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Abstract—Aggressive resolution enhancement techniques such
as inverse lithography (ILT) often lead to complex, non-rectilinear
mask shapes which make mask writing extremely slow and expen-
sive. To reduce shot count of complex mask shapes, mask writers
allow overlapping shots, due to which the problem of fracturing
mask shapes with minimum shot count is NP-hard. The need to
account for e-beam proximity effect makes mask fracturing even
more challenging. Although a number of fracturing heuristics
have been proposed, there has been no systematic study to analyze
the quality of their solutions. In this work, we first propose a
method to generate tight upper and lower bounds for actual
ILT mask shapes by formulating mask fracturing as an integer
linear program and solving it using branch and price. Since
the integer program requires significant computational resources
to compute reasonable bounds, we propose a new method to
generate benchmarks with known optimal solutions, that can be
used to evaluate the suboptimality of mask fracturing heuristics.
To make the generated benchmark shapes realistic, we further
propose a novel automated benchmark generation method that
takes any ILT shape as input and returns a benchmark shape
which looks similar to the input shape and for which the
optimal fracturing solution is known. Using these methods, we
compare the suboptimality of four mask fracturing heuristics.
Our results show that even a state-of-the-art prototype [version
of] capability within a commercial EDA tool for e-beam mask
shot decomposition can be suboptimal by as much as 2.6× for
real ILT shapes and by 6.0× for generated benchmarks.

I. INTRODUCTION

Photomasks are one of the most significant contributors
to semiconductor manufacturing cost. The use of aggressive
resolution enhancement techniques (RETs) has made mask
manufacturing extremely expensive and challenging. More-
over, the number of critical masks required for a particular
design has increased due to the use of multiple patterning. As
a result, controlling the cost of mask manufacturing is urgently
needed to sustain benefits derived from Moore’s-Law scaling
of patterning technologies.

Masks are fabricated using variable-shaped electron beam
(VSB) writing tools. These tools directly expose shots, i.e.,
axis-parallel rectangles of different sizes. Mask fracturing is
used to obtain a set of shots from the mask pattern, which
can then be input to a VSB tool. Since the total shot count
strongly affects mask fabrication time, the key objective of
mask fracturing tools is to minimize the number of shots. This
has been traditionally formulated as the well-studied rectilinear
polygon partitioning problem. [22] gives an O(n1.5 log(n))
algorithm to partition a polygon into a minimum number
of rectangles. Since such approaches are unable to handle
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additional manufacturing constraints such as minimization of
slivers, Kahng et al. [27] propose an ILP based fracturing
method, and a faster heuristic based on selection of rays from
concave corners [28]. [23] proposes a recursive algorithm to
minimize a weighted sum of shot count and slivers, while [30]
proposes a rectangle combination technique to minimize sliver
length along with shot count.

Due to aggressive RET such as ILT, mask shapes are
curved and non-rectilinear [7]. Fracturing these polygons using
traditional methods with acceptable fidelity can dramatically
increase the shot count [38]. To manage the shot count of
such complex patterns, [8] proposes model-based fracturing,
which is also often referred to as model-based mask data
preparation (MB-MDP). Two key features of model-based
fracturing distinguish it from traditional mask fracturing:

1) shots may overlap, which allows greater flexibility in
determining shot locations and hence lower shot count;
and

2) e-beam proximity effects in VSB mask writers are
simulated during the mask fracturing itself to ensure that
the final mask pattern matches the intended target.

The model-based mask fracturing problem allowing over-
lapping shots becomes similar to the rectilinear covering
problem, which is NP-hard [11]. In fact, there is no known
constant-factor approximation algorithm for rectilinear cover-
ing [2]. For polygons which are convex in the vertical or hor-
izontal direction, [13] proposes a quadratic-time algorithm to
solve the covering problem. But, this convexity property rarely
holds for ILT shapes. For hole-free polygons that do not satisfy
this convexity constraint, [36] proposes several heuristics that
guarantee covers with at most twice the optimal number of
rectangles. [14] proposes an approximation algorithm with
worst-case performance bounds for any rectilinear polygon.
However, the need to correct for proximity effects means that
these methods cannot be used for mask fracturing.

In addition to overlapping shots and proximity effect cor-
rection, [17] proposes to adjust the dose of each shot inde-
pendently. The use of L-shaped shots to reduce shot count
has been suggested by [37]. The use of circular shots [16]
[38] or shots with 45o edges [10] has also been proposed.
[12] analyzes the benefits and disadvantages of different
mask fracturing strategies. They conclude that, among the
alternatives studied, using axis-parallel rectangle shots with
fixed dose is the most viable candidate for improvement of
shot count without significant changes in mask writing tools.
Hence, in this work we only use axis-parallel rectangle shots
with fixed dose.

Jiang and Zakhor propose an algorithm based on matching
pursuit to solve the fracturing problem [24], and a greedy
approximate covering algorithm that grows rectangles from
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TABLE I: Glossary of Terminology
Term Meaning Term Meaning

S Set of all possible candidate shots (i.e., with different sizes and
locations) for fracturing of target shape ζ(θ)

Distance between two parallel lines of the same θ. One line is across a corner
point of a shot and the other line is the closest tangent line of the shot image

Pd Set of pixels lying within distance γ of boundary of tori P1(P0) Set of pixels within (outside) the boundary of tori not belonging to Pd
s Particular candidate shot under consideration I(x,y,s) Intensity at pixel p(x,y) due to shot s
W (s),H(s) Width and height of shot s ρ Threshold value for e-beam resist
tori Target mask shape to fracture γ CD tolerance limit for fracturing
p(x,y) Pixel of a mask shape at coordinate (x,y) (x,y) Coordinates of particular point on the mask
Smin(tori) Minimal set of shots used to fracture tori (depends on γ,σ,ρ) ∆ Shot size granularity
Wmin(Wmax) Minimum (maximum) shot size allowed ∆MP Shot size granularity used in matching pursuit heuristic
I(x,y) Total intensity at p(x,y) due to all shots in current solution zs 0-1 variable indicating whether candidate shot s is part of solution
W (tori),H(tori) Width and height of bounding box of tori Bv(Bh) Vertical (horizontal) boundary segments of tori

bi ith boundary segment tori,i ith split-shape of tori
λ∗p Value of dual variable at pixel p(x,y) Pneg Set of pixels for which λ∗p ≤ 0
(xbl(s),ybl(s)) Bottom-left coordinate of candidate shot s NC Maximum number of candidate shots inserted in one pricing round
(xtr(s),ytr(s)) Top-right coordinate of candidate shot s Bn Set of all boundary segments that require at least n shots to construct
β Maximum distance outside shot at which the intensity ≥ 10−6 σ Parameter characterizing the spreading of the e-beam
bn Particular boundary segment that requires at least n shots θ Angle between straight-line boundary segment and x-axis

Lθ

lin(W,H) Longest straight-line boundary segment having angle θ with the x-axis
that can be covered with a shot of width W and height H α

Maximum distance outside target boundary where candidate shot corner can lie
without exposing any pixel in P0

bseg in(bseg out ) Inner (outer) segment parallel to bseg obtained by shifting bseg by γ Lt Defined in Figure 9(a)

Lθ
con(W,H) Length of concave boundary segment, having angle θ with the x-axis,

made with shot of size W ×H Lθ
max

Maximum length of linear boundary segment, having angle θ with the x-axis,
that can be made with any rectangular shot

bmain(bcri) Main (critical) boundary segment tgen(tgen,i) Generated benchmark shape which resembles tori (tori,i)
V (t) Set of vertices of shape t vk(t) kth vertex of shape t

Lθ

th
Minimum distance between any two shot corner points that generate
the boundary segment b2 Vmain

Ordered sublist of V (tori,i) such that the straight-line segments connecting them
approximate bmain of tgen,i

vmain,i ith vertex of Vmain bseg Boundary segment under consideration
V s f t

main Set of points obtained by shifting Vmain Cmain Set of shot corner points lying on line segments connecting Vmain
Copp

main Set of opposite corner points of Cmain d(ta, tb) Number of error pixels between shapes ta and tb
L(ca,cb) Distance between the points ca and cb bgen,i Boundary segment of generated shape tgen,i

convex vertices of a target polygon [25]. Both of these heuris-
tics assume an adjustable shot dosage, but can be extended to
solve the fixed-dose problem. [29] compares several heuristics
to solve the model-based fracturing problem. While these re-
cent works on model-based mask fracturing have demonstrated
improvements in shot count over traditional partitioning-based
approaches, the gap between existing methods and optimal
solutions remains unclear.

Benchmarking of heuristics used to solve NP-hard EDA
problems such as placement [19], gate sizing [18] and par-
titioning [19] enables the development of better methods
for solving these problems. The goal of our present work
is to enable the benchmarking of model-based fracturing
as a foundation for further research towards more effective
heuristics. To the best of our knowledge, this is the first work
that attempts to benchmark model-based mask fracturing. The
key contributions of this work are the following:
• We propose an ILP formulation to optimally solve the

model-based mask fracturing problem. We then develop
a branch and price method that, in practice, generates
strong upper and lower bounds for benchmarking.

• To deal with the slow runtime of ILP-based bench-
marking, we propose a systematic method to generate
benchmarks with known optimal shot count.

• To generate more realistic benchmarks, we propose an
automated benchmark generation method that takes a real
ILT shape as input and creates a benchmark with known
optimal shot count that looks similar to the input shape.

• Using the above methods, we evaluate the suboptimality
of four mask fracturing heuristics: greedy set cover,
matching pursuit, graph coloring and a state-of-the-art
prototype [version of] capability within a commercial
EDA tool for e-beam mask shot decomposition.

In the following, Section II defines the mask fracturing
problem, and Section III describes mask fracturing heuristics

that we benchmark. Section IV proposes an ILP-based method
to obtain tight upper and lower bounds on optimal shot count.
Section V gives our method for benchmark generation with
known minimum shot count. Section VI presents our method
to automatically generate benchmarks with known minimum
shot count which are similar to input mask shapes. Table I
summarizes our notations.

II. MASK FRACTURING PROBLEM

The goal of mask fracturing is to find the minimum number
of rectangular shots required to construct a mask target shape.
Although each shot is rectangular, the e-beam proximity effect
blurs its boundary [8]. Hence, the developed mask pattern
differs from the union of rectangular shots. Also, since the
blurring due to the e-beam proximity effect is smaller than
the spacing between different shapes, each shape in the mask
can be fractured independently. Moreover, to better understand
which target shapes are more challenging, the suboptimality of
mask fracturing heuristics should be evaluated for individual
mask target shapes rather than for the entire mask.

We define S as the set of all possible candidate shots that
could be used to reconstruct the target shape tori, i.e., the
dictionary of candidate shots. S consists of all shifted copies of
all different shot sizes ranging from Wmin to Wmax, with shot
size granularity of ∆.1 E-beam proximity effect is modeled
using a low-pass filter, typically a Gaussian or sum of Gaus-
sians [33]. In this work, we model the proximity effect by a
single 2D Gaussian low-pass filter, described by Equation (1).
However, our proposed methods for benchmarking can be
easily extended to handle other proximity effect models.

K(x,y) =

 1
F exp−

x2+y2

σ2 if −3σ≤
√

x2 + y2 ≤ 3σ

0 otherwise (1)

1The step size of shifting is also ∆, i.e., all shots are rectangles in a discrete
grid.
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K(x,y) is the kernel function of the Gaussian filter, F is a
normalization factor (i.e., sum of K(x,y) across all values of x
and y) and σ is a parameter which characterizes the spreading
of the e-beam. For any rectangular shot s, the intensity at a
pixel can be computed by convolving the ideal rectangular
function (ψ(x̂, ŷ)) [5] with the kernel function. That is,

I(x,y,s) = K(x,y)⊗ψ(
(x− xc,s)

W (s)
,
(y− yc,s)

H(s)
)

ψ(x̂, ŷ) =

{
1 if |x̂|< 0.5 and |ŷ|< 0.5
0 otherwise

(2)

where xc,s and yc,s are the x and y coordinates of the center
of the shot. In this paper, all dimensions are in wafer scale.2

Fig. 1: Each grid in the figure is a pixel p(x,y). The
thick black line is the target boundary. In this figure, the
CD tolerance is γ = 2nm and the grid size is 1nm× 1nm.
p(x,y) ∈ Pd if p(x,y) is within 2nm of the target boundary.

We model the e-beam resist using a constant-threshold
model with threshold value of ρ. A given pixel (p(x,y)) on
the mask will be exposed if and only if the total intensity at
that pixel resulting from all shots is greater than or equal to
the resist threshold ρ.3 As shown in Figure 1, we divide the
set of pixels on the mask into three disjoint sets: P1, P0 and
Pd . have intensity ≥ ρ. Similarly, we define P0 as the set of
the pixels outside the target shape which do not belong to Pd .
The pixels in P0 must have intensity < ρ.

The mask fracturing problem is formally defined as follows.
Goal: Minimize total #mask shots N = |Smin(tori)|.
Inputs: Mask target shape, set of candidate shots S, ρ, σ, γ.
Outputs: Set of rectangular shots, Smin(tori).
Constraints:

∑
s∈Smin

I(x,y,s)≥ ρ if p(x,y) ∈ P1

∑
s∈Smin

I(x,y,s) < ρ if p(x,y) ∈ P0
(3)

CD control of the target pattern is a key concern for mask
manufacturing. To minimize CD variation, any critical vertical
or horizontal segment of the target shape boundary should
not be constructed with more than one shot [35]; see Figure
2. To check if a particular candidate shot satisfies the CD
control constraint, we first identify critical vertical / horizontal
regions of a given target shape (i.e., long and narrow part of
a target shape). Any candidate shot in S that overlaps with
these horizontal (vertical) critical regions must have both of
its vertical (horizontal) edges touching the target boundary.

2Typically, mask scale is 4× wafer scale.
3The exposed pixels will form the mask shape.

Fig. 2: Illustration of CD control constraint for candidate shots
for a horizontal critical region.

The mask writing process may also require additional
constraints to avoid resist over-heating. In this work, we do
not consider the imposition of maximum intensity constraints
to model resist over-heating, since the over-heating is an effect
at length scales on the order of microns [15] [3].

III. FRACTURING HEURISTICS

To evaluate the suboptimality of different mask fracturing
heuristics, we have implemented two simple methods to frac-
ture mask shapes, based on prior work, that we describe in
this section. The fracturing solutions created by both these
heuristics tend to have CD violations, i.e. pixels that vio-
late Constraint (3). Hence, we use an additional step, shot
refinement, to fix the CD violations. In addition to the two
simple heuristics, we evaluate the suboptimality of a prototype
[version of] capability within a commercial EDA tool for e-
beam mask shot decomposition (PROTO-EDA). We further
evaluate the recent heuristic of Kagalwalla and Gupta [26],
which uses a combination of graph coloring based approximate
fracturing and shot refinement.

The first heuristic, greedy set cover (GSC), is inspired
by the well-known greedy approximation algorithm for the
NP-complete set cover problem [9]. Note that the fracturing
problem (in the absence of proximity effect) is a geometric
set cover problem, so we choose this heuristic for comparison.
We first construct a Hanan grid [20] by constructing x- and
y-axis-parallel lines from each vertex of the target polygon.
Every grid element that lies inside the polygon and contains
at least one pixel p(x,y) ∈ P1 is considered an element to be
covered in the set cover problem. We then find all the maximal
rectangles lying inside the polygon.4 Each maximal rectangle
is treated as a ‘set’ that covers some of the grid elements. The
fracturing problem reduces to the set cover problem to which
we apply the greedy approximation algorithm. Note that the
e-beam proximity model is not considered in constructing this
fracturing solution but is handled during the shot refinement.

The second heuristic, Matching pursuit (MP), is a well-
known technique to represent a signal sparsely for an over-
complete basis set [31].5 Jiang and Zakhor [24] propose a
technique to apply this method to the mask fracturing problem.
A dictionary of different shot sizes is first constructed. To keep
the dictionary size tractable, some step size ∆MP≥∆ is used to

4A rectangle is maximal if all four edges touch the boundary of the target
polygon.

5Although there are several papers on model-based mask fracturing (e.g.,
[8]), there is a dearth of papers that talk about the specific method being used.
The only specific method we found was matching pursuit (MP), so we have
implemented that for comparison.
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discretize the width/height range between Wmin and Wmax.6 The
proximity model is applied to each shot in the dictionary. We
then iterate over the dictionary and over all potential positions
of the candidate shot to pick the shot that maximally reduces
the residual error. This procedure is repeated until no shot is
found that can reduce the residual error, defined to be the sum
of |I(x,y)−ρ| over all pixels which violate the CD constraint.

The third heuristic, Graph Coloring (GC), proposed recently
by Kagalwalla and Gupta [26], traverses the boundary of the
target shape to identify candidate shot corner point locations.
Treating every shot corner point as a graph vertex, mask
fracturing is mapped to a graph coloring problem such that
each color corresponds to a shot. The NP-hardness of graph
coloring motivates use of a sequential greedy heuristic [32] to
find an approximate fracturing solution.

Fig. 3: Flowchart of shot refinement step for greedy set cover
(GSC) and matching pursuit (MP) heuristics.

After obtaining initial fracturing solution from GSC, MP
and GC heuristics, we perform shot refinement step as shown
in Figure 3. The shot refinement step moves edges of shots
greedily to minimize the residual error (RE). Once this proce-
dure stops reducing the residual error, we bias all the shots of
the current solution by a small value. If the number of pixels
in set P0 that violate the CD constraint (over-cover) is greater
than the number of pixels in P1 that violate the CD constraint
(under-cover), then we shrink all shots; otherwise, we expand
all shots during this bias step. After biasing, we continue with
the greedy shot edge adjustment. If this iterative procedure
fails to reduce the residual error for more than N iterations, we
add (remove) one shot if more pixels are under-covered (over-
covered). We terminate when the residual error is zero, i.e.
there are no CD violations. We note that this procedure does
not guarantee a feasible (CD error-free) fracturing solution,
and that some results in our experiments have CD errors.

IV. ILP-BASED BENCHMARKING

To evaluate the suboptimality of fracturing heuristics on any
given mask shape, we apply an optimal ILP formulation. The
straightforward ILP formulation requires a large number of
binary variables, even for small target shapes. As a result,

6We use a large shot size granularity ∆MP only during the first step of
generating an approximate fracturing solution that is then refined to obtain
the final valid solution. The refinement step moves shots in steps of size ∆.
Consequently the final solution of MP uses shots with the same granularity as
B&P. We note that keeping the granularity of MP large during the first step
is necessary to ensure reasonable runtime.

even commercial ILP solvers can run out of memory on high-
performance computers. To circumvent this, we propose three
strategies, described in this section: (1) pruning the set of can-
didate shots, (2) splitting large target shapes, and (3) solving
the ILP using branch and price. With these strategies, we can
obtain strong upper and lower bounds on the optimal solution
within feasible runtime. Note that although the proposed ILP
can be used to inspire effective mask fracturing heuristics,
the goal of this work is benchmarking. Hence, runtime is
important only in the context of making the method tractable.

A. Optimal ILP Formulation

Inspired by the ILP formulation of Heinrich-Litan et al.
[21], we propose a simple ILP formulation for the model-
based mask fracturing problem. We define a binary selection
variable zs for each candidate shot s ∈ S, where zs = 1 if shot
s is used and zs = 0 otherwise. Then, based on the problem
description in Section II, we may formulate an optimal ILP to
solve the fracturing problem as:

Minimize ∑
s

zs

subject to ∑
s
{zs · I(x,y,s)} ≥ ρ, p(x,y) ∈ P1

∑
s
{zs · I(x,y,s)}< ρ, p(x,y) ∈ P0

(4)

The problem with this ILP formulation is that |S| can be very
large even for small target shapes. For a target shape tori with
a bounding box of W (tori)×H(tori), if the shot size granularity
is ∆ and no shots are disallowed due to the CD control
constraint, then the size of the set of candidate shots would
be

( (Wmax−Wmin)
∆

)2 ·(W (tori)− Wmax+Wmin
2 ) ·(H(tori)− Wmax+Wmin

2 ),
where Wmin and Wmax are the minimum and maximum allowed
shot sizes. Even for small mask shapes, the corresponding ILP
is too large for commercial solvers to handle due to runtime
and excessive memory usage.7 constraint In fact, the CPLEX
v12.5 solver [40] runs out of memory when we attempt to solve
an instance on an Intel Xeon L5420 with 128GB RAM.8

B. Pruning the Candidate Shot Dictionary

Reducing |S| can significantly help in making the above
ILP tractable for benchmarking. Here we highlight two simple
rules that can be used to reduce |S|:

1) For any candidate shot s, if there exists a pixel p(x,y)∈
P0 such that I(x,y,s)≥ ρ, then s can be removed from the
set S. This pruning condition obviously does not affect
optimality because any candidate shot that satisfies this
condition cannot be a part of a feasible solution of the
ILP. Depending on the specific target shape, this pruning
strategy can significantly reduce |S|.

2) If a candidate shot s is inside the target shape and none
of its four edges are less than the distance γ from the
target boundary, then we remove s from set S. If s is a
part of the optimal solution, then we can replace s with

7We have formulated alternative ILPs with fewer variables, but these turned
out to be even harder for the ILP solver, for numerical reasons. We have
assiduously explored the possibility of ILP speedups and, to our current
understanding, currently apply “best known methods” in expressing our ILP
to the CPLEX solver.

8The details of the instance are described in [6].
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a larger shot that covers s and has at least one boundary
close to the edge of the target shape, without affecting
the optimality of the solution.

The reduction in |S| due to these pruning rules depends
strongly on the specific target shape and the e-beam proximity
effect model. For certain target shapes, the number of variables
even after pruning could be > 106, making it difficult to solve
the problem efficiently with commercial ILP solvers.

C. Splitting Target Shapes

The size of the mask fracturing ILP depends on the size
of the bounding box of the target shape (i.e., the number of
variables (candidate shots) and the number of CD constraints
(pixels)). The ILP can become intractable for large target
shapes. In this subsection, we propose a simple strategy that
can be used to split large target shapes into two or more split-
shapes. This allows us to solve a separate smaller ILP for each
smaller split-shape. The fracturing solutions of the smaller ILP
instances can then be aggregated to obtain a solution of the
full target shape; this can then be used as the initial solution
of the larger ILP corresponding to the full target shape.

When splitting any target shape, the key step is to determine
locations where the shape should be split. We find horizontal
and vertical line segments which serve as split locations (see
Figure 4). Algorithm 1 describes the procedure we use to
obtain horizontal split locations. An analogous procedure can
be used to find vertical split locations.

In Algorithm 1, we first identify vertical boundary seg-
ments9 of tori which are longer than Lth. Each such vertical

Algorithm 1 Determine horizontal locations to split target
Input: Target shape tori and length threshold Lth
Output: Locations where tori is split
1: Bv← all vertical boundary segments longer than Lth, sorted by x-coordinate
2: for all bi ∈ Bv do
3: for all b j ∈ Bv do
4: low← max(bi.low,b j .low)
5: high← min(bi.high,b j .high)
6: if bi 6= b j&&(high− low) > Lth then
7: (xbl(rect),ybl(rect))← (bi.val, low)
8: (xtr(rect),ytr(rect))← (b j .val,high)
9: if rect lies inside tori then

10: Split location ← Line segment from (bi.val, low+high
2 ) to (b j .val, low+high

2 )
11: end if
12: end if
13: end for
14: end for

boundary segment bi is characterized by three parameters:
the x-coordinate of the orthogonal segment (bi.val), and the
respective y-coordinates of the two end points of the segment
(bi.low and bi.high). Using these, we then find pairs of parallel
vertical segments which satisfy the following two conditions:
(i) the length of the shadow rectangle between the two parallel
segments is longer than Lth (Line 6); and (ii) the shadow
rectangle lies inside the target polygon tori (Line 9). Then,
we can split tori at the center of the shadow rectangle.

Suppose that we split a target shape into two shapes tori,i
and tori, j with a horizontal split location using Algorithm 1. Let
Lth ≥ 2β, where β is the maximum distance outside the shot
for which the shot intensity is nonzero. Then, we can bound

9A boundary segment is a contiguous part of the boundary of a target shape.

Fig. 4: Splitting a target polygon into smaller polygons.

minimum shot counts of tori as a function of minimum shot
count of tori,i and tori, j based on the following two lemmas.

Lemma IV.1. |Smin(tori)| ≤ |Smin(tori,i)|+ |Smin(tori, j)|.

Proof. If we consider all the shots of an optimal fracturing
solution of the two split-shapes tori,i and tori, j, we vertically
extend all the shots that touch the split location by one pixel, so
that these shots from tori,i and tori, j overlap at the split location.
This modified set of shots is a feasible solution that satisfies
all the CD constraints. The size of this feasible solution is
an upper bound on the size of the optimal solution of the
full shape. Note that combining solutions of the smaller split-
shapes is valid if and only if the distance from the horizontal
split line to the top (bottom) of the shadow rectangle is large
enough that extending the shot from the lower (upper) split-
shape by one pixel above (below) the horizontal split line
does not add intensity to any pixel above (below) the shadow
rectangle. This is guaranteed when we set Lth = 2β.

Lemma IV.2. |Smin(tori)| ≥ max(|Smin(tori,i)|, |Smin(tori, j)|).

Proof. Without loss of generality, assume that |Smin(tori,i)| ≥
|Smin(tori, j)|, and that tori,i lies below a horizontal split location.
Suppose toward a contradiction that there exists an optimal
fracturing solution S∗min(tori) for target shape tori, such that
|S∗min(tori)|< |Smin(tori,i)|. From this solution, we can obtain a
feasible fracturing solution for tori,i by taking all the shots that
lie below the split location and splitting all shots that overlap
with the split location. Clearly, the number of shots in this
fracturing solution satisfies |S∗min(tori,i)| ≤ |S∗min(tori)| since only
a subset of the shots in the fracturing solution of tori are used.
This implies |S∗min(tori,i)| < |Smin(tori,i)|, which is impossible.
Consequently our original assumption must be incorrect, and
|Smin(tori)| ≥ |Smin(tori,i)|.

After splitting tori using the method described above, we
solve a separate ILP for each split-shape. We then combine
the fracturing solution of the separate ILPs to obtain a feasible
fracturing solution for tori, which we use as a starting solution
for the larger ILP for tori. Note that this splitting technique
is effective only if the target shape boundary contains long
vertical and/or horizontal boundary segments.
D. Branch and Price Method

Branch and price (B&P) is a well-known method for solving
large ILPs [4]. The key feature that distinguishes B&P from
typical ILP solvers is that the LP relaxation at each node of the



6

branch and bound tree is solved using column generation. To
solve the LP relaxation, which contains too many variables to
handle efficiently, a reduced master problem (RMP) containing
only a small subset of the variables is solved first. To confirm
the optimality of this RMP, a separate pricing subproblem is
solved to find any new variables that must be inserted back into
the RMP. If no variable is found by the pricing subproblem,
then the LP relaxation is optimal and branching can be done
to obtain the integral solution to the original ILP.

The selective insertion of variables based on the pricing
subproblem in B&P means that most variables are never
inserted into the LP relaxation. As a result, the LP relaxation
solver does not consume too much memory. This is the main
reason why we choose to apply this technique to solve the ILP
described in Equation (4). The runtime of B&P is known to
be limited by the pricing subproblem for most problems [4].
Hence, we propose a novel pricing mechanism comprising a
fast, approximate pricer and a slower, optimal pricer.

The goal of pricing subproblem is to identify additional
variables that must be inserted into the RMP. For mask
fracturing problem, let λ∗p be the optimal value of the dual
variable corresponding to CD constraint (Equation (4)) at
pixel p(x,y) ∈ P1 ∪ P0, obtained after an iteration of the
RMP. The pricing subproblem (derived from the dual of
the RMP) reduces to finding a new candidate shot s such
that ∑p I(x,y,s) · λ∗p ≤ −1. This candidate shot must satisfy
the pruning rules discussed above. Moreover, additional con-
straints imposed by the branching rules of branch and bound
tree must be met. The reduced cost of any candidate shot s is
given by Rs = 1+∑p{I(x,y,s) ·λ∗p}. In short, we refer to any
candidate shot that has Rs ≤ 0 and satisfies all pruning and
branching constraints as an insertable candidate shot (ICS).

To ensure that the LP relaxation is solved optimally, pricing
subproblem must guarantee that no ICS exists. If there are sev-
eral ICSs, the pricing subproblem only needs to find a subset
of all the ICSs in an iteration. To improve the convergence of
B&P, we set the maximum number of candidate shots that are
inserted in each pricing iteration as NC = 500.

One strategy to solve the pricing problem is to enumerate all
possible sizes and locations of candidate shots and insert any
shot that has a negative reduced cost and satisfies pruning and
branching rules. To improve efficiency of this naive pricing
strategy, we analyze the dual variables of the RMP. Based
on the Karush-Kuhn-Tucker (KKT) conditions, the following
holds for the dual variables:

1) Due to complementary slackness, λ∗p 6= 0 if and only if
∑s{zs · I(x,y,s)} = ρ. Since this is likely to occur only
close to the boundary of the target shape, λ∗p is nonzero
only for a small number of pixels that lie very close to
the target boundary. We shall refer to the set of pixels
with nonzero dual values as dual points.

2) To ensure dual feasibility, λ∗p > 0 for p(x,y) ∈ P0 and
λ∗p ≤ 0 for p(x,y) ∈ P1. This implies that all negative
dual points (Pneg) with λ∗p ≤ 0 are located inside the
target shape.

That negative dual points are sparse and located close to the
target shape boundary is illustrated in Figure 5 for a particular

pricing iteration of a target shape. Based on this insight, we
propose two pricing strategies to effectively find ICSs.

Fig. 5: Illustration of negative dual points (pink dots) for part
of a target shape. Coordinates xlow, xhigh, ylow and yhigh (points
of intersection of blue dashed lines with target shape bound-
ary) for a particular negative dual point (point of intersection
of the two dashed lines) are also shown.

Algorithm 2 Fast Pricer Heuristic
Input: Target shape t, and list of pixels with negative dual values Pneg
Output: Set of inserted candidate shots to be added into the RMP
1: for all p(x,y) ∈ Pneg do
2: Draw vertical/horizontal line from (x,y) to find ylow, yhigh, xlow and xhigh

(iillustrated in Figure 5)
3: Find all candidate shots in vicinity of (x,y) that satisfy Equation (5) below
4: Insert (up to NC

|Pneg | ) candidate shots that satisfy reduced cost, pruning and branching
constraints into the RMP

5: end for

1) Fast Pricer: The basic idea of the fast pricer is to look
for ICSs in the vicinity of p(x,y) ∈ Pneg, since any candidate
shot s with negative reduced cost must be located such that
it covers or is close to at least one negative dual point (see
Algorithm 2). The intuition behind constraining xbl(s), ybl(s),
xtr(s) and ytr(s) as shown in Equation (5) is that such candidate
shots will have nonzero intensity at the negative dual point
under consideration and are likely to obey the first pruning
rule (not exposing any pixel in P1).

xlow−α≤ xbl(s)≤ x+β , x−β≤ xtr(s)≤ xhigh +α

ylow−α≤ ybl(s)≤ y+β , y−β≤ ytr(s)≤ yhigh +α
(5)

2) Optimal Pricer: Although our pricing heuristic above
effectively identifies most ICSs which can be inserted into the
RMP, it does not guarantee that if no ICS is found, then there
does not exist any ICS. Hence, if the heuristic fails to find
any ICS, we call the optimal pricer that is guaranteed to find
a candidate shot with negative reduced cost, if it exists. The
optimal pricer iterates over all candidate shots in the vicinity of
the negative dual points. The method is described in Algorithm
3. The optimal pricer first constructs square boxes of size 2×β

centered at each negative dual point. Any candidate shot which
could have negative reduced cost must overlap with at least one
of these boxes. Hence, we could iterate over all such candidate
shots to find ICSs. But several dual points may lie close to
each other which may cause candidate shots to be generated
twice. To avoid this, we first merge the boxes using polygon
Boolean OR operation. We then find the bounding box of each
resulting polygon. All candidate shots that overlap with these
bounding boxes are then checked for insertion into the RMP.

E. Initialization and Overall Summary

In addition to solving the pricing subproblem efficiently,
B&P benefits significantly from a good initial feasible solu-
tion. B&P can discover feasible solutions using Farkas pricing
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Algorithm 3 Optimal Pricer

Input: Target shape t, and list of pixels with negative dual values Pneg.
Output: Set of candidate shots inserted into the RMP
1: mergedBoxes← new list of polygons
2: for all p(x,y) ∈ Pneg do
3: rect←square box of size 2×β with p(x,y) as center
4: mergedBoxes← mergedBoxes

W
rect (Polygon Boolean OR operation)

5: end for
6: for all polygon ∈ mergedBoxes do
7: Find bounding box of polygon
8: Find all candidate shots that overlap with the bounding box of polygon
9: Insert (up to NC

|Pneg | ) candidate shots that satisfy reduced cost, pruning, CD control
and branching constraints into the RMP

10: end for

[1], but can take many iterations of pricing. In this work,
we use the lowest shot count solution that satisfies all the
constraints, over the results from the GSC, MP and GC
heuristics, as the initial solution for B&P. Although B&P
resolves the problem of excessive memory usage, it takes
a long time to converge to the optimal solution. Since our
objective is to evaluate suboptimality, we run B&P with a
fixed time limit and report upper and lower bounds on the
optimal shot count.

For each split-shape tori,i, we first obtain an initial solution
and solve the ILP using B&P. Based on the upper and lower
bounds of each smaller ILP, we obtain lower and upper bounds
for tori using Lemma IV.1 and Lemma IV.2, respectively. To
improve these bounds, we combine the solutions from each
split-shape by merging shots lying at the split locations. If
this does not give a feasible solution for tori, we apply shot
refinement to fix the constraint violations and then use this as
the initial solution for solving the larger ILP for tori using B&P.
To improve the runtime of the pricing method, we parallelize
both fast and optimal pricing method. For fast pricer, Line 4 in
Algorithm 2 can easily be parallelized since candidate shot can
be checked for insertion to the RMP independently. Similarly
for optimal pricer (Algorithm 3), Line 9 can be parallelized
easily. Note that the use of fast pricer before optimal pricer is
critical for faster convergence.10

F. Experimental Results

Our B&P based suboptimality evaluation method has imple-
mented in C++. We use the OpenAccess API [43] to parse
layouts, Boost Polygon Library [39] to perform polygon oper-
ations, and Eigen Library [41] to perform matrix operations.
To implement B&P, we use the SCIP framework [1], along
with CPLEX v12.5 [40] as the LP solver. We parallelize the
pricing methods using OpenMP [44].

We set the resist threshold ρ = 0.5 and use a Gaussian e-
beam proximity effect model with two values of σ, 6.25nm
and 4nm.11 For CD tolerance γ, we consider values of 2nm
and 1nm. The shot dimension constraints are Wmin = 13nm,
Wmax = 1000nm and ∆ = 1nm.12 The pixel size is 1nm.

10In our experiments, the wall time of optimal pricer is 10−100× the wall
time of fast pricer.

11σ = 6.25nm is consistent with recent work on mask fracturing [24] [25].
We also show results for σ = 4nm to highlight the impact of Gaussian blur
on shot count.

12The minimum shot size constraint accounts for slivers. Although some
prior fracturing work mention that aspect ratio of a shot should be constrained,
based on our discussion with a EDA vendor, we believe that setting a minimum
shot size is a more appropriate constraint for a e-beam mask write tool.

Fig. 6: ILT mask shapes after applying inverse lithography to
layouts from the ICCAD-2013 contest [42] (wafer scale).

We apply ILT to benchmark pre-RET layouts from the 2013
ICCAD contest [42], using a 2013 production release of a
commercial EDA tool. From the ILT solutions, we select 10
representative mask shapes for evaluation (see Figure 6).

For each of the 10 target shapes, we run B&P on an eight-
core machine with a time limit of 12 hours. Half the time limit
is devoted to solving the ILP corresponding to the split-shapes,
with the time limit of each split-shape tori,i proportional to the
size of its bounding box. The remaining time limit is spent in
solving the larger ILP corresponding to tori.

In any branch and bound based search method for integer
programs, the upper bound corresponds to the best integral
solution that has been discovered so far. The lower bound
corresponds to the LP relaxation at a particular level of the
branch and bound tree. We report the upper and lower bounds
reached by B&P within the set time limit.

The shot count and runtime of the MP heuristic depend
strongly on ∆MP and the value by which each shot size
is shifted when searching for new shots. Selecting a large
value for these parameters reduces the runtime, but typically
increases shot count, and can cause many mask shapes to have
CD violations even after shot refinement. For this work, we
set ∆MP = 15nm, and shots are shifted by (∆MP/2).

Table II shows the shot count, runtime and memory usage
for four different heuristics (GSC, MP, GC and PROTO-EDA).
For 10 benchmark shapes and three scenarios, our method
reports a lower bound based on LP relaxation.13 Although
this seems trivial, typical LP methods (simplex and barrier
methods) run out of memory while trying to solve the LP
relaxation of the ILP in Equation (4) for these benchmark
shapes. Hence, our B&P based method appears to be enabling
to the computation of this lower bound. Moreover, for the case
with σ = 6.25nm,γ = 2nm, our method discovers a fracturing
solution (upper bound) better than any of the heuristics for
five of 10 shapes. For two of them, optimal solution is found.

Some results in bold indicate that the solution has CD
violations; since these shot counts are therefore “optimistic”,
we do not include these results in our suboptimality analysis.14

If we assume that the lower bound reported by the ILP is
indeed the optimal shot count, the suboptimality of GSC,
MP, GC and PROTO-EDA heuristics ranges respectively from

13The fractional LP relaxation value is rounded up to the next integer to
obtain the lower bound.

14The percentage of pixels that are failing (i.e., number of failing pixels /
total number of pixels × 100), over all results, is at most 0.16%.
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TABLE II: Comparison of shot count, runtime and memory usage for ILT mask shapes shown in Figure 6 for four different
heuristics (GSC, MP, GC and PROTO-EDA) along with lower bound (LB) and upper bound (UB) obtained from Branch and
Price (B&P). Shot count is shown for three scenarios with different values of sigma (σ) and CD tolerance (γ). We set 12 hours
time limit for B&P. Bold-font numbers indicate infeasible solutions (at least one failing pixel in the solution).

Clip-ID

Shot Count (Runtime (s)) Memory
σ = 6.25nm, γ = 2nm σ = 4nm, γ = 2nm σ = 4nm, γ = 1nm usage (MB)

GSC MP GC PROTO- B&P GSC MP GC PROTO- B&P GSC MP GC PROTO- B&P GSC, MP and GCEDA LB/UB EDA LB/UB EDA LB/UB
1 14 (< 1) 18 (5) 6 (1) 7 (< 1) 3/4 14 (< 1) 10 (7) 13 (< 1) 12 (< 1) 4/5 22 (< 1) 13 (13) 9 (2) 12 (< 1) 5/9 239
2 18 (3) 13 (8) 13(2) 21 (< 1) 6/13 23 (1) 23 (18) 28 (1) 31 (< 1) 6/9 27 (2) 46 (42) 21 (2) 32 (< 1) 8/15 241
3 5 (1) 4 (18) 4(1) 7 (< 1) 3/3 3 (< 1) 9 (3) 3 (13) 27 (< 1) 3/3 13 (< 1) 75 (28) 7 (6) 27 (< 1) 3/9 239
4 31 (2) 12 (27) 20(1) 21 (< 1) 6/13 40 (< 1) 25 (19) 22 (22) 36 (< 1) 7/17 60 (4) 51 (40) 35 (17) 36 (< 1) 10/36 241
5 23 (< 1) 25 (106) 8 (4) 12 (< 1) 5/8 27 (1) 16 (45) 14 (1) 22 (< 1) 5/13 24 (11) 19 (83) 19 (11) 22 (< 1) 8/23 239
6 9 (< 1) 5 (1) 5 (< 1) 6 (< 1) 3/3 9 (< 1) 5 (1) 5 (< 1) 11 (< 1) 3/4 17 (< 1) 27 (8) 6 (1) 11 (< 1) 4/6 239
7 10 (< 1) 6 (4) 5 (< 1) 8 (< 1) 3/4 15 (< 1) 5 (3) 5 (< 1) 11 (< 1) 3/4 22 (1) 34 (27) 9 (3) 14 (< 1) 4/7 239
8 26 (< 1) 10 (89) 14 (< 1) 12 (< 1) 5/9 26 (< 1) 16 (51) 16 (< 1) 21 (< 1) 5/15 44 (< 1) 25 (91) 25 (< 1) 23 (< 1) 8/20 240
9 39 (3) 25 (25) 18 (14) 26 (< 1) 7/10 39 (< 1) 22 (32) 13 (14) 53 (< 1) 4/13 63 (3) 55 (67) 39 (20) 54 (< 1) 6/30 242

10 14 (< 1) 7 (13) 14 (< 1) 11 (< 1) 3/6 15 (< 1) 10 (8) 20 (< 1) 19 (< 1) 4/5 24 (1) 12 (15) 12 (33) 21 (< 1) 6/12 239

1.7× to 5.6×, 1.6× to 6.0×, 1.3× to 4.7× and 2.0× to 3.7×,
for σ = 6.25nm and γ = 2nm.

Since the gap between the optimal solution of an ILP and
the LP relaxation can be very large, suboptimality analysis
based on the lower bound may be too pessimistic. If we make
the optimistic assumption that the integer solutions obtained by
the ILP are in fact optimal, i.e. the upper bound is equal to the
optimal shot count, then the suboptimality of the GSC, MP, GC
and PROTO-EDA heuristics could be as large as 3.9×, 4.5×,
2.3× and 2.6×, respectively. These results suggest that there
is significant room for improving the shot count of current
mask fracturing solutions. Regarding the runtime, we observe
that PROTO-EDA is always faster than the other heuristics.
MP takes the longest time to obtain the solutions among four
heuristics, but this heuristic finds the better solutions (i.e.,
smaller number of shot counts) than GSC and PROTO-EDA.
Note that we do not include our B&P based method in this
runtime comparison because B&P based method is not for
mask fabrication, but for benchmarking of any mask fracturing
heuristics. We also show the peak memory usage: GSC, MP
and GC have essentially the same peak memory usage which
is dominated by the manner in which we implement our fast
convolution.

Improvements in e-beam mask writing tools are likely
to reduce the blurring of shot intensity caused by forward
scattering since reducing blurring helps improve the resolution
of the tool. Consequently, σ in the Gaussian model is likely
to decrease. The shot counts of different heuristics, along with
the lower/upper bounds, are also shown in Table II, when σ is
reduced to 4nm. The impact of change in σ on the shot count
can vary for different shapes. For most shapes, the change in
shot count of the GSC heuristic is not very large. However,
the MP heuristic is highly sensitive to the value of σ, and the
shot count increases with σ = 4nm for most mask shapes. This
is because smaller σ reduces the covering distance range of a
shot, which uses more shots in the first phase of MP. Among
the four heuristics, GC shows the best solution (i.e., minimum
shot count) within a relatively short time (< 10 seconds) in
most cases.

In addition to σ, another important factor that can affect
the shot count is CD tolerance γ. Tighter CD tolerance will
increase the number of constraints that a fracturing solution
must follow, leading to higher shot count. More constraints
also slows down B&P and increases the gap between the

reported upper and lower bounds. This is illustrated in Table
II, if we compare the shot counts of the scenarios with
σ = 4nm,γ = 2nm and with σ = 4nm,γ = 1nm.

V. BENCHMARK GENERATION WITH KNOWN OPTIMUM

Section IV-F shows that ILP-based benchmarking requires
considerable computational resources to find lower and upper
bounds on the optimal shot count. In this section, we propose
a scalable method to evaluate the suboptimality of mask
fracturing heuristics by constructing target shapes for which
the minimum shot count is known. This benchmark generation
method is based on the key observation that there is a set of
boundary segments each of which requires at least two shots
in any fracturing solution. Here we use Bn to denote the set
of all boundary segments such that each boundary segment
bn ∈ Bn requires at least n shots. For example, the union of
green and red lines in Figure 9(a) is a boundary segment b2.

We first use exactly two shots to generate a target shape
which contains a boundary segment b2. By the definition of b2,
we need at least two shots to produce the boundary segment.
Since we use exactly two shots to generate the target shape,
our solution is optimal and the minimum shot count is two. To
extend the target shape, we add a new shot adjacent to one of
the existing shots. We select the location of new shot such that
there is a new b2 in the extended target shape. Note that we
only increase the total shot count by one (and reuse an existing
shot) to produce the new b2 which requires two shots. Because
the extended target shape cannot be produced by stretching
or shifting the shots in the previous solutions (i.e., at least
one more shot is required), the solution corresponding to the
extended target shape remains optimal regarding shot count.

A. Boundary Segment Analysis

To determine the set of boundary segments which re-
quire at least two shots, we analyze the relationship between
straight/concave boundary segments and the image produced
by a shot. We do not analyze the case of convex boundary
segments because the convexity of shot image boundary (i.e.,
corner rounding) makes it hard to determine the set of convex
boundary segments which require at least two shots.
Straight boundary segment. Since a mask shot must be
isothetic, a single mask shot cannot produce a long straight
boundary at an angle (θ) which is not a multiple of 90◦.
Figure 7 shows a straight boundary segment bseg (black solid
line) at an angle θ. The dashed lines parallel to bseg are the
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inner and outer boundaries. The inner (resp. outer) boundary
is obtained by shrinking (resp. expanding) the target boundary
towards the inside (resp. outside) of the target shape by the
value of γ. To produce the straight boundary using a single
shot, we must place a corner of the shot close to bseg. The
longest straight boundary covered by the single shot is the
length (Lθ

lin(W,H)) between the crossing points (blue cross
marks in Figure 7) of the inner target boundary and the image
boundary.15 To maximize the coverage of a single shot, we
must shift the shot and therefore the image boundary to touch
the outer boundary as shown in Figure 7. The shot must not
be shifted beyond the outer boundary because I(x,y,s) must
be less than ρ for all pixels in P0.

2ɤ

bseg

L θ(W H)

P1P0

θ

Llin
θ(W,H)Outer 

boundary
P1

θ

Image 
boundaryInner 

boundarybou da y

Fig. 7: Definition of the length Lθ

lin(W,H) of a straight-line
target boundary covered by a single shot.
Concave boundary segment. Figure 8(a) shows a con-
cave boundary bseg and its inner (bseg in) and outer (bseg out )
boundaries. For a concave target boundary, the maximum
boundary length covered by a single shot is defined by the
straight line between the points of intersection between bseg in
and the shot image boundary (i.e., the blue cross marks in
Figures 8(a) and 8(b)). From the straight line between the
points of intersection, we define a “virtual” straight line (bvir)
and its inner (bvir in) and outer (bvir out ) boundaries. Note that
because of the concavity of bseg, any point along bvir in is
always closer than bseg in to the point that touches the target
boundary (i.e., pc in Figure 8(a)). Thus, bvir out is always
in P0, outside the boundary of the shot image. This means
that bvir out can be shifted until the bvir out touches the shot
image boundary (see Figure 7(b)) so that we obtain the longest
straight boundary Lθ

lin(W,H) covered by the shot image. As a
result, the length of the virtual straight line, which is the same
as Lθ

lin(W,H) at the same θ, is always larger than the length
Lθ

con(W,H) of the concave target boundary.
Maximum length covered by a shot. As mentioned above,
the rounded corner of a single shot image determines the
maximum length covered by the shot. As the shot size in-
creases, the corner rounding due to the e-beam proximity effect
saturates. As a result, the Lθ

lin(W,H) does not change further
with respect to the shot size. Therefore, we can calculate the
Lθ

max by increasing W and H iteratively.

Lθ
max = max

s∈S
{Lθ(W (s),H(s))} (6)

Since Lθ
con(W,H) < Lθ

lin(W,H) for any shot s, the maximum
Lθ

lin(W,H) is an upper bound on maxs∈S{Lθ
con(W (s),H(s))}.

Lemma V.1. For a mask fracturing problem with finite γ and
σ, if a target boundary segment is a straight line or concave

15W and H correspond to the width W (s) and height H(s) of the shot s
under consideration.

Fig. 8: (a) Definition of the length Lθ
con(W,H) of a concave

target boundary covered by a single shot. (b) Comparison of
the lengths covered by a single shot for concave vs. straight-
line target boundaries.

shape with length Lt (defined in Figure 9(a)) larger than Lθ
max,

more than one mask shot is required to pattern the target
boundary segment.16

B. Construction of a Target Shape

We now describe a systematic method to construct a target
shape with known minimum shot count. We first construct a
bseg using two shots by placing the second shot to the top right
of the first shot as shown in Figure 9(b). We define the top left
boundary (e.g., the union of green and red lines in Figure 9(b))
as the main boundary (bmain).17 By placing the second shot
far enough from the first shot, we create a critical boundary
segment bcri ∈ B2, which is part of bmain. The bcri is a straight
line or a concave segment with length Lθ larger than Lθ

max
(Lemma V.1). Although there can be many boundary segments
∈ B2, only those overlapping with bmain are considered as the
critical boundary segments. E.g., the yellow boundary segment
in Figure 9(b), while an element of B2, is not considered to
be a bcri because it does not overlap with bmain.

Fig. 9: (a) Lt is the Euclidean distance between the startpoint
and the endpoint on the target boundary, provided that the
target boundary from the startpoint to the endpoint is concave
or straight line. (b) Example of benchmark generation with
three shots. bmain is the union of green and red lines and
contains two bcri.

Lemma V.2. Given a boundary segment bn of a target with
n−1 critical boundary segments, and its corresponding shots,
we can add a shot to obtain bn+1 with an optimal (n+1)-shot
solution if the addition satisfies the following conditions:

1) Adding a shot does not affect the critical boundary
segments of bn.

2) bmain of the new target shape is continuous.

16Proofs of Lemmas V.1, V.2, V.3 and V.4 are given in [6].
17bmain is at the top left boundary because we place the next shot to the

top right of previous shots.
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3) There is a b2 in the bmain of the new target shape which
cannot be made by extending the shots which produce
bn without altering the critical boundary segments of bn.

Based on Lemma V.2, we add a shot at the top right of the
existing target shape. This ensures that we have a continuous
bmain. Moreover, the top-left coordinate of the newly added
shot is selected such that there is a b2 in the new bmain. Since
the new b2 is always at the top of the target shape, it cannot be
made by extending previous shots unless the existing critical
boundary segments are altered. Also, placing the shot at the top
right does not affect the existing critical boundary segments.
By adding n− 2 shots to the target shape generated by two
shots, we can obtain a target shape ∈ Bn.

An important property of our method is that the critical
boundary segments are defined only by the top-left coordinates
of the shots. Therefore, we may freely place the bottom-right
coordinates of the shots to create different target shapes as
long as they do not affect the critical boundary segments.

C. Merging Target Shapes

Lemma V.3. Given two target shapes with critical boundary
segments ba ∈ Bna and bb ∈ Bnb , which have, respectively, na−
1 and nb−1 critical boundary segments, we can merge ba and
bb by stretching a shot to create bc ∈ Bna+nb−1 if the following
conditions are satisfied:

1) The stretched shot must not alter the critical boundary
segments in ba or bb.

2) The stretched shot must merge a shot from ba with a
shot from bb.

3) The non-stretched shots in ba must be far apart from
or misaligned from the non-stretched shots in bb so that
any two non-stretched shots cannot be merged to reduce
the number of shots.

The first condition in Lemma V.3 imposes a tight constraint
on merging the target shapes generated by the method of V-B.
That is, we can only stretch a shot by moving the lower right
corner of the shot in either the rightward and/or downward
direction, such that the critical boundary segments are not
affected. However, stretching a shot of a target shape to the
right and/or down will affect the critical boundary segments on
the other target shape. This problem can be solved by rotating
the target shapes before merging them.

Lemma V.4. A bn rotated by 90◦ is still an element of Bn.

Figure 10 shows an example in which we use Lemmas V.3
and V.4 to merge a target shape and its rotated copy into a
larger and more complex target shape. Using the incremental
target boundary extension (Lemma V.2) and merging/rotation
of optimal target shapes, we can generate a variety of different
benchmarks with arbitrary values of optimal shot count.D. Experimental Results

Using the same experimental setup in Section IV-F, with
σ = 6.25nm,γ = 2nm, we generate two types of target shapes:
Arbitrary generated benchmarks (AGB): We generate five
shapes with known optimal shot count using the method of
Section V-B. These are shown in Figure 11(a) of [6].
Realistic generated benchmarks (RGB): Since generated
benchmarks can often be unrealistic compared to actual ILT

Fig. 10: Example of rotating a target shape for merging.

mask shapes, we also generate five mask shapes that look simi-
lar to actual ILT shapes with known optimal shot count, again
using the method of Section V-B (see Figure 11(b) in [6]).
We manually select shot locations so that the generated
benchmarks are similar to actual ILT mask shapes.

We compare the optimal shot count of our generated
benchmarks with the shot counts of the comparison heuristics
in Table III. For the 10 target shapes that we analyze, the
suboptimality ranges from 1.6× to 4.3×, 1.0× to 4.6×, 1.0×
to 2.2× and 1.6× to 2.9× for the GSC, MP, GC and PROTO-
EDA heuristics.18

TABLE III: Comparison of shot count for generated bench-
marks with known optimal solution. Bold-font numbers in-
dicate infeasible solutions (at least one failing pixel in the
solution).

Clip-ID
Shot count

Opt GSC MP GC PROTO-EDA Branch and Price
LB/UB

AGB

1 3 8 4 5 7 3/3
2 16 36 16 25 30 11/16
3 17 49 38 37 40 5/24
4 7 26 9 7 20 5/7
5 3 13 4 4 8 3/3

RGB

1 5 12 7 6 8 3/5
2 7 11 15 8 14 5/7
3 5 12 23 6 12 4/5
4 9 17 13 12 17 6/12
5 6 21 22 9 14 4/6

For comparison, we also report the lower and upper bounds
obtained from B&P for our generated benchmarks in Table III.
The results show that for testcases AGB-{1,5} and RGB-
{3,5}, the B&P method can find the optimal solution, i.e. the
upper bound is equal to the optimal shot count. However, for
some shapes, the upper bound reported by B&P within the
set time limit may be very far from the optimal shot count
(testcases AGB-2, AGB-4 and RGB-4).

The generated benchmarks are more wavy (i.e., have high-
frequency components in the boundary of the target shape)
compared to actual ILT shapes. This could make the subopti-
mality estimation pessimistic. However, we believe that high-
lighting scenarios where mask fracturing heuristics perform
poorly can contribute to the development of better heuristics.

VI. AUTOMATED BENCHMARK GENERATION

In Section V, we constructed benchmark shapes by placing
shots manually. This can be extremely tedious, especially
for generating benchmarks similar to real ILT shapes. In
this section, we propose an automated benchmark generation
(AutoBG) method to generate a benchmark ILT mask shape
(tgen) which resembles a given actual shape (tori), with known
optimal shot count. To guarantee that the optimal fracturing
solution of tgen is known, AutoBG places shots such that they
obey the constraints specified in Section V.

18We have performed the additional experiments for more RGB shapes
which are similar to the shapes 6 – 10 in Figure 6; these yield qualitatively
similar results.
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In AutoBG, we first split tori using the method described
in Section IV-C.19 For each split-shape (tori,i), we generate a
separate benchmark shape (tgen,i) with known minimum shot
count that resembles tori,i. We then apply Lemma V.3 to obtain
the benchmark shape tgen, which resembles tori.

To obtain tgen,i from tori,i, we first enumerate several candi-
date sets of line segments such that each set approximates part
of the boundary of tori,i. The candidate set of line segments
that is eventually picked becomes the main boundary segment
bmain of tgen,i. Next, we determine the locations of corner points
of shots to construct bmain. Lastly, for each corner point of a
shot used to generate bmain, we find the diagonally opposite
corner point to minimize the XOR difference between the
input and generated shape (d(tori,i, tgen,i)). In the remainder
of this section, we describe the details of these steps.

A. Finding Candidate Main Boundary Segments

Based on Lemma V.2, bmain is a continuous boundary
segment of the generated mask shape which determines the
minimum number of shots required to construct tgen,i. More-
over, all the shot corner points used to generate bmain must
be of the same type (i.e., bottom-left, bottom-right, top-left
or top-right). Given the input split-shape tori,i (after splitting),
to construct the benchmark shape with known optimal shot
count tgen,i, we need to find a boundary segment that can
be used as the main boundary segment to place the optimal
shot corners. For that, we enumerate several candidate main
boundary segments; each is a set of connected line segments
and approximates part of the boundary of tori,i. We then
construct the optimal benchmark shape for each candidate
main boundary segment, and finally pick the generated shape
that is the most similar to the input shape tori,i as tgen,i. Note
that the similarity between any two shapes is measured by
the area of the region obtained after polygon Boolean XOR
operation between the two given shapes.

Algorithm 4 Cost function for selecting a pair of vertices as
part of b′main

Procedure: slopeCDcost(target shape t, two vertices vk(t) and vl(t), θLB,θUB)
Output: Cost of the segment formed by vertices vk(t) and vl(t)

1: θ(vk (t),vl (t)) ← the angle with respect to the x-axis of the segment formed by vertices
vk(t) and vl(t)

2: if (θLB ≤ θ(vk (t),vl (t)) < θUB) then
3: cost← CD violating area of line segment between vk(t) and vl(t) (Figure 11)
4: else
5: cost←+∞

6: end if
7: return cost;To find a candidate main boundary segment, we select an
ordered sublist of the vertices of tori,i (Vmain) such that the line
segments obtained after connecting the vertices approximates
some boundary segment of tori,i within the CD tolerance γ.
We first define a cost function slopeCDcost for selecting two
vertices vk(t) and vl(t) to be part of Vmain in Algorithm 4.
The cost is equal to the number of the error pixels which are
outside the CD tolerance region defined by the line segment

19For certain target shapes, we use Lth < 2β so as to improve the similarity
between the generated benchmark and the target shape. To ensure that the
fracturing solutions are still optimal, we check the intensity maps to ensure
that the fracturing solutions are still optimal, and we make sure that the
boundaries obtained by applying the resist threshold to the intensity of split
shapes do not overlap with each other.

Fig. 11: Number of error pixels along the segment vk(t)-vl(t).

connecting vk(t) and vl(t), as shown in Figure 11. To ensure
that the set of line segments obtained from Vmain can be
constructed using only one type of shot corner points, all
the chosen line segments must have angle with x-axis in the
same quadrant. We add an additional constraint to the cost
function that sets the cost to infinity if the angle of the line
segment with the x-axis is not between the specified lower and
upper bounds (θLB and θUB). The values of θLB/θUB could be
0◦/90◦, 90◦/180◦, 180◦/270◦ or 270◦/360◦ corresponding to
upper-left, upper-right, lower-right and lower-left shot corners.

Based on Sato’s dynamic programming method to approx-
imate any given curve by a set of line segments [34], we
propose a similar technique to find a candidate main boundary
segment as shown in Algorithm 5. For each vertex of the input
shape, we iterate over all the previous vertices in the list to
find the vertex with minimum cost (slopeCDcost returned by
Algorithm 4) (Lines 5-8). This is based on the assumption that
d(tori,i, tgen,i) is likely to be smaller when we use a candidate
main boundary segment which approximates the boundary of
the input shape tori,i as much as possible with zero cost. In
Lines 10-12, we store the last vertex with zero cost, and then
backtrack from this last vertex to the first vertex to obtain
the candidate main boundary segment with zero cost that
approximates part of the input shape tori,i (Lines 14-20).

Algorithm 5 Dynamic programming algorithm to obtain a
candidate main boundary segment for target shape t

Input : Vertices V (t), target shape t, CD tolerance γ, θLB,θUB)
Output: Ordered sublist of V (t), Vmain

1: k = 1; last index = 1; min cost(k) = 0;
2: for k = 1 to |V (t)| do
3: for l = 1 to k do
4: cost(l) = slopeCDcost(vl(t),vk(t), t,θLB,θUB);
5: end for
6: sol index(k) = the index l which has the minimum cost
7: min cost(k) = cost(sol index(k))
8: if (min cost(k) == 0) then
9: last index = k

10: end if
11: end for
12: j = last index; Insert v j(t) into Vmain
13: while j 6= 1 do
14: Insert vsol( j)(t) into Vmain; j = sol( j)
15: end while
16: return Vmain

The list of vertices of any polygon, V (t), is cyclical, i.e. any
vertex can be used as the starting point. Moreover, the vertices
can be ordered in clockwise or anti-clockwise direction. The
choice of both the starting vertex and the direction affect the
candidate boundary segment that we obtain from Algorithm 5.
A poor choice of the starting vertex or direction in determining
Vmain could result in a tgen,i which is not similar to tori,i. To
avoid this, we pick different starting vertices and for each
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consider both the clockwise and anti-clockwise directions to
obtain different candidate main boundary segments. We obtain
a benchmark shape for each candidate segment, then select
the one which is most similar to tori,i. We select the starting
vertices for generating candidate Vmain as follows:

• If the target shape tori has no split location, we select
the four vertices that are the top, bottom, left and right
vertices of tori as the starting vertices since this will max-
imize the approximation of the candidate main boundary
segment for one quadrant of the boundary of tori. In other
words, starting from these vertices will find the longest
candidate main boundary segments.

• Based on Lemma V.3, at least one of the shots of a split-
shape will be merged with a shot of another split-shape.
We call a shot which will be merged as a “merged-
shot”. Note that the edges of the merged-shots also
define the main boundary. Thus, it is reasonable to select
starting vertices around the edges of merged-shots. More
specifically, for each splitting edge, we create a virtual
merged-shot and stretch the shot along the direction
perpendicular to the splitting edge (so that it covers more
area and potentially reduces the total number of shots).
The starting vertices are defined at the locations where
edges of merged-shots intersect with the boundary of tori,i.

B. Determine Corner Points

For each candidate main boundary segment from Algorithm
5, we place shot corner points to construct the boundary
segment. The set of shot corner points Cmain must be placed
such that Lemma V.1 and Lemma V.2 are obeyed, i.e., so that
the fracturing solution of the generated benchmark split-shape
tgen,i is optimal. Algorithm 6 outlines the steps to find Cmain.

Algorithm 6 Obtain shot corner points (Cmain) to construct a
candidate main boundary segment

Input: Ordered list of points Vmain, CD tolerance γ and the distance between corner
point of shot and its image ζ(θ)

Output: Set of shot corner points Cmain

1: If vmain,1 has largest x-coordinate in Vmain reverse order of Vmain

2: V s f t
main← Shift every point of Vmain such that every line segment between consecutive

points is shifted by ζ(θ)+ γ

3: Cl
main← getCnrPtsFrmSrt(V s f t

main); V s f t,rvr
main ← Reverse order of V s f t

main
4: Cr

main← getCnrPtsFrmSrt(V s f t,rvr
main )

5: Reverse order of Cr
main

6: if (L(cl
main,1, cr

main,1)≤ γ) then
7: Cmain = Cl

main
8: else
9: Insert cl

main,1 into Cmain

10: for i = 2 to |Cl
main|−1 do

11: cmain,i← (cl
main,i + cr

main,i)/2; Insert cmain,i into Cmain
12: end for
13: Insert cr

main,|Cr
main |

into Cmain

14: end if
15: return Cmain

Procedure: getCnrPtsFrmSrt(ordered list of points V s f t
main)

Output: Set of shot corner points C
1: Vsamp← Sample points on all the line segments obtained from V s f t

main
2: Insert vsamp,1 into C; cprev← vsamp,1
3: for i = 2 to |Vsamp| do
4: if (L(vsamp,i,cprev)≥ Lθ

th) then
5: Insert vsamp,i into C; cprev← vsamp,i
6: end if
7: end for
8: return C

We first order the points in Vmain such that they are sorted by
x-coordinate (Line 1). We then shift the line segments of Vmain
to obtain V s f t

main, such that the shot corner points must lie on
the line segments obtained by connecting consecutive points
of V s f t

main (Line 2). This shift compensates for the difference
between the rectangular mask shot and its rounded corner due
to the e-beam proximity effect, as illustrated in Figure 12.

Once we obtain the shifted set of points V s f t
main such that

all shot corner points lie on the line segments connecting
consecutive points from V s f t

main, we can find a set of shot corner
points using the function getCnrPtsFrmSrt(). We first sample
the line segments connecting consecutive points from V s f t

main
and get all points with integral coordinates that lie on these
line segments, Vsamp (Line 1 of getCnrPtsFrmSrt()). We then
include the first point of Vsamp as a shot corner point (Line 2).

Next, we iterate over the set of sampled points; if the
distance between the previously added shot corner point cprev
and the sampled point vsamp,i is greater than Lθ

th, we add the
sampled point to the set of shot corner points (Lines 4-9). Note
that θ is the angle between the x-axis and the line segment
connecting cprev and vsamp,i. This distance condition ensures
the optimality of the fracturing solution of tgen,i by satisfying
the conditions of Lemma V.1 and Lemma V.2.

Fig. 12: Gap (ζ(θ)) between a shot corner point and the line
segment with slope θ that is part of boundary segment.

Fig. 13: (a) Example of Cl
main. (b) Example of Cmain.

Obtaining shot corner points from the shifted set of points
V s f t

main using the method described in getCnrPtsFrmSrt() of
Algorithm 6 could lead to large error between the input mask
shape and generated shape near the location of the last point
of V s f t

main. This is illustrated in Figure 13(a), which shows V s f t
main,

Vmain and tori,i. If the leftmost point of V s f t
main is the first point,

then the shot corner points we obtain from getCnrPtsFrmSrt()
are cl

main,1, cl
main,2 and cl

main,3. Due to the minimum distance
constraint between shot corner points imposed by Lemma V.1
and Lemma V.2, no additional shot corner points can be chosen
after cl

main,3. As a result, there is significant pixel error after
the last shot corner point cl

main,3. Moreover, using this method,
tgen,2 is not mergeable with tgen,3 because the shot with cl

main,3
violates the second condition of Lemma V.3.



13

To reduce pixel error in generating a mergeable shape, we
first obtain two sets of potential shot corner points: Cl

main with
ordered list of points V s f t

main, and Cr
main with reverse-ordered

list of the same points V s f t,rvr
main ; these are given as input to

getCnrPtsFrmSrt() (Lines 2-5). If the first corner points of
Cl

main and the last corner point of Cr
main are close to each other

(≤ γ), all points of Cl
main and Cr

main will be close to each other,
and we can use Cl

main as the set of shot corner points Cmain that
can construct the line segments formed by Vmain (Lines 6-7).
However, if the potential shot corner points of Cl

main and Cr
main

are not close to each other, we take the average of the x- and y-
coordinates of the corresponding points in Cl

main and Cr
main. We

also include the points with lowest and highest x-coordinates,
i.e., the first point of Cl

main and that of Cr
main. Figure 13(b)

shows the result with this choice of corner points. Although
this creates error pixels all along the main boundary, it does
not cause any large pixel error after the last corner point and
guarantees that tgen,2 is mergeable with tgen,3.

C. Determine Opposite Corner Points

We now describe the method to determine the locations of
diagonally opposite corner points (Copp

main) of Cmain. Since a shot
is determined by Copp

main and Cmain, Copp
main must be placed such

that the shot size constraints are obeyed, and the generated
shape tgen,i is similar to tori,i.

Algorithm 7 summarizes our method for finding the oppo-
site shot corner points. Given a fixed corner point cmain ∈Cmain,
we first enumerate all points which could become the opposite
corner point copp

main ∈Copp
main in Line 3. If cmain is a top-left shot

corner, we can find candidate opposite points by considering
all the points within distance γ of the boundary of tori,i that
also satisfy the following two conditions:

1) the points lie below and to the right of cmain, and
2) the distance from cmain is such that the corresponding

shot will satisfy shot size constraints.
Candidate opposite points for cmain when it is a bottom-left,
top-left or top-right shot corner can be obtained similarly.

After finding the candidate set of opposite corner points in
Algorithm 7, we iterate over this set and find the opposite
point for which the corresponding shot best covers the input
shape tori,i (Lines 4-10). This opposite point is then inserted to
the list of opposite shot corner points (Line 11). Once the shot
corner points (Cmain) are known along with the corresponding
opposite shot corner points (Copp

main), we can obtain the shape
tgen,i by adding the intensity of all the corresponding shots and
applying the resist threshold.
D. Experimental Results

We first generate shapes by using AGB and RGB shapes
as input to our implementation of AutoBG in C++. Table IV
shows the shot count, runtime and the similarity (area of XOR
of input shape and generated shape divided by the area of the
input shape). The shapes generated by AutoBG are also shown
in Figure 14.

From Table IV, AutoBG can generate shapes that are ≥ 80%
similar to input mask shapes for most cases. The similarity
is somewhat less for a few complex shapes such as AGB-4.
In addition to similarity, the optimal shot count of the input

Algorithm 7 Determine opposite corner points for given set
of shot corners.

Input : Shot corner points Cmain, input shape tori,i
Output: A set of opposite corner points Copp

main

1: for all cmain ∈Cmain do
2: maxCover← 0; Ccan opp

main ← Candidate opposite shot points for cmain
3: for all c ∈Ccan opp

main do
4: s← Shot with opposite corners cmain and c
5: cover← area(XOR(s, tori,i))
6: if cover > maxCover then
7: copp

main← c,maxCover← cover
8: end if
9: end for

10: Add copp
main to Copp

main
11: end for

TABLE IV: Validation of AutoBG method.

Clip-ID Manual AutoBG
Shot count Shot count Similarity (%) Runtime (s)

AGB

1 3 3 87 <1
2 16 10 87 4
3 17 16 85 8
4 7 8 70 2
5 3 3 87 2

RGB

1 5 3 82 2
2 7 7 85 4
3 5 3 90 4
4 9 8 79 4
5 6 6 85 4

shapes and the optimal shot count of the AutoBG generated
shapes are fairly close,20 and identical for four cases. This
suggests that the optimal shot count of the AutoBG generated
shapes for real ILT mask shapes will be close to the unknown
optimal shot count of the ILT shapes. The runtime to generate
each benchmark shape is less than 8 seconds.

(a) AutoBG generated shapes using AGB shapes of [6] as input.

(b) AutoBG generated shapes using RGB shapes of [6] as input.

Fig. 14: Illustration of AutoBG generated benchmark shapes.

We also generate benchmark shapes using the 10 mask
shapes in Figure 6 as inputs with different σ and γ. Table
V summarizes the suboptimality of the heuristics on these
benchmark shapes. The suboptimality of GSC, MP, GC and
PROTO-EDA across the 10 shapes for the baseline case
(σ = 6.25nm,γ = 2nm) ranges from 1.0× to 3.4×, 1.0× to
9.0×, 1.0× to 2.7× and 1.3× to 6×. We also report the upper
and lower bounds obtained from B&P, which find the optimal
solution (i.e., the upper bound is equal to the optimal shot
count) for 16 out of 30 cases.

VII. CONCLUSIONS

The use of aggressive RET techniques such as ILT, the
need for e-beam proximity effect correction, and the use
of overlapping shots have transformed mask fracturing into
a very challenging computational problem. Although several

20The shot count of the AutoBG generated shapes is still optimal since the
generation process obeys the constraints of Section V.
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TABLE V: Comparison of optimal shot count for AutoBG-generated benchmark shapes to the shot counts obtained by four
fracturing heuristics. Benchmark shapes are generated for three scenarios with different values of sigma and CD tolerance.
Bold-font numbers indicate infeasible solutions (at least one failing pixel in the solution).

Clip-ID

Shot Count
σ = 6.25nm, γ = 2nm σ = 4nm, γ = 2nm σ = 4nm, γ = 1nm

Optimal GSC MP GC PROTO- B&P Optimal GSC MP GC PROTO- B&P Optimal GSC MP GC PROTO- B&P
EDA LB/UB EDA LB/UB EDA LB/UB

1 3 9 5 8 7 3/5 4 7 8 7 13 4/5 6 7 18 7 15 5/7
2 7 21 26 9 16 5/7 7 10 14 11 35 5/8 10 32 35 11 28 7/10
3 1 1 9 2 6 1/1 1 1 1 1 8 1/1 3 3 3 4 13 2/3
4 9 26 17 13 15 6/13 11 21 14 11 27 6/11 13 31 42 21 22 9/14
5 6 18 15 6 11 4/14 7 16 11 14 19 5/7 10 32 17 18 23 7/22
6 3 4 10 4 6 3/3 3 4 4 5 13 3/3 3 16 15 3 12 3/3
7 4 11 4 4 8 3/4 4 7 6 8 13 3/4 6 15 14 8 13 4/6
8 7 24 9 9 9 5/9 9 19 15 17 19 5/9 11 33 17 16 19 8/23
9 9 29 18 11 21 4/11 10 20 39 12 29 6/12 14 41 29 26 34 5/16

10 4 7 5 7 9 4/4 4 9 8 3 17 2/5 7 18 21 8 19 3/7

heuristics have been proposed in the last few years, there has
been no systematic study to analyze the quality of solutions.
In this work, we propose two methods to evaluate the sub-
optimality of mask fracturing heuristics. First, we formulate
the mask fracturing problem as an integer linear problem
and develop a practical branch and price method to generate
tight upper and lower bounds on the optimal shot count.
Second, we introduce a systematic method to generate a set of
benchmarks with known, provably optimal solutions. Further,
we describe an automated benchmark generation method to
construct shapes which look similar to real ILT shapes.

Using our benchmarking method, we evaluate the subop-
timality of four mask fracturing heuristics: greedy set cover,
matching pursuit, graph coloring and a state-of-the-art proto-
type [version of] capability within a commercial EDA tool
for e-beam mask shot decomposition (PROTO-EDA). Our
experimental results show that PROTO-EDA has up to 6.0×
more shots compared to the optimal solution for generated
benchmarks, and has up to 2.6× more shots for ILT mask
shapes with unknown optimal solution. These results suggest
that there remains considerable opportunity to improve mask
fracturing heuristics.

Our source code and benchmark suite are available publicly
(http://impact.ee.ucla.edu/maskFracturingBenchmarks). We
hope that this will stimulate further research toward
development of improved mask fracturing heuristics.
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