
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH XX, 2013. 1

SlackProbe: A Flexible and Efficient In Situ Timing
Slack Monitoring Methodology

Liangzhen Lai Vikas Chandra Robert Aitken Puneet Gupta

Abstract—In situ monitoring is an accurate way to monitor
circuit delay or timing slack, but usually incurs significant over-
head. We observe that most existing slack monitoring methods
focus exclusively on monitoring path endpoints, which is not cost
efficient from power and area perspectives.

In this paper, we first propose SlackProbe methodology, which
inserts timing slack monitors like “probes” at a selected set of
nets, including intermediate nets along critical paths. SlackProbe
can be used to detect impending delay failures due to various
reasons (process variations, ambient fluctuations, circuit aging,
etc.) and can be used with various preventive actions (e.g.,
voltage/frequency scaling, clock stretching/time borrowing, etc.).
Then we perform thorough analysis of the potential benefits and
caveats of SlackProbe over conventional approaches in terms of
number of monitors required, monitoring efficiency and observ-
ability, delay margin, and design perturbation. Experimental
results on commercial processors show that with 5% extra
timing margin, SlackProbe can reduce the number of monitors
by 12-16X as compared to the number of monitors inserted at
path ending pins. SlackProbe can also improve the monitoring
efficiency by up to 1.9X and improve the monitoring observability
by up to 32%, as compared to endpoint monitoring.

Index Terms—timing, average case design, delay testing, low-
power design, network flow algorithm

I. INTRODUCTION

With increasing amounts of manufacturing variability, am-
bient fluctuation and circuit wear-out (e.g., NBTI, HCI etc.), it
is necessary to identify chip delay either statically (e.g., speed
binning) or dynamically with both hardware and software
adaptive schemes [1]. There are various classes of monitors
that are targeted at measuring circuit path delay.

Canary or replica circuits [2], [3] are stand-alone circuits
which are intended to mimic the timing behavior of the
original circuits. The delay of the real circuit can be estimated
through measuring delay of the replicas. Tunable [4] and
design-dependent [3] replica circuits can reduce the mismatch
of the real circuit and replica. Replica monitors are usually
non-intrusive, but may fail to capture the variations that are
local to real circuits such as random manufacturing variations
and circuit aging.

In situ monitors measure the delay directly from the circuit
paths. Fick et al. [5] use a Time-to-Digital Converter (TDC) to

L. Lai and P. Gupta are with the Electrical Engineering Department,
University of California Los Angeles, Los Angeles, CA 90095 USA. e-
mail:(liangzhen@ucla.edu; puneet@ee.ucla.edu).

V. Chandra and R. Aitken are with ARM Inc., San Jose, CA 95134 USA.
e-mail: (Vikas.Chandra@arm.com; Rob.Aitken@arm.com).

This work is supported in part by NSF Variability Expedition grant CCF-
1029030.

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

measure the critical path delay. Wang et al. [6] measure delay
by reconstructing the critical path as Ring-Oscillators (ROs).
Another approach to measure circuit path delay is to measure
the timing slack. Since critical paths typically end at registers,
special flip-flops can be used as slack monitors. Razor [7],
[8] uses customized flip-flops to detect timing failures due to
setup time violation and correct them through a pipeline flush
or architectural replay. Similar approaches that reduce timing
margin, but not to the point of failure, include delaying data
signals [9], advancing clock signals [10] or using different
flip-flop structures [11]–[15].

In situ monitors can accurately capture the real path delay,
but with significant overhead, especially when large number
of registers are timing critical. Some methods can be used to
reduce the overhead (e.g., [16]), but with a loss in accuracy.
Better monitor designs, e.g., [17], can also reduce the over-
head, but are still fundamentally limited by the large number
of monitors requited. We observe that existing methods focus
exclusively on monitoring path endpoints (i.e., destination
registers). In this work, we propose SlackProbe, a low over-
head, in situ, on-line timing slack monitoring methodology.
SlackProbe monitors in situ timing slack of selected circuit
nets, including intermediate nets along circuit paths, which
is more power and area efficient. This paper is an extension
of [18]. The key contributions of our paper include the
following:

1) We propose a novel slack monitoring methodology
allowing placing monitors at intermediate nets along
circuit paths

2) We develop a metric named “opportunism window”,
which allows us to flexibly select the set of critical paths
to be monitored.

3) We formulate and convert the path-based monitor inser-
tion formulation into a edge-based Linear Programming
(LP) problem and solve it near its theoretical lower
bound

4) We perform a thorough analysis of the potential benefits
and caveats of such a monitoring methodology, including
monitoring cost, monitoring efficiency and observabil-
ity, timing margin and design perturbation.

The rest of the paper is organized as follows: Section II
gives an overview of the proposed monitoring methodology.
Section III describes the critical path selection and circuit
graph reduction process. Section IV presents the monitor
insertion problem formulation and solution. Section V dis-
cusses the monitor cost metrics and comparison between
SlackProbe and conventional approaches. Section VI presents



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH XX, 2013. 2

Fig. 1. SlackProbe working principle. As shown in the timing diagram,
compared to inserting monitors at destination registers, the monitor inserted
at A can monitor the path delay even when the transition does not propagate
to the destination register (i.e., T1 at C). But the monitor inserted at node A
cannot capture transitions that do not pass through A (i.e., T2 at B).

the experimental results. Section VII concludes the paper.

II. SlackProbe OVERVIEW

A. Monitor Working Principle

The monitor working principle is shown through an example
in Fig. 1. If a monitor is inserted at an intermediate node
A, a “probe”, which consists of delay matching gates and a
transition detector, is connected to A through a minimum size
inverter. Signal transitions at node A are transferred through
the delay chain to the transition detector and compared with
the incoming clock edge. If the transition is close to its
Required Arrival Time (RAT), i.e., within the margin window
as in Fig. 1, a corresponding signal transition will arrive
at node E after the clock edge. This triggers the transition
detector and flags a signal indicating an impending delay
failure.

The monitor inserted at node A is capable of monitor the
delay of all critical paths passing through A. As shown in
Fig. 1, instead of monitoring all four destination registers,
SlackProbe can use only two monitors while achieving the
same path coverage.

Different transition detector designs as in [10], [19]. can be
applied here. SlackProbe also allows monitors to be inserted at
path endpoints where monitors as in [7]–[9], [11] can be used
as well. Since the additional margin makes the monitor detect
an impending timing failure rather than an actual one, there is
no datapath metastability issue as raised and discussed in [19].
The metastability issue of the monitor signal either results in
a more pessimistic detection or is guardbanded by the monitor
delay margin.

Fig. 2. Monitor insertion flow

B. Monitor Insertion Flow

With the proposed monitoring strategy, the problem now
becomes when, where and how to insert these monitors. In
this work, we propose the monitor insertion flow as in Fig. 2.
Different alternatives will also be discussed and compared
against conventional approaches.

Monitor insertion starts with a placed and routed design, as
the timing information is more accurate at this stage. Since we
only care about timing-critical paths, a path selection process
is applied to extract timing-critical paths and to construct the
critical path graph. Then, monitor locations are picked from
the graph using our proposed method. For each of the monitor
locations, a delay cell path is synthesized. The final insertion
flow is similar to Engineering Change Order (ECO) where the
monitors are incrementally placed and routed. ECO metrics
like those in [20] are applied when picking monitor locations
to minimize the perturbation to the original design.

C. Possible Applications of the Monitors

Since different applications will have different requirements
for the monitor, we discuss possible monitor applications here
as examples before introducing the detailed implementation
flow.

One possible application is to use the monitors as timing-
failure event predictors and combine them with some of the
existing error resilience mechanisms like in [8], [21], [22]. In
this case, the monitors have to capture all signal transition
events that may result in timing errors.

Another possible application is to use the monitors as speed
sensors which indicate whether current operation condition is
close to possible timing failure or not. This can be used by
systems with adaptation capabilities like Adaptive Voltage
Scaling (AVS), Adaptive Body Bias (ABB) or Dynamic
Voltage and Frequency Scaling (DVFS) to account for manu-
facturing variations, ambient conditions as well as circuit aging
effects such as Negative Bias Temperature Instability (NBTI),
Positive Bias Temperature Instability (PBTI) and Hot-Carrier
Injection (HCI). Since variations are either static or changing
slowly, the monitor requirements can be relaxed to capture
only the delay changes instead of all transition events.

III. PATH SELECTION AND GRAPH REDUCTION

A. Path Selection Criteria

As shown in Fig. 2, given a placed and routed design,
the first step is to identify the part of the design that may



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH XX, 2013. 3

Fig. 3. Opportunism window is the margin saving comparing to worst-case
design. Monitor delay margin is the delay margin of the delay matching chain
which will be discussed in detail in Section IV-A.

be timing critical. Depending on the application, different
criticality criteria may be applied for the selection process.

In this work, we propose a flexible path selection method by
introducing user-defined opportunism window. As illustrated
in Fig. 3, opportunism window and monitor margin (discussed
in detail in Section IV-A) will dictate the potential monitoring
benefits. Typical worst-case design sets its delay margin for
the worst-case scenario, i.e., all chips will run at a frequency
slow enough for the worst-case chip delay regardless of what
the actual delay is. In the presence of monitors, we may
reduce the design margin and decrease the default operating
clock period. The paths whose worst-case delay exceeds
the default operating clock period should be selected and
monitored. The amount of design margin reduction is called
opportunism window, within which the circuit will operate
opportunistically at its best effort. The size of opportunism
window determines the total number of circuit paths to be
monitored, thus affecting the monitoring overhead. There is a
natural trade-off between monitoring benefits and monitoring
overhead when deciding the opportunism window and monitor
delay margin. We will discuss and explore this trade-off in later
sections and experiments.

This path selection method does not require any knowledge
of correlation in the variations between the delay of different
paths. Therefore, it can be used to select paths for applications
like aging sensors, where exact delay degradations are context
dependent with little pre-assumed correlation.

Another possible path selection method is based on the
process corners as described in [18], where paths are selected
based on their timing slacks at particular process corners.
Other path selection methods such as statistical methods [23]
can also be used in SlackProbe depending on the specific
applications.

B. Circuit Graph Reduction

Although opportunism window is a path-based criteria, we
can utilize the block-based property of Static Timing Analysis
(STA) and construct a circuit graph which contains all the
selected critical paths.

If a path is selected as timing critical as illustrated in
Fig. 3, the path’s worst-case delay falls into the opportunism

window. Equivalently, if we run STA using the worst-case
corner library, it will also imply that the path’s timing slack at
the worst-case corner is smaller than the size of opportunism
window. Based on the following two key properties of STA:

1) The slacks of all pins along a path are equal or smaller
than slack of the path

2) The slack of a path equals to the largest slack of all pins
along that path

We can obtain a reduced circuit graph by removing the pins
with slacks larger than the size of opportunism window and
then removing the unconnected gates/nets. The critical paths
in the original circuit graph are still preserved in the reduced
graph because of property 1. All paths in the reduced graph are
timing critical because of property 2. Therefore, we can work
on the reduced graph instead of the original circuit graph when
analyzing the monitor insertion. Unless otherwise specified,
circuit graph discussed in the rest of the paper refers to the
reduced graph.

IV. MONITOR LOCATION SELECTION

In this section, we describe our proposed monitor location
selection method. We first discuss how monitors interact
with different paths. Then we formulate the monitor location
selection problem and describe our proposed solution.

A. Monitor Coverage and Delay Margin

After selecting the critical paths and obtaining the reduced
circuit graph, SlackProbe will determine the set of candidate
locations for monitor insertion. Before analyzing the location
selection problem, we first discuss how paths are monitored
by the inserted slack monitors.

1) Delay Margin for Paths: If the monitor is placed at some
intermediate net, the path delay before the monitor can be
captured by the monitor. But some extra delay margin will
be required for the remaining part of the path. As shown in
Fig. 4, there are three types of relations between monitor and
a path:

1) The path passes through the net, for example path A in
Fig. 4. Since the delay up to G4 can be captured by
the monitor, the delay path should account for the delay
uncertainty of G6.

2) The path branches out at some net before the monitor,
for example path B in Fig. 4. Depending on the applica-
tion and gate type of G4, the monitor may be treated as
being inserted between G3 and G5 with G4 as part of
the delay matching. If the application is speed sensing,
path B can be considered as being monitored with delay
uncertainty of G4, G5 and G8. If the application is event
detection, only G4 with gate types that are transparent
to signal transitions (e.g., inverter, buffer) are allowed.

3) None of the path instances fall in the fan-in cone of the
monitor net. In this case, we consider that the path is
not monitored.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH XX, 2013. 4

Fig. 4. Example of path-monitor pairs

2) Delay Margin for Monitors: Although different paths
may require different delay margin, each monitor will have
only one margin matching chain. The monitor margin should
account for worst delay uncertainty after monitor insertion
point and guarantee that the delay chain is always slower than
margined part of monitored circuit paths.

In the example in Fig. 4, the delay margin should account
for the mismatch between original path (i.e., from n4 to D2)
and delay matching chain (i.e., from n4 to the monitor).
Theoretically, the best case delay of the delay matching chain
should match the worst case delay of the original path. But
this may be too pessimistic since the delay is likely to be
correlated. Similar to on-chip variation modeling, in this work
the delay chain is designed so that its delay at typical process
corner matches the worst case delay of the original path. In
Fig. 4, the equivalent delay margin in this case equals the
delay of G6 at slow process corner (i.e., delay of the delay
matching chain at typical process corner) minus the delay of
G6 at typical process corner. This margin is considered as the
delay uncertainty of G6.

The required delay margin for each circuit nets can be
calculated based on conventional STA tool flow. We first
perform timing analysis using typical process corner libraries
and obtain the arrival time dtt

i and timing slack stt
i for each net.

Then we perform timing analysis using slow process corner
libraries and obtain the arrival time dss

i and timing slack sss
i

as well. The required delay margin can be derived by:

Margini = (stt − sss)− (dss − dss) (1)

Methods as in [3] or [4] can also be applied to synthesize
a replica-like path to reduce the margin for delay mismatch
due to global variation.

3) Overall Margin: Because the final delay margin for the
entire circuit will be dominated by the monitor with the largest
margin, we define the delay margin cost as the maximum
monitor delay margin constraint ε on each monitor. The delay
margin ε is used to determine the set of feasible monitor
candidate locations and the corresponding circuit nets that can
be monitored.

For example, for a given ε, we can analyze the implication of
inserting a monitor at a net ni. If the margin required by ni is
smaller than ε, all paths passing through ni will be monitored.
Depending on the application, we may also want to consider
another net nj in the fan-in cone of ni (like n3 in Fig. 4). If the
margin required by paths branching out at nj is also smaller
than ε (like path B in Fig. 4), nj can also be monitored by the

monitor at ni. All paths passing through nj will be monitored.
Therefore, we can define a set Ini as the nets that can be
included as being monitored by the monitor at ni.

If we represent a path as the set of nets it passes through, the
timing margin constraint can be stated as: with a given monitor
delay margin constraint ε, for any critical path Pk, there exists
a monitor at net ni, such that Pk ∩ Ini 6= ∅. For different
candidate locations, monitor insertion may have different cost
in terms of power, design perturbation etc. Here we use ci as
the cost associated with net ni. The detailed derivation of ci

will be discussed in Section V.

B. Problem Formulation

For a given circuit, a graph can be constructed by making
the nets as nodes N = [n1n2...]T and interconnect as directed
edges. We denote x = [x1x2...]T as the decision vector where
xi = 1 when a monitor is inserted at ni and 0 otherwise.

Since inserting a monitor at nj implies that all nodes in Inj

are monitored, we define set Oni := {nj |ni ∈ Inj}. A vector
y = [y1y2...]T can be derived as:

yi =
∑

nj∈Oni

xj (2)

So yi ≥ 1 implies that ni is monitored because there exists
some xj = 1 and ni ∈ Inj . Equation (2) can be represented
as matrix representation y = Qx.

A critical path matrix can be generated from the circuit
graph as:

P =

p1,1 p1,2 · · ·
p2,1 p2,2 · · ·

...
...

. . .

 where pk,i =
{

1 if ni ∈ Pk

0 otherwise

(3)
Assuming that the cost vector is c = [c1c2...]T and 1 is a

row vector of 1’s, the monitor insertion problem is formulated
as follows:

minimize: cT · x
subject to: P ·Q · x ≥ 1

xi ∈ {0, 1}
(4)

C. Problem Conversion

Solving (4) directly is computationally intractable for any
reasonable size of circuit because of the large number of
paths. We will convert the problem into a solvable edge-based
problem.

Since all entries in P and Q are either 0 or 1, entries in
P·Q are non-negative integers and some entries may be larger
than 1. This is not necessary for P · Q · x ≥ 1 given that
xi ∈ {0, 1}. We can derive a new matrix A with ak,i equals 1
if corresponding entry in P ·Q is non-zero, and 0 otherwise.
The new constraint A · x ≥ 1 is equivalent to P ·Q · x ≥ 1
for the optimization problem in (4). Therefore, we can replace
P ·Q · x ≥ 1 with A · x ≥ 1 for (4).



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH XX, 2013. 5

(a) Treat In4 as a node (b) Example of cyclic flow

Fig. 5. Example of treating the nets in In4 := {n2, n4} as a node. Cyclic
flow as in (b) is impossible because margin at n2 must be larger than margin
at n5. In (b), n2 ∈ In4 implies n5 ∈ In4 .

Then we relax the constraint on xi as xi ≥ 0. 1 This gives
us an LP problem with its dual as:

maximize: 1T · f
subject to: AT · f ≤ c

f ≥ 0

(5)

If we add two dummy nodes ns and nt as the beginning
and ending nodes for all paths, (5) becomes similar to but not
exactly the same as a maximum flow problem with f being
the dedicated flow along each path.

Converting (4) into the LP problem (5) still does not reduce
the problem size. To make the problem solvable, we will
convert (5) into a formulation with edge-based variables and
constraints. We denote e = [... ei,j ...]T as the total network
flow on the edges. ei,j equals the sum of all path flow that goes
from ni to nj and satisfies the flow conservation constraint.
Since all path flow starts from the source node ns, the objective
in (5) is equivalent to maximizing the total flow out from ns.

If we look at the i-th row of the constraint AT · f ≤ c
in (5), on the left-hand side is the sum of all path flows that
pass through nodes in Ini

. The key enabling observation is
that Ini is defined with respect to the delay margin, which is
monotonic in topological order. Therefore, all nodes in Ini are
connected (see example in Fig. 5(a)). If we group Ini as one
single pseudo node in the graph, there will be no cyclic flow
paths that exit Ini and enter again (see example in Fig. 5(b)).
All paths that pass through nodes in Ini will pass through one
and only one of the edges that goes into Ini . In the example
in Fig. 5(a), the path flows that pass through In4 are {n1,
n4}, {n2, n4} and {n2, n5}, of which the sum equals all the
edge flow that goes into In4 , i.e., e1,4 + es,2. Therefore, we
can replace the left part of the constraint with the sum of all
incoming edge flow of pseudo node Ini

.
The converted edge-based formulation becomes:

maximize:
∑
∀i

es,i

subject to: ∀ni,
∑
∀j

ej,i =
∑
∀k

ei,k

∀ni,
∑

nj /∈Ini
,nk∈Ini

ej,k ≤ cni

e ≥ 0

(6)

1constraint xi ≤ 1 is not necessary in this case because monitor cost c > 0
and ak,i ∈ {0, 1}

In this edge-based LP formulation, the number of variables
equals mE and the number of constraints equals mE + 2mN ,
where mE is the total number of edges and mN is the total
number of nodes. For all our benchmarks, solving (6) takes
less than a minute.

D. Problem Solution
Because of the relaxation on xi, the result of (6) will be a

lower bound of that in (4).
To derive an exact solution of the monitor locations, we

take the solution of (6) and extract out the set of all nets ni

with the edge flow into Ini equals ci. This set will be a valid
solution which satisfies constraints in (4). Then we identify the
highest cost net that is unnecessary to maintain the constraint
and delete it. This process is repeated until no more nets can
be deleted. Our experiments show that in most of the cases,
we can get the result that is close to its lower bound.

V. MONITOR COST METRICS AND COMPARISON
ANALYSIS

In this section, we discuss monitor cost metrics and perform
a thorough comparison between SlackProbe and conventional
approaches of monitoring at path endpoints only.

A. Monitor Power Cost
Since the monitors are inserted as ECO, there is no di-

rect area overhead added to the original design, but the
monitors will introduce additional power overhead. Different
monitoring locations have different power overheads because
circuit nets have different signal switching probabilities. The
length of the matching delay chain will also affect the power
consumption. Therefore, power overhead can be modeled as:

po + (λip + l)di (7)

where λi is the signal switching probability of net ni, p is the
estimated dynamic power overhead per unit matched delay, l is
the estimated leakage power overhead per unit matched delay,
di is the delay of the path that is going to be synthesized for
the monitor at ni, and po is the static power overhead of the
transition detector, which includes additional clock power and
leakage power. The derivation of λi will be discussed later in
Section V-D.

B. Layout Interference Cost
The monitor insertion is considered as ECO. ECO cost

such as layout disturbance and timing disturbance should be
considered. Layout disturbance can be evaluated by taking
local layout congestion. To minimize the timing disturbance,
the monitor uses a minimum size inverter to “probe” at the
monitoring nets. The estimated timing slack after the inverter
insertion can be used for timing disturbance evaluation. Sim-
ilar to [20], we use a linear model to evaluate the design
perturbation cost of inserting a monitor at net ni as:

at · exp(−1× sni) + ar · rni (8)

where sni is the estimated timing slack after inserting the
inverter, rni is the layout congestion around ni, at and ar are
weighting parameters for different cost considerations.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH XX, 2013. 6

C. Implementation Flow Comparison

The proposed implementation flow of SlackProbe was de-
scribed in Section II-B and Fig. 2, of which the starting point
is a placed and routed design and the monitors are inserted as
additional circuit through ECO, while conventional endpoint
monitoring approaches, (e.g., [10], [22]), decide the monitor
locations at an earlier design phase and insert monitors by
replacing the endpoint flip-flop cells.

Typically, conventional approaches determine the timing-
critical flip-flops after synthesis and replace them with the
monitor flip-flops. During later place and route, different sets
of timing constraints are applied separately to regular flip-flops
and the monitor flip-flops. The timing constraints are set to
make sure that only paths ending at the monitor flip-flops can
be timing critical under variations. This approach has relatively
simpler physical implementation, but may unnecessarily speed
up unmonitored paths and result in a sub-optimal design.
While the approach as in Fig. 2 preserves the optimized
design, but incurs more complicated physical implementation
and design perturbation. Although both approaches can be
applied to SlackProbe, the analysis and solution in this work
is based on the the approach as in Fig. 2.

D. Monitoring Efficiency and Observability

Other than the implementation flow, the monitoring effi-
ciency and observability is another important difference be-
tween SlackProbe and conventional approaches. In situ mon-
itor relies on timing-critical signal transitions along critical
paths to monitor delay changes. Depending on the circuit
structure and logic function, monitors inserted at different
locations will encounter different sets of signal transitions and
different number of timing-critical signal transitions.

As shown in Fig. 1, all signal transitions at the inserted
net will trigger the monitor. But only timing-critical signal
transitions can be used to detect impending timing failures.
So the monitoring efficiency is determined by the proportion
of signal transitions that are timing critical. Compared to
conventional approaches, SlackProbe identifies and inserts
monitors at more timing-critical parts of the circuit. It is
expected to have a larger fraction of timing-critical transitions
and thus have higher monitoring efficiency.

The other difference between SlackProbe and conventional
approaches is the monitoring observability. Due to logic
masking, signal transitions passing through intermediate nets
may be masked by side inputs of the logic gates and cannot
propagate to the path endpoint. In this case, the monitor
inserted at intermediate net will detect the signal transition and
use it to detect potential timing failure due to any instances
along that path, while the monitor inserted at endpoint will
not see the transition. For instance, in the example shown in
Fig. 1, the signal at node A switches from logic low to logic
high during the second clock cycle. This signal transition can
be detected by the monitor inserted at node A. Due to logic
masking, however, this signal transition cannot propagate to
path endpoint at node C (shown as T1 in Fig. 1). Therefore,
a monitor inserted at path endpoint node C will miss this
event and cannot use it to detect impending delay failures.

Since all transitions at the path endpoints imply transitions
at the intermediate nets but not vice versa, SlackProbe can
detect more signal transitions, thus is expected to have higher
monitoring coverage than conventional approaches. In this
work, we define the monitoring observability as the average
number of monitored nets per cycle.

In situ monitor relies on timing-critical signal transitions
to monitor the critical path delay. For system that uses in
situ monitor as speed sensors, this may limit the capability
of monitoring dynamic variations as non-deterministic lag
exists between the time when dynamic variation happens and
the time when variation is captured (as opposed to some
replica monitors [24], [25] which are used to monitor fast-
varying variation). Therefore, higher monitoring observability
means higher monitoring confidence and allows the system
to monitor more fast-varying variation and achieve faster
actuation response. For example, in the case of adaptive
system, higher monitor confidence implies faster adaptation
response (e.g., voltage/frequency adaptation) and less design
margin for the reaction time. One exception is a razor-like
system with recovery mechanisms as in [7], [22]where the
purpose of monitoring is to capture real timing failures.
Higher observability means more recovery events even though
there may not be real timing errors (i.e., false positive). In this
case, the unnecessary recovery may increase the overhead.

Since different circuit nets will have different probabilities
of seeing timing-critical transitions, monitor location selection
will affect the monitoring efficiency and observability. In order
to evaluate the monitoring observability, other than the signal
switching probability λi, we need to extract the signal critical
switching probability γi for each node ni.

Timing-aware verilog simulation can be used to extract γi,
but is much slower than a pure functional simulation. In this
work, we make an approximation based on the properties of
the reduced graph as described in Section III-B. by assuming
that a critical path/subpath is activated if there is an ordered
sequence of switches for all nets along the path/subpath. To
extract γi, we first run functional verilog simulation on the
gate-level netlist and obtain the Value Change Dump (VCD)
file. Then we apply our proposed algorithm (see Algorithm 1)
for each simulated cycle and identify the sets of nodes in the
reduced graph with regular switches and with timing-critical
switches.

To obtain the switching probability λi and critical switching
probability γi, we keep two counters for each node to record
the total number of regular switches and timing-critical
switches. For each simulated cycle, we increment the counters
if corresponding flag is set. The corresponding switching
probabilities will be the counter output divided by the total
number of simulated cycles.

E. Clock Matching

Another difference brought by inserting monitors at in-
termediate nets is monitored flip-flop clock matching. Since
SlackProbe can insert monitors at intermediate nets, monitors
may be used to monitor multiple flip-flops. Depending on
their relative locations in the clock tree, these flip-flops may



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH XX, 2013. 7

Algorithm 1 γi derivation
Input: VCD output for current simulation cycle
Output: A[mN ] switching flags
B[mN ] critical switching flags
for all ni do

unset A[i] and B[i]
end for
for each ni in VCD that belongs to the reduced graph do

set A[i]
if ni has no fan-in then

set B[i]
else if B[j] is set for any ni’s fan-in node nj then

set B[i]
end if

end for

have different potential clock skew variations, which should
be accounted for by monitor delay margin in SlackProbe.
Conventional approaches that use one monitor per flip-flops
do not have the same issue.

For SlackProbe, the monitors sharing same monitor should
have small distance on the logic path graph. We expect their
distance on the clock tree to be small as well. To evaluate
and verify this, we include clock matching checking feature
in SlackProbe implementation. For each of the monitors, we
traverse downwards on the circuit graph and record the set
of all downstream flip-flops and their common ancestor on
the clock tree. In all experiments we ran, the maximum clock
delay from the flip-flops’ common ancestor to the flip-flops
is at most 5% of the corresponding clock period. Therefore
we expect clock matching to have little impact on SlackProbe
delay margin.

F. Overall Monitor Insertion Cost Function

In [18], a cost function ci for each net ni is defined, and
combines the monitor power cost and design perturbation cost
as:

ci = po + (λip + l)di + at · exp(−1× si) + ar · rni (9)

where parameters are chosen for correct normalization. In
this paper, we derive a new cost function with monitor
efficiency and observability awareness by normalizing the
dynamic power cost with the critical switching probabilities
γi as:

ci = po + (
λi

γi
p + l)di + at · exp(−1× si) + ar · rni (10)

where same parameter normalization is applied. In this cost
function, power cost is calculated based on the power con-
sumption per monitoring event, which represents the actual
monitoring cost.

Monitor cost breakdown plots for a sample circuit node
are shown in Fig. 6. The circuit node considered in Fig. 6
has λi ≈ 0.7, γi ≈ 0.07, di ≈ 0.1 ns for both rising and
falling transitions, si ≈ 0.05 ns for both rising and falling
transitions, neighborhood cell area utilization of about 0.8

Fig. 6. Monitor cost breakdown examples for a sample circuit node.

and neighborhood routing utilization of 0.8. As discussed
earlier, most but not all applications prefer higher monitoring
observability. In the experiments, we will use the cost function
in Equation (9) as our default cost function. The cost function
in Equation (10) will be applied to show the improvement
of SlackProbe’s monitoring efficiency and observability over
conventional approaches.

VI. EXPERIMENTAL RESULTS

A. Experiment Setup

To evaluate the effectiveness of our monitoring methodology
and problem solution, we use three commercial processor
benchmarks and implement them using a commercial sub-
32nm process technology and libraries. The timing libraries
are all at 0.81 V. The implementation is done using Cadence
toolchain [26]. The implementation information is listed in
Table I. Gate-level Verilog simulation and Algorithm 1 is used
to obtain the net switch probabilities and the critical switching
probabilities. In this work, we use Dhrystone [27] benchmarks
for all three processors. For the input/benchmark dependence,
relevant analysis and discussion can be found in [28].

Since different applications will have different requirements
for the monitors, we have implemented three different monitor
insertion methods:

• Baseline: This is the referenced baseline method which
inserts a monitor at every critical path endpoint.

• SlackProbe Event Detection: This method aims at event
detection. It allows the monitors to be placed at path
intermediate nets. To ensure the detection of all switching
events, it allows including additional nets in Ini only
when they are connected to the monitor through inverter
or buffer.

• SlackProbe Speed Sensing: This method aims at speed
sensing. It allows the monitors to be placed at path
intermediate nets and allows including nets in the fan-
in cone regardless of the gate type.

B. Results on Different Processor Benchmarks

For this experiment, the path selection is done through
the opportunism window approach. We define the typical
operating clock period as the clock period reported by timing
analysis with typical process corner libraries. For example, in
the case of Processor A as shown in Table I, the opportunism
window size is the clock period difference between typical
corner and slow corner, i.e., 0.22 ns. Delay margin ε is set to be
5% of the typical operating clock period. Table II summarizes



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH XX, 2013. 8

TABLE I
IMPLEMENTATION INFORMATION OF THE PROCESSOR BENCHMARKS

Processor A B C
Gate count 10434 30296 58815
Register count 1191 3344 9516
Clock period at typical corner 1.01 ns 1.22 ns 1.43 ns
Clock period at slow corner 1.23 ns 1.48 ns 1.72 ns
Critical gate count 7246 21385 21630
Critical register count 852 2116 4195
Critical path endpoint count 2 1256 2637 4993

TABLE II
EXPERIMENTAL RESULTS ON THE PROCESSOR BENCHMARKS

Processor A B C

Baseline
Monitor count 1256 2637 4993
Normalized cost 12.16 8.95 14.05

SlackProbe
Event De-
tection

Monitor count 148 480 510
Normalized cost 1.34 1.69 1.57
Normalized cost lower bound 1.34 1.59 1.53

SlackProbe
Speed
Sensing

Monitor count 113 311 374
Normalized cost 1 1.07 1.08
Normalized cost lower bound 1 1 1

the experimental results for the methods on different processor
benchmarks. The total monitor cost are normalized with re-
spect to the lower bound cost of SlackProbe Speed Sensing. In
all three benchmarks, by allowing inserting monitors at path
intermediate node and extra delay margin, the total number of
monitors is reduced by almost an order of magnitude.

C. Impact of Opportunism Window

In order to evaluate the monitoring benefit/overhead trade-
off, we pick processor A and apply different path selection
criteria (i.e., different opportunism window sizes) to it.

Fig. 7 presents the results of different path selection criteria.
For each case, the timing margin ε is kept at 5%. The paths
are selected as critical if their delay at slow process corner
falls into the corresponding opportunism window. The monitor
count comparison of SlackProbe and baseline is shown in the
log-scale plot in Fig. 8. Compared to the baseline method,
our methods show on average 12X reduction in the number of
monitors for event detection and 16X for speed sensing over
all cases.

D. Results on Different Monitor Delay Margin

To show the trade-off between delay margin and monitor
count, we also sweep the delay margin ε for processor A
and plot the corresponding monitor count and monitor cost
in Fig. 9. The path selection criteria are the same as that in
Table II (i.e., defining the opportunism window with typical
operating clock period obtained from typical process corner
libraries). By allowing more timing margin, the number of
monitors decreases for both methods. We also tried different
weighting parameters of the monitor insertion cost (i.e., at,
ar etc.). Since monitor location selection depends more on
the circuit topology, weighting parameters do not significantly

2The path endpoints include the circuit primary outputs as well. Some
flip-flops use both D and scan-in pins multiplexers to select different data
inputs. They are treated as different endpoints here.

(a) Monitor count

(b) Monitor cost

Fig. 7. Monitor count and cost for processor A with different opportunism
window size

Fig. 8. Monitor count comparison between SlackProbe and baseline. The
y-axis is plotted in log scale.

change the total number of monitors. However, they do affect
the monitor locations locally, especially for the speed sensing
case, where different monitor location candidates can have
similar critical path coverage but different monitor insertion
cost.

In all experiments, our proposed solution achieves results
equal or very close to the theoretical lower bound.

E. Extrapolation for Low Voltage Scenarios

In the experiments, timing libraries at 0.81 V is used. A
lower supply voltage can potentially increase the total amount
of variation. A sample circuit path delay at slow corner with
different supply voltages is shown in Fig. 10. When the supply
voltage decreases from 0.8V to 0.7V, the delay difference
between typical corner and slow corner increases by about
2X (approximately from 25% to 50% when normalized with
the delay at typical corner).

The magnified variation will scale up the worst-case design
margin (see Fig. 3) by a similar amount. This has two impacts
for SlackProbe under the same design setup. First, for the



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH XX, 2013. 9

(a) Monitor count

(b) Monitor cost

Fig. 9. Monitor count and cost vs. delay margin for processor A

Fig. 10. Delay of a circuit path at slow corner. All path delay numbers are
normalized to the corresponding delay at typical corner. The variation has
larger impact at lower supply voltage.

same set of monitored paths, the equivalent opportunism
window size will increase with magnified variation, which
will increase the potential monitoring benefit and makes the
monitoring scheme more viable. Second, the same monitor
candidate location will require more delay margin. Therefore,
with the same amount of delay margin (ε), the set of monitor
candidate locations will be less, which results in similar
effect as reducing ε as discussed in Section VI-D and in
Fig. 9. This will increase the number of monitors and reduce
the corresponding advantage of SlackProbe over conventional
endpoint monitoring schemes.

F. Monitoring Efficiency and Observability

In order to evaluate and compare the monitoring efficiency
and observability of SlackProbe and conventional approaches,
we pick processor A and simulate it with Dhrystone [27]
benchmarks. For each simulated cycle, we use the proposed
method as in Algorithm 1 to identify the set of nets with signal

Fig. 11. Example application: the monitors give a one bit flag to the
voltage regulator, the regulator reset the monitors after a corresponding voltage
adaptation operation

transitions and the set of nets with timing-critical transitions.
λi and γi are updated accordingly in order to evaluate the
monitoring efficiency and to evaluate the results of different
cost functions. A counter is used to record the number of nets
whose delay is monitored in the current cycle (i.e., a timing-
critical transition passes through this net and hits a monitor),
which can be used to evaluate the monitoring observability.

Monitoring efficiency and observability results are listed in
Table III. The monitor types marked with “(opt)” are the ones
using the new cost functions as in Equation (10).

Compared to baseline, SlackProbe using default cost func-
tion in Equation (9) selectively inserts monitors at nets that
have lower λi (thus with lower power overhead). Over all
cases, SlackProbe has up to 1.5X higher criticality ratio (i.e.,
γi

λi
) than baseline. SlackProbe using new cost function in (10)

favors inserting monitors at nets that have both lower λi

and higher γi (thus with higher monitoring efficiency), which
further boosts the criticality ratio to up to 1.9X higher than
baseline. A larger delay margin (ε) will give more flexibility in
selecting monitor location, which results in higher criticality
ratio.

Because monitors inserted at intermediate nets cannot mon-
itor the nets after the inserted location, SlackProbe without
observability awareness can only monitor similar or less num-
ber of nets compared to baseline. However, with the new cost
function, SlackProbe is able to monitor up to 32% more nets
than baseline. Larger delay margin (ε) allows monitors to be
inserted further away from path endpoints, which results in less
monitored nets (thus lower monitoring observability). Event
detection can detect more signal transitions than speed sensing,
which makes it achieve higher monitoring observability.

G. Practical and Implementation Considerations

One major concern with in situ monitoring is the imple-
mentation feasibility and potential overhead and disturbance
due to the additional instances and wiring. To explore the
implementation overhead and find out possible implementation
issues of the monitor insertion, we pick processor A and
implement the complete monitor insertion on it.

The target application model is shown in Fig. 11. The
system will start with a safe supply voltage (V0) and always
wait for certain time (ta) before making the voltage adjustment

3If monitor is inserted at path endpoint, no extra delay margin is required
for delay matching.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH XX, 2013. 10

TABLE III
MONITORING EFFICIENCY AND OBSERVABILITY RESULTS

Monitor type Delay margin (ε) Monitor count Average λi Average γi Criticality
ratio γi

λi

Average moni-
tored nets per
cycle

Baseline N.A.3 1256 0.746 0.068 9.11% 317.4
Speed sensing 5% 113 0.311 0.042 13.61% 295.7

Speed sensing(opt) 5% 147 0.443 0.089 20.20% 420.8
Event detection 5% 148 0.303 0.048 15.88% 314.1

Event detection(opt) 5% 216 0.383 0.073 19.02% 376.5
Speed sensing 8% 48 0.329 0.076 22.99% 284.4

Speed sensing(opt) 8% 45 0.568 0.151 26.52% 357.1
Event detection 8% 100 0.459 0.089 19.28% 317.6

Event detection(opt) 8% 100 0.558 0.124 22.21% 360.2

Fig. 12. Implemented monitor structure: the flag is sticky with an external
reset

Fig. 13. Monitor cell count distribution: most monitors are inserted very close
to the path endpoints, thus do not need extra cells other than the minimum
required 6 cells.

of ∆V if no monitor flag is generated. In such system,
the value of ta and ∆V will depend on the monitoring
observability and delay margin (ε). The monitors are designed
to give a one bit sticky flag which can be reset externally. For
implementation simplicity, we pick the monitor structure that
consists of only standard cells as shown in Fig. 12.4

Monitor flag signals are connected through an OR tree and
gives the one bit flag signal as processor primary output.
Therefore, for each monitor, there are at least six gates in
it including the first minimum size inverter, four cells as in
Fig. 12 and one OR gate in the OR tree.

In this experiment, we implement two versions of the
monitor insertion. The implementation results are summarized
in Table IV. The final layout of implementation II is shown
in Fig. 14. The overhead may be further reduced by using
simpler or customized monitors as in [14], [17], [19].

During monitor insertion, because of the additional load
from the monitors and other ECO timing disturbance, the

4This monitor is used only for evaluation purpose. It may not work
for signal transitions with small glitches. A proper monitor design (e.g.,
TDTB [19]) can avoid the glitch issues.

original design is slowed down by about 5%. However,
this only happens around the selected nets, which can be
recovered through simple optimization like incremental sizing
and threshold voltage assignment. In the experiments, we
incrementally optimize the design after the monitor insertion
so that it still meets the same delay target.

The ECO also affects the clock network. We perform
detailed analysis on the clock network before and after ECO
for Implementation II. After ECO, the total number of clock
sinks increases by 48, which is the number of monitor inserted.
The number of clock tree levels remains at 3, but the number
of clock buffers increases from 25 to 29. Maximum local clock
skew slightly increases from 11.9 ps to 14.9 ps.

The other side effect of the ECO timing disturbance is that
some new nets become timing critical. This may introduce
unmonitored critical paths, which will require additional delay
margin, pessimism in path selection or further timing opti-
mization. The slow-down due to additional load from the
monitors will only affect the nets that are monitored already.
However, other timing changes such as ECO routing and clock
skew changes may introduce unmonitored critical paths. In this
implementation, we found two unmonitored critical paths due
to the clock skew changes. A more careful monitor selection
and less intrusive insertion can help prevent it.

VII. CONCLUSIONS

In this paper, we have proposed SlackProbe, a novel timing
slack monitoring methodology of inserting monitors at both
path ending nets and path intermediate nets. Experimental
results on commercial processors show that with 5% additional
timing margin, SlackProbe can reduce the number of monitors
by 12-16X as compared to the number of monitors inserted at
path ending pins. SlackProbe can also improve the monitoring
efficiency by up to 1.9X and improve the monitoring observ-
ability by up to 32%, as compared to approaches that monitor
path endpoints only.

REFERENCES

[1] P. Gupta et al., “Underdesigned and opportunistic computing in presence
of hardware variability,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2012, Keynote Paper.

[2] A. Drake et al., “A distributed critical-path timing monitor for a 65nm
high-performance microprocessor,” in Proc. IEEE International Solid
State Circuits Conference, feb. 2007.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH XX, 2013. 11

TABLE IV
IMPLEMENTATION RESULTS ON PROCESSOR A

Implementation I Implementation II
Target delay margin 5% 8%
Number of monitors 113 48
Additional instances 711 327

Instances per monitor 6.3 6.8
Additional power overhead 13.65% 6.38%

(a) Layout with monitor instances
highlighted

(b) Layout with both monitor in-
stances and wires highlighted

Fig. 14. Final layout of processor A with the inserted monitors placed and
routed

[3] T.-B. Chan et al., “DDRO: A novel performance monitoring methodol-
ogy based on design-dependent ring oscillators,” in IEEE International
Symposium on Quality Electronic Design, march 2012.

[4] J. Tschanz et al., “Tunable replica circuits and adaptive voltage-
frequency techniques for dynamic voltage, temperature, and aging
variation tolerance,” in VLSI Circuits, Symposium on, june 2009.

[5] D. Fick et al., “In situ delay-slack monitor for high-performance pro-
cessors using an all-digital self-calibrating 5ps resolution time-to-digital
converter,” in Proc. IEEE International Solid State Circuits Conference,
feb. 2010.

[6] X. Wang et al., “Path-RO: a novel on-chip critical path delay mea-
surement under process variations,” in Proc. IEEE/ACM International
Conference on Computer-Aided Design, 2008.

[7] D. Ernst et al., “Razor: a low-power pipeline based on circuit-level
timing speculation,” in IEEE/ACM International Symposium on Microar-
chitecture, dec. 2003.

[8] S. Das et al., “RazorII: In situ error detection and correction for pvt and
ser tolerance,” IEEE Journal of Solid State Circuits, jan. 2009.

[9] H. Fuketa et al., “Adaptive performance compensation with in-situ
timing error prediction for subthreshold circuits,” in IEEE Custom
Integrated Circuits Conference, sept. 2009.

[10] B. Rebaud et al., “Digital timing slack monitors and their specific in-
sertion flow for adaptive compensation of variabilities,” in International
Conference on Integrated Circuit and System Design: Power and Timing
Modeling, Optimization and Simulation, ser. PATMOS’09, 2010.

[11] M. Eireiner et al., “In-situ delay characterization and local supply
voltage adjustment for compensation of local parametric variations,”
IEEE Journal of Solid State Circuits, july 2007.

[12] M. Kurimoto et al., “Phase-adjustable error detection flip-flops with 2-
stage hold-driven optimization, slack-based grouping scheme and slack
distribution control for dynamic voltage scaling,” ACM Trans. Des.
Autom. Electron. Syst., 2010.

[13] M. Agarwal et al., “Circuit failure prediction and its application to
transistor aging,” in IEEE VLSI Test Symposium, may 2007.

[14] B. Das et al., “Warning prediction sequential for transient error preven-
tion,” in IEEE International Symposium on Defect and Fault Tolerance
in VLSI Systems, oct. 2010.

[15] T. Sato et al., “A simple flip-flop circuit for typical-case designs for
dfm,” in IEEE International Symposium on Quality Electronic Design,
march 2007.

[16] K. Hirairi et al., “13% power reduction in 16b integer unit in 40nm
cmos by adaptive power supply voltage control with parity-based error
prediction and detection (pepd) and fully integrated digital ldo,” in Proc.
IEEE International Solid State Circuits Conference, feb. 2012.

[17] S. Kim et al., “Razor-lite: A side-channel error-detection register for
timing-margin recovery in 45nm soi cmos,” in Solid-State Circuits Con-
ference Digest of Technical Papers (ISSCC), 2013 IEEE International.
IEEE, 2013, pp. 264–265.

[18] L. Lai et al., “Slackprobe: A low overhead in situ on-line timing slack
monitoring methodology,” in Proceedings of the Conference on Design,
Automation and Test in Europe, 2013, pp. 282–287.

[19] K. Bowman et al., “Energy-efficient and metastability-immune resilient
circuits for dynamic variation tolerance,” IEEE Journal of Solid State
Circuits, jan. 2009.

[20] J. Lee et al., “Eco cost measurement and incremental gate sizing for
late process changes,” ACM Transactions on Design Automation of
Electronic Systems (TODAES), vol. 18, no. 1, p. 16, 2012.

[21] M. Choudhury et al., “Time-borrowing circuit designs and hardware
prototyping for timing error resilience,” Computers, IEEE Transactions
on, vol. 63, no. 2, pp. 497–509, 2014.

[22] M. Fojtik et al., “Bubble razor: Eliminating timing margins in an arm
cortex-m3 processor in 45 nm cmos using architecturally independent
error detection and correction,” Solid-State Circuits, IEEE Journal of,
vol. 48, no. 1, pp. 66–81, 2013.

[23] L. Xie et al., “Representative path selection for post-silicon timing
prediction under variability,” in Proc. ACM/IEEE Design Automation
Conference, june 2010.

[24] K. Bowman et al., “All-digital circuit-level dynamic variation monitor
for silicon debug and adaptive clock control,” Circuits and Systems I:
Regular Papers, IEEE Transactions on, vol. 58, no. 9, pp. 2017–2025,
Sept 2011.

[25] A. Drake et al., “Single-cycle, pulse-shaped critical path monitor in
the power7 microprocessor,” in Low Power Electronics and Design
(ISLPED), 2013 IEEE International Symposium on, Sept 2013, pp. 193–
198.

[26] [Online]. Available: http://www.cadence.com
[27] R. P. Weicker, “Dhrystone: a synthetic systems programming bench-

mark,” Commun. ACM, Oct. 1984.
[28] M.-L. Li, P. Ramachandran, U. R. Karpuzcu, S. Hari, and S. V. Adve,

“Accurate microarchitecture-level fault modeling for studying hardware
faults,” in High Performance Computer Architecture. IEEE International
Symposium on. IEEE, 2009, pp. 105–116.


