b) il-
lustrates removing B from A. First, the intersection I between
A and B is calculated, where the removing operation is actually
only performed on I. Second, the Cover-Rate and Access-Rate
of I are updated using (2), which represents the remaining in-
tersection on A after removing B from it (if Access-Rate and
Cover-Rate are zero or negative, I is totally removed from A).
Third, Procedure 1 is used to obtain the least FM/AMs to cover
the remaining parts of A excluding I. At last, store the remaining
parts of A and the updat I together in a collection, which is the
output of REMOVE(B,A):

IAccess−Rate = AAccess−Rate − BAccess−Rate (2)

ICover−Rate = 1 − (1 − ACover−Rate) / (1 − BCover−Rate) .

MERGE is used to combine two FM/AMs. For example,
MEMRES merges and stores all accessed faulty addresses in its
database so that if some addresses produce multiple errors, these
addresses’ Access-rates are more than 1 after being merged in
database, and permanent faults are determined according to it,
then MEMRES can perform reliability management to clean the
detected permanent faults. In Fig. 6(c), a MERGE operation of
A and B is illustrated. First, the intersection I between A and
B is calculated, and then the Cover-Rate and Access-Rate of I
are calculated following (3). Second, constructing the remaining
parts of A and B after excluding I using Procedure 1. Finally,
store I and remaining parts of A and B together in a collection:

IAccess−Rate = AAccess−Rate + BAccess−Rate (3)

ICover−Rate = 1 − (1 − ACover−Rate) · (1 − BCover−Rate) .

E. Modeling

The increasing large amount of memory faults hurt the mem-
ory reliability significantly [1]–[4]. However, compared with in-
tensive data access and massive memory operations, the memory
faults and failures are still counted as rare events. Therefore, us-
ing traditional simulators to analyze memory reliability involves
too many redundant computations like emulating memory op-
eration and simulating fault propagation. In order to improve
computation efficiency, MEMRES uses statistical models. In
this section, we describe the statistical models for fault injection,
ECC detection and correction, and implementation of memory
reliability management.

1) Fault Injection: Memory faults are classified into two
classes: transient and permanent faults. Intermediate faults can
be modeled as permanent faults with a variable to model their
existing time, which is not specially handled in MEMRES.
Transient faults can be removed by written back after ECC
correction, whereas permanent faults cannot be repaired. Field
studies show that memory fault rate varies with the time [1], [2],
[4] and locality [3]. However, traditional analytical models can
only assume a constant fault rate, which results in inaccuracy.
In MEMRES, the fault rate is held in AMs, which dynami-
cally change with time and locality. In addition to the memory



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: MEMRES: A FAST MEMORY SYSTEM RELIABILITY SIMULATOR 7

Procedure 1: Remove FM/AM B from FM/AM A.
Input: FM/AM A and FM/AM B.
Output: The collection R of the remaining FM/AM in A

after removing B
1: Set I = INTERSECT(A,B)
2: Set T = A
3: for i from the index of the MSB to the LSB of TMask

do
4: if TMask(i) == 1 && IMask(i) == 0 then
5: //split T into two halves T0 and T1
6: Set T0 , T1 = T
7: Set T0,Mask(i) = 0 and T1,Mask(i) = 0
8: Set T0,Address(i) = 0 and T1,Address(i) = 1
9: if T0 intersects I then
10: Add T1 into the collection R. Set T = T0
11: else
12: Add T0 into the collection R. Set T = T1
13: end if
14: end if
15: if T == B then
16: break loop
17: end if
18: end for
19: return R

fault types studied in [1] and [2] (e.g., bit/row/column/bank
faults, etc.), MEMRES also models single-bit transient errors
(data-link errors and write/retention errors of emerging memo-
ries), which have high occurring rate and are easier to correct,
but may dominate memory failure when they intersect with
memory faults.

As an AM is valid through a simulation interval (i.e., AMs
can be changed in different intervals), fault FIT rate (injection
rate) is assumed to be constant in a simulation interval. Memory
fault injection follows continuous Poisson distribution [30], and
MEMRES describes the injection probability of k faults of a
fault type in an interval in (4). It is noticed that the model is
calculated once for every fault in an interval due to the different
FIT rates of fault types. The injection model is more accurate
than FaultSim, which assumes maximum one fault is injected
in an interval:

P (k) =
(λ · tInt)

k · exp (−λ · tInt)
k!

(4)

where λ is the failure rate (FIT rate) of a fault in an AM, and
tInt is the simulation interval in the unit of 109 h.

Data-link has a much higher bit error rate (BER) [8], [9]
than memory faults due to intersymbol interference, signal re-
flection, clock jitter, and voltage variation. Data-link error is a
transient error and only affects single bit in a 72-bit word (64
data bits and 8 ECC bits), which is easily corrected by ECC.
Similarly to data-link error, write/retention errors of emerging
memories, e.g., write failure in STT-RAM [11], [31], are also
single-bit transient errors. As the probability of more than one
single-bit transient errors simultaneously occurring in a word is
extremely low, MEMRES safely assumes that there is at most
one single-bit transient error in a ECC word (i.e., the ECC word

length depends on algorithms and is commonly 72/144 bits). In
a memory system with ECC and memory scrubbing (i.e., scrub-
bing periodically scans and corrects transient faults in memory),
the single-bit transient errors cannot accumulate and may only
cause memory system failure when its occurrence intersects
with other memory faults in a word (i.e., occurs in the mem-
ory address as row/column/bank faults, etc.). Hence, to improve
computation and memory consumption efficiency in a memory
with ECC and scrubbing, MEMRES only injects single-bit tran-
sient errors with accessed memory faults. More specifically, the
injection rate depends on the number of memory errors, which
are produced when memory faults are accessed. As the data-
link and write errors have even probability to occur at every
access, these errors follow discrete Poisson distribution, where
the probability of injecting k such errors intersected with a mem-
ory fault is described in (5). Differently, the retention errors have
even temporal occurring probability, which follows continuous
Poisson distribution and is handled in (4). For a memory with-
out ECC or memory scrubbing, these single-bit transient errors
are injected the same as single-bit transient faults, which are
individually injected according to their FIT rates and can ac-
cumulate to create multiple-bit faults. However, such memory
cannot functionally operate for a long period under high volume
of single-bit transient faults:

P (k) =
(BER · NA )k · exp (−BER · NA )

k!
(5)

where BER is the BER of single-bit transient errors, and NA

is the expectation of number of accessed bits from memory
faults in current simulation interval, which is calculated by
Access-Rate and Cover-Rate of AMs and FMs.

2) ECC Algorithms and Designs: Common ECC algorithms
are classified into two types: Hamming-based and symbol-
based codes. Examples of Hamming-based codes are SECDED
[32], [33] and SCCDCD (which can also be implemented by
symbol-based codes) [34]. Both of them add 12.5% to redun-
dancy of ECC bits. SECDED adds 8 bits (one × 8 chip or
two × 4 chips) to a 64-bit word (eight × 8 chips or 16 × 4
chips), and SCCDCD adds 16 bits (four × 4 chips) to 128 bits
(32 × 4 chips), which decodes/encodes two words interleaved
across two channels simultaneously. Symbol-based codes are
more sophisticated and efficient in redundancy like DDDC [12],
[13]. With the same overhead of ECC bits as SCCDCD, DDDC
has one sparing × 4 chip for failed chip replacement in addi-
tion to the function of SCCDCD. An extension of DDDC is
that the second failed chip replacement is allowed, after which
the ECC algorithm changes from SCCDCD to SECDED. These
codes that can correct any errors from single chip are also called
Chipkill. In MEMRES, an ECC algorithm is configurable with
four parameters: maximum detectable faulty bits, maximum cor-
rectable faulty bits, maximum detectable faulty symbols (bits
from a chip are a symbol, e.g., a 4-bit symbol for a × 4 chip),
and maximum correctable faulty symbols. For SECDED, the
maximum correctable and detectable faulty bits are one and
two, respectively. For the extended DDDC, the initial maxi-
mum correctable and detectable faulty symbols are one and
two respectively, but after replacing two failed chips, these two



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON RELIABILITY

parameters change to 0, whereas the maximum correctable and
detectable faulty bits change to one and two, respectively. The
overhead of density, delay, and power is outside the scope of
this paper.

MEMRES allows two ECC designs: in-controller ECC and
in-memory ECC, which are shown in Fig. 7. In-controller ECC
designs are commonly used in commercial server-class CPUs,
where ECC detection/correction logic circuits locate inside a
memory controller and can correct and detect errors from both
memories and data links (e.g., double data rate (DDR) buses).
An in-memory ECC design locates in a memory chip and cor-
rects errors inside the chip. As an example, the memory in
Fig. 7 is constructed by × 8 chips, each chip inputs/outputs
8 bits in an access, and totally 72 bits from eight data chips
and one ECC chip are read/written simultaneously, which com-
prise a word and are decoded/encoded by an in-controller ECC.
In-memory ECC designs require burst mode. In burst mode,
memory reads/writes multiple words with continuous physical
addresses in one time. In Fig. 7, the in-memory SECDED works
with burst mode with the burst length of 8. In every chip ac-
cess, the ECC decodes/encodes 72 bits from eight continuous
chip-words together to perform SECDED. As an in-controller
SCCDCD fails when it faces multiple faulty symbols (chips), an
in-memory ECC significantly decreases the probability of such
case by correcting symbols inside chips.

The model for memory with only in-controller ECC design
was derived in [7]. However, memories with both in-memory
and in-controller ECC designs have not been studied. We de-
rived a set of statistical models used in MEMRES’s ECC check,
which allow for the interaction of in-memory and in-controller
ECCs and give the probability that a memory fault or inter-
section (represented by an FM) fails both in-memory and in-
controller ECCs in a simulation interval. Currently, in-memory
ECC only considers SECDED, and in-controller ECC allows all
Hamming-based and symbol-based algorithms.

As an example, we show a model for the combination of an
in-memory SECDED and an in-controller symbol-based code
(e.g., SCCDCD). This model describes the probability that after
a memory fault FM is injected, the FM fails both in-memory
and in-controller ECC in a simulation interval.

Equation (6) calculates the probability (Pcorrect symbol) that a
symbol (e.g., 4 bits for a × 4 chip) covered by an FM is ECC
correctable. It includes two cases: 1) there is no faulty bit in the
symbol (P0 faultybit@symbol) and 2) there is one faulty bit in the
symbol, and it is the only one in its burst group of 72 bits (BL ·
NPFB ), which is correctable to SECDED (P1 faultybit@symbol).

P0 faultybit@symbol = (1 − PFB)NP F B (6)

P1 faultybit@symbol = CNP F B
1 · PFB · (1 − PFB)BL ·NP F B −1

Pcorrect symbol = P0 faultybit@symbol + P1 faultybit@symbol.

Here, BL is the burst length (e.g., burst length of 8 is shown
in Fig. 7). NP F B is the number of possible faulty bits in the
symbol, which is determined by the Mask of the FM covering
the symbol. CNP F B

1 is choosing one faulty bit from NP F B

possible faulty bits in the symbol. PF B is the probability that

a bit covered by the FM is faulty, which is calculated from
Cover-Rate of the FM.

Then, we calculate the probability (Pcorrect word ) that a word
constructed by possible faulty symbols is ECC correctable in (7)
based on Pcorrect symbol and number of possible faulty symbols
NP F S (calculated from Mask) in a word. The appearance of
uncorrectable word will cause both memory failure

Pcorrect word =
min(NM F S ,NP F S )∑

k = 0

CNP F S
k (7)

· Pcorrect symbol
NP F S −k · (1 − Pcorrect symbol)

k

where the NMFS is the maximum correctable symbols of the
in-controller ECC, and k is the number of faulty symbols.

The model above excludes the data-link error and
write/retention error, which may intersect with memory errors
to create uncorrectable errors. The additional occurrence of a
write/retention error inside a memory chip may cause failure
in the in-memory SECDED which is otherwise able to correct
the memory chip, and then the appearance of an additional
faulty symbol may further cause failure in the in-controller
ECC. As explained in Section II-E1, there is maximum one
such error in a symbol, and hence we derive the probability
(PwrErr fail memECC ) that the occurrence of a write/retention er-
ror in an accessed symbol causes an in-memory SECDED failure
in (8). The derivation includes two cases: 1) a memory faulty bit
already exists in the accessed symbol before the occurrence of a
write/retention error in the symbol, and the write/retention error
should not overlap with the faulty bit. 2) A memory faulty bit
is not in the accessed symbol but in the same burst group (e.g.,
the 63 bits excluding the accessed symbol in a burst group, see
Fig. 7) before the occurrence of a write/retention error in the
accessed symbol:

PwrErr fail memECC = (SL − 1) /SL (8)

· P1 faultybit@symbol + (BL − 1) · NPFB · PFB

· (1 − PFB)(BL − 1)·NP F B −1 · P0 faultybit@symbol

where SL is the symbol length (number of bits per symbol).
Then, the in-controller ECC may fail due to the additional

faulty symbol caused by the write/retention error in the case
that existing faulty symbols already reach the maximum cor-
rection capability NMFS before the write/retention error. This
probability PwrErr fail ctrECC is derived as follows:

PwrErr fail ctrECC = CNP F S
NM F S

· (1 − Pcorrect symbol)
NM F S (9)

· CNP F S −NM F S
1 · PwrErr fail memECC

· Pcorrect symbol
NP F S −NM F S −1 .

Unlike write/retention errors, which occur and can be cor-
rected inside memory chips, data-link errors occur on data links
and are not checked by in-memory ECC. More specifically,
when the existing faulty symbols reach the correction capabil-
ity NMFS , a data-link error occurring on any correct symbols
will create another faulty symbol to fail in-controller ECC. The



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: MEMRES: A FAST MEMORY SYSTEM RELIABILITY SIMULATOR 9

probability is derived in the following equation:

PdlErr fail ctrECC = (NS − NMFS) /NS (10)

· CNP F S
NM F S

· Pcorrect symbol
NP F S −NM F S

· (1 − Pcorrect symbol)
NM F S .

Here, NS is the number of symbols in an ECC word (e.g., 32
for SCCDCD with × 4 chips).

So far, we have derived the statistical models for probabilities
of uncorrectable words caused by a memory-fault, by the in-
teraction of memory-fault and write/retention-error, and by the
interaction of memory-fault and data-link-errors. These models
also work for error detection. For memory faults with faulty bits
exceeding the specified ECC detectable capability, ECC can still
detect a part of them. For example, some errors with three faulty
bits can be detected by SECDED that guarantees to detect faults
with two or less faulty bits. A partial detection rate is taken as a
constant input to model the detection probability of those faults.

3) Memory Reliability Management: Although ECC de-
signs can correct memory errors, permanent faults can accumu-
late with time and intersect to produce uncorrectable multiple-bit
and multiple-symbol errors. To avoid fault accumulation, mod-
ern systems use memory reliability management to deactivate
existing faults. These techniques require information of fault
location, which can be identified from detected errors. MEM-
RES has modeled the identification process. One collection of
FMs called fault-collection stores all faulty addresses, which
MERGE all existing faults. Errors are produced when fault-
collection is accessed by AMs (i.e., AMs intersect with FMs in
fault-collection), and then detected by ECC designs. MEMRES
MERGE detected errors (also represented by FMs) into a collec-
tion called error-log. A high Access-Rate of an FM in error-log
means that the addresses covered by the FM frequently produce
errors and are identified as a permanent fault. This can trigger
memory reliability management to deactivate it. Modeling of
memory reliability management is detailed below:

1) Memory scrubbing corrects detected correctable tran-
sient faults. Two scrubbing techniques are simulated
in MEMRES,

a) if an ECC correctable transient fault (in the form
of FM) is accessed by an AM, the accessed faulty
addresses are removed from the transient fault using
REMOVE;

b) in addition to the on-line correction, the memory
scrubbing periodical inspects the memory, and all
correctable transient faults are cleared from fault-
collection using REMOVE, where the periodically
scrubbing cycle is configurable.

2) Hardware sparing allows the replacement of failed hard-
ware with sparing hardware. For example, modern mem-
ory systems have enabled rank sparing, which uses a spare
rank for replacing an in-use rank with detected perma-
nent faults. In MEMRES, the spare devices, number of
spare devices, the hardware being protected by this tech-
nique, and triggering threshold can be specified in con-
figuration file. When detected permanent faults reach the

configurable threshold in a protected hardware, REMOVE
is applied to clear faults (in the form of FMs) in the
replaced hardware from MEMRES’s database (fault-
collection and error-log).

3) Memory page retirement blocks access to memory pages
with permanent faults to avoid fault activation. More
specifically, when a permanent fault is detected in a mem-
ory physical page, the address mapped to the page is
blocked, and the data on the page is moved to other pages.
In MEMRES, once a permanent fault (in the form of
FM) is detected by error-log, the access (in the form of
AMs) to the pages intersecting with the fault are moved to
other pages using REMOVE and MERGE. The maximum
number of retired pages is configurable.

4) Memory mirroring mounts one memory space as a copy
of another one, and system reads/writes data from/to both
spaces simultaneously so that if data from one space con-
tains errors, system can still obtain correct data from
the other memory space. This protection is frequently
used for critical data. MEMRES models this technique by
having a special ECC check: uncorrectable faults in the
mirrored spaces cannot directly cause failure unless two
uncorrectable faults from two mirrored space intersect.

F. Tradeoff Between Accuracy and Speed

In this section, we analyze the accuracy-speed tradeoff in fault
simulation. In MEMRES, dense grids of memory space (smaller
AMs) more accurately models access behavior by holding more
precise Cover-Rates, whereas sparse grids (larger AMs) save
computation but lead to imprecise Cover-Rates. For example,
one bank is intensively accessed but other banks in the same
rank are barely accessed, if a large AM is used to represent
access to the rank, its Cover-Rate is low after averaging memory
access over all banks. Then, inaccurate simulation is resulted
when a fault occurs in the intensively accessed bank, because
the fault is supposed to be quickly activated (accessed) but the
low Cover-Rate delays its activation time. Fault activation is a
random event and determined by Cover-Rate, hence distribution
of the activation time, which is in fact simulated in MEMRES, is
crucial to accuracy. The mathematical expectation and variance
of fault activation time are listed below:

μActTime = tInt ·
(1 − Cover-Rate)MapSize

1 − (1 − Cover-Rate)MapSize (11)

σActTime = tInt ·
(1 − Cover-Rate)MapSize

(
1 − (1 − Cover-Rate)MapSize

)2 .

Here, tInt is the simulation interval, Cover-Rate is the Cover-
Rate product of a fault FM and the AM accessing the FM,
and MapSize is the number of addresses in the intersection
of the FM and AM. The accuracy is determined by the preci-
sion of Cover-Rate and MapSize. For a high Cover-Rate, the
sensitivity of accuracy to MapSize is smaller, and vice versa.
Therefore, if fault injection is dominated by large faults or mem-
ory is intensively and uniformly accessed, larger AMs can be
used to speed up the simulation without losing accuracy.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON RELIABILITY

Similarly, too prolong simulation intervals can lead to less
computation. Nevertheless, longer interval may result in sim-
ulation error if too many faults are injected in a long interval.
For example, in a system with memory reliability management,
a detected permanent fault should be deactivated by repairing
techniques before intersecting with other faults occurring later.
However, a long simulation interval increases the probability
of multiple fault injection, which can intersect to produce non-
correctable errors. Therefore, it had better avoid multiple fault
injection, and the interval of hours is acceptable according to
fault rates reported in [1] and [2].

The run time and memory consumption complexity of MEM-

RES are O
(
λ2 · log (M)2

)
and O (λ · log (M)), respectively,

where M is the size of memory system and λ is the failure rate.
The size and number of FM/AMs scale with the address length
(log(M)) and injection rate (λ), respectively. Run time of IN-
TERSECT scales with the size of FM/AMs (log(M)). The run
time of MERGE and REMOVE (described in Procedure 1) is
determined by the size of FM/AMs (log(M)) and the run time
of INTERSECT (log(M)), which is log (M)2 . The number of
operations is proportion to the square of the number of FM/AMs
(proportional to λ2). The complexity of total run time, which
is the product of the number of operations and the run time

of operations, is O
(
λ2 · log (M)2

)
. The memory consump-

tion, which is decided by the number and size of FM/AMs, is
O (λ · log (M)). In experiments, the wall time for the 100 000
5-year simulations (in-controller ECC and memory scrubbing
are enabled) for Figs. 10 and 11 on Quad-Core AMD Opteron
Processor 2376 with eight threads is 70 min. Its peak memory
consumption is 1 GB.

III. FRAMEWORK VALIDATION

To substantially validate MEMRES is nontrivial. Large-scale
experimentation is too expensive and impractical for most re-
search groups given the need to observe failures over an ex-
tended period of time on a large-scale datacenter. Existing
simulators take unacceptable time to complete the validation
task, and existing analytical models do not support memory re-
liability management. In this section, we validate MEMRES’s
accuracy with FaultSim, the analytical model [7], and derived
analytical models. Because models and FaultSim do not support
fault rate distribution and variation over time and address space,
memory access behavior, in-memory ECC, and memory relia-
bility management, we disable these features in MEMRES in
this section. However, enabling these features strongly affects
simulation results, which are illustrated in Section IV. In the val-
idation, we assume that fault rate is constant, a large fault affects
all covered address space, and a fault is accessed and corrected
or causes ECC failure immediately after the fault injection.

We use a 4-GB DRAM based main memory as an example
to validate MEMRES. The configuration of the 4-GB DRAM
is listed in Table II. In this memory architecture, an example
column FM’s mask is shown in Fig. 8. We use the fault rates
reported in [1], [2], [8] and [9] for the validation, which is shown
in Table III. Because analytical models [7] and FaultSim [17]

TABLE II
ARCHITECTURE OF A 4-GB DRAM DIMM

Ranks Chips Banks Mats Rows Columns Access-Rate

2 16 + 2 8 64 512 4096 1e12/h

Fig. 8. Example Mask of a column FM in the memory specified by Table II.
A read contains 4 bits from a chip, 18 reads construct a 72-bit word (64 data
bits and 8 ECC bits), and a word has a memory physical address.

TABLE III
FAULT FIT RATES PER CHIP AND DATA-LINK BER FOR DRAM AND STT-RAM

Fault types Transient FIT Permanent FIT Cover-Rate

Single-bit 0 18.6 1
Single-word 1.4 0.3 1
Single-column 1.4 5.6 0.02
Single-row 0.2 8.2 0.002
Single-bank 0.8 10 0.002
Multi-banks 0.3 1.4 0.002
Single-lane 0.9 2.8 0.002
Data-link BER 10−1 4 [9]
Retention BER/h 0, 10−5 , 10−1 0 , 10−1 5 , (design dependence)
(STT-RAM)
Write BER (STT-RAM) 0, 10−8 , 10−1 1 , 10−1 4 (design dependence)

The retention BER (RER) and write BER (WER) are only for STT-RAM. Data-link
error, retention error, and write error are single-bit transient errors (SBT).

Fig. 9. Validation of MEMRES with FaultSim and the analytical model [7].
The failure rates for a 4-GB DRAM with SECDED as functions of time are
shown. 1× and 4× fault rates are used. MEMRES matches well with the
analytical model and FaultSim.

assume all bits in a fault coverage are faulty, we use Cover-Rates
of 1 for MEMRES to match their assumption in the validation
for all faults (i.e., the Cover-Rate listed in the table are used for
later case study in Section IV).

The predicted failure rates of a 4-GB DRAM by MEMRES,
FaultSim (interval and event modes), and the analytical model
[7] are drawn in Fig. 9 as a function of time. Normal fault



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: MEMRES: A FAST MEMORY SYSTEM RELIABILITY SIMULATOR 11

Fig. 10. Failure rate for a 4-GB DRAM with SECDED or SCCDCD as a
function of time. The SBTERs (i.e., DRAM only has data-link error as SBT in
the validation) of 10−14 and 10−10 are used in this validation.

Fig. 11. Memory failure rate breakdown for a 4-GB DRAM operating for
5 years with in-controller SECDED. The data-link BER of 10−14 and 10−10

are used in this validation.

rate (Table III) and 4× fault rate (4× FIT) are used. Using the
analytical model [7] as the baseline, the maximum mismatch for
MEMRES, FaultSim’s interval and event modes are 1%, 2%,
and 2%, respectively. Please note that the analytical model is
not the ground truth. The analytical model should overestimate
the memory failure rate, because it separately calculates the
probability of all critical faults that can cause memory failure and
sums them together, but ignores to subtract the case that more
than one critical faults exist in the same memory, which is the
second order probability. Since MEMRES predicts lower failure
probability than the analytical model indicating that MEMRES’
error is lower than 1%.

In the following, we validate a DRAM with high frequency
transient faults, e.g., DDR bus errors, which are not supported
in FaultSim, and the analytical model [7]. These errors strongly
affect memory reliability through intersecting with permanent
memory faults to cause ECC failure, e.g., ChipKill. To fill the
gap, we derive an analytical model for memory failure caused
by the intersection between a memory permanent fault and a
transient fault (applicable to all transient faults and single-bit
transient errors) as a supplemental model to validate MEMRES.

Intersection between two transient fault/errors is unlikely given
that a transient fault only exists short time in memory with
scrubbing, hence, we ignore this case.

Pfail in (12) is the probability that memory failure is caused
by an intersection of one memory fault and one transient fault as
a function of time. The model describes that firstly a permanent
fault occurs (Pperm (t1)) at time t1 , then a transient fault occurs
(Pperm (t2)) within t − t1 after t1 , and they intersect with each
other to produce uncorrectable errors (Pintersect), e.g., the two
faults occur in different chips but cover overlap addresses to pro-
duce multiple-symbol errors to cause Chipkill failure. Pintersect
depends on fault size and ECC algorithms:

Pfail(t) = Pintersect ·
∫ t

0
Pperm (t1) ·

∫ t−t1

0
Ptran (t2) (12)

Pperm (t1) = exp (−λp t1) · (1 − exp (−λpdt1))

= λp · exp (−λp t1) dt1

Ptran (t2) = λt · exp (−λt t2) dt2

where λp and λt are the failure rates of the permanent and
transient fault, respectively. The analytical form of Pfail is shown
as

Pfail (t) = Pintersect ·
(

1 − exp (−λp t) + λp/ (λt − λp)
· (exp (−λt t) − exp (−λp t))

)
.

(13)

For the cumulative distribution function (CDF) of mem-
ory failure rate shown in Fig. 10, MEMRES matches with
the analytical model for a 4-GB DRAM with in-controller
SECDED and SCCDCD. SCCDCD overall performs better than
SECDED because the SCCDCD can correct multiple-bit errors
from any single chip, indicating that SCCDCD can correct
all individual faults from Table III. However, intersections of
multiple faults from different chips and intersection between
memory faults and single-bit transient errors (SBT, including
data-link error, retention error of STT-RAM, and write error of
STT-RAM) can give rise to SCCDCD failure. The failure rate
increases dramatically with data-link BER, and when the BER
is 10−10 , SCCDCD does not show obvious benefit compared
with SECDED .

Fig. 11 shows the breakdown of failure caused by differ-
ent fault types. Again, MEMRES matches well with analytical
models except for a small difference. MEMRES more accu-
rately shows that all single-fault induced failure rates decrease
with increased data-link BER (e.g., single-bank, single-row,
single-lane, multi-bank, and single-word), whereas the analyt-
ical model gives exact the same failure rates at different BER.
In reality, as more memory failures are caused by the increased
data-link errors interacting with permanent memory faults, fail-
ures caused by other memory faults decrease due to the fact that
when memory system failure occurs, the system is shut down,
and the failed memory is replaced with a new memory with-
out any memory faults. Analytical models calculate the failure
probability due to each fault individually because it is very diffi-
cult to include the high order effect of failure interactions. Note
that, in default MEMRES setup (used in the paper), a memory



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON RELIABILITY

TABLE IV
THE 5-YEAR FAILURE RATE FOR STT-RAMS WITH DIFFERENT WRITE ERROR

RATE (WER, PER-BIT-WRITE FAILURE PROBABILITY), RETENTION ERROR

RATE (RER, PER-BIT-HOUR FAILURE PROBABILITY), AND ECC DESIGNS: 1)
IN-CONTROLLER SCCDCD WITH (W/) IN-MEMORY SECDED, 2)

IN-CONTROLLER SCCDCD WITHOUT (W/O) IN-MEMORY SECDED

RER 10−5 10−1 0 10−1 5

WER W/O W/ W/O W/ W/O W/

10−8 0.1365 0.0219 0.1359 0.0219 0.1354 0.0209
10−1 1 0.1336 0.0213 0.0649 0.0213 0.0638 0.0208
10−1 4 0.1317 0.0213 0.0402 0.0212 0.0310 0.0207

failure ends simulations; however, MEMRES also models the
failed memory replacement similarly to rank replacement (see
Section II-E3), where MEMRES allows to continues simulation
when a failure occurs and is fixed by hardware replacement.

IV. STUDY OF STT-RAM USING MEMRES

In this section, we perform a case study of analyzing STT-
RAM’s reliability using MEMRES. Since STT-RAM and tradi-
tional memories have similar peripheral circuits (sense ampli-
fier, decoder, etc.), and large memory faults like row, column,
bank faults, etc. are highly possible caused by peripheral circuit
failure, we assume that STT-RAM suffers from the same fault
FIT rates as DRAMs (see Table III) except for the single-bit
transient fault (not single-bit transient errors) given that STT-
RAM is immune to particle-induced faults. In addition to these
faults, STT-RAM may suffer from single-bit transient errors in-
cluding data-link errors, retention errors, and write errors. Their
error rates depend on the STT-RAM design, where the error
rates can be traded for low energy consumption [11].

There are tradeoffs between performance (write speed and
energy) and reliability (retention error and write error) for STT-
RAM. The critical current (i.e., proportional to write current)
of STT-RAM is approximately proportional to thermal stability
[11], whereas the thermal stability also determines the retention
time, the average time that an STT-RAM cell holds data before
false switching during standby state. This indicates that shorter
retention time can reduce write energy as well as improve write
speed at the risk of retention error [35]. Another tradeoff is to
reduce write time at the expense of increased write error rate
(WER) [36]. With memory reliability enhancement techniques,
the reliability requirement of STT-RAM can be relaxed, which
leads to faster speed and less power consumption simultane-
ously. As a case study, we use MEMRES to explore the impact
of retention error rate (RER) and WER on STT-RAM with dif-
ferent reliability enhancement techniques. An 8-GB STT-RAM
is used for all experiments in this section, which has two chan-
nels, and each channel has one dual DIMM with configuration
in Table II. Fault FIT rates per chip are listed in Table III.

Table IV illustrates the 5-year memory failure rate of
STT-RAMs with or without in-memory ECC for different
write/retention BERs. The failure rate of the STT-RAM with
both in-memory SECDED and in-controller SCCDCD is sig-
nificantly lower than the STT-RAM with only in-controller

Fig. 12. (a) 8-GB STT-RAM with unbalanced memory access (without
interleaving) and balanced memory access (with interleaving). (b) Failure
rates (CDF) of STT-RAM with unbalanced and balanced memory access.
In-controller SCCDCD and in-memory SECDED are enabled.

SCCDCD, because in-memory SECDED corrects a single-bit
transient error soon after its occurrence, allows chips to out-
put corrected symbols, and hence prevents multi-chip errors to
cause in-controller SCCDCD failure. The probability of having
multiple single-bit transient errors in a chip read (consequent 4
bits for a × 4 chips) is extremely low, which may not happen
even once in a data-center for many years given that mem-
ory scrubbing is enabled to correct transient errors periodically.
Therefore, for STT-RAM with in-memory ECC, retention and
write errors can be traded for speed and power improvement,
but seeking the optimized tradeoffs requires the knowledge of
in-memory SECDED performance overhead.

As is known, memory interleaving can improve memory
throughput by spreading memory access evenly across mem-
ory banks and channels. In Fig. 12(a), one STT-RAM with
interleaving has balanced access, whereas the other one with-
out interleaving has unbalanced access. In this study, all chips
have the same memory fault FIT rates (see Table III). More
specifically for this experiment, we assume fault occurrence
probability (except single-bit transient errors) does not depend
on memory access density for the reason that faults are random
rare events and caused by process variation or particle induced
errors which are not related to access density and hardware
wear-out. The field study [4] shows a sublinear dependence of
uncorrected error rate on time indicating that fault FIT rate does
not increase with time and hence is not clearly related to mem-
ory access and wear-out (i.e., errors increase due to accumulated
permanent faults, but fault occurring rate does not increase with
time). Fig. 12(b) illustrates that the STT-RAM without inter-
leaving suffers from lower failure rate given that permanent
memory faults in the channel being sparsely accessed is less
likely to intersect with data-link errors.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: MEMRES: A FAST MEMORY SYSTEM RELIABILITY SIMULATOR 13

Fig. 13. Five-year failure breakdown and failure rate (CDF) of STT-RAM
with enabled rank sparing. The thresholds (percentage of faulty addresses in a
rank) to trigger rank repairing are 0.1%, 0.001%, and 0.00001%. The STT-RAM
has one spare rank in each channel. In-controller SCCDCD is enabled.

Fig. 14. Five-year failure breakdown and failure rate (CDF) of STT-RAM with
enabled memory page retirement. Different maximum allowed retired pages per
channel are tried, including 20, 2000, and 200 000. In-controller SCCDCD is
enabled. Memory page size is 4 kB.

When rank sparing is enabled, detected permanent faulty ad-
dresses over a threshold can trigger rank sparing, which replaces
the faulty rank with a spare rank. In Fig. 13, we simulates an
8-GB STT-RAM with rank sparing and different threshold to
trigger rank sparing. As is illustrated, failure rate is not reduced
when high threshold is set (e.g., 0.1%), because no individ-
ual fault is big enough to trigger rank sparing. With threshold
decreasing, overall failure rate decreases given that multibank
faults and single-row faults can trigger rank sparing at the thresh-
old of 0.001% and 0.00001%, respectively. Single-lane fault is
not correctable as it affects both ranks in a channel, whereas a
channel only has one spare rank in the experiment setup.

A detected permanent fault can trigger memory page retire-
ment, which removes faulty physical pages from use by the
operating system. In Fig. 14, we simulate an 8-GB STT-RAM
with memory page retirement. As can be seen, more allowed re-
tired pages give rise to less failure rate but more memory space

Fig. 15. Five-year failure breakdown and failure rate (CDF) of STT-RAM
with memory mirroring. Different mirrored memory space are simulated in-
cluding whole memory mirroring (one channel is mirrored to the other one),
a half memory mirroring (one rank is mirrored to another one), and a quarter
of memory mirroring (a half rank is mirrored to another half). In-controller
SCCDCD is enabled.

loss. A row-fault is easy to be deactivated by retiring two pages,
whereas a multibank fault affects more than 5000 pages and can
only be deactivated when a large memory space loss is allowed.
However, if rank sparing and memory page retirement are both
enabled, they can collaborate to efficiently correct most faults.

A system with memory mirroring reads/writes two mirrored
space simultaneously, and errors in one space can be corrected
by its mirror. In Fig. 15, we simulate an 8-GB STT-RAM with
memory mirroring, which mounts a memory space as a copy
of another memory space. We tried different mirrored memory
spaces including a whole memory space (i.e., a half-space is
mirrored by the other half), a half-memory space, and a quarter
of memory space. As mirrored space increases, the failure rates
caused by all fault types decrease as is expected. Larger faults
like lane faults require more mirrored space to correct. Mem-
ory mirroring significantly increases the system’s robustness to
memory faults, where failure rate decreases to nearly zero when
a whole memory is mirrored, as a tradeoff, a half-memory space
is lost.

Fault FIT rate varies over time and usually decreases with
time [1], [2], whereas analytical models always assume constant
FIT rate because a varying FIT rate is very difficult to model.
However, constant FIT rate assumption may result in inaccuracy.
As an example, we use MEMRES to simulate STT-RAMs with
constant and varying FIT rats. In Fig. 16(a), the varying FIT
rate is a quadratic function of time, which is normalized to the
constant FIT rate such that it gives rise to the same 5-year-
fault-occurring probability as the constant FIT rate. Though the
varying FIT rate decreases with time, permanent faults continue
to produce errors after injection; hence, error rates increase
still with time, which is not contrary to field studies [1]–[4].
Fig. 16(b) shows that the varying FIT rate results in higher STT-
RAM failure rate, because its higher FIT rate in the beginning
causes faults to occur earlier, which have higher probability
to intersect with data-link errors and fail SCCDCD ECC. The



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON RELIABILITY

Fig. 16. (a) Varying fault FIT rate (normalized to constant fault FIT rate) and
constant FIT rate versus time. (b) Failure rate (CDF) of STT-RAM with varying
fault FIT rate and constant fault FIT rate (listed in Table III). In-controller
SCCDCD and in-memory SECDED are enabled.

failure rate difference demonstrates MEMRES’s capability of
simulating more realistic situations than analytical models.

V. CONCLUSION

The proposed MEMRES framework facilitates a fast and con-
venient way to assess the reliability of modern memory sys-
tems. It can perform memory fault simulation with ECC and
memory reliability management. The accuracy of MEMRES is
validated by the comparison with the derived analytical model
and existing models. Through MEMRES, modern reliability
enhancement techniques including ECC designs and memory
reliability management can be calibrated to have optimized effi-
ciency for target applications. With additional fault models, we
show examples of using MEMRES to optimize the reliability
for emerging memory systems.

ACKNOWLEDGMENT

This work was conducted jointly between Samsung Semi-
conductor and the NanoCAD Lab of the Electrical Engineering
Department, University of California, Los Angeles. The authors
thank Dr. D. Niu of Samsung Semiconductor, M. Gottscho, and
Dr. P. Nair for supporting this work while Mr. Wang was an In-
tern at Samsung Semiconductor in 2014. Funding came partly
from the NSF Variability Expedition Grant No. CCF-1029783

REFERENCES

[1] V. Sridharan and D. Liberty, “A study of DRAM failures in the field,”
in Proc. 2012 Int. Conf. High Performance Comput. Netw. Storage Anal.,
Nov. 2012, pp. 1–11.

[2] V. Sridharan et al., “Memory errors in modern systems: The good, the bad,
and the ugly,” in Proc. 20th Int. Conf. Architectural Support Programming
Languages Operating Syst., 2015, pp. 297–310.

[3] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “Revisiting memory errors in
large-scale production data centers: Analysis and modeling of new trends
from the field,” in Proc. IEEE/IFIP Int. Conf. Dependable Syst. Netw.,
2015, pp. 415–426.

[4] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM errors in the wild: A
large-scale field study,” ACM SIGMETRICS Perform. Eval. Rev., vol. 37,
no. 1, pp. 193–204, 2009.

[5] W. Zhao et al., “Failure and reliability analysis of STT-MRAM,”
Microelectron. Rel., vol. 52, no. 9, pp. 1848–1852, 2012.

[6] J. Li, C. Augustine, S. Salahuddin, and K. Roy, “Modeling of failure
probability and statistical design of spin-torque transfer magnetic random
access memory (STT MRAM) array for yield enhancement,” in Proc. 45th
ACM/IEEE Des. Autom. Conf., 2008, pp. 278–283.

[7] X. Jian, N. Debardeleben, S. Blanchard, V. Sridharan, and R. Kumar,
“Analyzing reliability of memory sub-systems with double-chipkill de-
tect/correct,” in Proc. 2013 IEEE 19th Pacific Rim Int. Symp. Dependable
Comput., Dec. 2013, pp. 88–97.

[8] N. Miura, K. Kasuga, M. Saito, and T. Kuroda, “An 8Tb/s 1pJ/b
0.8 mm2 /Tb/s QDR inductive-coupling interface between 65 nm CMOS
GPU and 0.1 μm DRAM,” in Proc. IEEE Int. Solid-State Circuits Conf.,
2010, pp. 436–437.

[9] N. Nguyen et al., “A 16-Gb/s differential I/O cell with 380 fs RJ in an
emulated 40nm DRAM process,” in Proc. 2008 IEEE Symp. VLSI Circuits,
2008, pp. 128–129.

[10] Y. Zhang, X. Wang, and Y. Chen, “STT-RAM cell design optimization
for persistent and non-persistent error rate reduction: A statistical design
view,” in Proc. Int. Conf. Comput.-Aided Des., 2011, pp. 471–477.

[11] S. Wang, H. Lee, F. Ebrahimi, P. K. Amiri, K. L. Wang, and P. Gupta,
“Comparative evaluation of spin-transfer-torque and magnetoelectric ran-
dom access memory,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 6,
no. 2, pp. 134–145, Jun. 2016.

[12] X. Jian and R. Kumar, “Adaptive reliability chipkill correct (ARCC),” in
Proc. 2013 IEEE 19th Int. Symp. High Performance Comput. Arch., 2013,
pp. 270–281.

[13] T. Willhalm, “Independent channel vs. lockstep mode—Drive your
memory faster or safer,” Santa Clara, CA, USA: Intel, 2014.

[14] C.-F. Wu, C.-T. Huang, and C.-W. Wu, “RAMSES: A fast memory fault
simulator,” in Proc. Int. Symp. Defect Fault Tolerance VLSI Syst., 1999,
pp. 165–173.

[15] T. M. Niermann, W.-T. Cheng, and J. H. Patel, “PROOFS: A fast, memory-
efficient sequential circuit fault simulator,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 11, no. 2, pp. 198–207, Feb. 1992.

[16] W. Wu, F. Gong, G. Chen, and L. He, “A fast and provably bounded failure
analysis of memory circuits in high dimensions,” in Proc. 2014 19th Asia
South Pacific Des. Autom. Conf., 2014, pp. 424–429.

[17] P. J. Nair, D. A. Roberts, and M. K. Qureshi, “FaultSim: A fast,
configurable memory-reliability simulator for conventional and 3D-
stacked systems,” ACM Trans. Arch. Code Optim., vol. 12, no. 4, 2015,
Art. no. 44.

[18] D. H. Yoon and M. Erez, “Virtualized and flexible ECC for main memory,”
ACM SIGARCH Comput. Arch. News, vol. 38, no. 1, pp. 397–408, 2010.

[19] M. Gottscho, C. Schoeny, L. Dolecek, and P. Gupta, “Software-defined
error-correcting codes,” Proc. IEEE/IFIP Int. Conf. Dependable Syst.
Netw., 2016, pp. 1–7.

[20] S. Tehrani, J. Slaughter, E. Chen, M. Durlam, J. Shi, and M. DeHerren,
“Progress and outlook for MRAM technology,” IEEE Trans. Magn.,
vol. 35, no. 5, pp. 2814–2819, Sep. 1999.

[21] C. Heide, “Spin currents in magnetic films,” Phys. Rev. Lett., vol. 87,
no. 19, 2001, Art. no. 197201.

[22] D. Worledge et al., “Spin torque switching of perpendicular Ta-CoFeB-
MgO-based magnetic tunnel junctions,” Appl. Phys. Lett., vol. 98, no. 2,
2011, Art. no. 022501.

[23] “ITRS,” 2008, 2011. [Online]. Available: http://www.itrs.net/about.html
[24] E. Kultursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, “Evalu-

ating STT-RAM as an energy-efficient main memory alternative,” in Proc.
2013 IEEE Int. Symp. Perform. Anal. Syst. Softw., 2013, pp. 256–267.

[25] S. Wang, H. Lee, C. Grezes, P. Khalili, K. L. Wang, and P. Gupta, “MTJ
variation monitor-assisted adaptive MRAM write,” in Proc. 53rd Annu.
Des. Autom. Conf, 2016, p. 169.

[26] W. Wu, S. Bodapati, and L. He, “Hyperspherical clustering and sampling
for rare event analysis with multiple failure region coverage,” in Proc.
2016 Int. Symp. Phys. Des., 2016, pp. 153–160.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: MEMRES: A FAST MEMORY SYSTEM RELIABILITY SIMULATOR 15

[27] S. Wang, G. Leung, A. Pan, C. O. Chui, and P. Gupta, “Evalua-
tion of digital circuit-level variability in inversion-mode and junction-
less finfet technologies,” IEEE Trans. Electron Devices, vol. 60, no. 7,
pp. 2186–2193, Jul. 2013.

[28] W. Kang, L. Zhang, J.-O. Klein, Y. Zhang, D. Ravelosona, and W. Zhao,
“Reconfigurable codesign of STT-MRAM under process variations in
deeply scaled technology,” IEEE Trans. Electron Devices, vol. 62, no. 6,
pp. 1769–1777, Jun. 2015.

[29] S. Wang, A. Pan, C. O. Chui, and P. Gupta, “Proceed: A pareto
optimization-based circuit-level evaluator for emerging devices,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 1,
pp. 192–205, Jan. 2016.

[30] “Failure rate,” 2008, 2011. [Online]. Available: https://en.wikipedia.org/
wiki/Failure_rate

[31] W. Kang et al., “Yield and reliability improvement techniques for emerg-
ing nonvolatile STT-MRAM,” IEEE J. Emerg. Sel. Topics Circuits Syst.,
vol. 5, no. 1, pp. 28–39, Mar. 2015.

[32] M. Blaum, R. Goodman, and R. McEliece, “The reliability of single-
error protected computer memories,” IEEE Trans. Comput., vol. 37, no. 1,
pp. 114–119, Jan. 1988.

[33] W. Mikhail, R. Bartoldus, and R. Rutledge, “The reliability of mem-
ory with single-error correction,” IEEE Trans. Comput., vol. 31, no. 6,
pp. 560–564, Jun. 1982.

[34] T. J. Dell, “A white paper on the benefits of chipkill-correct ECC for PC
server main memory,” IBM Microelectronics Division, pp. 1–23, 1997.

[35] Z. Sun et al., “Multi retention level STT-RAM cache designs with a
dynamic refresh scheme,” in Proc. 44th Annu. IEEE/ACM Int. Symp.
Microarchitecture, 2011, pp. 329–338.

[36] X. Wang, W. Zhu, M. Siegert, and D. Dimitrov, “Spin torque induced
magnetization switching variations,” IEEE Trans. Magn., vol. 45, no. 4,
pp. 2038–2041, Apr. 2009.

Shaodi Wang (S’12) received the B.S. degree from
the Division of Microelectronic, Electronics Engi-
neering and Computer Science Department, Peking
University, China, and the M.S. degree in electri-
cal engineering from the University of California
(UCLA), Los Angeles, CA, USA. He is currently
a fifth-year Ph.D. degree student in the NanoCAD
Lab, Department of Electrical Engineering, UCLA,
advised by Prof. Puneet Gupta.

His research interests include emerging mem-
ory and device technology circuit- and system-level

design, evaluation and optimization, and modeling for manufacturing.
.

Henry (Chaohong) Hu received the B.S. degree
in electrical engineering from Zhejiang University,
Hangzhou, China, in 2000, and the Ph.D. degree
in microelectronics and solid state electronics from
Shanghai Jiaotong University, Shanghai, China, in
2004.

From 2003 to 2004, he was a Visiting Research
Fellow in the Computer Engineering Lab, Delft Uni-
versity of Technology, Delft, The Netherlands. He is
a Senior Staff Memory System Architect in the Sys-
tem Architecture Lab, Samsung Semiconductor Inc.,

San Jose, CA, USA. Before joining Samsung, he spent 10 years in memory
technology on multiple R&D roles at Intel and Micron. His current research
work is new memory system architecture, memory RAS, etc.

Hongzhong Zheng (M’05) received the B.S. and
M.S. degrees in electrical engineering and computer
science from the Huazhong University of Science and
Technology, China, in 1998 and 2001, respectively,
and the Ph.D. degree in electrical and computer engi-
neering from the University of Illinois, Chicago, IL,
USA, in 2009.

He is currently a Memory and Storage System Ar-
chitect in Samsung System Architecture Labs, San
Jose, CA, USA. His research interests include com-
puter architecture, energy-efficient computing sys-

tem designs, novel memory architecture, emerging memory technology, and
performance modeling.

Dr. Zheng is a Member of the ACM.

Puneet Gupta (M’03) received the B.Tech. degree in
electrical engineering from Indian Institute of Tech-
nology, Delhi, India, in 2000 and the Ph.D. degree
from the University of California, San Diego, CA,
USA, in 2007.

He is currently a Faculty Member of the Electri-
cal Engineering Department, University of Califor-
nia, Los Angeles, CA, USA. He co-founded Blaze
DFM Inc. (acquired by Tela Inc.) in 2004 and served
as a Product Architect until 2007. He currently leads
the IMPACT+ Center, which focuses on future semi-

conductor technologies. His research has focused on building high-value bridges
across application-architecture-implementation-fabrication interfaces for low-
ered cost and power, increased yield, and improved predictability of integrated
circuits and systems. He has authored more than 150 papers, 17 U.S. patents, a
book, and a book chapter.

Dr. Gupta received the NSF CAREER Award, the ACM/SIGDA Outstand-
ing New Faculty Award, the SRC Inventor Recognition Award, and the IBM
Faculty Award. See http://nanocad.ee.ucla.edu and http://impact.ee.ucla.edu for
more details.

http://nanocad.ee.ucla.edu
http://impact.ee.ucla.edu

