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Abstract—Hardware variability is predicted to increase dramatically over the coming years as a consequence of continued technology

scaling. In this paper, we apply the Underdesigned and Opportunistic Computing (UnO) paradigm by exposing system-level power

variability to software to improve energy efficiency. We present ViPZonE, a memory management solution in conjunction with

application annotations that opportunistically performs memory allocations to reduce DRAM energy. ViPZonE’s components consist of

a physical address space with DIMM-aware zones, a modified page allocation routine, and a new virtual memory system call for

dynamic allocations from userspace. We implemented ViPZonE in the Linux kernel with GLIBC API support, running on a real x86-64

testbed with significant access power variation in its DDR3 DIMMs. We demonstrate that on our testbed, ViPZonE can save up to

27.80 percent memory energy, with no more than 4.80 percent performance degradation across a set of PARSEC benchmarks tested

with respect to the baseline Linux software. Furthermore, through a hypothetical “what-if” extension, we predict that in future

non-volatile memory systems which consume almost no idle power, ViPZonE could yield even greater benefits, demonstrating the

ability to exploit memory hardware variability through opportunistic software.

Index Terms—DRAM, variability, energy-aware systems, main memory, allocation/deallocation strategies, operating systems
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1 INTRODUCTION

INTER-DIE and intra-die process variations have become
significant as a result of continued technology scaling

into the deep submicron region [1], [2]. The International
Technology Roadmap for Semiconductors (ITRS) predicts
that over the next decade, both performance and power
consumption variation will increase by up to 66, and
100 percent, respectively [3]. Variations can stem from
semiconductor manufacturing processes, ambient condi-
tions, device aging, and in the case of multi-sourced sys-
tems, vendors [4].

System design typically assumes a rigid hardware/
software interface contract, hiding physical variations
from higher layers of abstraction [5]. This is often accom-
plished through guard-banding, a method that ensures
reliable and consistent components over all operation and
fabrication corners. However, there are many associated
costs from over-design, such as chip area and complexity,
power consumption, and performance. Despite consider-
able hardware variability, the rigid hardware/software
contract results in software assuming strict adherence to
the hardware specifications. The overheads of guard-
banding are reduced, but not eliminated, through the
practice of binning, where manufacturers market parts

with considerable post-manufacturing variability as dif-
ferent products. For example, manufacturers have
resorted to binning processors by operating frequencies
to reduce the impact of inter-die variation [5]. However,
even with guardbanding, binning, and dynamic voltage
and frequency scaling (DVFS), variability is inherently
present in any set of manufactured chips. Furthermore,
with the emergence of multi-core technology, intra-die
variation has also become an issue. To minimize the over-
heads of guardbanding, recent efforts have shown that
exploiting the inherent variation in devices [6], [7] yields
significant improvements in overall system performance.

This has led to the notion of the Underdesigned and
opportunistic (UnO) computing paradigm [5], depicted in
Fig. 1. In UnO systems, design guardbands are reduced
while some hardware variations are exposed to a flexible
software stack. This allows the system to tune itself to suit
the unique characteristics of its hardware that arise from
process variations (part variability), aging effects, and envi-
ronmental factors such as voltage and temperature fluctua-
tions (time variability).

1.1 Related Work

There is an abundance of literature highlighting the
extent of semiconductor process variability and methods
for coping with it; we cite some of the more relevant
work here. Recently, there have been several works
which noted significant power variability in off-the-shelf
parts. Hanson et al. [8] found up to 10 percent power
variation across identical Intel Pentium M processors,
while Wanner et al. [9] measured over 5� sleep power
variation across various Cortex M3 processors. [8] also
observed up to 2X active power variation across various
DRAMs, while Gottscho et al. [10] found up to 20 percent
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power variation in a set of nineteen commodity 1 GB
DDR3 DRAM modules (DIMMs).

Most efforts dealing with variation have focused on miti-
gating and exploiting it in processors [6], [7], [11], [12] or in
on-chip memory [13], [14], [15], [16], [17]. Fewer papers
have looked at variability in off-chip, DRAM-based memory
subsystems. As off-chip DRAM memory may consume as
much power as the processor in a server-class system [18],
and is likely to increase for future many-core platforms
(e.g., Tilera’s TILEPro64 and Intel’s single chip cloud com-
puter (SCC)), memory power variations could have a signif-
icant impact on the overall system power.

Most works on main memory power management have
focused on minimizing accesses to main memory through
smart caching schemes and compiler/OS optimizations
[19], [20], [21], [22], [23], yet none of these methods have
taken memory variability into account. Bathen et al. [24]
recently proposed the introduction of a hardware engine to
virtualize on-chip and off-chip memory space to exploit the
variation in the memory subsystem. These designs require
changes to existing memory hardware, incurring additional
design cost. As a result, designers should consider software
implementations of power and variation-aware schemes
whenever possible. Moreover, a variability-aware software
layer should be flexible enough to deal with the predicted
increase in power variation for current and emerging mem-
ory technologies.

1.2 Our Contributions

This work extends ViPZonE, an OS-based, pure software
memory (DRAM) power variability-aware memory man-
agement solution that was first introduced in [25], with a
full software implementation that is evaluated on a real
hardware testbed. ViPZonE adapts to the power variability
inherent in a given set of commodity DRAM memory mod-
ules by harnessing disjunct regions of physical address
space with different power consumption. Our approach
exploits variability in DDR3 memory at the DIMM modular
level, but our approach could be adapted to work at finer
granularities of memory, if variability data and hardware
support are available. Our experimental results across

various configurations running PARSEC [26] workloads
show an average of 27.80 percent memory energy savings at
the cost of no more than a modest 4.80 percent increase in
execution time over an unmodified Linux virtual memory
allocator.

The key contributions of this work are as follows:

� A detailed description and complete implementation
of the ViPZonE scheme originally proposed in [25],
including modifications to the Linux kernel and
standard C library (GLIBC). These changes allow
programmers control of power variability-aware
dynamic memory allocation.

� An analysis of DDR3 DRAM channel and rank inter-
leaving advantages and disadvantages using our
instrumented x86-64 testbed, and the implications
for variability-aware memory systems.

� An evaluation of power, performance, and energy of
the ViPZonE implementation using a set of PARSEC
benchmarks on our testbed.

� A hypothetical evaluation of the potential benefits of
ViPZonE when applied to systems with negligible
idle memory power (e.g., emerging non-volatile
memory (NVM) technologies).

ViPZonE is the first OS-level, pure-software, and portable
solution to allow programmers to exploit main memory power
variation through memory zone partitioning. The source code is
available at [27].

1.3 Paper Organization

This paper is organized as follows. We start with back-
ground material discussing the DDR3 DRAM memory sys-
tem architecture, memory interleaving, and the relevant
basics of Linux memory management in Section 2. This is
followed by a detailed description of the ViPZonE software
implementation in Section 3, including the target platform
and assumptions, kernel back-end, and the GLIBC front-
end. In Section 4, we describe the testbed hardware and con-
figuration, include an analysis of the benefits and draw-
backs of memory interleaving for our testbed, and compare
the ViPZonE software stack with the vanilla1 code with
memory interleaving disabled. A brief “what-if” study on
ViPZonE for emerging non-volatile memories (NVMs) is
covered in Section 4.4. We conclude our work and discuss
opportunities for future research in Section 5.

2 BACKGROUND

In this section, we provide a brief background on typical
memory system architecture, memory interleaving, and
vanilla Linux kernel memory management to aid readers
in understanding our contributions.

2.1 Memory System Architecture

To avoid confusion, we briefly define relevant terms in the
memory system. In this work, we use DDR3 DRAM mem-
ory technology.

Fig. 1. Underdesigned and opportunistic computing concept adapted
from [5], where hardware variability across different parts or over time is
deliberately exposed to software layers to improve energy efficiency,
performance, cost, etc.

1. In this work, “vanilla” refers to the baseline unmodified software
implementation.
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In a typical server, desktop, or notebook system, the
memory controller accesses DRAM-based main memory
through one or more memory channels. Each channel may
have one or more DIMMs, which is a user-serviceable mem-
ory module. Each DIMM may have one or two ranks which
are typically on opposing sides of the module. Each rank is
independently accessible by the memory controller, and is
composed of several DRAM devices, typically eight for
non-ECC modules. Inside each DRAM are multiple banks,
where each bank has an independent memory array com-
posed of rows and columns. A memory location is a single
combination of DIMM, rank, bank, row, and column in the
main memory system, where an access is issued in parallel
to all DRAMs, in lockstep, in the selected rank. This organi-
zation is depicted in Fig. 2.

For example, when reading a DIMM in the DDR3 stan-
dard, a burst of data is sent over a 64-bit wide bus for four
cycles (with transfers occurring on both edges of the clock).
During each half-cycle, 1 byte is obtained from each of eight
DRAMs operating in lockstep, thus composing 64 bits that
can be sent over the channel. Note that this is not
“interleaving” in the sense that we use throughout the paper,
meaning that it is not configurable or software-influenced in
anyway; it is hard-wired according to the DDR3 standard.

2.2 Main Memory Interleaving

Since our scheme as implemented on our testbed requires
channel and rank interleaving to be disabled, we include
some background material on the benefits and drawbacks
of interleaving here.

It is common practice for system designers to employ
interleaved access to parallel memories to improve memory
throughput, particularly for parallel architectures, e.g. vec-
tor or SIMD machines [28]. This is done by mapping adja-
cent chunks (the size of which is referred to as the stride)
of addresses to different physical memory devices. Thus,

when a program accesses several memory locations with a
high degree of spatial (in the linear address space) and tem-
poral locality, the operations are overlapped via parallel
access, yielding a speedup.

Many works have explored interleaving performance,
generally in the context of vector and array computers, but
also with MIMD machines as the number of processors
and memory modules scale [29], [30]. While widely used
today, interleaving does not necessarily yield improved
performance. For example, the technique makes no
improvement in access latency, and there is little perfor-
mance gain when peak memory bandwidth requirements
or memory utilization are low (e.g., high arithmetic inten-
sity workloads as defined by the roofline model of com-
puter performance [31]).

Furthermore, interleaving may yield negligible speedup
when access patterns do not exhibit high spatial locality
(e.g., random or irregular access), and is also capable of
worse performance when several concurrent accesses have
module conflicts as a result of the address stride, number of
modules, and interleaving stride [28], [32]. Researchers
have come up with techniques to mitigate or avoid this
issue, usually through introducing irregular address map-
pings. For example, the Burroughs Scientific Processor used
a 17-module parallel memory and argued that prime num-
bers of memory modules allowed several common access
patterns to perform well [33]. Other approaches suggested
skewed or permutation-based interleaving layouts [34], and
clever data array organization for application-specific soft-
ware routines [35].

In our testbed, interleaving prevents the exploitation of
any power or performance variability present in the mem-
ory system. When striping accesses across different devices,
the system runs all the memories at the speed of the slowest
device, thus potentially sacrificing performance of faster
modules, and preventing opportunistic use of varied power
consumption. Interleaving on our testbed is also inflexible:
it is statically enabled/disabled (cannot be changed during
runtime), and it could also incur power penalties from the
prevention of deeper sleep modes on a per-DIMM basis.

In this work, as interleaving and ViPZonE are mutually
exclusive on our testbed, we provide an evaluation of
power, performance, and energy for different interleaving
modes in Section 4.2. We will discuss possible solutions
to allow interleaving alongside variability-aware memory
management in Section 5.

2.3 Vanilla Linux Kernel Memory Management

In order to understand our ViPZonE kernel modifications,
we now discuss how the vanilla Linux kernel handles
dynamic memory allocations from userspace, in a bottom-
up manner. For interested readers, [36], [37] are excellent
resources for understanding the Linux kernel, while [38]
provides an exceptional amount of detail on the inner work-
ings of the Linux memory management implementation.

2.3.1 Physical Memory Zones

The physical page allocator is at the core of the Linux kernel
memory management subsystem. When presented with an
allocation request for one or more pages with certain

Fig. 2. Components in a typical DDR3 DRAMmemory system.
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constraints, the system tries to find the most suitable alloca-
tion in the least amount of time. The kernel may pass
through multiple stages during an allocation attempt, with
greater performance penalties as it tries harder to find suit-
able memory.

The page allocator relies on several important constructs,
including, but not limited to: page structures, memory
zones, page freelists, and constraint bitmasks [36]. The ker-
nel utilizes several zones to group regions of contiguous
physical memory (see Fig. 3), required for legacy hardware
support [36]. In direct memory access (DMA), devices talk
directly with physical memory, bypassing the CPU. How-
ever, many legacy devices can only address the lowest 16
MB2 and must be able to receive page allocations in this
region. The kernel, if configured to support DMA, needs to
reserve this space accordingly. There are also newer devices
that are capable of addressing up to 4 GB of memory, and
the kernel must be able to accommodate these DMA32 devi-
ces as well, albeit with more headroom.

The kernel does this by representing these spaces with
physically contiguous and adjacent DMA and DMA32
memory zones, each of which tracks pages in its space inde-
pendently of other zones [36], [39]. This allows for separate
bookkeeping for each zone as well, such as low-memory
watermarks, buddy system page groups, performance met-
rics, etc. Thus, if both are supported, the DMA zone occu-
pies the first 16 MB of memory, while the DMA32 zone
spans 16 to 4,096 MB. This means that for 64-bit systems
with less than 4 GB of memory, all of memory will be in
DMA or DMA32-capable zones.

The rest of the memory space not claimed by DMA or
DMA32 is left to the “Normal” zone.3 On x86-64, this will
contain all memory above DMA and DMA32. Since the ker-
nel cannot split allocations across multiple zones [36], each
allocation must come from a single zone. Thus, each zone
maintains its own page freelists, least-recently-used lists,
and other metrics for its space.

2.3.2 Physical Page Allocation

The kernel tries to fulfill page allocation requests in the most
suitable zone first, but it can fall back to other zones if

required [36], [39]. For example, a user application will typi-
cally have its memory allocated in the normal zone. How-
ever, if memory there is low, it will try DMA32 next, and
DMA only as a last resort. The kernel can also employ other
techniques if required and permitted by the allocation con-
straints (if the request cannot allow I/O, filesystem use, or
blocking, they may not apply) [36], [39]. However, the
reverse is not true. If a device driver needs DMA space, it
must come from the DMA zone or the allocation will fail.
For this reason, the kernel does its best to reserve these
restricted spaces for these situations [36].

2.3.3 Handling Dynamic Virtual Memory Allocations

In Linux systems, there are two primary system calls (sys-
calls) used for applications’ dynamic memory allocations.
For small needs, such as growing the stack, sbrk() is used,
which extends the virtual stack space and grabs physical
pages to back it as necessary [36]. sbrk() is also used by the
GLIBC implementation of malloc(), as it is quite fast and
minimizes fragmentation through the use of memory pool-
ing [40]. For larger requests, malloc() usually resorts to the
mmap() syscall, which is better suited for bigger, longer-
lived memory needs, although is slower to allocate (mmap()
also has other uses, such as shared memory, memory-
mapped files, etc.). Both syscalls merely manage the virtual
memory space for a process; they do not operate on the
physical memory at all. The kernel generally only allocates
physical backing pages lazily on use, rather than at alloca-
tion time.

2.4 Exploiting DRAM Power Variation

Before discussing the ViPZonE implementation, we now
briefly discuss the nature of DRAM power variability. In
this work, we optimized for variability measured at the
DIMM level, as it is the smallest piece of memory that is
user-replaceable in a typical desktop, server, or laptop.
Fig. 4 depicts the measured power variation in a set of eight
identically specified (voltage, clock frequency, timings,
capacity, etc.) off-the-shelf DDR3 DIMMs. Each DIMM’s
write, read, and idle power was characterized using a mem-
ory testing routine (more details on the methodology can be
found in [10]). These power deviations arise purely from
vendor implementations and manufacturing process varia-
tion. Note that using DIMMs from different manufacturers
in the same system may be common in a situation where
there are many memories, and/or when DIMMs need to be
replaced over time due to permanent faults (e.g., in

Fig. 3. Vanilla Linux physical address space zoning for x86-64. Zone
boundaries do not necessarily fall between DIMM boundaries.

Fig. 4. Measured power variations in eight identically specified off-the-
shelf DDR3 DIMMs, using methods from [10]. Letters denote different
DIMMmodels, and numbers indicate instances of a model.

2. In this work, we adhere to conventional memory notation, as
opposed to networking and storage notation for capacities. For exam-
ple, we define 1 GB to be 230 bytes of memory, not 109 bytes.

3. The “HighMem” zone present in x86 32-bit systems is not used in
the x86-64 Linux implementation.

1486 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 5, MAY 2015



datacenters). Moreover, the variability among DRAMs is
expected to increase in the future [3], especially if variation-
aware voltage scaling techniques are used, such as those
proposed by [41].

In a variability-aware memory management scheme, the
upper-bound on power savings is determined by the extent
of power variation across the memories in the system. For
example, if we assume interleaving to be disabled, the worst
case for power consumption would be when the DIMM
with the highest power contains all the data that is accessed,
while the rest are idle. The best case would be where all of
this data is on the lowest-power DIMM. In a case where
data is spread evenly across all DIMMs, no power variation
can be exploited and the result is similar to that if interleav-
ing were used.

In a multi-programmed system where only a portion of
the physical memory is occupied, then we can intelligently
save energy. If most of the memory is occupied and
accessed frequently, it is harder to exploit the power varia-
tions, but as long as there is some non-uniformity in the
way different pages are accessed, it remains possible. We
believe that the former scenario is a good case for our study,
as any system where the physical memory is fully occupied
will suffer from large performance bottlenecks due to disk
swapping. When this happens, memory power and perfor-
mance are no longer a first-order concern. Thus, we believe
the latter scenario to be less interesting from the perspective
of a system designer when considering power variability-
aware memory management.

3 VIPZONE IMPLEMENTATION

ViPZonE is composed of several different components in
the software stack, depicted in Fig. 5, which work together
to achieve power savings in the presence of DIMM variabil-
ity. We refer to the lower OS layer as the “back-end” and
the application layer along with the upper OS layer as the

“front-end”. These are described in Section 3.2 and Sec-
tion 3.3, respectively. ViPZonE uses source code annotations
at the application level, which work together with a modi-
fied GLIBC library to generate special memory allocation
requests which indicate the expected use patterns (write/
read dominance, and high/low utilization) to the OS.4

Inside the back-end Linux memory management system,
ViPZonE can make intelligent physical allocation decisions
with this information to reduce DRAM power consumption.
By choosing this approach, we are able to keep overheads in
the OS to a minimum, as we place most of the burden of
power-aware memory requests to the application program-
mer. With our approach, no special hardware support is
required beyond software-visible power sensors or pre-
determined power data that is accessible to the kernel.

There are alternative approaches to implementing power
variation-aware memory management. One method could
avoid requiring a modified GLIBC library and application-
level source annotations by having the kernel manage all
power variation-aware decisions. However, such an
approach would place the burden of smarter physical page
allocations on the OS, likely resulting in a significant perfor-
mance and memory overhead. Furthermore, the kernel
would be required to continuously monitor applications’
memory accesses with hardware support from the memory
controller. Nevertheless, ViPZonE’s layered architecture
means that implementing alternate memory management
strategies could be done without significant changes to the
existing framework. We leave the study of these alternative
methods to future work.

3.1 Target Platform and Assumptions

We target generic x86-64 PC and server platforms that run
Linux and have access to two or more DIMMs exhibiting
some amount of power variability (ViPZonE cannot have a
benefit with uniform memory power consumption). If
device-level power variation is available, then this approach
could be adapted to finer granularities, depending on the
memory architecture. We make the following assumptions:

� ViPZonE’s page allocator has prior knowledge of the
approximate write and read power of each DIMM
(for an identical workload). We could detect off-chip
memory power variation, obtained by one of the fol-
lowing methods: (1) embedded power data in each
DIMM, measured and set at fabrication time, or (2)
through embedded or auxiliary power sensors sam-
pled during the startup procedure.

� As DIMM-to-DIMM power variability is mostly
dependent on process variations, and weakly
dependent on temperature [10], there is little need
for real-time monitoring of memory power use for
each module. However, if power variation changes
slowly over time (e.g., due to aging and wear-out
occuring over time much greater than the uptime of

Fig. 5. Layered architecture of ViPZonE.

4. Our scheme does not currently support kernel memory alloca-
tions (e.g., kmalloc()). As the kernel space is generally a small proportion
of overall system memory footprint, and invoked by all applications,
we statically place the image and all dynamic kernel allocations in the
low power zone.
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the system after a single boot), we assume these
changes can be detected through power sensors in
each module.

� We can perform direct mapping of the address
space5 (e.g., select a single DIMM for each read/
write request). This is achieved by disabling rank
and channel interleaving on our testbed. We verified
the direct mapping of addresses to specific DIMMs.
Note that the particular division of DIMMs into
ranks and channels is not a primary concern to ViP-
ZonE; the only requirement is that only one DIMM is
accessed per address.

� Programmers have a good understanding of the
memory access patterns of their applications,
obtained by some means, e.g., trace-driven simula-
tions, allowing them to decide what dynamic mem-
ory allocations are “high utilization”, or write-
dominated, etc. Of course, in other scenarios, we do
allow for annotation-independent policies.

3.2 Back-End: ViPZonE Implementation in the Linux
Kernel

We discuss the implementation of ViPZonE in a bottom-up
manner, in a similar fashion to the background material pre-
sented earlier. Our implementation is based on the Linux 3.2
and GLIBC 2.15 source for x86-64.

3.2.1 Enhancing Physical Memory Zoning to Exploit

Power Variability

In order to support memory variability-awareness, the ViP-
ZonE kernel must be able to distinguish between physical
regions of different power consumption. With knowledge
of these power profiles, it constructs separate physical
address zones corresponding to each region of different
power characteristics. The kernel can then serve allocation
requests using the suggestions defined by the front-end of
ViPZonE (see Section 3.3).

In the ViPZonE kernel for x86-64, we have explicitly
removed the Normal and DMA32 zones, while still allow-
ing for DMA32 allocation support. Regular DMA-able space

is retained. Zones are added for each physical DIMM in the
system (Zone 1, Zone 2, etc.), with page ranges correspond-
ing to the actual physical space on each DIMM. Allocations
requesting DMA32-capable memory are translated to using
certain DIMMs that use the equivalent memory space (i.e.,
addresses under 4 GB). Fig. 6 depicts our modified memory
zoning scheme for the back-end. For example, in a system
supporting DMA and DMA32, with 8 GB of memory
located on four DIMMs (4 � 2 GB), the ViPZonE back-end
would divide the memory space into zones as follows (we
assume that each DIMM can have different power
consumption):

� Zone DMA: 0-16 MB, mapped to DIMM 1.
� Zone 1: 16-2,048 MB, mapped to DIMM 1.
� Zone 2: 2,048-4,096 MB, mapped to DIMM 2.
� Zone 3: 4,096-6,144 MB, mapped to DIMM 3.
� Zone 4: 6,144-8,192 MB, mapped to DIMM 4.

3.2.2 Modifying the Physical Page Allocation Algorithm

in ViPZonE Linux x86-64

With zones set up for each DIMM, and knowledge of the
relative power consumption of each DIMM, the kernel has
the essential tools it needs to make power variability-aware
page allocations, whereas the vanilla kernel makes no dis-
tinction between modular boundaries. There are many pos-
sible physical page allocation policies that could be used in
the ViPZonE framework.

The ViPZonE kernel makes a distinction between relative
write and read power for each DIMM zone. This is done for
the hypothetical case where a module that has the lowest
write power may not have the lowest read power, etc. Fur-
thermore, it allows for future applicability to non-volatile
memories, such as the MTJ-based family (MRAM, STT-
RAM, MeRAM) with large differences in read and write
power and energy [42].

The default policy that we implemented is Low Power
First. The policy is currently configurable at kernel compile-
time, but could be changed to work on-the-fly if policies
need to be changed at runtime. In this policy, for high-utili-
zation allocations, the kernel tries to get the lowest read or
write power zone available. For low-utilization requests,
the kernel still tries to fulfill it in a low read or write power
zone, as long as some free space is reserved for high-utiliza-
tion requests. Allocations requiring DMA32-compatible
space are restricted to zones less than 4 GB, but otherwise
follow the same utilization-priority rules. Finally, legacy
DMA requests (less than 16 MB) always are granted in Zone
DMA. The Low Power First policy is depicted in Fig. 7.

For example, in a system with four DIMMs, each with
2 GB of space, the ViPZonE kernel would make allocation
decisions as follows:

� Request for DMA-capable space: Grant in Zone DMA.
� Request for DMA32-capable space (superset of DMA):

Restrict possibilities to Zone 1 or Zone 2. If indicated
utilization is low, choose the lower write (if indicated)
or read (if indicated, or default) power zone, as long
as at least THRESHOLD free space is available (gen-
erally, we choose THRESHOLD to be approximately
20 percent of DIMM capacity). If indicated utilization

Fig. 6. ViPZonE modifications to Linux physical address space zoning
for x86-64. The kernel maintains separate zones which correspond
directly to different physical DIMMs.

5. Note that address space layout randomization (ASLR) is not an
issue, as ViPZonE deals with physical page placement only, while
ASLR modifies the location of virtual pages.
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is high, always choose the lower power (write/read)
zone if possible. If neither zone has enough free
space, the kernel uses the vanilla page reclamation
mechanisms or can default to Zone DMA as a last
resort.

� Request for Normal space: Grant in any zone, with the
order determined in the same fashion as the above
case for DMA32, without the 4 GB address restric-
tion. Zone DMA is only used as a last resort.

Alternatively, more sophisticated policies could use a
variety of tricks. For example, a kernel which tracks page
accesses might employ page migration to promote highly
utilized pages to low-power space while demoting infre-
quently used pages to high power space. However, this
would need to be carefully considered, as the performance
and power costs of tracking and migrating pages might out-
weigh the benefits from exploiting power variation. We
leave the study of these policies to future work.

3.3 Front-End: User API and System Call

The other major component of our ViPZonE implementa-
tion is the front-end, in the form of upper layer OS func-
tionality in conjunction with annotations to application
code. The front-end allows the programmer to provide
hints regarding intended use for memory allocations, so
that the kernel can prioritize low power zones for fre-
quently written or read pages. The GNU standard C
library (GLIBC) was used to implement our power

variation enhanced allocation functions as part of the
standard library (source code available at [27]). We
briefly describe the methods and their use.

We added two new features to the applications’ API,
described in Table 1, allowing the programmer to indicate
to the virtual memory manager the intended usage. We
implemented a new GLIBC function, vip_malloc(), as a new
call to enable backwards compatibility with all non-ViP-
ZonE applications requiring the use of vanilla malloc(). vip_
malloc() is essentially a wrapper for a new syscall, vip_mmap
(), that serves as the hook into the ViPZonE kernel. While a
pure wrapper for a syscall is not ideal due to performance
and fragmentation reasons, we found it sufficient to evalu-
ate our scheme. vip_malloc() can be improved further to
implement advanced allocation algorithms, such as those in
various C libraries’ malloc() routines.

Because low power memory space is likely to be pre-
cious, memory should be released to the OS as soon as pos-
sible when an application no longer needs it. As a result, we
preferred the use of the mmap() syscall over sbrk(), which
has the heap grow contiguously. With sbrk(), it is often the
case that memory is not really freed (i.e., usable by the OS).
For this reason, a ViPZonE version of the sbrk() syscall was
not implemented. This also keeps the vip_malloc() code as
simple as possible for evaluation. We do not expect that it
would have a major effect on power or performance.

vip_malloc() can be used as a drop-in replacement for mal-
loc() in application code, given the ViPZonE GLIBC is avail-
able. If the target system is not running a ViPZonE-capable
kernel, vip_malloc() defaults to calling the vanilla malloc().
Custom versions of free() and the munmap() syscall are not
necessary to work with the variability-aware memory
manager.

The Linux 3.2 mmap() code was used as a template for
the development of vip_mmap(). Furthermore, the kernel
includes ViPZonE helper functions that allow it to pass
down the flags from the upper layers in the software stack
down to the lower levels, from custom do_vip_mmap_pgoff(),

Fig. 7. Low Power First default ViPZonE memory allocation policy in
Linux x86-64.

TABLE 1
ViPZonE API

Function Parameter Type Description

void* vip_malloc bytes size_t Request size
vip_flags size_t Bitmap flag used by

ViPZonE back-end page
allocator

(syscall)
void* vip_mmap

addr void * Address to be mapped,

typically NULL
(best effort)

len size_t Size to be allocated,
in bytes

prot int Standard mmap()
protection flags
bitwise ORed with vip_
flags

flags int Standard mmap() flags
fd int Standard mmap() file

descriptor
pgoff off_t Standard mmap() page

offset
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vip_mmap_region() down to the heavily modified physical
page allocator routine (__alloc_pages_nodemask()). For this
purpose, we reserved two unused bits in vip_mmap()’s prot
field to contain the vip_flags passed down from the user.

Table 2 shows the sample set of flags supported by vip_-
malloc(), passed down to the ViPZonE back-end kernel to
allocate pages from the preferred zone according to the
mechanism described earlier in Section 3.2. The flags
(_VIP_TYP_READ, _VIP_TYP_WRITE) tell the allocator that
the expected workload is heavily read or write intensive,
respectively.6 If no flags are specified, the defaults of _VIP_-
TYP_READ and _VIP_UTIL_LOW are used. We decided to
support these flags (only two bits) rather than using a differ-
ent metric (e.g., measured utilization), since keeping track of
page utilization would require higher storage and logic
overheads.

An application could use the ViPZonE API to reduce
memory power consumption by intelligently using the
flags. For example, if a piece of code will use a dynamically-
allocated array for heavy read utilization (e.g., an input for
matrix multiplication), then it can request memory as
follows:

retval = vip_malloc(arraySize � elementSize,
_VIP_TYP_READ | _VIP_HI_UTIL);

Alternatively, the application could use the syscall
directly:

retval = vip_mmap(NULL, arraySize �
elementSize, PROT_READ | PROT_WRITE |

_VIP_TYP_READ | _VIP_HI_UTIL,

MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);

For each vip_mmap call, the kernel tries to either expand
an existing VM area that will suit the set of flags, or create a
new area. When the kernel handles a request for physical
pages, it checks the associated VM area, if applicable, and
can use the ViPZonE flags passed from user-space to make
an informed allocation.

As shown by this example, the necessary programming
changes to exploit our variability-aware memory allocation

scheme are minimal, provided the application developer
has some knowledge about the application’s memory access
behavior.

4 EVALUATION

In this section, we demonstrate that ViPZonE is capable
of reducing total memory power consumption with negli-
gible performance overheads, thus yielding energy sav-
ings for a given benchmark compared to vanilla Linux
running on the same hardware. We start with an over-
view of our testbed and measurement hardware and
configurations in Section 4.1. A comparison of the four
combinations of memory interleaving modes is in Section
4.2 to quantify the advantages and disadvantages of dis-
abling interleaving to allow variability-aware memory
management. In Section 4.3 we compare the power, per-
formance, and energy of ViPZonE software with respect
to vanilla Linux as a baseline, using three alternate
testbed configurations.

4.1 Testbed Setup

We constructed an x86-64 platform that would allow us fine
control over hardware configuration for our purposes.
Table 3 lists the important hardware components and con-
figuration parameters used in all subsequent evaluations.
The motherboard BIOS allowed us to enable and disable
channel and rank interleaving independently, as well as
adjust all voltages, clock speeds, memory latencies, etc. if
necessary. Memory power was measured on a per-DIMM
basis using an external data acquisition (DAQ) unit, as
shown by the testbed photo in Fig. 8. Data was streamed to
a laptop for post-processing.

Tables 3b and 3c list two different CPU and memory con-
figurations that share the same parameters from Table 3a.
Unless otherwise specified in the tables, all minor BIOS
parameters were left at default values. In the Fast2 configu-
ration, two DIMMs populated the motherboard with up to
50 percent active total power variation (DIMMs b1 and c1 as
depicted in Fig. 4 and measured in the same way as in [10]).
In the Slow2 configuration, the memory was set identically
but the CPU was underclocked to 1.8 GHz, with only two
cores enabled, while Intel TurboBoost and HyperThreading
were disabled. None of these configurations specify any-
thing about the channel and rank interleaving modes, which
is evaluated in Section 4.2. Our testbed configurations were
chosen to represent two flavors of systems, those which
may be CPU-bound and those which may be memory-
bound in performance.

We used eight benchmarks from the PARSEC suite [26]
that are representative of modern parallel computing: black-
scholes, bodytrack, canneal, facesim, fluidanimate, freqmine, ray-
trace, and swaptions.

4.2 Interleaving Analysis

Since disabling interleaving is required for ViPZonE
functionality and exploitation of memory variability in
our testbed environment, we measured the average
memory power, execution time, and total memory
energy for different PARSEC benchmarks under both
testbed configurations.

TABLE 2
ViPZonE Supported Flags

Parameter Flag Description

Dominant
Access Type

_VIP_TYP_WRITE The memory space will
have more writes than
reads

_VIP_TYP_READ The memory space will
have more reads than
writes

Relative
Utilization

_VIP_LOW_UTIL Low utilization

(prefer low power space
if plentiful)

_VIP_HI_UTIL High utilization
(always prefer low
power space)

6. It is left to the developer to determine what constitutes read or
write dominance depending on the semantics of the code. In our imple-
mentation, this did not matter, as DIMMs with high write power also
had high read power, etc.
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The available combinations of interleaving were:

� Cint On, Rint On. Channel interleaving and rank
interleaving are enabled.

� Cint On, Rint Off. Channel interleaving is enabled,
while rank interleaving is disabled.

� Cint Off, Rint On. Channel interleaving is disabled,
while rank interleaving is enabled.

� Cint Off, Rint Off. Channel interleaving and rank
interleaving are disabled.

In the high-end CPU configuration, Fast2 (results in
Figs. 9a, 9c, 9e), the CPU was set for maximum perfor-
mance, with PARSEC running with eight threads to stress

the memory system. For benchmarks with high memory
utilization, such as canneal, facesim, and fluidanimate, we
found that turning off channel interleaving generally
reduced power consumption (Fig. 9a), while total memory
energy increased or decreased depending on the applica-
tion (Fig. 9e) due to degradation in performance from
lower main memory throughput (Fig. 9c). Rank interleav-
ing had less impact on power or performance, which sug-
gests that the main throughput bottleneck is the effective
bus width rather than the devices. Conversely, for work-
loads with lower main memory utilization, there was neg-
ligible difference in power, performance, and energy. This
confirms our intuition that the benefits of interleaving
are in the improvement of peak memory throughput,
which is only a bottleneck for certain workloads where
the CPU is sufficiently fast and/or application memory
utilization is high.

In the slower CPU setup, Slow2 (results in Figs. 9b, 9d,
9f), running only a single workload thread, interleaving
generally had little effect on memory power, runtime, and
memory energy, because the processor/application were
unable to stress the memory system. In these cases, inter-
leaving could be disabled with no detrimental effect to per-
formance. Note that power savings of disabling interleaving
could be higher if the memory controller used effective
power management on individual idle DIMMs, as opposed
to global DIMM power management. A related work on
power aware page allocation [19] also required interleaving
to be disabled in order to employ effective DIMM power
management. As interleaving remains an issue for general
DIMM-level power management schemes, further investi-
gation into the inherent tradeoffs and potential solutions is
an open research direction.

4.3 ViPZonE Analysis

In the evaluation of ViPZonE software, channel and rank
interleaving were always disabled, as it was a prerequisite

TABLE 3
Different ViPZonE Testbed Configurations, Varying CPU Performance on Real Hardware

Parameter Value Parameter Value

(a) Common Testbed Configuration

CPU Intel Core i7-3820 (Sandy Bridge-E) CPU supporting features All enabled (default)
Motherboard Gigabyte X79-UD5 (socket LGA2011) Linux kernel version 3.2.1
BIOS version F8 GLIBC version (baseline) 2.15
Storage SanDisk SDSSDX120GG2 DAQ NI USB-6215

120 GB SSD (SATA 6 Gbps)
No. DIMMs 2 DIMM power sample rate 1 kHz per DIMM
No. memory channels 2 Data logging Second machine
DIMM capacity 2 GB each Base core voltage 1.265 V
DDR3 data rate 1333 MT/s DRAM voltage 1.5 V

(b) Fast2
No. enabled cores 4 TurboBoost Enabled
Nominal core clock 3.6 GHz HyperThreading Enabled

No. of PARSEC threads 8

(c) Slow2
No. enabled cores 2 TurboBoost Disabled
Base core clock 1.8 GHz HyperThreading Disabled

No. of PARSEC threads 1

Fig. 8. Testbed photo showing our DAQ mounted on the reverse of the
chassis for DIMM power measurement.
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for functionality. The PARSEC benchmarks were not explic-
itly annotated (modified) for use with the ViPZonE front-
end, although we have tested the full software stack for cor-
rect functionality. Instead, we emulated the effects of using
all low-power allocation requests by using the default Low
Power First physical page allocation policy described in Sec-
tion 3.2.2. ViPZonE was benchmarked with two system con-
figurations, namely Fast2 (Figs. 10a, 10c, 10e) and Slow2
(Figs. 10b, 10d, 10f). By using the two-DIMM configurations,
we could better exploit memory power variability by
including only the highest and lowest power two DIMMs
from Fig. 4. Because we cannot harness idle power variabil-
ity in our scheme, additional inactive DIMMs merely act as
a “parasitic” effect on total memory power savings; with
more DIMMs in the system, a greater proportion of total
memory power/energy is consumed by idle DIMMs.

While ViPZonE does not explicitly deal with idle power
management like other related works, it could be supple-
mented with orthogonal access coalescing methods which
exploit deep low-power DRAM states. From the address
mapping perspective, the nature of ViPZonE’s zone prefer-
ences already implicitly allow more DIMMs to enter low-
power (or, potentially off) modes by grouping allocations to
a subset of the memory.

The results from the Fast2 configuration indicate that
ViPZonE can save up to 27.80 percent total memory energy
for the facesim benchmark with respect to the vanilla soft-
ware, also with interleaving disabled. Intuitively, our
results make sense: benchmarks with higher memory utili-
zation can better exploit active power variability between
DIMMs. For this reason, lower-utilization benchmarks such
as blackscholes gain no benefit from ViPZonE, just as they see
no benefit from interleaving (refer to Section 4.2). With the
slower CPU configuration, Figs. 10b, 10f indicate that there

is a reduced benefit in power and energy from ViPZonE, for
the same reasons. The reduced CPU speed, results in less
stress being placed on the memory system, resulting in
lower average utilization and a higher proportion of total
memory power being from idleness.

It may initially surprise the reader to note that in some
cases, vanilla interleaved roughly matches ViPZonE on the
energy metric. This is due to the performance advantage of
interleaving. Because we currently have no way to combine
ViPZonE with interleaving (although we propose possible
solutions in Section 5), we use vanilla without interleaving
as the primary baseline for comparison with ViPZonE. In
other words, our primary baseline is on equal hardware
terms with ViPZonE. The direct comparison with vanilla
interleaved was included for fairness, as it merits discussion
on whether a variation-aware scheme should be used over a
conventional interleaved memory given the current state of
DRAM memory organization. Nevertheless, we believe
there is significant potential for further work on power vari-
ation-aware memory management, especially if there is a
solution to allow interleaving simultaneously.

In all cases, ViPZonE running with channel and rank
interleaving disabled achieved lower memory energy than
the baseline vanilla software, with or without channel and
rank interleaving.

4.4 What-if: Expected Benefits with Non-Volatile
Memories Exhibiting Ultra-Low Idle Power

From the results of the ViPZonE comparison on our
testbed, we speculate that the benefits of our scheme could
be significantly greater with emerging non-volatile mem-
ory technologies, such as STT-RAM, PCM, etc. We expect
that there are two primary characteristics of NVMs that
would make ViPZonE more beneficial: (1) extremely low

Fig. 9. Evaluation of channel and rank interleaving for both testbed configurations on vanilla Linux.
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idle power, thus eliminating its aforementioned parasitic
effect on access power variability-aware solutions, and (2)
potentially higher process variability with novel devices,
leading to higher power variability that can be opportunis-
tically exploited.

Thus, we present the results with the idle power compo-
nent removed.7 While this by no means an accurate repre-
sentation of the realities of non-volatile memories, such as
asymmetric write and read power/performance and poten-
tial architectural optimizations, this is meant to illustrate
how active power variability can be better exploited without
the parasitic idle power. The idle power was approximately
1.41 W for the two DIMMs used in the Fast2 and Slow2 con-
figurations, specifically DIMMs b1 and c1 from Fig. 4. As
can been seen in Figs. 11a and 11b, the overall memory

energy benefits could increase dramatically, up to 50.69 per-
cent for the canneal benchmark. Although these numbers do
not realistically represent the results with actual NVMs, as
they were derived from our DRAM modules, they present a
case for variability-aware solutions for future memories
with low idle power and higher power variation.

4.5 Summary of Results

Table 4 summarizes the results from the evaluation of ViP-
ZonE, as well as the theoretical “what-if” study for potential
application to NVM-based systems. We expect that with
emerging NVMs, the lack of a significant idle power compo-
nent will result in ViPZonE getting significant energy sav-
ings for workloads with a variety of utilizations, even as the
number of modules in the system increase. Thus, using vari-
ability-aware memory allocation instead of interleaving
would likely be a promising option for future systems.

Fig. 11. ViPZonE vs. Vanilla Linux, “what-if” evaluation for potential benefits with NVMs (CInt Off, Rint Off).

Fig. 10. ViPZonE vs. vanilla and interleaved (Cint On, Rint On) vanilla Linux.

7. No performance figures are presented, as we did not actually run
the system with real non-volatile memories.
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5 CONCLUSION AND FUTURE WORK

In this work, we implemented and evaluated ViPZonE, a
system-level energy-saving scheme that exploits the
power variability present in a set of DDR3 DRAM mem-
ory modules. ViPZonE is implemented for Linux x86-64
systems, and includes modified physical page allocation
routines within the kernel, as well as a new system call.
User code can reduce system energy use by using a new
variant of malloc(), only requiring the ViPZonE kernel and
C standard library support. Our experimental results,
obtained using an actual hardware testbed, demonstrates
up to 27.80 percent energy savings with no more than
4.80 percent performance degradation for certain PARSEC
workloads compared to standard Linux software. A brief
“what-if” study suggested that our approach could yield
greatly improved benefits using emerging non-volatile
memory technology that consume no idle power, not-
withstanding potentially higher power variability com-
pared to DRAMs. As our approach requires that no
channel or rank interleaving be used, we also included a
comparison of four different interleaving configurations
on our testbed to evaluate the impact of interleaving on
realistic workloads.

The lack of interleaving support in the current imple-
mentation of ViPZonE is its primary drawback. It is a gen-
eral problem facing DIMM-level power management
schemes, and we believe finding good tradeoffs remains an
open research question. We do not claim that ViPZonE is
the best solution for all applications and systems. Rather,
we think that it is an interesting demonstration of a novel
memory management concept in a realistic setting, and
motivates further research in this space.

There are several opportunities for further research
with ViPZonE. First, given the ability to co-design hard-
ware and software, it might be possible to combine the
benefits of interleaving for performance while exploiting
power variation for energy savings. We can imagine a
few ways this could be done. One solution would use a
modified memory controller that interleaves different
groups of DIMMs independently. This compromise
would allow for performance and potential energy sav-
ings somewhere between the current interleaving vs. ViP-
ZonE scenario, but would still be a static design-time or
boot-time decision. This could be useful in systems that
already have clustered memory, such as non-uniform
memory access (NUMA) architectures.

Alternatively, hypothetical systems with disparate mem-
ory device technologies side-by-side (e.g., a hybrid DRAM-
PCMmemory as in [43]) may discourage interleaving across

device types due to different access power, latency, read/
write asymmetry, and data volatility. In this case, interleav-
ing could still be used within each cluster of homogeneous
memory technology, and each such cluster could be used as
a single zone for ViPZonE. The result would be ViPZonE
becoming heterogeneity-aware as a generalization of vari-
ability-awareness.

A more radical idea which may allow the full benefits of
interleaving alongside ViPZonE would likely require a re-
design of the DIMM organization to allow individual
DIMMs, where each rank is multi-ported, to occupy multi-
ple channels. However, the major issue we forsee with this
is a much higher memory cost due to the multiplied pin
requirements.

Aside from enabling interleaving alongside variation-
aware memory management, ViPZonE could potentially
be improved on the software side. Adding compiler sup-
port could take some of the burden off the programmer
while expanding the scope to include static program
data. Variability-aware page migration schemes might
yield further improvements in energy efficiency by aug-
menting our static allocation-time hints. Our approach
could likely be complemented by several other power-
aware methods mentioned in Section 1.1. A simulation
study of ViPZonE with detailed models of non-volatile
memories could give a better idea of the benefits in the
future, where power and delay variation are likely to be
higher and there is negligible idle power.

We believe ViPZonE makes an effective case for further
research into the Underdesigned and Opportunistic com-
puting paradigm with the goal of improving energy effi-
ciency of systems, while lowering design cost, improving
yield, and recovering lost performance due to conventional
guardbanding techniques.
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