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Abstract— With CMOS technology scaling, circuit perfor-
mance has become more sensitive to manufacturing and environ-
mental variations. Hence, there is a need to measure or monitor
circuit performance during manufacturing and at runtime. Since
each circuit may have different sensitivities to process variations,
previous works have focused on the synthesis of circuit perfor-
mance monitors that are specific to a given design. We develop
a systematic approach for the synthesis of multiple design-
dependent monitors, as well as the corresponding calibration
and delay estimation methods. Our approach synthesizes design-
dependent ring oscillators (DDROs) using standard-cell library
gates and conventional physical implementation flows. Our delay
estimation method limits the memory usage overhead by cluster-
ing critical paths with similar delay sensitivities. Experimental
results show that our delay estimation method using multiple
DDROs reduces overestimation (timing margin) by up to 25%
compared to using a single monitor. Furthermore, our silicon
measurement results for monitoring an industrial microprocessor
implemented in a 45-nm silicon-on-insulator process show that
DDRO can reduce the mean delay estimation error by 35%
compared to inverter-based ring oscillators.

Index Terms— Adaptive voltage scaling, circuit performance
monitoring, clustering, ring oscillators.

I. INTRODUCTION

C IRCUIT performance variability continues to increase as
a result of process variability, wide operating ranges, and

other factors. Performance variability can often be compen-
sated by accurate circuit performance estimation and subse-
quent adaptation. For example, circuit performance can be
monitored in the manufacturing flow for process tuning, or
systems with adaptive mechanisms can optimize the tradeoff
between energy and performance based on feedback from
runtime circuit performance monitors [12]. In this paper, we
define circuit performance monitoring as a process that esti-
mates the worst case delay of a circuit, based on measurements
obtained from on-chip monitors.

Previous works on VLSI circuit performance monitor-
ing can be classified according to the taxonomy shown in
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Fig. 1. Taxonomy of performance monitoring methods.

Fig. 1. Generic monitors range from simple inverter-based ring
oscillators (ROs) to more sophisticated process-sensitive ROs
(PSROs) [2], [17] and alternative monitoring structures such
as phase-locked loops (PLLs) [13]. However, such generic
monitors are inadequate for capturing design characteristics
such as mix of device types, which differ in responses
to process variations. As a result, delay estimation using
generic monitors is less accurate, which leads to larger timing
margins.

Design of monitoring structures that are correlated to circuit
performance (design-dependent monitors) has been addressed
in several ways. Liu and Sapatnekar [16] propose a method to
synthesize a single representative critical path (RCP) for post-
silicon delay prediction. The RCP is designed such that it is
highly correlated to all the critical paths for some expected
process variations. This approach uses only a single RCP to
estimate the worst case delay of multiple critical paths. Since
the critical paths may have different sensitivities to process
variations, using a single RCPs may be inaccurate. The tunable
replica circuit (TRC) method in [10] can synthesize different
delay paths to more flexibly mimic circuit performance, but
has higher design overhead compared to RO approaches. TRC
also requires costly calibration to obtain configurations that
correspond to different operating conditions. Alternatively,
Chan and Kahng [6] propose tunable ROs which can be used
as generic or design-dependent monitors. To obtain more accu-
rate (design-dependent) performance estimations, the tunable
ROs require calibrations at skewed process corners.

By coupling process parameters extracted from parametric
monitors with a design-specific delay model, more accurate
delay estimation can be obtained from generic test
structures [4], [7], [19]. Such an approach is flexible
because an arbitrary delay model can be used and calibrated
post-manufacturing. Meanwhile, parametric monitors can
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be designed such that they are highly sensitive to the
targeted process variation. However, this approach requires
a large amount of calibration and resources for storage and
computation of parameters. Another class of design-dependent
monitors, called in situ monitors [3], [11], [14], [18], [20],
[23], [24], estimates circuit performance by measuring delays
of the critical paths. However, use of an in situ monitor for
each critical path incurs a high area overhead. To reduce the
number of monitors, Lai et al. [14] propose to selectively
measure the delays of nodes in a netlist to estimate critical
path delays. Although in situ monitors are accurate, they may
increase design turnaround time because embedding in situ
monitors interferes with the timing of actual critical paths.

In this paper, we propose a systematic methodology to syn-
thesize multiple design-dependent ROs (DDROs) for circuit
performance monitoring. A crucial and enabling observation
is that the critical path delay sensitivities form natural clusters
(see Fig. 4). Therefore, we can capture the design-specific
delay sensitivities by synthesizing a monitor to match the
delay sensitivities of each cluster. This approach has a lower
implementation overhead compared to tracking each critical
path because the number of clusters is much smaller than the
number of the critical paths.

Our DDRO approach offers several potential benefits com-
pared to previous works.

1) DDROs are more accurate compared to conventional
ROs because they are synthesized to match the delay
sensitivities of the critical paths.

2) DDROs are more accurate compared to a single RCP
because multiple DDROs are used to account for the
differences between the critical paths.

3) DDROs are less intrusive compared to in situ monitoring
methods.

4) The total number of ROs (silicon area) is greatly
reduced because of the clustering of critical paths. Only
a few DDROs are required to provide accurate delay
estimation.

5) DDROs can be used for early process tuning, post-
silicon tuning, and real-time performance monitoring.
Switching the monitoring purpose is simply a matter
of redefining target variation sources (manufacturing or
real-time variations) with minimal design modifications.

Since DDROs are replica-like monitors, they can only repli-
cate the impact of global variation on critical paths. Thus,
our monitoring approach is more suitable for long critical
paths that pass through many gates. If within-die variation
dominates chip performance (e.g., chip performance is lim-
ited by hold-time critical paths and within-die variation is
large), an in situ monitor is required for accurate perfor-
mance estimation. Due to this inherent limitation of replica-
like monitors, we only consider setup-time critical paths in
this paper.

Our contributions can be summarized as follows.

1) We propose a systematic methodology to design multiple
DDROs. Our experimental results show that the use of
multiple DDROs can reduce delay overestimation by
15% to 25% compared to using only one DDRO.

TABLE I

GLOSSARY OF TERMINOLOGY

2) We tape out a testchip and obtain silicon measurement
results showing that DDRO can reduce the mean delay
estimation error by 35% compared to a generic inverter-
based RO.

3) We propose a method to estimate chip delay and mini-
mize guardband margin by using multiple DDRO mea-
surements. Our delay estimation method has negligible
difference compared to a path-based estimation method,
but the number of parameters used by our estimation
method is significantly reduced.

4) We propose a calibration method to reduce delay esti-
mation error due to a skewed process, voltage, and
temperature (PVT) corner.
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Fig. 2. Overview of DDRO design methodology.

The rest of this paper is organized as follows. Section II
gives an overview of our methodology. We present two delay
estimation methods in Section III. In Section IV, we discuss
the implementation details of DDRO synthesis. In Section V,
we present experimental data to illustrate the use of DDROs to
estimate circuit timing. Finally, we summarize our conclusions
and future work in Section VI. All notations used in this paper
are defined in Table I.

II. OVERVIEW OF DDRO APPROACH

An overview of our monitoring strategy is shown in Fig. 2.
First, given a netlist (die area for DDROs is preallocated), we
extract the critical paths of a design by running static timing
analysis (STA) using both fast (FF) and slow (SS) corner
libraries. We consider a path to be critical if its setup timing
slack differs by ≤10% of the clock period from the minimum
(worst) timing slack over all paths at the corresponding
process corner. For example, when the design has a minimum
timing slack of 10 ps and clock period of 1 ns, paths with
timing slack less than 110 ps are considered to be critical
paths. We then characterize delay sensitivities of the critical
paths to variation sources using HSPICE [30] with a typical
corner process model.1 Delay sensitivity of the i th critical
path (vpath

i ) is obtained using finite differences

vpath
i =

[
dpath

i1 − dnom_path
i

dnom_path
i

, . . . ,
dpath

iM − dnom_path
i

dnom_path
i

]
(1)

where dpath
im is the delay of the i th critical path when the mth

variation source is biased by one standard deviation from its
nominal value, and dnom_path

i is the nominal delay of the i th
critical path. Second, we cluster the critical paths based on
their path sensitivities, and synthesize one DDRO per cluster.
We formulate DDRO synthesis as an integer programming
problem, in which we seek the set of gates (gate types and
number of gates of each gate type) to be concatenated as a
DDRO that matches cluster delay sensitivities. Since the gate
delays are sensitive to the gate capacitance and slew of adja-
cent gates, we use gate modules (i.e., several identical gates
connected in series) as basic building blocks for DDRO (see

1Improved critical-path selection algorithms have been proposed in [25] and
[26]. Study of alternatives for path selection is beyond the scope of this paper.

Section IV-C). To replicate the effect of interconnect, each gate
module has variants with different wirelengths (e.g., INVX1
with 5 and 20 μm wirelengths). By matching DDRO and clus-
ter delay sensitivities, we ensure that the synthesized DDROs
have good correlation with the critical paths. Since we use
standard cells to synthesize the DDROs, the design and place-
ment of DDROs can be easily integrated with conventional
implementation flows. By measuring on-chip DDRO delays,
we can estimate chip delay during manufacturing or runtime.

A circuit performance monitor typically feeds back the
estimated delay with some margin to ensure chip functional
correctness. However, the margin should be minimized to
avoid significant performance penalty due to a pessimistic
delay estimation. Thus, our goal for circuit performance mon-
itoring is

minimize: μ(dest_max − dmax)

subject to: P(dest_max ≥ dmax) > Z (2)

where dmax is the actual chip delay, which is defined as the
maximum delay across all critical paths. Also, dest_max is the
estimated chip delay; P(dest_max ≥ dmax) is the probability
that dest_max is larger than dmax; and μ(dest_max − dmax) is
the expectation of delay overestimation. We use Z to denote
a user-specified confidence. For simplicity, we call critical
paths as paths in the remainder of this paper when there is
no ambiguity.

III. DELAY ESTIMATION USING DDROS

Given a set of DDROs, different chip performance esti-
mation methods lead to different estimation errors, runtime,
memory requirements, etc. We first analyze a path-based
delay estimation method based on a linear model. Then,
we propose a cluster-based estimation method that achieves
similar accuracy but runs significantly faster and consumes
less memory.

A. Delay and Variation Model

We use the variation model in [8], whereby lot-to-lot,
wafer-to-wafer, and die-to-die process variations are lumped
and modeled as global chip variation. The global variation
also includes die-to-die supply voltage and temperature fluc-
tuations. Within-die gate delay mismatches are modeled as
random delay variations. Spatial variation is ignored in this
paper as it is small for most chips [8]. When the effect
of spatial variation is significant, DDROs can be distributed
within a die as in [21] to improve correlations between DDROs
and the critical paths. We model the critical path delay (dpath

i )
as a linear function of the variation sources

dpath
i = dnom_path

i

(
1 + vpath

i · g + lpath
i

)
⎡
⎢⎣

lpath
1
...

lpath
I

⎤
⎥⎦ = R ·

⎡
⎢⎣

F1
...

FI

⎤
⎥⎦

R =
⎡
⎢⎣

r(1, 1) · · · r(I, 1)
...

. . .
...

r(I, 1) · · · r(I, Y )

⎤
⎥⎦ (3)
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TABLE II

LIST OF VARIATION SOURCES

Fig. 3. Rank correlation between delays obtained from HSPICE simulation
and the linear model of (3).

where g is an M ×1 vector that represents the global variation
of M variation sources. lpath

i is local delay variation of the
i th path. R is a I × Y correlation matrix that represents the
correlation between paths, where I is the total number of
critical paths and Y is the total number of gate instances in
all I critical paths. F1, . . . , FI are independent random vari-
ables, each of which follows a standard normal distribution.
When the yth gate instance is on the i th path, the entry r(i, y)
in R is the standard deviation of the yth gate delay variation
due to within-die process variation. If the yth gate instance is
not on the i th path, the entry r(i, y) is zero. Different gate
instances with the same gate type have the same standard
deviation for their gate delay variation.2 For example, all
NAND2X1 gates have the same standard deviation.

To verify the accuracy of our delay model, we first simulate
a critical path using HSPICE with random global variations
whose sources are as listed in Table II (100 trials). Then, we
compare the simulated path delays with the delays calculated
using the linear model in (3). Fig. 3 shows that path delays
obtained from the linear model correlate very well with those
from HSPICE simulation.

2The standard deviation of the gates are extracted from HSPICE simulations
with a variation model that is embedded in the foundry process design kit for
the 45-nm silicon-on-insulator (SOI) process.

For DDROs, we also use the delay model in (3). Since each
RO has many identical gates, uncorrelated local variation is
insignificant due to averaging of uncorrelated delay deviation.
Therefore, we do not model local variation in the DDROs, i.e.,
we use

d ro
k = dnom_ro

k (1 + vro
k · g) (4)

where dnom_ro is the nominal delay of the DDRO (obtained
from simulation) and vro

k is a 1×M vector that represents the
delay sensitivity of the kth DDRO to the vector g of all M
global process variations.

B. Path-Based Delay Estimation

A straightforward delay estimation method is to extract
global variation using multiple process variation-specific mon-
itors and calculate chip delay based on the linear model in (3).
In other words, monitoring methods in [4], [7], and [19] can
be combined and extended for delay estimation. However, we
use this approach only as a reference because it requires a
large amount of memory to store parameters, as well as long
computation time.

Given K DDROs, we can decompose the vector of delay
sensitivities vpath

i as a linear combination of vro
k (k =

1, . . . , K ) to utilize measurements from the DDROs

vpath
i =

K∑
k=1

bik · vro
k + vres_path

i (5)

where bik is a constant coefficient and vres_path
i is a 1 × M

vector that represents the residue of the delay-sensitivity
decomposition.3

The values of bik are obtained by solving a linear program
(see Section IV-D). Substituting vpath

i in (3) as a linear com-
bination of vro

k , we obtain

dpath
i = dnom_path

i

⎛
⎜⎝1 +

K∑
k=1

measurable︷ ︸︸ ︷
(bik · vro

k · g)+
uncertainty︷︸︸︷

ui

⎞
⎟⎠

where

ui = lpath
i + vres_path

i · g. (6)

Equation (6) shows that dpath
i consists of a measurable term

and an uncertainty term. While the value of the measurable
term can be determined from the delays of DDROs, the
value of the uncertainty term cannot be measured directly.
To estimate the maximum chip delay with the uncertainty ui ,
we calculate the distribution of the chip maximum frequency,
dmax, by using the method in [22]. Then, we can express
dmax as a normal distribution using a mean μ(dmax) and
a standard deviation σ(dmax). Given μ(dmax) and σ(dmax),
dest_max can be readily obtained using the erf function for
Gaussian distribution

erf

(
dest_max − μ(dmax)

σ (dmax)

)
> Z . (7)

3Since there will be no residue when K = M, it is preferred to have K < M.
In this paper, we try K = {1, 3, 5, 7, 12} and show that K = 5 is sufficient
for our test cases with 12 variation sources (M = 12).
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Fig. 4. Every dot in the figure represents a critical path’s delay deviation for
one standard deviation in nMOS threshold voltage (Vthn) and pMOS threshold
voltage (Vthp). The critical paths are extracted from a benchmark circuit AES
implemented using a foundry 45-nm SOI technology and simulated using
HSPICE. We cluster the paths into three clusters (according to all 12 variation
sources) and indicate the three-way clustering by different colors.

C. Clustering

The next step is to minimize delay margin and find vro
k .

Equations (6) and (7) show that the value of dest_max is mainly
determined by the vres_path

i . A larger vres_path
i will increase

the magnitude of σ(dpath
i ), which leads to a larger dest_max.

Therefore, it is desirable to select a set of vro
k that minimizes

vres_path
i . We find vro

k by clustering critical paths with similar
vpath

i sensitivity vectors, and then assigning the centroid of the
kth cluster as vro

k . To cluster the paths, we use the kmeans++
algorithm [1] and choose the best clustering solution among
100 random starts. The objective function of the clustering is
defined as

minimize
I∑

i=1

{
P(dpath

i > clock period)

×||vpath
i − vro

k ||}, path i ∈ cluster k. (8)

Since the maximum chip delay is usually determined by the
slowest path, we impose a higher penalty for having mis-
matched delay sensitivities on a path with higher probability
of timing failure, i.e., P(dpath

i > clock period). For each path,
the probability of timing failure is calculated based on the
delay model in (3) and the distributions of variation sources, g.
Minimizing the cost function in (8) helps to reduce the upper
bound of vres_path

i because the upper bound is defined by
vpath

i − vro
k . An example clustering result is shown in Fig. 4.

D. Cluster-Based Delay Estimation

The path-based delay estimation method requires O(IY )
parameters for runtime delay estimation. To reduce the number
of parameters, we represent path delays in a cluster by the
delay of the cluster (dclust

x ). We calculate the maximum delay
of paths in each cluster using the method in [22] and the
path delay model (3). The outcome of this step gives us the
expected maximum delay of cluster x . But more importantly,
it also extracts the sensitivities of the maximum delay to
variation sources (vmax

x ). Similar to the path-based approach,

we represent vmax
x as a function of vro

k

vmax
x =

K∑
k=1

{axk · vro
k } + vres_clust

x (9)

where axk is a constant coefficient, and vres_clust
x is the residue

of the delay sensitivity decomposition. Note that when vro
k is

equal to vmax
x , vres_clust

x = 0. However, the synthesized vro
k are

usually slightly different from vmax
x . Thus, having axk is useful

to reduce vres_clust
x . The approximate delay of the x th cluster

is given by

dclust
x = dnom_clust

x

(
1 +

K∑
k=1

{axk · vro
k · g} + vres_clust

x · g + rx

)

(10)

where dclust
x denotes the delay of the x th cluster, dnom_clust

x rep-
resents the nominal delay of the x th cluster, and rx represents
the random local delay of the x th cluster. After measuring
DDROs, we can obtain the mean and standard deviation of
dclust

x as in (11)

σ(dclust
x ) =

{
σ
(
||vres_clust

x · g||
)2 + σ(rx )

2
} 1

2

μ(dclust
x ) = dnom_clust

x

(
1 +

K∑
k=1

axk · vro
k · g

)
. (11)

Then, we can calculate the maximum delay distribution of
a chip, dmax, using the method in [22] and find the value of
dest_max using (7). Although X and K need not be the same,
we let X = K (exactly one DDRO per cluster) for experiments
in this paper. Using this cluster-based approximation method
consumes less memory compared to the path-based method
because the total number of parameters is reduced from O(IY )
to O(K 2), where K � I � Y . Moreover, the number of
operations to calculate the maximum of two delay distributions
is reduced from O(I ) to O(K ). This reduces maximum-delay
calculation time from 1 min (with the path-based method) to
less than 1 s (with the cluster-based method).4 The cluster-
based (fast) delay estimation method enables the use of
DDROs for real-time performance monitoring, which requires
monitors to feed back chip performance variation (due to
temperature or voltage variation) as soon as possible so that the
chip can adapt to the changes accordingly. When DDROs are
used for post-silicon tuning, the cluster-based delay estimation
method can reduce calibration time.

IV. SYNTHESIS OF DDROS

Given a delay sensitivity target (vro
k ), we want to construct

a DDRO, so that the delay sensitivities of the DDRO match
the targeted delay sensitivities. This DDRO synthesis prob-
lem is difficult because there can be many combinations of
gates to construct a RO. Here, we describe an integer linear
programming (ILP) formulation to solve the DDRO synthesis
problem. Further, we describe various aspects which must be
considered during DDRO synthesis.

4In our experiment, calculating the maximum delay distribution of several
hundreds of paths with a 3-GHz single-core CPU takes up to 1 min of CPU
time.
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A. ILP Formulation

Since each gate module type is instantiated a discrete
number of times, we formulate DDRO synthesis as an ILP
problem

min.:

∥∥∥∥∥
H∑

h=1

{
dnom_gate

h × Sh

}
× vro

−
H∑

h=1

{
dnom_gate

h × Sh × vgate
h

}∥∥∥∥∥ (12)

s.t.:
H∑

h=1

dnom_gate
h × Sh ≥ minimum DDRO delay

H∑
h=1

Sh ≤ maximum gate count

where dnom_gate
h is the nominal delay of candidate gate module

type h, and Sh is the integer variable that indicates the number
of copies of gate module type h in the DDRO. H is the
total number of gate module types. After solving the ILP,
|Sh | copies of gate module type h are used in the DDRO.
If |Sh | is zero, gate module type h is not used in the DDRO.
In our experiments, solving the ILP with the public-domain
solver [15] takes 1 h on a 3-GHz single-core CPU. Instead
of minimizing the difference in relative delay sensitivity, the
formulation in (12) minimizes the absolute delay sensitivity
difference so that the objective function is linear in Sh . This
favors a solution with a smaller DDRO nominal delay, which
may be suboptimal in term of normalized delay sensitivity
difference. To compensate this inherent bias in the ILP, we
add a constraint to define the minimum DDRO delay. We then
sweep the value of minimum DDRO delay at 10 evenly spaced
intervals along its feasible range.

B. Selecting Major Variation Sources

To identify the major variation sources that affect delay
sensitivity, we simulate a seven-stage RO using the foundry-
supplied 45-nm SOI SPICE model. The SPICE model has 13
process-related parameters for process variation analysis. In
our experiment, we perturb all of these 13 parameters (one
at a time), as well as the supply voltage and temperature.
Based on the results in Fig. 5, we can see that most of the
variation sources have noticeable effect on the delay except
for Cgdl, Cgsl, and Cjswg. Therefore, we only consider 12 out
of the 15 major variation sources; these are summarized in
Table II. We do not include second-order sensitivities to the
variation sources because their magnitudes are very small. This
assumption is supported by the data in Fig. 3.

In our experimental setup, the impact of interconnect is
modeled by parasitic resistance and capacitance extracted from
design layout. However, we do not model interconnect as a
variation source because its impact is relatively small com-
pared to that of active devices [5]. If interconnect variations
are to be included, the DDRO must be built with components
that are sensitive to interconnect variations.

Fig. 5. Delay sensitivities of an RO to different variation sources show that
most of the sources have noticeable effect except for Cgdl, Cgsl, and Cjswg.
Delays (y-axis) are normalized with respect to the nominal delay of the RO
with no variation.

C. Characterizing Gate Sensitivities

Our ILP formulation in (12) assumes that delay sensitiv-
ity of a gate (standard cell) is not sensitive to other gates
connected before and after it. This is a key assumption that
simplifies the problem. If we model vgate

h as a function of its
adjacent gate type, the total number of variables and the design
space become intractable.

To decouple the load and slew interaction between the gates,
we introduce gate modules as basic building blocks for DDRO.
A gate module is defined as several identical gates connected
in series, as illustrated in Fig. 6. Simulation results in Fig. 7
show that the sensitivity difference due to different input slew
and output load is reduced from 0.15% to 0.03% as the number
of stages in a gate module increases from 1 to 15. In this paper,
we use five-stage gate modules as a tradeoff between stability
of sensitivity and total area of a gate module.

For a gate with multiple input pins, gate delays through
different input pins will have different delay sensitivities. Thus,
each gate module type is defined with respect to a specific
input pin. For example, gate module types NAND2X1_A and
NAND2X1_B use the same gate type (NANDX1) but the gate
modules toggle different input pins (A versus B). Extra input
pins of a multiinput gate are assigned to high or low to make a
gate module inverting or buffering (see Fig. 6). To obtain a list
of candidate gate module types for DDRO synthesis, we use
logic standard cells (e.g., AND, OR, OXR, INV gates) to build
gate modules. For multiinput gates, we generate a gate module
type for each input pin. Since there are many gate module
types, we select those that have similar gate capacitance. This
is because gate modules with similar gate capacitance have
less impact on the delay sensitivities of adjacent gate modules
when they are concatenated to form a DDRO.

Since the interconnect also affects path delay sensitivity, we
use different wirelengths in building our gate modules. Gate
modules with different wirelengths are considered as different
instance types even if they have the same gate type. Note
that the gate module wirelengths need to be defined based
on both the technology and the critical paths that are to be
monitored. In our experiment, the wirelengths of critical paths
are typically less than 20 μm (see Fig. 8). Thus, we use
two types of interconnect lengths in our gate modules, i.e.,
the wirelength between consecutive gates in a module can be
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Fig. 6. Illustration of a gate module in a DDRO.

Fig. 7. Simulation results showing that the sensitivities under different input
slew {5 ps, 50 ps} and output load {FO1, FO5} combinations converge as
the number of stages in a gate module increases.

Fig. 8. Wirelength distribution of each net on critical paths. The critical
paths are extracted from an ARM M3 processor implemented in 45-nm SOI
process.

either short (5 μm) or long (20 μm). As depicted in Fig. 9,
we create custom interconnect cells with “snaking” routes to
match the desired interconnect wirelengths as well as reduce
the total area of DDROs. During physical implementation,
we synthesize each DDRO using gate modules which consist
of standard cells and custom interconnect cells. The gates
modules in each DDRO are placed in two rows to form a
loop. The standard cells and the custom interconnect cells in
each gate module are placed in series.

D. Extraction of bik and axk

As mentioned in Section III, we represent vpath
i and vmax

x
as linear combinations of vro

k , using bik and axk, respectively.
The bik (resp. axk) extraction is achieved by solving (5) [resp.
(9)] using simple least-squares fitting to minimize the resulting
residue vres_path

i (resp. vres_clust
x ). However, the simple fitting

approach can lead to overfitting when K ≈ M , which results
in large bik (resp. axk) values and increases delay estimation
error. For example, Fig. 10 (left) shows that solving (5) using a
linear least-squares method without constraints on bik leads to

Fig. 9. Custom interconnect cell with a snaking route to reduce total area
of long interconnect.

Fig. 10. Estimation error of a test case (MIPS) with different setups.
(a) Linear model results (left) versus HSPICE results (right) using linear
least-squares method on bik for the MIPS test case. Linear least-squares
method works for linear model but becomes unstable with SPICE results.
(b) Linear model results (left) versus HSPICE results (right) using our method
for the MIPS test case with λ = 0.02. With our method, the results are
consistent for both linear model and HSPICE results. (c) HSPICE model
results with (left) λ = 0.01 and (right) λ = 0.1. Our method is robust and
insensitive to the value of λ.

little delay overestimation when we consider global variation
only. However, Fig. 10 (right) shows that this is not true when
we repeat the experiment with global and local variations, as
well as other variations that are absent in our delay model. This
is because the large bik (resp. axk) values magnify delay noise,
i.e., the differences between the actual delays and the delays
calculated using the linear delay model in (3). The delay noise
is mainly due to the fact that critical path and DDRO delays
have nonlinear dependence on the parameters in Table II, when
subjected to PVT variations.

To reduce the impact of large bik (resp. axk) values, [27]
formulates the extraction problem as a linear program with
upper and lower bounds on bik (resp. axk). Although the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

method of [27] avoids large estimation error, the upper and
lower bounds are determined by trial and error to minimize
delay estimation error.

In this paper, we consider both RO delay sensitivity decom-
position residue and delay noise as errors and formulate the
bik (resp. axk) extraction problem as a linear program

min.: vres_path
i · g + [bi1 . . . bi K ] ·

⎡
⎢⎣

e1
...

eK

⎤
⎥⎦ (13)

where ek is a random variable that represents the delay noise of
DDRO k introduced by the linear delay approximation in (4).
Note that the ek also includes higher order delay sensitivities,
any unmodeled variation, as well as the local variation in
DDRO due to process variations.

The value of ek can be estimated by calculating the dif-
ference of the delay obtained from HSPICE Monte Carlo
simulation and that from (4). Alternatively, we can define λ
as the ratio between g and ek and simplify the linear program
(13) as

min.: ‖vres_path
i ‖2 + λ ·

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

⎡
⎢⎣

bi1
...

biK

⎤
⎥⎦
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
2

. (14)

Based on our empirical results, we set λ = 0.02 in this paper.
Results in Fig. 10 show that, by using axk extracted by solving
(14), the delay estimations are not sensitive to delay noise
caused by circuit nonlinearity and other variations. Moreover,
Fig. 10 shows that the delay estimation errors are not sensitive
to λ. Thus, the formulation in (14) is more robust than that
in [27].

E. Synthesis Results

Fig. 11 shows examples of synthesized DDROs for test
case M0 with K = 3. As shown in the figure, the synthe-
sized DDROs have three sets of linearly independent delay
sensitivities. This is an important property because we will
use linear combinations of the delay sensitivities to match the
delay sensitivities of critical paths or path clusters (DDROs
with linearly dependent delay sensitivities are redundant).
Fig. 12 shows that, by using linear combinations of delay
sensitivities of DDROs (i.e., axk ·vro

k ), we can achieve smaller
delay sensitivity errors with respect to a critical path compared
to using DDROs directly or simple inverter-based ROs. The
standard cells in the DDROs are described in Table III.

F. Delay Estimation With Skewed PVT Corner

The estimation methods in Sections III-B and III-D assume
that the nominal RO delays (dnom_ro

k ) are obtained from
HSPICE simulation at the nominal PVT corner, i.e., the
measurable term in (6) is defined as

vro
k · g j = dmeas_ro

kj

dnom_ro
k

− 1 (15)

where dmeas_ro
kj is the delay of the kth DDRO measured

from the j th chip and g j is the global process variation

Fig. 11. Delay sensitivities of synthesize DDROs of test case M0. Cluster
number = 3. The delay sensitivities (y-axis) is normalized to DDRO delay
with no variation.

Fig. 12. Delay sensitivity errors of different ROs with respect to the delay
sensitivities of a critical path in test case M0. By using linear combination
of DDROs, the total delay sensitivity error is reduced compared to simple
inverter ROs or DDROs without applying linear combination.

of the j th chip. If the actual operating PVT corner of the
chips is significantly skewed compared to the nominal corner,
dnom_path

i and dnom_ro
k obtained from HSPICE simulation will

be inaccurate. This is especially important for low-volume
production runs. Therefore, we propose a method to calibrate
dnom_path

i and dnom_ro
k when chip samples are available. Given

a set of chip samples, we can obtain the mean RO delay across
all samples (μ(dmeas_ro

k )). By replacing the dnom_ro
k in (15) with

μ(dmeas_ro
k ), we compensate for the error caused by a skewed

process and/or mismatch between HSPICE model and silicon
data

vro
k · g j = dmeas_ro

kj

μ(dmeas_ro
k )

− 1. (16)

After applying the calibration in (16), we can estimate
the delay of the j th chip (dest_max

j ) using (11). Similarly,
the chip delay is also susceptible to the skewed process as
well as mismatch between HSPICE model and silicon data.
Moreover, chip delay can be skewed differently with respect to
the DDRO. To minimize delay estimation error resulting from
the systematic mismatch between chip and DDRO delays, we
propose to apply an additional calibration procedure during
chip delay estimation. First, we obtain the expectation of



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHAN et al: SYNTHESIS AND ANALYSIS OF DDRO PERFORMANCE MONITORS 9

TABLE III

STANDARD CELLS IN DDROs

actual chip delay (μ(dmax)) by calculating the average of
sample chip delays. Second, we calculate the expectation of
chip delay estimation (μ(dest_max)) by averaging chip delay
estimations (dest_max

j ) across all chip samples. In other words,
(μ(dest_max)) is defined as the average of the expectation of
estimated chip delay

μ(dest_max) = 1

total samples

∑
j

(
dest_max

j |Z=50%

)
. (17)

The calibrated maximum-delay estimate for chip j (dcal_max
j )

is given by

dcal_max
j = μ(dmax)

μ(dest_max)
dest_max

j . (18)

V. EXPERIMENTAL RESULTS

To validate our performance monitoring methodology, we
synthesized, placed, and routed three benchmark circuits
using a commercial 45-nm SOI technology. Details of the
implemented benchmark designs are listed in Table IV.
The benchmark circuits are obtained from ARM [32] and
Opencores [34]. Then, we follow the DDRO design flow in
Fig. 2. We first run STA using both FF and SS corner libraries.
As mentioned in Section II, we consider a path to be critical
if its setup timing slack at either FF or SS corner differs from
the worst timing slack at the corresponding process corner
by no more than 10% of the clock period. We extract delay
sensitivity of each critical path to each of the variation sources
in Table II using HSPICE with a typical process corner model.

TABLE IV

PHYSICAL IMPLEMENTATION RESULTS OF BENCHMARK CIRCUITS

Note that HSPICE-based sensitivity characterization is not
mandatory in our design flow, and that it can be replaced by
other methods (e.g., the statistical method in [24]).

To evaluate the quality of our DDRO synthesis and delay
estimation methodologies, we run Monte Carlo experiments
with global and local variations on the critical paths and
DDROs. For HSPICE simulation, we use the built-in Monte
Carlo setup in the 45-nm commercial device model. Since each
critical path is defined for a specific input and simulated inde-
pendently, we cannot capture the correlation of local variation
due to gate sharing. As an alternative, we run another set of
Monte Carlo experiments using the linear model in (3). In both
simulations, we use the path and DDRO delay sensitivities
extracted from HSPICE simulation results to minimize the
discrepancy between them. In the linear model experiment, we
sample the values of variation sources by using the Gaussian
random number generator in MATLAB [29]. The number of
trials in the Monte Carlo experiment is 1000 and 100 for the
linear model and for HSPICE simulation, respectively. Unless
otherwise specified, we set the user-specified confidence
Z = 99%.5

A. Simulation Results

Experiments using linear model. The simulation results in
Figs. 13 and 14 show that our approximate delay estimation
method achieves similar results compared to the path-based
method.6 The results also show that mean delay overestimation
of all benchmark circuits decreases noticeably as the number
of clusters increases from 1 to 12.7 This confirms our hypoth-
esis that having multiple DDROs that correlate well with the
critical paths can reduce chip delay overestimation. The results
also show that delay overestimation is nonzero even when the
number of DDROs = 12 (i.e., K = M = 12). This is because
vres_path

i and vclust
x are nonzero.

We further observe that the benefit of using multiple DDROs
is more significant when the local variation is relatively less
compared to the global variation. This is because replica-
like monitors (e.g., PSRO, DDRO, PLL) can only replicate
the impact of global variation on the critical paths. If local
variation dominates, more intrusive monitoring is required to
measure the impact of local variation.

Based on the simulation results with global and local
variations (Fig. 14), minimum delay overestimation values for

5When number of trials is small, our delay estimation is more sensitive to
the instances of the trials, especially for a high confidence Z = 99%.

6The results in this paper are slightly different from those in [27] because
we fixed an error in characterization of DDRO delay sensitivities in [27].

7When the number of clusters (K ) = 1, our DDRO method is similar to
the representative critical path replica method [16].
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Fig. 13. Linear model simulation results with global variations only. (a) AES. (b) M0. (c) MIPS.

Fig. 14. Linear model simulation results with global and local variations. (a) AES. (b) M0. (c) MIPS.

Fig. 15. HSPICE results for global and local variations. (a) AES. (b) M0. (c) MIPS.

the AES, M0, and MIPS test cases are 2.5%, 2.7%, and 3.4%,
respectively. The results for K = 12 in Figs. 13 and 14 show
that the achievable minimum delay overestimation is limited
by the local variation of a design. Therefore our performance
monitoring method may be more suited for low-speed designs
with longer critical paths that are less susceptible to local delay
variations.

HSPICE simulations. HSPICE results in Fig. 15 are similar
to the linear model results. Discrepancies between HSPICE
and linear model results are mainly due to the fact that
our delay estimation does not account for nonlinearity in
circuit delay. Despite a user-specified confidence of 99%, the
results in Table V show that we underestimate the delays of
1.96% and 5.9% instances in the linear model and HSPICE
experiments, respectively (average across three benchmarks for
cluster-based estimation). Since the results of the linear model

experiment are free from nonlinearity error, the underestima-
tion error is mainly due to the approximation in the statistical
maximum function given by [22]. The HSPICE results have
more underestimated instances because local variation is not
modeled correctly, i.e., HSPICE simulates the critical paths
with uncorrelated local random variation but our delay esti-
mation accounts for correlation between local variations. As
a result, our delay estimates are slightly smaller than the path
delays obtained from HSPICE simulation.

B. Delay Estimation With Calibration

We set up two experiments to evaluate our calibration
method in Section IV-F. First, we shift both chip and DDROs
supply voltages from nominal supply voltage (0.9 V) to 0.8 V.
This experiment setup represents the typical scenario where
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TABLE V

AVERAGE UNDERESTIMATED INSTANCES ACROSS K = {1, 3, 5, 7, 12}

TABLE VI

AVERAGE OF MEAN DELAY ESTIMATION ERROR NORMALIZED TO MEAN

CHIP DELAY MIPS WITH 100 HSPICE MONTE CARLO TRIALS

the nominal PVT corner is shifted. Second, we keep the chip
supply voltage at 0.9 V but shift all DDROs voltages to {0.8,
0.9, and 1.0 V}. This experiment setup represents the scenario
when there is systematic within-die variation between the
chip’s critical paths and DDROs (e.g., voltage drop in chip’s
power delivery network).

For each test case, we simulate the critical paths (obtained
from MIPS) and DDRO delays using HSPICE Monte
Carlo with 100 trials. Based on the simulation results,
we estimate chip delay using the cluster-based method in
Section III-D with five DDROs (Z = 50%) and compare
it with the simulated chip delay. Among the 100 trials, we
randomly choose a subset of the chip samples and apply the
calibration procedure described in Section IV-F. Since the
delay estimation is affected by the selection of chip samples,
we repeat this experiment 50 times and report the average
values of mean delay estimation error.

Results in Table VI show that, when both chip and DDROs
voltages are at the nominal corner (0.9 V), the mean delay
estimation error is only 1.25% without applying any calibra-
tion. Even when both chip and DDRO voltages are shifted to
0.8 V, the estimation error is only 1.70%. However, if chip
voltage remains at 0.9 V but DDROs voltage is shifted to
0.8 or 1.0 V, the estimation error increases significantly (12%
to 21%). The estimation error can be reduced significantly
when we apply our calibration method (Section IV-F). As
the number of samples increases, the average mean delay
estimation error reduces rapidly. For instance, the maximum
of the average mean delay estimation error is less than 2.5%
with 30 samples.

Fig. 16. RO block schematic. In this test chip, we use a 12-stage frequency
divider.

TABLE VII

DESIGN INFORMATION OF THE TEST CHIP

C. Proof-of-Concept Silicon Results

We have taped out a test chip with DDRO-based per-
formance monitoring using a 45-nm IBM SOI technology
with dual-Vth libraries. The test chip has an ARM Cortex-
M3 microprocessor [33] with DDROs. To synthesize the
DDROs, we extract the critical paths from the microprocessor
and cluster their sensitivities into five clusters by using the
kmeans++ algorithm. The results of the path sensitivities
clustering is shown in Fig. 4.8 Then, for each cluster, we
synthesize a DDRO which has delay sensitivities similar to the
mean delay sensitivities of paths in the cluster. The synthesis
method is the same as that in Section IV.

To control DDRO oscillation, a NAND (or AND) gate is
added in each RO as shown in the schematic in Fig. 16. An
on-chip digital counter is used to obtain the RO frequencies,
i.e., the counter will count the number of cycles of a RO
within a measurement window. We repeat RO measurements
with 40- and 100-ms measurement windows and measure the
ROs in different sequences to make sure that the results are
consistent and systematic measurement error is minimized. For
comparison, we also implemented inverter-based ROs. The
design information of the Cortex-M3 and ROs are listed in
Table VII. The RO cell count includes the additional NAND

(or AND) gate and a 12-stage frequency divider (total 13 cells).
The test chip layout and die photo are shown in Fig. 17.
We measured the processor maximum operating frequency
and RO frequency using the test bed shown in Fig. 18.
There are two microcontroller units (MCUs) on the test bed.
One of the MCUs is used to control the digital counter of
the RO block and to measure the frequency of the ROs.
The other MCU is used to control the processor and the
on-chip PLL. We measure chip frequency by running a test

8At the time of our test chip tapeout, the clustering method of (8) had not
yet been developed.
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Fig. 17. Test chip die photo and layout illustration.

Fig. 18. Test bed for RO frequency measurement and processor frequency
measurement. Two microcontroller units are designed to control the processor
and RO blocks, respectively.

program (fast Fourier transform) and increasing the processor’s
clock frequency (through PLL) until the processor generates
incorrect results compared to the precalculated golden results.
For each chip, we supply both RO and processor with the same
supply voltage.

The measured mean chip and RO delays (14 test chips) are
about 2 times the corresponding simulation results. This sug-
gests that the chips are operating at a very skewed PVT corner
compared to the HSPICE simulation. Therefore, we use the
calibration method described in Section IV-F to estimate chip
delays. To minimize the estimation error, we use all 14 chips
for the calibration. For each inverter-based RO, we treat it as
one DDRO designed for the all critical paths, i.e., x = k = 1.
Then we apply the same calibration as in Section IV-F and
estimation method as in Section III-D for the inverter-based
ROs (with axk = 1). The results of the mean delay estimation
error are shown in Fig. 19 (Z = 0.5). The measurement
results show that, by using five DDROs, we can reduce the
mean delay estimation error by 35% (from 2.3% to 1.5%)
compared to generic inverter-based ROs. To ensure that our
results are not sensitive to measurement errors, we repeat the
analysis by injecting random noise (standard normal distribu-
tion with σ = 1%, 3%, and 5% with respect to RO frequency)
into all RO measurements. Results in Table VIII show the
average mean delay estimation error of DDRO and inverter-
based ROs across 30 random trials. The improvement of
DDRO over inverter-based ROs is approximately 25%–30%,
which is consistent with our observation drawn from Fig. 19.

We also deploy ROs with different numbers of stages to
estimate the effect of local variation. The results in Fig. 19
show that the errors of 61-stage inverter ROs are similar to
those of their 21-stage counterparts. This suggests that random
local variation in ROs has little impact on the estimation error
in our experiment. In Fig. 20, we plot the statistics of the
delay estimations. The results show that the minimum and
maximum delay estimation errors using DDROs are smaller
to those of inverter-based ROs. Note that our results are
based on measurements on 14 test chips from a single wafer.

Fig. 19. Mean delay estimation error obtained from DDROs and inverter-
based ROs. Estimation errors are calculated by taking the absolute difference
between normalized estimation and normalized chip delay.

TABLE VIII

MEASUREMENT ERROR SENSITIVITY ANALYSIS

Fig. 20. Maximum and minimum delay overestimation obtained from
DDROs and inverter-based ROs. The edges of the boxes are the corresponding
25th and 75th percentiles of the data.

With multiple wafers from different lots, we expect that the
improvements may be different (improvement is likely to be
higher since the magnitude of global variation will increase
compared to local variation).

D. Comparison With Other Monitoring Methods

Table IX summarizes the differences among differ-
ent replica-like design-dependent monitoring methods. The
method proposed in [16] has small implementation overheads
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TABLE IX

COMPARISON OF DIFFERENT REPLICA-LIKE DESIGN-DEPENDENT

MONITORING METHODS

because it uses a single representative critical path to estimate
chip delay. Although this method does not require any calibra-
tion, it is relatively less accurate because it relies on a single
representative critical path to estimate a set of critical paths.9

The method of [6] also has small implementation overheads
because it requires only a set of simple ROs. However, one-
time calibrations at skewed process corners are required to
make the ROs to be design-specific. Even with calibration, the
method in [6] is not necessarily accurate because it calibrates
the configurations of ROs to guardband for the worst possible
delay. Tunable replica circuits in [10] are more accurate
but require more complex circuits and calibration steps. By
contrast, this paper has proposed a method that also has small
implementation overheads because the monitor consists of
only a few DDROs. Our method requires a calibration step to
compensate for any difference between the simulation model
and actual silicon as described in Section V-B. We expect that
our method is more accurate than the method of [16] because
we use multiple DDROs to track the delays of critical paths.
Our method is also more accurate than that in [6] because we
estimate the critical path delays instead of the worst-possible
delay. Although our method may be less accurate than the
tunable replica circuit, our method does not require calibration
for every chip and also has less implementation overhead.

VI. CONCLUSION

In this paper, we have proposed methods to systematically
design multiple DDROs, and to estimate circuit performance
(chip delay) based on the measurements from the multiple
DDROs. We showed that our delay estimation method can
achieve similar results as the path-based method with signif-
icantly less bookkeeping overhead. We also showed that by
using multiple DDROs we can reduce the mean delay over-
estimation by up to 25% (from 4% to 3%). The reduction is
mainly limited by local variation, which cannot be captured by
replica-like monitors. Further delay overestimation reduction
will require in situ-type monitors, which have much higher
area and design implementation overheads. We also observe
that the benefit of using replica-like monitors (such as DDROs)
is more significant when the local variation is relatively less
compared to the global variation. If local variation dominates,
then in situ monitoring, although expensive, will fare better.
With shrinking feature dimensions, increasing wafer sizes, and
changing device structures (e.g, fully depleted SOI, FinFETs),
it is difficult to project which of the two components of
variation is going to dominate in future technologies.

9This approach is similar to our DDRO method with K = 1.

To verify the performance of DDROs and our delay esti-
mation approach, we taped out a test chip using 45-nm SOI
technology together with an ARM CORTEX M3 CPU. Our
silicon results have shown that DDRO can reduce the mean
delay estimation error by 35% (from 2.3% to 1.5%) compared
to generic inverter-based ROs.
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