
1

Hardware Variability-Aware Duty Cycling
for Embedded Sensors

Lucas Wanner, Charwak Apte, Rahul Balani, Puneet Gupta, and Mani Srivastava
University of California, Los Angeles

wanner@cs.ucla.edu, {charwak, rahulb, puneet, mbs}@ee.ucla.edu

Abstract—Instance and temperature-dependent power
variation has a direct impact on quality of sensing for
battery powered, long running sensing applications. We
measure and characterize active and leakage power for
an ARM Cortex M3 processor, and show that across a
temperature range of 20–60◦C there is 10% variation in
active power, and 14x variation in leakage power.

We introduce variability aware duty cycling methods
and a duty cycle abstraction for TinyOS that allows ap-
plications to explicitly specify lifetime and minimum duty
cycle requirements for individual tasks, and dynamically
adjusts duty cycle rates so that overall quality of service is
maximized in the presence of power variability. We show
that variability-aware duty cycling yields a 3–22x improve-
ment in total active time over schedules based on worst-
case estimations of power, with an average improvement of
6.4x across a wide variety of deployment scenarios based
on collected temperature traces. Conversely, datasheet
power specifications fail to meet required lifetimes by 7–
15%, with an average 37 days short of a required lifetime
of one year. Finally, we show that a target localization
application using variability-aware duty cycle yields a 50%
improvement in quality of results over one based on worst-
case estimations of power consumption.

I. INTRODUCTION

Energy management methods in embedded systems
rely on knowledge of power consumption of the under-
lying computing platform in various modes of operation.
These power specifications are usually derived from the
datasheets. Unfortunately, the microelectronic substrate
is increasingly plagued by variability, especially in power
consumption, both across multiple instances of a system
and in time over its usage life. As a result the nominal
power specifications are heavily guardbanded (e.g., see
[22]) leaving much of the energy potential or sensing
quality untapped.

This material is based upon work supported by the NSF under
awards # CNS-0905580 and CCF-1029030. Any opinions, findings
and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the
NSF. Lucas Wanner is supported in part by CAPES/Fulbright grant
#1892/07-0.

Variability, thus far, has been largely addressed by
process, device and circuit designers, with software
designers remaining isolated from it by a rigid hardware-
software interface. Recently there have been some efforts
at higher layers of abstraction. For instance, software
fault tolerance schemes are used to address voltage [36]
or temperature variability [11]. Hardware “signatures”
are used to guide adaptation in quality-sensitive multi-
media applications in [33]. In embedded sensing, [15],
[30] propose node deployment methodologies based on
the variability in leakage power across different nodes.

Wireless embedded sensing systems employ a variety
of power management techniques to achieve system life-
time objectives [35]. A particularly common technique
is duty cycling [14], where the system is by default
in a sleep state but woken up periodically to attend
to pending tasks and events. A higher duty cycle rate
typically translates into higher quality of service [44].
A system with higher duty cycle may, for example,
sample sensors for longer intervals or at higher rates,
increasing data quality. A typical application-level goal is
to maximize quality of data through higher duty cycles,
while meeting a lifetime goal. While duty cycles in
embedded sensing applications range from below 1% in
Car-Park management [4] and CargoNet [29], to greater
than 50% in VigilNet [20], often the duty cycle ratio is
extremely small (<< 1%), and the energy consumed by
the platform during the sleep state accounts for almost
all (> 99%) of the energy consumption.

In previous work [41], we measured and character-
ized instance and temperature-dependent sleep power
consumption for the Atmel SAM3U, a contemporary
embedded processor based on an ARM Cortex M3
core, and discussed the implications of this variation to
system lifetime and potential variability-aware software
adaptation [42]. The class of low-end 32-bit embedded
processors represented by the Cortex M3 is suitable for
sensing applications where nodes perform data collec-
tion, aggregation, and inferences in a duty cycled fash-
ion, but not for processing intensive, constantly active
applications such as video surveillance, which are out-

2

side the scope of this work. The variations we observed
with the SAM3U are comparable to those found in other
similar embedded processors [8]. In this paper, we: (i)
extend our measuring and modeling of power for the
SAM3U, including measurements over a wide temper-
ature range, power decomposition, and characterization
of active power variation; (ii) derive projections of sleep
and active power for embedded processors with scaling
of manufacturing technology; (iii) evaluate variability-
aware duty cycle scheduling methods under a variety
of deployment scenarios and across projected future
variation; and (iv) study the impact of duty cycle to an
application’s quality of inference. The contributions of
our work are the following:
• measurement, characterization, and projections of
power variation for embedded processors
• a duty cycle adaptation abstraction for TinyOS, an
operating system for embedded sensors
• proposal and analysis of variability-aware duty cycle
adaptation methods
• analysis of the impact of duty cycle to quality of
sensing.

Our analysis of duty cycle adaptation methods shows
that ignoring instance and temperature-dependent vari-
ability in low power embedded sensing systems leads
to either untapped energy potential, or unmet lifetime
requirements. Our duty cycle abstraction for TinyOS
allows applications to explicitly specify lifetime and
minimum duty cycle requirements for individual tasks
and dynamically adjusts duty cycle rates according to
a variability-aware scheduler so that overall quality of
service is maximized.

The remainder of this paper is organized as fol-
lows: Section II presents related work. Section III
presents measurement, modeling, and projections of
power consumption variability for embedded processors.
Section IV discusses software mechanisms to adapt
to hardware variation. Section V discusses duty cycle
scheduling methods. Section VI evaluates our software
adaptation mechanisms under different deployment sce-
narios, and presents application results that demonstrate
the benefits of higher duty cycles to quality of service.
Section VII presents our final remarks.

II. RELATED WORK

Prior work that addresses variability can be classified
into (i) statistical design approaches [32] [13] [23],
(ii) post silicon compensation and correction [18] [25]
[39], and (iii) variation avoidance [12] [5] [16]. Our
work differs in that it addresses hardware variability
in the operating system layer. The closest resemblance
is with [33], which proposes adapting software video

codec configurations based on hardware signatures. In
the context of embedded sensing, our work is closest
to [30] [15], which propose sensor node deployment
methodologies based on variability in leakage power
across different nodes.

Variations in power consumption can be interpreted
as changes in resource (energy) usage (and hence avail-
ability). Imprecise computation [28] has been explored
in the context of energy-aware systems, where tasks
may be interrupted, producing an approximate but us-
able result, according to energy availability and lifetime
requirements [10] [43]. Similarly, in energy harvesting,
tasks can be adapted to cope with fluctuating energy
availability [24].

Several systems have explored the concept of alterna-
tive task implementations with different resource usage
patterns and quality of service characteristics. Levels is
an energy-aware programming abstraction for TinyOS
based on alternative tasks [26]. Programmers define
task levels, which provide identical functionality with
different quality of service and energy usage charac-
teristics. The run-time system choses the highest task
levels that will meet the required lifetime. In our work,
programmers define tasks with either adjustable periods
or iterations. This is similar to adaptive sampling mech-
anisms used on sensing applications [1]. Our variability-
aware adaptation model could support an alternative task
abstraction, indirectly adjusting duty cycles by selecting
higher or lower levels. Conversely, different levels could
represent different duty cycle rates. Per-task energy ac-
counting and distribution is explored in [37], [45].

III. POWER CONSUMPTION VARIABILITY IN

MODERN EMBEDDED PROCESSORS

In battery powered embedded sensors it is imperative
to understand the relationship between power consump-
tion, quality of sensing, and system lifetime. Power
consumed in an embedded class microprocessor chip
is broadly classified into active mode and sleep mode.
Figure 1 depicts the various components of the total
power consumed in a contemporary embedded processor.

A. Experimental Setup

In our experiments, we study the temperature depen-
dence of active and sleep mode power consumption in
embedded processors and propose models to characterize
it. Our measurements show sleep and active power as a
function of temperature across several instances of Atmel
SAM3U microcontrollers in LQFP144 packages. While
we have been unable to determine from available liter-
ature the precise technology node the chip is fabricated

3

Gate Induced
Drain Leakage

Reverse Biased
Junction Leakage

Sub-threshold
Leakage

Gate Leakage

Short Circuit
Power

Active Mode
Leakage

Sleep Mode

Active Mode

Total Power
Consumption

Switching Power

Fig. 1. Power consumption in contemporary embedded processors.

in, indirect evidence as well as the vintage suggests that
it is most likely fabricated in a 130 nm process.

For our measurements, we used ten identical SAM3U-
EK development boards. These boards feature jumpers
that allow power measurements for different compo-
nents. We measured current and voltage on going into
the SAM3U core, with all peripherals except for the
real time clock disabled. To obtain synchronized voltage
and current measurements we used a pair of Agilent
34410A digital multimeters with a basic accuracy of
0.06%, externally triggered by a function generator.
Each measurement point represents the average power
dissipated by the core across 50,000 measurements, with
a sampling rate of 1,000 samples per second. We used a
TestEquity 115F temperature chamber allowing control
of ambient temperature with ±0.5◦C accuracy. As dis-
cussed in section III-B1, core temperature is effectively
equivalent to ambient temperature for the SAM3U in a
LQFP144 package. Figure 2 illustrates our test setup.

B. Sleep Mode Power Consumption

With shrinking geometries the ratio of sleep mode
power to active mode power has been increasing (as
high as 40% in chips fabricated using 65nm technol-
ogy) [34]. This is due to the inability to turn devices
“off” effectively as device dimensions continue to shrink.
Manufacturing spread in transistor parameters can cause
up to 20x variation in sleep mode power [6] in addition
to substantial variation with supply voltage and tempera-
ture. Specifically in context of wireless sensor platforms,
which often are deployed in extreme ambient conditions,
the variation in leakage power during the lifetime of a
device may be substantial.

(a) SAM3U-EK Board

(b) Temperature Chamber (c) Power Measurement Setup

Fig. 2. Experimental Setup

1) Analytical Modeling of Sleep Power : Static power
has four main sources: (i) sub-threshold leakage current
that flows between source and drain of a MOSFET for
gate-to-source voltages below the threshold, (ii) gate
leakage current due to tunneling of carriers through the
gate oxide to the substrate, (iii) reverse-biased junction
leakage current which flows from the source/drain re-
gions to the substrate through the reverse biased p-n
junctions due to band-to-band tunneling and diffusion,
and (iv) gate-induced drain leakage current due to band
to band tunneling in the region of overlap between
the gate and drain. At temperatures below 150◦C, only
the first two components are large enough, and only
sub-threshold leakage exhibits strong variability with
temperature. Therefore, sleep power can be modeled as
the following function of temperature (derived from [7]):

Psleep = Vdd(AT
2e−B/T + Igl) (1)

where A and B are technology-dependent constants, Igl
is the temperature-independent gate leakage current, and
T is the core temperature. Coefficients in the model
are fitted to individual instances, and hence capture
both temperature and instance-dependent variability. We
combine the sleep power model with a model of the
thermal dynamics of a packaged chip [21]:

RC
dT (t)

dt
+ T (t)−RP (t) = Tamb (2)

where T (t) and P (t) are the core temperature and power
consumption of the chip at time t, R and C are the
thermal resistance and capacitance of the chip package,
and Tamb is the ambient temperature. At steady state
dT (t)
dt = 0, so that Tsteady−state = Tamb +RP (t).

4

For the SAM3U in a LQFP144 package, the typical
values of R and C are 50◦C/W and 4–5 J/◦C respectively.
The nominal static power of SAM3U is 30 µW. Nominal
active power when operating at 4 MHz while performing
a Dhrystone benchmark is 9 mW. From (2), when
sleep mode power measurements are performed, the self-
heating of the chip due to static power consumption is
negligible, and in active mode the temperature difference
between ambient and core temperature is ∼0.5◦C.

2) Experimental Measurements: based on the pre-
ceding analysis, it is reasonable to assume that the
static power follows a similar dependence on ambient
temperature as given by (1). We verify this assumption
through measurements and characterize each instance of
microcontroller based on the above model.

For leakage measurements, we disable all peripheral
devices in the SAM3U except for the Real-Time Clock
(RTC), select the chip’s internal 32kHz RC oscillator
as clock source, configure the chip for wakeup with
an RTC interrupt, and execute the “wait for event”
instruction, which causes the processor to enter sleep
mode. In addition to sleep, the SAM3U microcontroller
features two other low power modes. The first, backup,
completely powers off the core. While this results in
the lowest possible power consumption, it also results in
wakeup times more than 50 times larger than in other
modes, and therefore is not practical for duty-cycled
systems. The second low-power mode, wait, allows fast
wakeup with some specific clock configurations and
wakeup sources. In our measurements, we found power
dissipated in wait mode to be equivalent to power in
sleep mode with the aforementioned configuration.

Figure 3 shows the experimental data for sleep power
consumption of the SAM3U instances across a tem-
perature range fitted to the analytic model discussed
earlier, using minimum mean square error criterion. As
expected, individual processor instances exhibit large
sleep power variations over the temperature range. While
change in sleep power for any individual processor is
monotonic, the magnitudes of variations are different so
that relative rankings of different processors change over
temperature. Root mean square error between measure-
ments and model across all instances was 6.7 µW. Over a
temperature range of 20–60◦C, which is representative of
the temperatures that embedded sensors deployed under
unregulated and extreme ambient conditions often face
(e.g. in factories, desert, etc.), total variation across all
ten instances was 14x.

C. Active Mode Power Consumption

1) Switching Power: Switching power is consumed
when devices switch between different logic values. The

 0

 50

 100

 150

 200

 0 10 20 30 40 50 60 70

P
o
w

e
r

(u
W

)

Temperature (C)

P2
P2(m)

P3
P3(m)

P6
P6(m)

P7
P7(m)

P8
P8(m)

Fig. 3. Comparing measured vs. modeled variability of sleep power
with temperature. Only five of the ten instances are shown for clarity.

analytical expression of switching power is,

Pswitching = αCV 2
ddf (3)

where α is the activity factor that represents how often
a gate switches per clock cycle, C is the capacitance at
the switching node, Vdd is the supply voltage and f is
the clock frequency.

The temperature dependence of switching power is
primarily due to the capacitance. The switching node
capacitance has three components (i) Gate capacitance,
(ii) Wire capacitance and (iii) Diffusion capacitance. As
per [17], the gate and diffusion capacitance components
have a small linear temperature dependence. In the range
of interest, the energy spent in charging this temperature
dependent capacitance increases by 8% in a temperature
range from 223K to 393K. The interconnect capacitance
is largely dependent on the the physical dimensions of
the wires and permittivity of the inter-layer dielectric.
The physical dimensions and dielectric both have negli-
gible temperature coefficients for our purposes.

Interestingly, for the SAM3U processors we used,
even the clock frequency varied by 2% across the
temperature range and 6% across different instances
as shown in Figure 4. To measure clock frequency,
we toggled an I/O pin at a rate proportional to the
core frequency, and observed the resulting frequency at
different temperatures with a digital oscilloscope. All
processors were set to operate nominally at 4 MHz. The
clock is generated by an internal ring oscillator (RO).
Generally, RO frequency decreases with an increase in
temperature so there is always temperature compensation
provided with the RO circuit to generate the clock at the
specified frequency across temperature. We observe that
the frequency increases with temperature. This is likely
due to temperature over-compensation.

5

 3.95

 4

 4.05

 4.1

 4.15

 4.2

 4.25

-20 -10 0 10 20 30 40 50 60

F
re

q
u

e
n

c
y
 (

M
H

z
)

Temperature (C)

P1
P2
P3
P5
P6
P7
P8

Fig. 4. Measured frequency variation with temperature

2) Short Circuit Power: In CMOS logic, when inputs
ramp between logic levels there is a direct path between
supply to ground for a short time. Power dissipated
during this period is termed as the short circuit power.
It contributes to 10% of the total active power nomi-
nally at 130nm. HSPICE runs on an inverter chain for
130/90/65/45 nm indicate that this component becomes
more prominent as we advance to deep sub-micron
technologies. This is primarily because at 45nm node the
transistors spend a higher percentage of time in the short-
circuit state when the inputs are ramping as compared
to when they are at stable logic levels. The short circuit
power of an inverter chain varies by as much as 20% at
130nm to 80% at 45nm across −50◦C − 120◦C in our
experiments using IBM and PTM models [19] as shown
in Figure 5. The short circuit energy is expressed as:

EscHigh−to−low
=

∫
Vdd.ipdt (4)

EscLow−to−high
=

∫
Vdd.indt (5)

where ip and in are the drain to source currents of the
PMOS and NMOS transistors.

The drive current of a short channel MOSFET is ex-
pressed by the alpha power law model [38] and primarily
depends on three factors, (i) Mobility (µ), (ii) Overdrive
volage (VGS − Vth) and (iii) Saturation velocity (vsat)
The temperature dependence of these three parameters
as per [2] is as follows:

µ(T) = µ(T0)(
T

T0
)m (6)

Vth(T) = Vth(T0)− k(T − T0) (7)

vsat(T) = vsat(T0)− h(T − T0) (8)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

-60 -40 -20 0 20 40 60 80 100 120

S
h
o
rt

 C
ir
c
u
it
 E

n
e
rg

y
 (

fJ
)

Temperature (C)

130nm 90nm 65nm 45nm

Fig. 5. Temperature dependence of SCE for an inverter chain

where T0 is the nominal temperature (300 K), µ(T0),
Vth(T0), and vsat(T0) are mobility, threshold voltage,
and the saturation velocity at the nominal tempera-
ture respectively, and k is the temperature coefficient
(∼0.8 mV.K−1) of threshold voltage. The temperature
coefficients m and h are technology dependent. m is
ideally 1.5 but can reach unity [2], [9]. The value of h is
around 150 ms−1.K−1. It follows that these parameters
have a close-to-linear dependence on temperature.

As temperature increases, (i) The decrease in Vth,
increases the overdrive (VGS − Vth) of the transistor
and hence causes an increase in drive current, (ii) The
decrease in mobility and vsat result in lowering of the
drive current in the linear and saturation regions. The
impact of temperature on drive current, delay, and power
is dependent on which of the two effects dominates.
Vdd is high relative to Vth for older technologies and

as the temperature coefficient of threshold voltage is
low, the increase in the device overdrive is shadowed by
mobility degradation in technology older than 180nm. In
these technologies, the drive current and delay exhibit
monotonic behavior. The high temperature corner is
always the slow corner while the low temperature corner
is the fast corner. In deep sub-micron technologies, Vdd
and Vth are not very different, resulting in a phenomenon
called Inverse Temperature Dependence (ITD). The drive
current that increases monotonically as temperature de-
creases shows inversion and starts decreasing if the
temperature is lowered beyond a certain value. This is
primarily due to the decrease in overdrive voltage as
temperature decreases, which starts shadowing the mo-
bility enhancement. Short circuit power measurements
also show that ITD causes the roll-off of the short-circuit
power curve to be steeper and starts showing up at -40◦C.

6

3) Active Mode Leakage Power: In the active mode,
devices that do not switch also consume power. Leakage
power has an exponential dependence on temperature,
as elaborated in section III-B1. For our experiments,
however, Pactive/Psleep is nominally ∼300. Hence this
component has a small effect only on the high tempera-
ture range dependence of the the total active mode power.

4) Analytical Modeling of Active mode Power: In the
temperature range of interest, 223− 393K, the tempera-
ture dependence of active mode power can be explained
by dividing the range into three regimes.
(i) Low temperature regime: The contribution of active
mode leakage is neglected as at low temperatures. An
increase in Vth causes exponential decrease in leakage.
The capacitance increase is a linear function of temper-
ature and hence contributes to the linear dependence of
active mode power. At low temperatures, ITD causes the
decrease in active mode power to have a steeper slope as
temperature reduces. The relationship with temperature
is characterized as:

Pd = PT1
+ k1(T − T1)α (9)

where, 0 < α < 1, T1 < T < T2, k1 and α are fitting
parameters. T1 < T < T2 defines the low temperature
regime.
(ii) Nominal temperature regime: Short circuit and
switching power have a linear dependence in this regime
while the active mode leakage is neglected. The relation-
ship with temperature is characterized as:

Pd = PT2
+ k2(T − T2) (10)

where, T2 < T < T3 and k2 is a fitting parameter. T2 <
T < T3 defines the nominal temperature regime.
(iii) High temperature regime: The switching power
varies linearly (capacitance dependence is linear), short
circuit power and active mode leakage give active mode
power in this regime a super-linear dependence. This
can be inferred from the short circuit power and leak-
age temperature dependence studied in this work. The
relationship with temperature is characterized as:

Pd = PT3
+ k3(T − T3)β (11)

where, 1 < β, T3 < T , k3 and β are fitting parameters.
T3 < T defines the high temperature regime.

Figure 6 shows the active power model fitted to
our measured data for active mode power consumption
across a temperature range. For this experiment, we used
the same measurement setup as in the sleep mode power
measurements. All SAM3U peripherals were disabled,
except for the RTC. The core was clocked from the
internal ring oscillator at 4MHz, continuously running a
Dhrystone benchmark program. Root mean square error

 8.4

 8.6

 8.8

 9

 9.2

 9.4

 0 10 20 30 40 50 60 70

P
o

w
e

r
(m

W
)

Temperature (C)

P1
P1(m)

P5
P5(m)

P7
P7(m)

P9
P9(m)

P10
P10(m)

Fig. 6. Measured data and the active power consumption model.
Only five of the ten instances are shown for clarity.

between measurements and model across all instances
was 0.02 mW. Over a range of 20–60◦C, total variation
across all ten instances was 10%.

D. Projecting temperature dependence of power for ad-
vanced technologies

The characterization discussed above was based on
actual measurements from hardware manufactured in
130nm. Nominal power consumption variability is char-
acterized in ITRS across sub-130 nm technology nodes.
We use this data to project the spread of power vs
temperature curves. PTM 130, 90, 65 and 45 nm spice
models were used to project the scaling of active and
sleep mode power across these technology nodes based
on a ring oscillator design. Relative temperature depen-
dence was assumed to be the same as observed in the
measurements. We assume that the temperature regimes
remain constant across technologies. The projections can
be refined by calibrating these regimes for advanced
technology using real measurements. We also assume
in our experiments that while in active mode 20% of de-
vices are switching. Tables I and II list typical sleep and
active mode power model parameters at each technology
node. Figures 7 and 8 show expected projection of nom-
inal sleep and active power across temperature resulting
from these parameters for each node technology.

TABLE I
SLEEP POWER MODEL PARAMETERS ACROSS TECHNOLOGIES

Instance A B Igl Vdd

Typ 130 1.0 2605.5 0.0 1.8
Typ 90 1.26 2400 0.2 1.8
Typ 65 1.76 2300 0.6 1.8
Typ 45 2.52 2100 1 1.8

7

TABLE II
ACTIVE MODE POWER MODEL PARAMETERS ACROSS TECHNOLOGIES

Instance k1 k2 k3 a b PT1(mW) PT2(mW) PT3(mW) T2 (◦C) T3 (◦C)
Typ 130 0.0511 0.0095, 0.003325 0.669 1.3456 7.7 8.6 8.68 21 30
Typ 90 0.0246 0.0046 0.0016 0.71 1.5228 2.82 3.33 3.37 21 30
Typ 65 0.0094 0.00175 0.000615 0.735 1.6335 0.9 1.125 1.14 21 30
Typ 45 0.0046 0.000855 0.0003 0.755 1.722 0.364 0.479 0.4867 21 30

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70

S
le

e
p

 P
o

w
e

r
(u

W
)

Temperature (C)

45nm
65nm
90nm

130nm

Fig. 7. Sleep power projection across technologies.

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70

A
c
ti
v
e

 P
o

w
e

r
(m

W
)

Temperature (C)

45nm
65nm
90nm

130nm

Fig. 8. Active power projection across technologies.

IV. VARIABILITY-AWARE SOFTWARE ADAPTATION

As the discussion in the preceding section shows,
significant variability in power across nominally identical
instances and across temperature is already present in
contemporary embedded processors. Duty cycling is
particularly sensitive to variations in sleep power at low
duty cycling ratios. Variability implies that any pre-
deployment choice of duty cycle ratio that is selected to
ensure desired lifetime needs to be overly conservative
and result in lower quality of sensing or lifetime.

In order to maximize the sensing quality in the pres-

ence of power variation, an opportunistic sensing soft-
ware stack can help discover and adapt the application
duty cycle ratio to the sleep mode power variations
across parts and over time. The run-time system for the
opportunistic stack will have to keep track of changes
in hardware characteristics and provide this information
through interfaces accessible to either the system or the
applications. Figure 9 shows several different ways such
an opportunistic stack may be organized; the scenarios
shown differ in how the sense-and-adapt functionality
is split between applications and the operating system.
Scenario 1 relies on the application polling the hard-
ware for its current “signature”. In the second scenario,
the application handles variability events generated by
the operating system. In the last scenario, handling of
variability is largely offloaded to the operating system.

Using architecture similar to that of scenario 3 in
Figure 9, we have implemented a prototype variability-
aware duty cycling framework in TinyOS. Application
modules specify to the scheduler a range of acceptable
duty cycling ratios, and the scheduler selects the actual
duty cycle based on run-time monitoring of opera-
tional parameters, and a power-temperature model that is
learned off-line for the specific processor instance. While
this approach is potentially less flexible than the ones
presented by scenarios 1 and 2, it simplifies application
development by abstracting the underlying complexities
of the variability signature model.

TinyOS [27] differs from traditional operating systems
in that it is event-based. Applications respond to events
(e.g. interrupts from hardware, incoming radio messages)
with event handlers. Handlers typically complete within
a few hundred processor cycles. To execute long running
computations, applications post tasks, which work as
deferred function calls. Whenever the system has no
tasks to schedule, it puts the processor in sleep mode,
waiting for the next interrupt which will trigger new
event handlers, and potentially new tasks. The event han-
dler / background tasks model of TinyOS naturally lends
itself to duty cycled systems: event handlers and tasks
represent active periods, empty scheduler queues lead to
inactive periods. Nevertheless, there’s no explicit support
for discovering and adapting duty cycle in TinyOS.

8

Ev
en

t o
f I

nt
er

es
t

(ty
pe

, s
ev

er
ity

)

Po
ll

P

P

timer

App

Va
ria

bi
lit

y
Ev

en
t

handler

App
App

Duty Cycling
Scheduler

OS

Sc
en

ar
io

 1

Sc
en

ar
io

 2

Sc
en

ar
io

 3

Hardware Signature Inference

Platform Sensors: P , P , Memory, Temperature, Battery, ...

sl
ee

p

sl
ee

p

sleep active

On/Off
Read Sample

Sampling Configuration

Sample
Event
Time-Series, ...

Duty Cycle = f(P , P)sleep active

Fig. 9. Designing a software stack for variability-aware duty cycling

Application

Task
(Adaptable Period)

Task
(Adaptable Iterations)

Task
(Non-Adaptable)

System

TaskVariablePeriod

TaskVariableIterations

Traditional Task

min, max
period

min, max
iterations

Adaptable
Task <Label>

Adaptable
Task <Label>

Hardware Signature
Inference

Adaptable Task
<Label>

DC Scheduler
Duty Cycle = f(P , P , ...)sleep active

lifetime

Fig. 10. System architecture for variability-aware duty cycle
scheduling in TinyOS

We introduce a new Duty Cycle Scheduler to TinyOS.
Figure 10 shows our system architecture. A hardware
signature inference module provides power vs. temper-
ature curves for each processor instance. While in our
work we assume that these curves are pre-characterized,
extensions to this module could feature online learning
through dedicated power meters and take other variabil-
ity vectors such as aging into account.

The scheduler determines an allowable duty cycle
based on: (i) sleep and active power vs. temperature
curves, (ii) temperature profile for the application, which
can be pre-characterized or learned dynamically, (iii)
lifetime requirement, (iv) battery capacity, and (v) the
variability-aware duty cycle formulation in Eq. (14).

To maintain compatibility with existing TinyOS tasks,
we introduce a new class of Adaptable Tasks. These tasks
respond to events from the Duty Cycle scheduler that
inform them of their current and allowable duty cycle.
However, the system does not enforce adaptation of these
tasks. These are assumed to adapt according to the duty
cycle change event from the scheduler. Adaptable tasks

also allow for some of the flexibility present in scenario
2 in Figure 9. A module using adaptable tasks could, for
example, use an alternative function mechanism such as
the one in Levels [26].

For standard applications, we provide two additional
classes of tasks which implement two common adapta-
tion scenarios: tasks with variable iterations and tasks
with variable period. For the first class, the programmer
provides a function that can be invoked repeatedly a
bounded number of times within each fixed period. For
the second class of tasks, the application programmer
provides a function representing task functionality that
is invoked once within each variable but bounded period
of time. Internally, each of these tasks uses an adaptable
task and unique identifier. The system adjusts the number
of iterations or period of the task based on the allowable
duty cycle informed to its underlying adaptable task.

To adapt duty cycle, the system needs to account active
and sleep time. Active time is divided into non-adaptable
computation time Cf (for traditional tasks and interrupt
handlers) and adaptable computation time Ca(i) (for
each adaptable task i). For each task activation, the sys-
tem registers timestamps and accumulates computation
time in the appropriate counters. This incurs in a small
overhead to task activations quantified in section VI-F.

For every accounting period τ , the system compares
total computation time Cτ = Cf +

∑N
1 Ca(i), where

N is the number of adaptable tasks in the system,
and allowable active time CDC = τ × DC, where
DC is the allowable duty cycle for the node. To allow
adequate timing estimations with low duty cycles, the
accounting period τ is large enough to encompass several
active/sleep cycles for each task (τ = 10 minutes in
our implementation). If |Cτ − CDC | <= δ, where δ
is an arbitrary tolerance, the system has converged to
the allowable duty cycle. Otherwise, each adaptable task
is assigned a new allowable computation time CDC(i)
obtained by dividing available active time equally be-
tween all adaptable tasks. The new computation time is
informed to the tasks in the form of a ratio to the previous
time Ca(i) through an event. The ratio is used to adjust
the number of iterations or period duration of tasks.

While we use a simple scheduling mechanism, typical
of small embedded sensor operating systems, we could
easily incorporate other priority-based time distribution
schemes in our scheduler, e.g. as explored in [37], [45].
For example, instead of receiving equal time slots, all
tasks could be adapted proportionally with a system-
wide ratio. Likewise, a reward-based activation and time
distribution mechanism, e.g. [3], could prioritize critical
tasks and selectively discard “less important” tasks in
order to meet the allowable duty cycle.

9

V. DUTY CYCLE SCHEDULING

A duty cycle schedule indicates the activity rate of a
system at any point in its lifetime. An optimal duty cycle
schedule maximizes the active time of the system across
its desired lifetime, given an energy constraint. If there
is no variability in power consumption, the optimal duty
cycle schedule can be uniform across the lifetime of the
system. Given an energy budget of E Joules, a lifetime of
L seconds, and invariable constants for active and sleep
power consumption PA and PS Watts, the maximum
allowable allowed duty cycle DC is given in (12). The
values of PA and PS can be typically obtained from
the processor datasheet. We henceforth refer to this as
datasheet-based duty cycle.

PA ·DC + PS · (1−DC) =
E

L

DC =
E − L · PS

L · PA − L · PS
(12)

A. Variable Power Consumption

When instance and temperature-dependent variation is
taken into consideration, the worst-case uniform duty
cycle can be found by applying the worst-case active
and sleep power consumption across all instances and
operating temperature range as constants PA and PS in
(12). We henceforth refer to this as worst-case DC.

With prior characterization, active and sleep power
can be expressed as functions of temperature PA(T) and
PS(T). Additional peripheral components used while in
active mode, such as radios or sensors, can be added to
total active mode power as constants or functions, de-
pending on whether power variation is present or not. In
our preliminary experiments, we did not find any signifi-
cant variation in power consumption across instances and
temperature in peripheral components. If the temperature
profile is known (or can be learned) for the lifetime of
the system, temperature can be expressed as a frequency
distribution. For a known operating temperature profile
and a given processor instance, the problem of finding
an optimum duty cycle can be formulated as a linear
program. Given the expected frequency distribution of
(discretized) temperatures across the lifetime of the ap-
plication, the optimum duty cycle at each temperature
T , DCT is given by (13):

argmax
DCT

Tmax∑
T=Tmin

DCT fT (13)

s.t.
Tmax∑

T=Tmin

fT ·(PA(T) ·DCT +PS(T) ·(1−DCT)) ≤
E

L

DCmin ≤ DCT ≤ DCmax

Tmin ≤ T ≤ Tmax

where fT is the relative frequency of temperature T
across the lifetime L, assuming discretized tempera-
ture bins. DCmin and DCmax are the minimum and
maximum duty cycles allowed for the application. The
maximum duty cycle constraint can be used to limit duty
cycles when increasing duty cycle beyond a given rate
would bring no further increase to quality of service.

B. Variability-Aware Uniform Duty Cycle

Assuming a uniform duty cycle DCT = DC∗ in-
dependent of temperature, we can determine DC∗ that
satisfies the constraints given in (13).

DC∗ = min [γ,DCmax] (14)

where γ =
E − L ·

∑Tmax

T=Tmin
PS(T) · fT

L ·
∑Tmax

T=Tmin
(PA(T)− PS(T)) · fT

Moreover, it can be shown that when PA(T)−PS(T)
is constant across all T , DC∗ is the uniform duty cycle
that optimizes the linear program in (13). We observed
this to be practically true under nominal operating
temperatures for the current generation microprocessors,
like the Atmel SAM3U, because (i) their sleep power
consumption PS(T) is much less than active power
consumption PA(T), and (ii) the PA(T) is effectively
constant as active mode leakage power is insignificant for
their fabrication technology, and switching power vari-
ation across normal temperatures is small. Henceforth,
whenever we refer to variability-aware duty cycle, we
are referring to (14).

C. Reactive Duty Cycle

Allowable duty cycle rates can also be found dy-
namically through measurements or estimations of past
power consumption, given total energy capacity at the
start of lifetime. Energy consumption can be directly
measured with dedicated monitors [31], inferred from
remaining battery capacity [26], or through variability-
aware models that estimate energy expenditure by mea-
suring conditions that affect power consumption, e.g.
temperature and activity rates.

In a reactive model, duty cycle can be dynamically
determined at time t as a ratio of duty cycle at time
t−1, according to energy spent from time t−1 to time t,
and remaining energy in the system. Remaining energy
at time t is given by Et = E −

∑t−1
i=0 Pi, where E is

the total energy capacity and Pi is power estimated or
measured at time i. An example of a reactive duty cycle
adaptation model is given in (15).

DCt =
Et ·DCt−1

(Et − Et−1) · (L− t)
(15)

10

The reactive model in (15) assumes that the power
consumption rate for the previous time period is in-
dicative of the power consumption for the remainder
of lifetime of the system. While more complex models
could incorporate longer histories, any reactive model
will depend on accurate measurement of past energy
consumption or estimation of remaining battery energy.
While systems with dedicated power monitors have been
explored in the literature [31], it is acknowledged that
their integration in low power sensing platforms would
likely result in prohibitive cost overhead. Hence, most
systems rely on estimations of remaining battery capac-
ity to infer energy consumption [26]. Battery capacity
estimation is a research issue in itself and subject to
inaccuracies. In target systems with long lifetimes (e.g.
greater than a year), in which the energy consumed
in one hour might be less than 0.01% of total battery
capacity, this makes short term adaptation problematic.
We therefore do not use this method.

VI. EVALUATION
A. Evaluation Scenario

To evaluate the duty cycle optimization methods, we
make use of a common scenario in embedded sensing: a
long running duty cycled application with a limited en-
ergy source (battery), which periodically becomes active
to perform sensing/processing tasks, and subsequently
returns to a low-power sleep mode until the next period.

We assume an application which, when active, uses
only the main processor running at 4MHz, and when in
sleep mode, disables all peripherals except for a low-
power wake-up timer. Table III summarizes the results
we present in this section. Active and sleep power are
obtained from the characterization model and measure-
ments presented in Section III. Figure 16 is based on
technology projections. All other results are based on the
models fitted to SAM3U measurements. The temperature
profile is based on hourly temperature data from the
National Climactic Data Center [40], and specified for
each result.

TABLE III
SUMMARY OF RESULTS

Fig. Type of Result Variable
11 Duty Cycle Schedules Time
13 Improvement with Var-Aware DC Temperature profile
14 Lifetime with Datasheet-Based DC Temperature profile
15 Improvement with Var-Aware DC Battery Capacity
16 Improvement with Var-Aware DC Technology
17 Localization Error Duty Cycle
18 Localization Error Time

B. Comparison of Duty Cycle Scheduling Methods

We first compare duty cycle schedules resulting from
the worst-case, datasheet-based, and variability-aware

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 50 100 150 200 250 300 350

D
u
ty

 C
y
c
le

 (
%

)

Time (days)

Worst-Case
Datasheet Spec

Variability-Aware

Fig. 11. Schedules from different DC regimes for instance P7.

TABLE IV
RESULTS FROM DC REGIMES ACROSS ALL INSTANCES

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Avg.
Improvement of variability-aware DC over worst-case DC (x)

28 29 6 21 23 26 21 28 9 30 22.2
Energy left untapped by worst-case DC (%)

81 84 15 60 67 75 61 81 24 85 63
Lifetime reduction with DC based on datasheet (%)

2.5 0 41 22 16 7 21 4 38 0 15

methods discussed in Section V. We assume an energy
supply of 5400 mAh from two AA batteries, a lifetime
of one year, and temperature profile based on the lo-
cation of Stovepipe Wells, CA (Death Valley National
Park), which has extreme seasonal and daily temperature
variations and hence clearly illustrates the differences
between the duty-cycling regimes.

Figure 11 shows the DC schedules across the lifetime
of an application for a single instance (P7). It shows
that the duty cycle resulting from from datasheet power
specifications does not meet the required lifetime, as the
specification is not guardbanded enough. Determining
a completely pessimistic sleep power specification is
very difficult since leakage distribution has a long tail.
The worst-case duty cycle is exceedingly low, as it
assumes the worst-case and power across all instances
and the entire temperature range to which the applica-
tion experiences, and hence leaves out untapped energy
resources. The variability-aware duty cycle maximizes
active time, constrained by lifetime requirements and
application temperature profile. Table IV summarizes the
results from the various regimes for all instances. On
average, we found a 22x improvement in active time
with the variability-aware DC over the worst-case DC,
63% of energy potential left untapped by the worst-case
DC, and 15% reduction in lifetime with DC based on
datasheet specifications.

11

-40

-20

 0

 20

 40

 0 20 40 60 80 100 120 140

M
in

,
A

v
e

ra
g

e
,

M
a

x
 T

e
m

p
e

ra
tu

re
 (

C
)

Location (#)

Fig. 12. Temperature profile for test locations.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 10 15 20 25 30 35 40 45 50 55

Im
p

ro
v
e

m
e

n
t

o
v
e

r
W

o
rs

t-
C

a
s
e

 D
C

 (
x
)

Maximum Temperature for Location (C)

Improvement

Fig. 13. Improvement over worst-case Duty Cycle for test locations.

C. Temperature Profile

Next, we use the same energy and lifetime scenario
described above for 140 locations with different temper-
ature profiles. Figure 12 shows the average, minimum,
and maximum temperature for all the test locations.

Figure 13 shows the average improvement of
variablity-aware duty-cycle compared to worst-case duty
cycle. There is an exponential relation of improvement
with temperature. This results from the exponential na-
ture of leakage power with temperature: as maximum
temperature increases, leakage power increases expo-
nentially, and hence the worst-case duty cycle is ex-
ponentially worse than the variability-aware duty cycle.
For any given maximum temperature, improvement also
depends on temperature distribution: temperature profiles
with higher maximum temperatures benefit more from
the variability-aware scheme, as the worst-case power
becomes progressively worse with higher temperatures.
The average improvement across all temperature profiles
is 6.4x.

Figure 14 shows lifetime reduction in days when duty
cycle is determined based on the datasheet specification.
There is a linear dependence between lifetime and aver-

 25

 30

 35

 40

 45

 50

 55

 60

 0 5 10 15 20 25

L
if
e

ti
m

e
 r

e
d

u
c
ti
o

n
 (

d
a

y
s
)

Average Temperature for Location (C)

Lifetime Reduction with Datasheet DC

Fig. 14. Lifetime reduction with DC based on datasheet.

age temperature. As average temperature increases, the
difference between actual and spec power increases, and
hence lifetime decreases. Across all temperature profiles
there is an average lifetime reduction of 37 days for a
lifetime of one year.

D. Battery Capacity

Figure 15 shows the average percentile improvement
of a variability-aware duty cycle schedule (14) over
the worst-case duty cycle for different battery capac-
ities. Each curve shows improvement with a different
temperature profile. Death Valley, CA has the most
extreme temperatures, and hence greater improvement.
Mauna Loa, HI has low average temperatures and little
temperature variation, and hence benefits the least from
the variability-aware scheme. Williams, AZ represents
the average case.

This plot shows that the variability-aware duty cy-
cling regime is more advantageous for applications with
smaller duty cycles. For “small” batteries (5400 mA-
h, or 2 AA batteries), improvement is more than 100%
for all temperature profiles. The improvement for very
large batteries (20 A-h), improvement is between 20%
and 30%, depending on temperature profile. The worst-
case duty cycle with a 20 A-h battery is more than
5% for all temperature profiles. This suggests that, for
current embedded fabrication technologies, this scheme
is beneficial for small (less than 5%) duty cycles.

E. Technology Projections

Figure 16 shows the improvement of the variability-
aware duty cycle over worst-case duty cycle with tech-
nology scaling as per the model presented in section III.
As with the previous result, we show three curves with
different temperature profiles. For each point in the
curve, we simulate a battery capacity large enough to
support a worst-case duty cycle of 5%. As noted in the

12

 10

 100

 1000

 10000

 6000 8000 10000 12000 14000 16000 18000

Im
p

ro
v
e

m
e

n
t

o
v
e

r
W

o
rs

t-
C

a
s
e

 D
C

 (
%

)

Battery capacity (mA-h)

Death Valley, CA
Williams, AZ

Mauna Loa, HI

Fig. 15. Improvement over Worst-Case DC across battery capacities.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 40 50 60 70 80 90 100 110 120 130

Im
p

ro
v
e

m
e

n
t

o
v
e

r
W

o
rs

t
C

a
s
e

 (
x
)

Technology (nm)

Death Valley, CA
Williams, AZ

Mauna Loa, HI

Fig. 16. Projection of improvement over worst-case duty cycle with
scaling of technology.

previous results, with a worst-case duty cycle of 5%,
there are only marginal benefits of a variability-aware
duty cycle schedule for current technology characteris-
tics (130nm). As technology progresses and the ratio be-
tween active and sleep power decreases [34], variability-
aware duty cycling regime shows considerable benefits
even for this relatively high duty cycle. At 45nm, the
improvement saturates at 19x for two of the temperature
profiles (duty cycle cannot be higher than 100%).

F. Runtime Overheads

We profiled our duty cycle scheduler implementation
for the SAM3U processor, running at 4 MHz. Com-
pared to the base TinyOS scheduler, our implementa-
tion requires an additional 20 bytes of RAM memory.
Each adaptable task instance uses 5 bytes of memory,
and the TaskVariablePeriod and TaskVariableIterations
abstractions require an additional 4 bytes per task. This
overhead is well within the capacity of low-end sensor
nodes (typically > 4KB RAM).

Compared to basic TinyOS tasks, each adaptable task
activation has an overhead of 10µs. As a point of
comparison, the typical startup and conversion times
for the ADC in this platform are 30µs and 20µs, re-
spectively. Finally, the uniform variability-aware duty
cycle control module, which runs periodically every 10
minutes, completes within 20(N + 1)µs, where N is
the number of adaptable tasks in the system. This time
is required to distribute available active time across all
adaptable tasks, and to determine the rate of activity
(i.e. period, number of iterations) of each task. When
the system becomes stable, i.e., when all the tasks reach
their allowable duty-cycle, the uniform variability-aware
duty cycle control module completes within 20µs. The
runtime overhead of our simple duty cycling abstractions
is comparable to related solutions [26], [45].

G. Application Results

Higher duty cycles allow the sensors to stay “on” for
a longer time and capture more data during deployment.
This typically increases accuracy and shortens response
times in high fidelity real-time sensing tasks such as
object localization and tracking [44]. For instance, Figure
17 quantifies the effect of different duty cycles on the
accuracy of sound source localization with a network
of 20 acoustic (e.g. microphone) sensor arrays using
Maximum Likelihood Estimation (MLE). It shows that
with increasing duty cycles, the performance of the appli-
cation improves as the mean localization error decreases.
The application estimates the location of a target based
on line-of-bearing (LoB) measurements from the sensor
arrays deployed randomly in a 10m × 10m field. Each
sensor requires approximately 1 second on an embedded
ARM-based processor to compute one LoB measurement
from raw audio samples. The error in sensor measure-
ments is assumed to be less than 10%.

Moreover, Figure 17 demonstrates that the error also
decreases with time, for a specific DC, as the algorithm
waits to collect measurements from all the sensors before
fusing them to obtain the location estimates. This result
is important when the sensor nodes follow asynchronous
wake-up and sleep schedules to avoid the control mes-
sage overhead associated with synchronous duty cycling.
For instance, the sensors duty cycle asynchronously with
a period of 200s in our simulations of the localiza-
tion application. However, this is based on the implicit
assumption that the target remains static during data
collection to enable the sensors to obtain relevant LoB
measurements. Correspondingly, in Figure 17, the target
is assumed to be static for a period of 20s and 40s for
the respective plots. This constraint on target motion is
due to the limited number of nodes in the simulation

13

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 1 2 3 4 5 6 7 8 9 10

M
e

a
n

 L
o

c
a

liz
a

ti
o

n
 E

rr
o

r
(m

)

Duty Cycle (%)

T=20s
T=40s

Fig. 17. Mean localization error decreases with increasing duty cycle
and time as more data is collected from the sensors. The simulations
were adapted from [44] and represent 200s of application execution
in real-time. Each point in the plot is generated from an average of
200 simulation runs with varying sensor on/off schedules.

 0

 1

 2

 3

 4

 5

 50 100 150 200 250 300 350

M
ea

n
 L

o
ca

li
za

ti
o
n
 E

rr
o
r

(m
)

Time (days)

Optimal DC
Worst-case DC

Datasheet DC

Fig. 18. Mean localization error over lifetime (1 year) of the local-
ization application with variability-aware, worst-case and datasheet-
based duty cycle schedules.

scenario, and the low duty cycles in question.
In accordance with these results, Figure 18 demon-

strates that the algorithm generates estimates of tar-
get location with a lower mean error in presence of
variability-aware optimal schemes as compared to worst-
case schedules for the same battery capacity and lifetime
constraints, using the evaluation scenario described in
section VI-B. Although the mean error is the lowest at
the start of the deployment with DC schedules deter-
mined from datasheet values, it increases steeply towards
latter half of the deployment timeline as sensors exhaust
their batteries before the intended lifetime of 1 year. In
all these simulations, it is assumed that targets appear
at the center of the field once every 200s and remain
static for a period of 40s at each appearance. As with
the previous result, this constraint on target motion could
be relaxed if a larger number of nodes was available, or if

more energy was available to each node (larger batteries).
In the later case, as indicated in Figure 15, the benefits of
the variability-aware scheme over the worst-case scheme
would be smaller.

VII. CONCLUSION

In this paper we characterized active and leakage
power variation across instances and temperature and
showed the implication of power variation to duty cy-
cling in embedded sensors. We presented variability-
aware methods to find optimum duty cycle schedules
and showed that instance and temperature-dependent
variability aware duty cycle scheduling yields a 3–22x
improvement in total active time over schedules based
on worst-case estimations of power, with an average
improvement of 6.4x across a series of deployment
scenarios. Conversely, upwards of 63% energy capacity
is left untapped when worst-case estimations of power
are used to determine duty cycle, and datasheet power
specifications fail to meet required lifetimes by an aver-
age of 37 days for a required lifetime of one year.

With current technology characteristics, a variability-
aware schedule is beneficial for smaller duty cycles (<
5%). With the expected projection of sleep and active
power variation with scaling of technology, there will be
significant benefits of a variability-aware schedule even
for higher duty cycles.

Some classes of embedded sensing applications are
not amenable to the type of adaptation described in this
work. These include highly synchronized, real-time, or
constant data acquisition tasks. Furthermore, our adapta-
tion scheme adds some complexity to the application, in
the form of bounds to task activations, which may in turn
lead to further complexities in data storage, inference
and communication strategies. Nevertheless, we believe
that the benefits of our scheme outweigh the added
complexity for a large class of sensing applications.

While our duty cycle adaptation scheme indirectly
leads to a form of energy-based load balancing across
a network of sensors, we do not provide other network-
wide adaptation mechanisms such as role selection for
nodes, where a node could take different roles (e.g. data
collector, router, aggregator) depending on its respective
energy rank in the network. We intend to explore this in
the future. Ongoing work is also attempting to address
issues that may arise from variability in energy availabil-
ity and in peripheral components. While in our work we
relied solely on pre-characterization of variation, in the
future a combination of pre-characterization and online
learning of variability will allow adaptation to dynamic
variation due to aging. Code and data supporting this
paper is available at http://variability.org/.

14

REFERENCES

[1] C. Alippi, G. Anastasi, C. Galperti, F. Mancini, and M. Roveri.
Adaptive sampling for energy conservation in wireless sensor
networks for snow monitoring applications. In MASS, pages
1–6, 2007.

[2] Narain Arora. Mosfet Modeling for VlSI Simulation: Theory
And Practice. World Scientific Publishing Company, 2007.

[3] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Optimal
reward-based scheduling for periodic real-time tasks. IEEE
Transactions on Computers, 50(2):111 –130, feb 2001.

[4] J. P. Benson et al. Car-park management using wireless sensor
networks. In IEEE Conf. on Local Computer Networks, 2006.

[5] S. Bhunia, S. Mukhopadhyay, and K. Roy. Process variations
and process-tolerant design. In Intl. C. on VLSI Design, 2007.

[6] S. Borkar et al. Parameter variations and impact on circuits and
microarchitecture. In Design Automation Conf. (DAC), 2003.

[7] BSIM. http://www-device.eecs.berkeley.edu/∼bsim3/.
[8] D. Bull et al. A power-efficient 32 bit arm processor using

timing-error detection and correction for transient-error toler-
ance and adaptation to pvt variation. IEEE J. of Solid-State
Circuits, 46(1):18–31, 2011.

[9] Andrea Calimera, R. Iris Bahar, Enrico Macii, and Mas-
simo Poncino. Temperature-insensitive dual-vth synthesis for
nanometer cmos technologies under inverse temperature depen-
dence. IEEE Trans. VLSI Syst., 18:1608–1620, 11 2010.

[10] L.N. Chakrapani et al. Ultra-Efficient (Embedded) SOC Archi-
tectures based on Probabilistic CMOS (PCMOS) Technology.
In DATE, 2006.

[11] J. Choi, C.-Y. Cher, H. Franke, H. Hamann, A. Weger, and
P. Bose. Thermal-aware task scheduling at the system software
level. In Proc. Intl. Sym. on Low power electronics and design
(ISLPED), pages 213–218, 2007.

[12] S. H. Choi, B. C. Paul, and K. Roy. Novel sizing algorithm
for yield improvement under process variation in nanometer
technology. In Design Autoion Conf. (DAC), 2004.

[13] A. Datta et al. Statistical modeling of pipeline delay and design
of pipeline under process variation to enhance yield in sub-
100nm technologies. In DATE, 2005.

[14] P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and D. Culler.
Design of a wireless sensor network platform for detecting rare,
random, and ephemeral events. In Proc. Sym. on Information
processing in sensor networks (IPSN), 2005.

[15] S. Garg and D. Marculescu. On the impact of manufacturing
process variations on the lifetime of sensor networks. In
CODES/ISSS, 2007.

[16] S. Ghosh, S. Bhunia, and K. Roy. A new paradigm for low-
power, variation-tolerant circuit synthesis using critical path
isolation. In Intl. Conf. on Computer-aided design, 2006.

[17] A. Golda and A. Kos. Temperature influence on energy
losses in mosfet capacitors. Microelectronics and Reliability,
44(7):1115–1121, 2004.

[18] Justin Gregg and Tom W. Chen. Post silicon power/performance
optimization in the presence of process variations using indi-
vidual well-adaptive body biasing. T. VLSI Syst., 15(3), 2007.

[19] ASU NIMO Group. PTM Hspice models. http://ptm.asu.edu.
[20] T. He et al. Achieving Real-time Target Tracking Using

Wireless Sensor Networks. IEEE RTAS, 2006.
[21] H. Huang, G. Quan, and J. Fan. Leakage temperature depen-

dency modeling in system level analysis. In Proc. Intl. Sym. on
Quality Electronic Design (ISQED), pages 447–452, 2010.

[22] K. Jeong, A.B. Kahng, and K. Samadi. Impact of Guardband
Reduction On Design Outcomes: A Quant. Approach. IEEE
Trans. on Semiconductor Manufacturing, 22(4):552–565, 2009.

[23] K. Kang, B. C. Paul, and K. Roy. Statistical timing analysis
using levelized covariance propagation considering systematic
and random variations of process parameters. ACM Trans. Des.
Autom. Electron. Syst., 11(4):848–879, 2006.

[24] Aman Kansal, Jason Hsu, Sadaf Zahedi, and Mani B. Srivastava.
Power management in energy harvesting sensor networks. ACM
Trans. Embed. Comput. Syst., 6, 9 2007.

[25] V. Khandelwal and A. Srivastava. Variability-driven formulation
for simultaneous gate sizing and post-silicon tunability alloca-
tion. In Intl. Sym. on Physical Design (ISPD), 2007.

[26] A. Lachenmann, P. Marrón, D. Minder, and K. Rothermel.
Meeting lifetime goals with energy levels. In ACM SenSys,
2007.

[27] P. Levis et al. TinyOS: An operating system for sensor
networks. Ambient Intelligence, pages 115–148, 2005.

[28] J. W. S. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung.
Imprecise computations. Proc. of the IEEE, 82(1):83–94, 1994.

[29] Mateusz Malinowski et al. CargoNet: a low-cost micropower
sensor node exploiting quasi-passive wakeup for adaptive asy-
chronous monitoring of exceptional events. In SenSys, 2007.

[30] T. Matsuda et al. A power-variation model for sensor node and
the impact against life time of wireless sensor networks. In
ICCE, 2006.

[31] D. McIntire et al. The low power energy aware processing
(LEAP) embedded networked sensor system. In IPSN, pages
449–457, 2006.

[32] O. Neiroukh and X. Song. Improving the process-variation
tolerance of digital circuits using gate sizing and statistical
techniques. In DATE, 2005.

[33] A. Pant, P. Gupta, and M. van der Schaar. Software adaptation in
quality sensitive applications to deal with hardware variability.
In IEEE Great Lakes Sym. on VLSI, pages 85–90, 2010.

[34] R. Puri, L. Stok, and S. Bhattacharya. Keeping hot chips cool.
In Proc. Design Automation Conf. (DAC), pages 285–288, 2005.

[35] V. Raghunathan, S. Ganeriwal, and M. Srivastava. Emerging
techniques for long lived wireless sensor networks. IEEE
Communications Magazine, 44(4):108–114, 2006.

[36] V. J. Reddi, M. S. Gupta, M. D. Smith, G. Wei, D. Brooks,
and S. Campanoni. Software-assisted hardware reliability:
abstracting circuit-level challenges to the software stack. In
Proc. Design Automation Conf. (DAC), pages 788–793, 2009.

[37] S. M. Rumble, R. Stutsman, P. Levis, D. Mazières, and N. Zel-
dovich. Apprehending joule thieves with Cinder. In MobiHeld,
2009.

[38] T. Sakurai and A.R. Newton. Alpha-power law mosfet model
and its applications to cmos inverter delay and other formulas.
IEEE Journal of Solid-State Circuits, 25(2):584 –594, 4 1990.

[39] J. Tschanz et al. Adaptive body bias for reducing impacts of die-
to-die and within-die parameter variations on microprocessor
frequency and leakage. In ISSCC, 2002.

[40] U.S. Climate Reference Network (USCRN). Hourly tempera-
ture data. www.ncdc.noaa.gov/crn/, 2010.

[41] L. Wanner, C. Apte, R. Balani, P. Gupta, and M. Srivastava.
A case for opportunistic embedded sensing in presence of
hardware power variability. In HotPower, 2010.

[42] L. Wanner, R. Balani, S. Sahedi, C. Apte, P. Gupta, and
M. Srivastava. Variability-aware duty cycle scheduling in long
running embedded sensing systems. In DATE, 2011.

[43] G. Wiedenhoft, L. Wanner, G. Gracioli, and A. Fröhlich. Power
management in the EPOS system. Oper. Syst. Rev., 42(6), 2008.

[44] S. Zahedi, M.B. Srivastava, C. Bisdikian, and L.M. Kaplan.
Quality Tradeoffs in Object Tracking with Duty-Cycled Sensor
Networks. In Real-Time Systems Symp. (RTSS), 2010.

[45] H. Zeng, C. S. Ellis, Alvin R. L., and A. Vahdat. ECOSystem:
managing energy as a first class operating system resource.
SIGOPS Oper. Syst. Rev., 36(5), 2002.

