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Abstract—Technology scaling has led to significant variability
in chip performance and power consumption. In this work, we
measured and analyzed the power variability in dynamic random
access memories (DRAMs). We tested 22 double date rate third
generation (DDR3) dual inline memory modules (DIMMs), and
found that power usage in DRAMs depends on both operation type
(write, read, and idle) as well as data, with write operations con-
suming more than reads, and 1s in the data generally costing more
power than 0s. Temperature had little effect (1–3%) across the
50 C to 50 C range. Variations were up to 12.29% and 16.40%

for idle power within a single model and for different models from
the same vendor, respectively. In the scope of all tested 1 gigabyte
(GB) modules, deviations were up to 21.84% in write power. Our
ongoingwork addressesmemorymanagementmethods to leverage
such power variations.

Index Terms—Double data rate third generation (DDR3), dy-
namic random access memory (DRAM), power, variability.

I. INTRODUCTION

M ODERN digital integrated circuits (ICs) exhibit signifi-
cant variability as a consequence of imperfections in the

fabrication processes [1], [2], use patterns, aging, and the en-
vironment [3]. The typical approach of guardbanding for vari-
ability is expensive [4]. As a result, there is growing interest
in software as well as hardware mechanisms that adapt to vari-
ations or compensate for them. Examples of explicit variation-
awareness in the software stack include power management [5],
embedded sensing [6], and video encoding [7].
To develop effective methods of addressing variations (espe-

cially in the software layers), it is important to understand the
extent of variability in different components of computing sys-
tems and their dependence on the workload and environment.
Though variability measurements through simple silicon test
structures abound (e.g., [8], [9]), variability characterization of
full components and systems have been scarce. Moreover, such
measurements have been largely limited to processors (e.g.,
14X variation in sleep power of embedded microprocessors
[6] and 25% performance variation in an experimental 80-core
Intel processor [10]). For a large class of applications, memory
power is significant (e.g., 48% of total power in [11]) which
has motivated several efforts to reduce dynamic random access
memory (DRAM) power consumption (e.g., power-aware
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virtual memory systems [12]–[14]). These designs reduced
power consumption of main memory, but they did not take into
account hardware variability; instead they assumed all DRAMs
to be equally power efficient.
A “variability-aware” operating system could exploit vari-

ability in DRAM, making physical allocation decisions in real
time to reduce overall memory power consumption. Memory
virtualization techniques such as in [15] could be extended
to account for power variations in off-chip memories. To the
best of our knowledge, [16] is the only study to present mea-
sured DIMM power variability; it explored running systems,
including component-level sources such as CPUs and DDR2
DRAMs but primarily focused on vendor-dependent variations.
The study in [17] included an investigation on operation and
data dependence of memory power, but used SRAMs on an
older 0.35 m process node.
In our work, an Intel Atom-based testbed was constructed,

running a modified version of Memtest86 [18] in order to con-
trol memory operations at a low level. We analyzed the write,
read, and idle power consumption of several mainstream double
data rate third generation (DDR3) dual inline memory modules
(DIMMs), comprised of parts from several vendors and sup-
pliers. The key contributions of this work are as follows:
• analysis of instance, vendor and temperature dependent
power variability in contemporary DRAMs;

• characterization of power dependence on inputs and oper-
ation.

We begin with an overview of the test methodology in
Section II, followed by an investigation of operation, data, and
temperature dependencies in DRAM power as well as power
variability in our set of memory modules in Section III. This
work concludes with an overview of findings and suggestions
for future work.

II. TEST METHODOLOGY

A. Memory Equipment

OurDIMMswere comprised of severalmodels from four ven-
dors (see Table I), manufactured in 2010 and 2011 (the particular
process technologies are unknown). For five of the DIMMs, we
could not identify theDRAMsuppliers.Mostmodelswere 1GB1

DDR3 modules, rated for 1066 MT/s (except for the Vendor 4
models, rated for 1800 MT/s) with a specified supply voltage of
1.5 V. We also included three 2 GB specimens from Vendor 1 to
see if capacityhadanyeffectonpowerconsumption.TheDIMMs
are referred to henceforth by abbreviations such as V1S1M1 for
Vendor 1, Supplier 1, Model 1.

1To avoid confusion in terminology,we refer to the gigabyte (GB) in the binary
sense, i.e., 1 GB is bytes, not bytes.
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TABLE I
DDR3 DIMM SELECTION

TABLE II
TESTBED AND MEASUREMENT PARAMETERS

B. Test Platform & Data Acquisition

The test platform utilized an Intel Atom D525 CPU running
at 1.80 GHz, on a single core. Only one DIMM was installed at
a time on the motherboard, and all other hardware was identical
for all tests. No peripherals were attached to the system except
for a keyboard, VGAmonitor, and a USB flash drive containing
the custom test routines. An Agilent 34411A digital multimeter
sampled the voltage at 10 ksamples/s across a small 0.02 re-
sistor inserted on the line in between the DIMM and the
motherboard slot, and this was used to derive the power con-
sumption. Ambient temperature was regulated using a thermal
chamber.
Because we required fine control over all memory I/Os, we

developed custom modifications to Memtest86 v3.5b, which is
typically used to diagnose memory faults [18]. The advantage
of using Memtest86 as a foundation was the lack of any other
processes or virtual memory, which granted us the flexibility to
utilize memory at a low level.
We created a write function which wrote memory sequen-

tially with a specified bit pattern, but never read it back. Simi-
larly, a read function was created which only read memory se-
quentially without writing back. Each word location in memory
could be initialized with an arbitrary pattern before executing
the read test. The bit fade test, which was originally designed to
detect bit errors over a period of DRAM inactivity, wasmodified

Fig. 1. Data and operation dependence of DIMM power.

to serve as an idle power test, with minimal memory usage.2 For
all tests, the cache was enabled to allow for maximum memory
bus utilization. With the cache disabled, we observed dramat-
ically lower data throughput and were unable to distinguish
power differences between operations. As our intent was pri-
marily to measure power variability between different modules,
we used sequential access patterns to avoid the effects of caches
and row buffers.
Each test was sampled over a 20-s interval, during which sev-

eral sequential passes over the entire memory were made. This
allowed us to obtain the average power for each test over several
iterations. Each reading had an estimated accuracy of 0.06 mV
[19], which corresponds to approximately 4.5 mW assuming a
constant supply voltage and resistor value. Table II summarizes
the important test environment parameters. For further details
on the testing methodology, see [20].

III. TEST RESULTS

A. Data Dependence of Power Consumption

Since DRAM power consumption is dependent on the type
of operation as well as the data being read or written [21], we
conducted experiments to find any such dependencies. Note that
the background, pre-charge, and access power consumed in a
DRAM should have no dependence on the data [22]. Note that
this test is similar to one performed on SRAMs in [17].
Seven tests were performed on four DIMMs, each from a dif-

ferent vendor, at 30 C to explore the basic data I/O combina-
tions. The mean power for each test was calculated from the
results of the four DIMMs. Fig. 1 depicts the results for each
test with respect to the idle case (“Write 0 over 0” refers to con-
tinually writing only 0s to all of memory, whereas “Write 1 over
0” indicates that a memory full of 0s was overwritten sequen-
tially by all 1s, and so on). Note that for the idle case, there was
negligible data dependence, so we initialized memory to con-
tain approximately equal amounts of 0s and 1s.
Interestingly, the power consumed in the operations was

consistently ordered as seen in Fig. 1, with significant differ-
ences as a function of the data being read or written. There was
also a large gap in power consumption between the reading and
writing for all data inputs.
We presume that the difference between the write 0 over 0

case and the read 0 test is purely due to the DRAM I/O and
peripheral circuitry, as the data in the cell array is identical. This
would also apply to the write 1 over 1 case and its corresponding
read 1 case. In both the read 1 and write 1 over 1 cases, more

2Although there are different “idle” DRAM states, they are not directly con-
trollable through software; we did not distinguish between them.
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Fig. 2. Relative temperature effects on write, read, and idle DIMM power,
50 C to 50 C Range.

Fig. 3. Write, read, and idle power by DIMM, 30 C.

power was consumed compared to the corresponding read 0 and
write 0 over 0 cases. These deltas may be due to the restoration
of cell values. Because a sense operation is destructive of cell
data due to charge sharing [21], cells that originally contain 1s
must be restored using additional supply current. In contrast,
cells containing 0s need only be discharged.
Note that the write 0 over 1 test consumed less power than the

write 0 over 0 test, whereas the write 1 over 0 case consumed
more than the write 1 over 1 case. The write 1 over 0 case likely
consumes the most power because the bit lines and cells must be
fully charged from 0 to 1. In the write 0 over 1 case, it probably
uses the least power because the bit lines and cells need only
be discharged to 0. Further research and finer-grained measure-
ment capabilities are required to fully explain these systematic
dependencies. Nevertheless, these results indicate strong data
and operation dependence in DRAM power consumption.

Fig. 4. Maximum variations in write, read, and idle power by DIMM category,
30 C.

Because of the data dependencies in write and read opera-
tions, we decided to use memory addresses as the data for write
and read in all subsequent tests, because over the entire address
space, there are approximately equal quantities of 1s and 0s.
Furthermore, memory addresses are common data in real appli-
cations. We verified that the average write and read power using
addresses for data is approximately the same as the mean of the
values for 1s and 0s as data.

B. Temperature Effects

To determine if temperature has any effect on memory power
consumption, we tested four 1 GB modules, one from each
vendor. Each DIMM was tested at ambient temperatures from
50 C to 50 C.3 It is clear from Fig. 2 that temperature

had a negligible effect on power consumption even across
a large range. We speculate that this is partially due to the
area and leakage-optimized DRAM architecture [1], but more
substantially affected by modern refresh mechanisms. The
use of rolling refreshes or conservative timings may consume
significant dynamic power, overshadowing the temperature
dependent components in the background power consumption.
Since no DIMM exhibited more than 3.61% variation across a
100 C range, all further tests were performed at an ambient
temperature of 30 C.

C. DIMM Power Variations

A plot of write, read, and idle power consumption for all 22
DIMMs at 30 C is depicted in Fig. 3. The variability results are
summarized in Fig. 4.
1) Variability Within DIMMs of the Same Model (1 GB):

Consider a particular model,V1S1M1 in Fig. 3, of which we
had the largest number (five) of specimens. While there was
a maximum of 12.29% difference between the five DIMMs,
there is a visible gap between the first group of three DIMMs
and the second group of two (fourth and fifth in Fig. 3). This
may be because the DIMMs come from two different produc-
tion batches, resulting in lot-to-lot variability. The maximum
deviations within the first group was only 1.34% for idle, and
1.47% within the second group. This suggests that the majority
of the variation in V1S1M1 was between the two batches.
2) Variability Between Models of the Same Vendor/Supplier

(1 GB): Now, consider all DIMMs from Vendor 1. We would

3Testing above an ambient temperature of 50 C was not practical as it caused
testbed hardware failure.
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expect that there would be more variation in Vendor 1 overall
than in V1S1M1 only, and this was confirmed in the data. The
maximum variation observed in Vendor 1 (1 GB) was 16.40%
for the idle case. This variability may be composed of batch
variability or performance differences between models.
3) Variability Across Vendors (1 GB): In order to isolate vari-

ability as a function of vendors and to mitigate any effects of
different sample sizes, we computed the mean powers for each
vendor (1 GB). Vendor 3 consumed the most write power at
1.157 W. The variations for write, read, and idle power were
17.73%, 6.04%, and 14.65% respectively.
4) Overall Variability Amongst 1 GB DIMMs: As one may

have expected, the variations across all DIMMs were signifi-
cantly higher than within a model and among vendors, with the
maximum variation occurring for write power at approximately
21.84%.
5) Effects of Capacity on Power Consumption: It is clear

from Fig. 3 that the three 2 GB DIMMs of V1S1M1 consumed
significantly more power than their 1 GB counterparts. This
was expected, as there was bound to be higher idle power
with twice as many DRAMs (in two ranks instead of one).
Indeed, the maximum variation between the 2 GB and 1 GB
versions was 37.91%, which occurred for idle power, whereas
write power only differed by half as much. This is because
background power is a smaller proportion of overall power
when the DIMM is active.

IV. CONCLUSION AND FUTURE WORK

We analyzed the power consumption of several mainstream
DDR3 DIMMs from different vendors, suppliers, and models,
and found several important trends. Firstly, we did not find any
significant temperature dependence of power consumption.
Manufacturing process induced variation (i.e., variation for the
same model) was up to 12.29%. Among models from the same
vendor, idle power generally varied the most (up to 16.40%
among Vendor 1), followed by read and write power. However,
a different trend was evident across vendors, with write power
varying the most (up to 17.73%), followed by idle and read
power. This pattern was dominant overall among all tested 1
GB DIMMs, where we observed up to 21.84% variations in
write power. Lastly, we found that a 2 GB model consumed
significantly more power than its matching 1 GB version,
primarily due to its increased idle power (up to 37.91%).
Data-dependence of power consumption was also very pro-
nounced, with about 30% spread within read and 25% spread
within write operations. These findings serve as a motivation
for variability-aware software optimizations to reduce memory
power consumption. In an arbitrary set of DIMMs, there can be
considerable variation in power use, and an adaptable system
can use this to its advantage. Because we observed negligible
temperature dependence, we will not include it in our future
models of DIMM power.
Our ongoingwork aims to optimize for any variability present

in a system’s memory through a software-based approach. For
example, a modified Linux memory management system could
make variability-aware page allocation andmigration decisions.
We will consider different approaches toward this goal, such
as a fully transparent decision mechanism, or semi-transparent
methods that require compiler and/or application support.
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