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Abstract— Modeling spatial variation is important for statis-
tical analysis. Most existing works model spatial variation as
spatially correlated random variables. We discuss process origins
of spatial variability, all of which indicate that spatial variation
comes from deterministic across-wafer variation, and purely
random spatial variation is not significant. We analytically study
the impact of across-wafer variation and show how it gives an
appearance of correlation. We have developed a new die-level
variation model considering deterministic across-wafer variation
and derived the range of conditions under which ignoring
spatial variation altogether may be acceptable. Experimental
results show that for statistical timing and leakage analysis, our
model is within 2% and 5% error from exact simulation result,
respectively, while the error of the existing distance-based spatial
variation model is up to 6.5% and 17%, respectively. Moreover,
our new model is also 6X faster than the spatial variation model
for statistical timing analysis and 7X faster for statistical leakage
analysis.

Index Terms— SSTA, spatial correlation, timing analysis, leak-
age analysis, yield modeling

I. INTRODUCTION

With the CMOS technology scaling, process variation has
become a major concern for VLSI design. Modeling and
analyzing process variation has attracted a lot of attention.

Several works focus on analyzing and modeling of pro-
cess variation [1]–[8]. The simplest method models process
variation as the sum of inter-die (global) variation and inde-
pendent within-die (local random) variation [4]. Later, it was
observed that within-die variation is spatially correlated and
the correlation depends on the distance between two within-
die locations. [1], [8] model spatial variation as correlated
random variables, and principle component analysis is applied
to perform statistical timing analysis. In this model, a chip
is divided into several grids and each grid has its own spatial
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variation. The spatial variations of different grids are correlated
and the correlation coefficient depends on the distance between
two grids. [2] focuses on the extraction of spatial correlation
and it models the correlation coefficient as a function of
distance. Several more complex spatial correlation models
have been proposed in [9]–[13].

In contrast to the spatial correlation models, process oriented
modeling has concluded that within-die spatial variation is
caused by deterministic across wafer and across-field variation
while purely random within-die spatial variation is not signifi-
cant [14]–[16]. However, in practical design flow, designers do
not know the within-wafer location or within-field location of
each die; therefore, we need to analyze the impact of across-
wafer variation and across-field variation on die-scale. Since
silicon measurements cited in this paper indicate that across-
wafer variation is much more significant than the across-
field variation, we consider only across-wafer variation in
this paper, but the approach is easily extended to account for
across-field variations.

In this paper, we first analyze the impact of deterministic
across-wafer variation on spatial correlation. We observe that
when quadratic across-wafer variation model is used as in [15],
[17], [18]:

1) Different locations on the chip may have different mean
and variance. Such differences increase when the chip
size increases.

2) When chip size is small, the correlation coefficients for
a certain Euclidean distance are within a narrow range.
This explains why most existing works find that spatial
correlation is a function of distance.

3) Within-die spatial variation is NOT spatially correlated
when across-wafer systematic variation is removed.

4) Within-die spatial variation is NOT independent from
inter-die variation.

5) If chip size is small enough, the two-level inter-/within-
die decomposition of process variation is still very
accurate.

Based on our analysis, we propose three accurate and
efficient spatial variation models1 considering across-wafer
variation. Experimental results show that our model is more
accurate and efficient compared to the distance-based spatial

1The programm and data of our proposed model can be downloaded in
http://nanocad.ee.ucla.edu/Main/Stat
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variation model in [2]. Compared to the exact simulation, error
of our model for statistical timing analysis is within 2% and
the error for statistical leakage analysis is within 5%. On the
other hand, the error of the distance-based spatial correlation
model is up to 6.5% for statistical timing analysis and up to
17% for statistical leakage analysis. Moreover, our model is
6X faster than the distance-based spatial correlation model for
statistical timing analysis and 7X faster for statistical leakage
analysis.

The rest of this paper is organized as follows: Section II
discusses the physical causes for across-wafer variation; Sec-
tion III analyzes the impact of across-wafer variation on die-
scale; Section IV discusses the case when the across-wafer
variation is not a perfect parabola; Section V introduces the
new variation models; the new models are applied to statistical
timing analysis in Section VI and statistical leakage analysis
in Section VII; Section VIII summarizes the advantages and
disadvantages of different variation models; Section IX further
discusses the case when the across-wafer variation is an
arbitrary function; and finally Section X concludes this paper.

II. PHYSICAL ORIGINS OF SPATIAL VARIATION

In silicon manufacturing, there are many steps that cause
non-uniformity in devices across the wafer. Interestingly, most
of these processes by the very nature of the equipment follow
a radially varying trend across the wafer. Most processes are
“center-fed” or “edge-fed” with the boundary conditions at the
edge of wafer being substantially different. Moreover, wafers
are often rotated to increase process uniformity across them
which further leads to radial behavior of non-uniformity. This
is further exacerbated by advent of single-wafer processing for
300mm wafers.

For example, overlay error includes errors in the position
and rotation of the wafer stage during exposure, wafer stage
vibration, and the distortion of the wafer with respect to the
exposure pattern [19]. Magnification and rotation components
of overlay error increase from center of the wafer outwards.2
During chemical vapor deposition (CVD) step, species deple-
tion and temperature non-uniformity on the wafer at lower
temperatures may cause thickness non-uniformity [20], [21].
Redeposition effect in physical vapor deposition (PVD) [22]
may cause non-uniformity of etch rate. Moreover, center peak
shape of the RF electric field distribution [23] also leads to a
center peak shape of etch rate, and chamber wall conditions
[24] also cause etch rate non-uniformity. In real processes, the
wafers are rotated to improve uniformity. [22], [24] show that
the etch rate varies radially across the wafer: the etch rate
is high at the center of the wafer and decreases toward the
edges. Post-exposure bake (PEB) temperatures are higher at
the center of the wafer and decreases outwards [25]. Similarly,
other processes ranging from resist coat to wafer deformation
due to vacuum chuck holding it follow a bowl-shaped trend
across the wafer. All these processes cause a systematic across-
wafer variation in physical dimensions.

Across-wafer variation of gate length observed in several
recent silicon measurements [15], [17], [18], [26] validates

2Overlay error can directly impact critical dimension in double patterning.

Fig. 1: Ring oscillator frequency within a wafer. (a) Process
1; (b) Process 2.

our arguments. [27] also shows that ring oscillator frequency
and leakage current decrease from the center to the edge of
the wafer. Figure 1 shows industrial data of ring oscillator
frequency for wafers from two different industrial processes.
Process 1 is with 45nm technology and process 2 is with 65nm
technology. From the figure, we see that for both process, ring
oscillator frequency decreases from the center to the edge
of the wafer. Moreover, it has also been shown that there
is no spatial correlation for threshold voltage variation [14].
Therefore, the across wafer frequency and leakage variation is
mainly caused by gate length variation.

It has been shown that for process 1, the across-wafer fre-
quency variation can be approximated as a quadratic function
(a parabola) [27]. For process 2, the across-wafer variation is
not a perfect parabola as process 1. However, it follows a sys-
tematic trend that the ring oscillator frequency decreases from
the center to the edge of the wafer. Since the measurement
data for process 2 (more than 300 wafers) is much more than
process 1, in the rest of this paper, all of our simulation and
experiments are based on the measurement result of process
2.

Besides across-wafer variation, lithography-induced effects
such as lens aberrations can lead to systematic across-field
variation and across-die variation. Across-die variation can be
modeled as within-die deterministic mean shift and will not
cause within-die spatial correlation. Moreover, silicon mea-
surements cited in this paper indicate that across-wafer varia-
tion is much more significant (probably due to advancements
in resolution enhancement and lithographic equipment) than
across-field and across-die variation. Hence, for simplicity, we
consider only across-wafer variation in this paper.

III. ANALYSIS OF WAFER LEVEL VARIATION AND
SPATIAL CORRELATION

In this paper, a variation source V , such as Le f f , is be
modeled as:

V = v0 +vc + vp (1)

where v0 is the nominal value, vc is a systematic constant
offset, and vp is the uncertainty part of process variation. Since
both v0 and vc are constant, we may combine them as one
constant term. The uncertainty term vp is modeled as:

vp = vaw +vd−d +vad +va f +vr (2)
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Fig. 2: PDF of across-wafer variation coefficients. (a) PDf of
a and b. (b) PDF of c and d.

vd−d comprises of inter-die random, inter-wafer, inter-lot vari-
ation and fitting error 3 of quadratic fitting of across wafer
variation; va f and vad are the across-field and across-die
variation, respectively. As discussed in Section II, we consider
only across-wafer variation and ignore these two types of
variations (va f and vad) in this paper; vr is the random noise;
vaw is across-wafer variation, which is modeled as a quadratic
function as in [3], [15], [17], [18]:

vaw(xw,yw) = ax2
w +by2

w +cxw +dyw (3)

where a, b, c, and d are coefficients obtained from fitting the
measurement data from industry process shown in Figure 1 (b)
4, (xw,yw) is across-wafer location. We obtain the coefficients
of the above across-wafer variation model by fitting the
industrial 65nm process measured ring oscillator delay with
348 wafers from 23 lots. In this section, we assume that a, b,
c, and d are fixed for a process. In practice, these coefficients
may vary slightly from wafer-to-wafer or lot-to-lot. Figure 2
illustrates the PDF of the fitting coefficients for 348 wafers.
From the figure, we find that the coefficients are distributed
within 30% of the mean. The most accurate way is to model
them as random variables. However, this will significantly
increase the complexity of the variation model. For simplicity,
in this paper, we assume the coefficients to be constant (using
the mean value). Making such assumption introduces some
error of the model, we will further discuss how to reduce the
error in Section IV. In the rest of this section, all simulations
are based-on this extracted model.

Combining Equation (2) and (3), we have:

vp(xw,yw) = ax2
w +by2

w +cxw +dyw +vd−d +vr (4)

In the rest of this section, we will analyze spatial variation
based on the above model. Table I summarizes the mathemat-
ical notations used in this section. In the rest of this paper,
we assume that inter-die random variation vd−d and within-
die random variation vr are Gaussian random variables with
zero mean (the nonzero mean can be lumped in to systematic
offset vc)5.

3We assume that the fitting error is purely random, that is, it only introduces
inter-die variation without affecting within-die variation. We further discuss
the impact of fitting error in Section IV.

4Since we look on the wafer mean as wafer to wafer random variation and
the systematic offset is lumped in to constant term vc, there is no constant
term in the quadratic across-wafer variation model (lumped to wafer to wafer
variation and systematic offset).

5We assume inter-lot random, inter-wafer random, and inter-die random
variation to be independent zero mean Gaussian random variables. Therefore,
vd−d is also a zero mean Gaussian random variable.

Symbols Description Units
Across-wafer variation symbols

V variation source 1
vc constant systematic offset 1
v0 nominal value 1

vp(x,y) Variation of within-die location (x,y) 1
va f Across-wafer variation (quadratic function) 1

vd−d Inter-die random variation (zero mean Gaussian) 1
vr Within-die random variation (zero mean Gaussian) 1

σ2
d−d Variance of vd−d 1
σ2

r Variance of vr 1
a,b Across-wafer variation coefficients mm−2

c,d Across-wafer variation coefficients mm−1

Inter-die/spatial/within-die variation symbols
vg Inter-die variation 1
vs Within-die spatial variation 1
vl Within-die random variation 1

Size/location symbols
rw Wafer radius mm

(lx, ly) x and y dimension die size mm
(xw,yw) Within-wafer location mm
(xc,yc) Location of the center of the die in the wafer mm
(x,y) Within-die location mm

ω Angle between the die and wafer coordinates 1
(x′,y′) Within-die location in wafer coordinate mm

x′ = xcosω+ y sinω, y′ = ycosω− x sinω
(l′x,l′y) l′x = lx cosω+ ly sinω, l′y = ly cosω− lx sinω mm

(x′′, y′′) x′′ = x′
√

a/b+ c/(2
√

ab), y′′ = y′
√

b/a+d/(2
√

ab) mm
(l′′x , l′′y ) l ′′x = l′x

√

a/b+ c/(2
√

ab), l ′′y = l ′y
√

b/a +d/(2
√

ab) mm
rdµ rdµ =

√

bx′′2 + ay′′2 1
rdσ rdσ =

√

x′′2 + y′′2 mm
δ Euclidean distance between (x′′1 ,y′′1) and (x′′2 ,y′′2) mm

δ =
√

(x′′1 − x′′2)2 +(y′′1 − y′′2)2

r′′m r′′m =
√

l′′2x /4+ l′′2y /4 mm

Other symbols
k0 k0 = r2

w(a+b)/4− c2/4a− d2/4b 1
k1 k1 = r4

w(a2 +b2)/16− r4
wab/24+σ2

d−ds 1
k2 k2 = k1/(abr2

w) mm2

α α = x′′1x′′2 + y′′1y′′2 mm2

β β = σ2
r /(abr2

w) mm2

s0 s0 = cos2 ω(al2
x + bl2

y )/12 + sin2 ω(bl2
x +al2

y )/12 1
s1 s1 = s0 + c2/4a+d2/4b 1

TABLE I: Notations. Note: Unit 1 means a no unit. In this
paper, we assume that variation is normalized with respect to
the nominal value, hence variation has no unit.

A. Variation of Mean and Variance with Location

Equation (4) provides a wafer level variation model, how-
ever, in real design, only die level variation model can be
applied, i.e., for a die, whose center lies on (xc,yc) wafer
coordinates, we want to know the variation of location (x,y)
(assuming the coordinate of the center of the die to be (0,0)).
In order to obtain the die level variation, we have to obtain
the across-wafer coordinate from the die location in the wafer
(xc,yc) and within-die location (x,y). In this paper, we assume
that the chip coordinate aligns with the chip edges and the
wafer coordinate aligns with the major and minor axises of
the across-wafer variation parabola6. Notice that in practice,
the wafer coordinate and chip coordinate might not be aligned,
as shown in Figure 3, where ω is the angle between wafer
coordinate and chip coordinate. We may convert die location
(x,y) to wafer coordinate (x′,y′) by rotating coordinates, as
shown in Table I. In this case, the within wafer location of
within-die location (x,y) is calculated as:

xw = xc +x′ y2 = yc +y′

6If we force the wafer coordinate and chip coordinate to be aligned, there
will be a crossing term in the across-wafer variation model in Equation (4),
which makes problem more complicated.
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Then variation of location (x,y) is calculated as:

vp(x,y) = a(xc +x′)2 +b(yc +y′)2 + (5)
c(xc +x′)+d(yc +y′)+vd−d +vr

In real design flow, the die location in the wafer (xc,yc)
is not known to designers. We can convert the wafer-level
systematic variation model to a die-level model by noting that
dies are always distributed evenly in the wafer. Therefore,
we may model (xc,yc) as random variables which are evenly
distributed in the circle centering at (0,0) with radius rw

(radius of the wafer). For simplicity, we convert rectangular
coordinate to polar coordinate:

x = ρcosθ y = ρsinθ (6)

where ρ and θ are independent random variables. ρ is with
triangle distribution ranging from 0 to rw, θ is with uniform
distribution ranging from 0 to 2π:

PDFρ(ρ) = 2ρ/r2
w 0 ≤ ρ < rw (7)

PDFθ(θ) = 1/2π 0 ≤ θ < 2π

With PDF, we can also obtain the first few order moments and
joint moments of xc and yc. Since (xc,yc) are distributed in a
symmetric area, joint moment E[xm

c yn
c ] = 0 when either m or n

is odd number. Therefore, we only need to consider the even
order moments and joint moments:

E[x2
c ] = E[y2

c ] = r2
w/4 (8)

E[x4
c ] = E[y4

c ] = r4
w/8

E[x2
cy2

c ] = r4
w/24

The detailed derivation of the above equations is in Ap-
pendix A. In this case, the variation at location (x,y), vp(x,y),
is expressed as a function of four random variables: xc, yc,
vd−d , and vr. Then, the mean of vp(x,y) is calculated as:

µvp(x,y) = E[vaw(xc +x′,yc +y′)]+E[vd−d ]+E[vr] (9)

As discussed above, vd−d and vr are zero mean, vaw(x,y) is
quadratic function of xc and yc, therefore, E[vaw(x,y)] can be
obtained from the moments and joint moments of xc and yc

as shown in Equation (8):

µvp(x,y) = k0 + r2
dµ (10)

where rdµ and k0 are defined in Table I. In a way similar to
mean calculation, we may also calculate variance of vp(x,y):

σ2
vp

(x,y) = k1 +σ2
r +abr2

wr2
dσ (11)
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Fig. 4: (a) µ change for different rdµ, (b) σ2 change for
different rdσ.

where k1 and rdσ are defined in Table I.
The detailed derivation of Equation (10) and (11) is in Ap-

pendix B. From Equation (10) and (11), it is interesting to note
that different within-die locations may have different means
and variances 7. The location (x0,y0) having the smallest mean
and variance is given by letting x′′ = 0 and y′′ = 0:

x′′ = 0 ⇒ x0 = −ccosω/2a−d sinω/2b

y′′ = 0 ⇒ y0 = d cosω/2b−csinω/2a

The locations farther away from (x0,y0) will have larger mean
and variance. Figure 4 illustrates the mean and variance for
different rdµ (or rdσ) obtained from our proposed model as
shown in Equation (5). From the figure, we find that the mean
and variance differ for different on chip locations, but the
difference is very small. Especially for mean, the difference
is less than 1%. Therefore, in the real measurement data,
the location dependence of mean and variance is not obvious
because a very small noise will overwhelm the difference.

B. Appearance of Spatial Correlation

Besides mean and variance, we are also interested in the co-
variance between two locations (x1,y1) and (x2,y2). Similar to
the calculation of mean and variance, covariance is calculated
as:

Cov = k1 +abr2
wα

Knowing the variance and covariance calculated above, we
may obtain the correlation coefficient as:

ρ =

√

k2
2 +2k2α+α2

(k2 +β)2 +(r2
dσ1 + r2

dσ2)(k2 +β)+ r2
dσ1r2

dσ2
(12)

where α, β, and k2 are defined in Table I. The detailed deriva-
tion of covariance and correlation coefficient is in Appendix C.
From Equation (12), we obtain the upper bound and lower
bound of the correlation coefficient for a certain Euclidean
distance:

ρ≤ρu =

√

1− δ2k2 +δ2β/2+2βk2 +β2

(k2 +β)2 +2r′′2m (k2 +β)+ r′′4m

ρ≥ρl =

√

1− δ2(k2 − r′′2m /2+δ2/4)+β(β+2k2 +2r′′2m )+ r′′4m

(k2 +β)2 +δ2(k2 +β)/2+δ4/16

7Such difference is caused by the chip-level nonlinearity of the across-
wafer variation function (we assume quadratic function as in Equation(3)). If
the the across-wafer variation function is linear at chip level, for example, a
piecewise linear function with piece size larger than chip size, the mean and
variance will be the same for all locations of a die.
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Fig. 5: (a) Apparent spatial correlation and (b) covariance as
a function of distance.

where δ, l′′x , l′′y , and r′′m are defined in Table I. From the upper
bound and lower bound, we may also calculate the range of
correlation coefficient:

ρu −ρl ≤
√

4r′′2m /(r′′2m +k2 +β)

The derivation of the upper bound, lower bound, and range of
correlation coefficient is in Appendix D. Notice that usually
the wafer size is much larger than the die size, that is k2 � r′′2m ,
therefore, ρu −ρl � 1, that is, the range of correlation coeffi-
cient for a certain distance is very narrow. Moreover, from the
above equation, we also find that when the variances of the
inter-die random and within-die random variation increase, the
range decreases. This explains why most existing works [2],
[9] find that spatial correlation is a function of distance.

Figure 5(a) illustrates the exact data for 40 locations, the
upper bound and the lower bound obtained from our proposed
model as shown in Equation (5). From the figure, we find
that the range of ρ for a certain distance is very narrow.
Although the correlation coefficient is within a narrow range,
covariance is not, as shown in Figure 5(b). This is because of
the differences of variance across the die.

Figure 68 shows the correlation coefficient for within-die
variation after subtracting the mean variation of the die (mainly
caused by across wafer variation). In the figure, the correlation
coefficients are obtained from our proposed model as shown
in Equation (5).

We observe that the within-die spatial variation is almost
NOT spatially correlated, as empirically observed in [15], [17],
[18]. This further validates that the spatial variation is caused
by systematic across-wafer variation.

C. Dependence between Inter-die and Within-die Variation

In most existing variation models, process variation is
decomposed into inter-die, within-die spatial, and within-die
random variation:

vp = vg +vs +vl (13)

where vg is the inter-die variation, vs is the within-die
spatial variation, and vl is the within-die variation. Usually
vg is modeled as the variation of the chip mean, vs is the

8In the figure, the correlation coefficient can be a negative number when
distance is large. This is because after subtracting the mean, when the within-
die variation of one corner increases, the within-die variation of the opposite
corner must decrease. That means, the within-die variations of opposite
corners are negative correlated. Moreover even when two locations are very
closed, if they lie on the opposite side of the center, their correlation is still
near zero.

0 5 10 15
−1

−0.5

0

0.5

1

Distance(mm)

ρ

Fig. 6: Correlation cofficient for within-die spatial variation
after inter-die variation is removed.

residual of across-wafer variation after subtracting the inter-
die components, and vl is the pure random local variation. vg,
vs, and vl are assumed to be independent.

With the variation model in Equation (5), we may also cal-
culate the inter-die, within-die spatial, and within die random
variation. Within-die random variation is the local random
variation: vl = vr. Inter-die and spatial variation is induced
by the die-to-die variation, and across-wafer variation. Inter
die variation is calculated as the variation of the chip mean:

vg =
1

lxly

ZZ

|x|<lx/2
|y|<ly/2

vp(x,y)dxdy

= ax2
c +by2

c +cxc +dyc +vd−d + s0

where s0 is defined in Table I. Within-die spatial variation
is calculated as the residual of across-wafer variation after
subtracting the chip mean:

vs(x,y) = vp(x,y)−vg −vl (14)
= r2

dµ +2ax′xc +2by′yc − s1

where s1 is defined in Table I. The derivation of the above
equation is shown in Appendix E. From the above equations,
we find that both inter-die and within-die spatial variations are
functions of random variables xc and yc. Hence, we may not
decompose process variation into independent inter-die and
within-die spatial variation.

D. When can Spatial Variation be Ignored?

In this section, we analyze the accuracy of the simple
two-level inter-/within-die variation model for different chip
sizes. If we only consider inter-/within-die variation, we may
lump the across-wafer variation into inter-die variation, that is,
approximate the across-wafer variation as a piecewise constant
function, as shown in Figure 7(a). To evaluate the impact of the
approximation error, we may treat such approximation error as
noise and the process variation as signal; and then evaluate the
signal to noise ratio. In order to do this, we calculate the mean
square approximation error and the total variance of variation.
The signal to noise ratio when ignoring the spatial variation
is given as:

SNR = σ2
total/MSE

≈ 6abr4
w +6(c+d)r2

w +σ2
M +σ2

R

abr2
w(l2

x + l2
y )+2(c+d)lxly

It can be seen that MSE depends on chip size. When chip
size is small, MSE is small. This is because we approximate
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the across-wafer variation as a piecewise constant function
with small steps, hence such approximation is accurate. Fig-
ure 7(b) illustrates the SNR for different die sizes. It can
be seen that the SNR decreases when die size increases as
expected. We also observe that when chip size (lx and ly) is
smaller than 1cm, the SNR is up to 100. That means, two-level
inter-/within-die variation model is accurate.

IV. GENERAL ACROSS-WAFER VARIATION MODEL

In the previous section, we assumed that the across-wafer
variation is a quadratic function as shown in Equation (5). In
practice, across-wafer variation may not be an exact parabola.
Moreover, the across-wafer variation will be slightly different
for different wafers. Therefore, there will be some fitting
residual after subtracting the across-wafer parabola:

v(xw,yw) = vp(xw,yw)+ve(xw,yw) (15)

where vp is the quadratic across-wafer variation model as
shown in Equation (5) and ve is fitting residual. In the previous
section, we assume that the fitting residual is lumped into inter-
die random variation. However, the fitting residual contains
not only inter-die random variation but a systematic trend of
within-die variation. Figure 8(a) illustrates the original delay
variation across the wafer, and Figure 8(b) illustrates the
fitting residual of a wafer delay variation after subtracting the
quadratic across-wafer variation function. From the figure, we
find that after removing the quadratic across-wafer variation,
the scale of process variation reduces dramatically. From the
die point of view, such residual will also introduce some spatial
correlation. Figure 9(a) illustrates the correlation coefficients
for different distances of the fitting residual. We find that the
correlation coefficient is still high (≥ 0.4) the fitting residual,
but the correlation coefficients are no longer within a narrow
band for a given distance. From Figure 8(b), we also find
the the spatial frequencies of the fitting residual are low.
Therefore, from the die point of view, the fitting residual can
be approximated by the first order Taylor expansion:

ve(x′,y′) = ve(xc +x′,yc +y′) ≈ ve(xc,yc)+ sxx′ + syy′(16)
sx = ∂ve(xw,yw)/∂xw|xw = xc,yw = yc

sy = ∂ve(xw,yw)/∂yw|xw = xc,yw = yc

where ve(x′,y′) is the fitting residual at die location (x′,y′).
In the above model, the term ve(xc,yc) is the same for the
whole chip, but different from chip to chip. We may lump it
into die-to-die variation. Since the impact of fitting residual on
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Fig. 8: Ring oscillator frequency within a wafer. (a) Origi-
nal delay variation; (b)Residual after subtracting Equation(5);
Residual after subtracting Equation (16).
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Fig. 9: (a) Correlation coefficient after subtracting Equation(5),
(b) Correlation coefficient after subtracting Equation (16).

different chips is different, sx and sy vary from chip to chip.
In this case, we may model sx and sy as random variables.
Figure 10 illustrates the distribution of sx and sy obtained from
measurement data of process 2. In order to obtain samples of
sx and sy, we remove the quadratic wafer-level spatial pattern
for each wafer, and then fit linear model in Equation 16 for
each die. From the figure, we find that both sx and sy follow
Gaussian distribution. Moreover, the correlation between sx

and sy is very weak (ρ < 0.1). Therefore, in this paper,
we assume that sx and sy are uncorrelated Gaussian random
variables.

Notice that when we model the fitting residual as a linear
within-die variation trend, two more random variables sx

and sy are introduced. This makes the variation model more
complicated. When the across-wafer variation is with a perfect
parabola and the fitting residual is not significant, we may just
lump the fitting residual in to inter-die and random variation.

In addition, we also observe that after subtracting the
model of fitting residual in Equation (16), the remaining
variation is almost uncorrelated, as illustrated in Figure 8(c)
and Figure 9(b).

Combining Equation (16) and (5), we obtain a general die-
level across-wafer variation model:

vp(x,y) = a(xc +x′)2 +b(yc +y′)2 +c(xc +x′)+ (17)
d(yc +y′)+ sxx′ + syy′ +vd−d +mr(x,y)
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V. MODELING SPATIAL VARIABILITY

As discussed in Section I, spatial variation largely comes
from the deterministic across-wafer variation. Hence, mod-
eling the within-die variation as spatial-correlated random
variables is not accurate as discussed in Section III.

In this section, we introduce three new spatial variation
models considering across-wafer variation:

• Slope Augmented Across-Wafer variation model (SAAW).
• Quadratic Across-Wafer variation model (QAW).
• Location Dependent Across-Wafer variation model

(LDAW).
In the rest of this section, we will discuss these models in

detail:

A. Slope Augmented Across-Wafer Model

Equation (17) calculates the variation for a given location
(x,y). In the equation, the die location within the wafer
(xc,yc) are modeled as random variables and their PDF is
shown in Equations (6) and (7). Equation (17) provides a new
spatial variation model. We refer to the new model as Slope
Augmented Across-Wafer variation model (SAAW).

Notice that in SAAW model, there are only six random
variables, inter-die random variation vd−d , within-die random
variation vr, die location within the wafer xc and yc, and
slope of fitting residual sx and sy. However, for the traditional
distance-based spatial variation model, the number of spatial
variation sources depends on the number of grids. Larger chip
needs more variables. Therefore, our new model not only
models the across-wafer variation accurately but also is more
efficient than the traditional spatial correlation model.

B. Quadratic Across-Wafer Model

In our original variation model in [28], we model the across-
wafer variation as a quadratic function, as shown in Equation
(5), without modeling the fitting residual. In this case, there
are only four random variables, xc and yc, vd−d , and vr. We
refer to this model as Quadratic Across-Wafer variation model
(QAW). Since QAW does not consider fitting residual, it is not
as accurate as SAAW. As discussed in Section IV, when the
across-wafer variation is a perfect parabola, the fitting residual
is not significant9, we may just lump the fitting residual into
inter-die random variation and simplify SAAW to QAW.

9For example, process 1 as discussed in Section II.

C. Location Dependent Across-Wafer Model

As discussed in Section III-D, when die size is small
enough, applying the two-level inter-/within-die variation
model does not introduce much error. However, inter-/within-
die variation model still does not consider the mean and
variance difference at different locations of a chip, as discussed
in Section III-A. To further improve the accuracy of inter-
/within-die variation model, we may account for this:

v(x,y) ≈ v′d +µvp(x,y)+σvp(x,y)v′r(x,y) (18)

where v′d is inter-die variation including inter-lot random, inter-
wafer random, inter-die random, and across-wafer variation;
v′r(x,y) is within die variation including within-die random
variation and residual of across-wafer variation; µvp(x,y) and
σvp(x,y) are mean and variance difference at different loca-
tions of a chip, which can be calculated from Equation (10)
and (11). We refer to the above model as Location Dependent
Across-Wafer variation model (LDAW). LDAW is a further
simplification of QAW, it lumps the across-wafer variation
into inter-die and within-die variation. Inter-die variation is
modeled as chip mean as discussed in Section III-C, and the
residual is lumped into within-die variation. In this paper,
we assume that v′d is zero mean Gaussian random variable.
The variance of v′d is obtained from measurement. We also
assume v′r(x,y) to have a standard normal distribution. In
this case, the within-die variation, σvp(x,y)v

′
r(x,y), is a zero

mean Gaussian random variable whose variance is σ2
vp

(x,y),
which is determined by within-die location. Moreover, in this
model, the mean of v(x,y) is µvp(x,y) which is also location
dependent. Notice that in Equation 18, µvp(x,y) and σvp(x,y)
are deterministic value for a certain within-die location (x,y).
Therefore, LDAW model has only two random variables: v′d
and v′r which is the same as two level inter-/within-die model.
Hence compared to inter-/within-die model, LDAW has similar
efficiency but higher accuracy because LDAW considers mean
and variance difference across the chip while inter-/within-die
model does not.

VI. APPLICATION TO STATISTICAL TIMING ANALYSIS

In this section, we apply our across-wafer variation model
to statistical static timing analysis.

A. Delay Model

In statistical timing analysis, people usually approximate
cell delay as linear function of variation sources:

D = D0 +AsV
T (19)

where D0 is the nominal cell delay, As = (as1,as2, . . . ,asn)
is the vector of linear sensitivity coefficients, and V =
(V1,V2, . . . ,Vn) is the vector of variation sources. For SAAW
and QAW, since each variation source is a quadratic function
of random variables, as show in Equation (17) and (5), the
gate delay is a second order function of random variables:

D = p2(RV )

where pi(·) is a ith order polynomial function and RV =
(rv1,rv2, . . . ,rvn) is the vector of random variables (such as
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xc and yc). In this case, the quadratic SSTA flow in [29], [30]
can be applied to estimate chip delay variation. For LDAW,
each variation source is a linear function of random variables,
as shown in Equation (18), then the cell delay is also a linear
function of random variables:

D = p1(RV )

In this case, the linear SSTA flow in [29], [30] can be applied
to estimate chip delay variation.

To model cell delay more accurately, a quadratic cell delay
model [29]–[32] can be used :

D = D0 +AsV
T +VBsV

T (20)

where Bs = (bsi j) is matrix of second order sensitivity coef-
ficients. In this case, for LDAW, the cell delay is a quadratic
function of random variables. Therefore, quadratic SSTA can
be applied to estimate chip delay. However, for SAAW and
QAW, since each variation source is a quadratic function of
random variables, the cell delay becomes a 4th order function
of random variables:

D = p4(RV )

Handling such high order delay variation function is compli-
cated. In this case, the moment matching technique in [29],
[30] is applied to approximate the 4th order function to a
quadratic function by matching the first two order moments
and joint moments:

p2(RV ) ≈ p4(RV )

E[p2(RV )] = [p4(RV )]

E[rvi · p2(RV )] = E[rvi · p4(RV )]

E[rv2
i · p2(RV )] = E[rv2

i · p4(RV )]

E[rvirv j · p2(RV )] = E[rvirv j · p4(RV )]

With the above approximation, quadratic SSTA can be applied.
Notice that moment matching approximation is performed
only once for all cells and does not increase the run time
of SSTA.

Moreover, it was shown in [29], [30] that ignoring crossing
terms of quadratic cell delay function (semi-quadratic delay
model) significantly improves the run time of SSTA without
affecting accuracy too much. Therefore, to improve efficiency,
we may ignore the crossing terms when we perform quadratic
SSTA (semi-quadratic SSTA).

B. Experimental Result

We have implemented the non-linear SSTA in [29], [30]
with different spatial variation model in C++. In order to verify
the efficiency and accuracy, three comparison cases are de-
fined: 1) Monte-Carlo simulation with the exact deterministic
across-wafer variation model10, which is the golden case for
comparison; 2) distance-based spatial correlation model from
[2], which is referred to as SPatial Correlation model (SPC); 3)

10In the simulation, each wafer may have different across-wafer variation
which is obtained from measurement data of process 2. We have simulated
318 wafers correspondent to 318 measured wafers.

two-level inter-/within die variation model, which is referred
to as Inter-/Within-die variation model (IW).

We apply all the above methods to the ISCAS85 suite of
benchmarks in Predictive Technology Model (PTM) 45nm
technology [33]. We assume random placement for ISCAS85
circuits. Since process variation has smaller impact on inter-
connect delay than on logic cell delay, we only consider logic
cell delay when calculate the full chip delay variation. In the
experiment, we consider the gate length variation obtained
from minimum square error fitting on the ring oscillator
delay from industrial 65nm process (Process 2 as discussed in
Section II) measurement from the model as shown in Equation
(17). We obtain the across-wafer coefficients a, b, c, and d,
fitting residual residual coefficients sx and sy, standard devia-
tion of random inter-wafer, inter-die, and within-die variation
as percentage with respect to the nominal value. Then we
assume that the percentages of all the above coefficients to
nominal value are the same at 45nm technology node and
65nm technology node. To obtain across-wafer coefficients a,
b, c, and d, we apply quadratic function to fit the across-wafer
variation for each wafer to obtain the fitting coefficients for
each wafer, then use average coefficients of all wafers for our
experiment. To obtain fitting residual residual coefficients sx

and sy, We first get the slope of fitting residual sx and sy for
each chip, and then calculate the mean and variance of sx and
sy for all chips. In the experiment, we assume sx and sy to be
Gaussian random variables with mean and variance obtained
from the measurement data.

1) Full Chip Delay: In the experiment, we assume that
the chips size is 2cm×2cm and the wafer radius is 15cm.
Since ISCAS85 benchmarks are very small, the impact of
spatial variation on delay is not significant within the circuit.
In order to show such impact,we assume the benchmarks are
stretched on a 2cm×2cm chip. In our experiment, for the SPC
model, we divide the chip to 10× 10 = 100 grids. Table II
illustrates the percentage error of mean (µ), standard deviation
(σ), and 95-percentile point (95%) and run time (T) of different
variation models. In the table, we also compare the result
of using quadratic cell delay model (Quad) and linear cell
delay model (Lin). We only use quadratic cell delay model
for golden case simulation (exact), the error is calculated as
error of different variation models compared to the golden case
simulation. For SAAW and QAW, we also compare the results
of applying quadratic SSTA with crossing terms (SAAW Quad
and QAW Quad) and applying SSTA without crossing terms
(SAAW S-Quad and QAW S-Quad). From the table, we have
the following observations:

• Compared to full quadratic SSTA, semi-quadratic SSTA
(SSTA without crossing terms) achieves up to 8X speed
up with less than 1% accuracy loss.

• SAAW is more accurate than QAW. This is because the
fitting residual is significant for the measurement data,
QAW ignores fitting residual and hence introduces more
error.

• The error of SAAW using semi-quadratic SSTA is within
2% while the error of spatial correlation model is up to
6.5%.

• Compared to quadratic cell delay model, linear cell delay
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Bench- Chip Exact SAAW LDAW SPC IW
mark size µ σ 95% µ σ 95% µ σ 95% µ σ 95% µ σ 95%
c1908 10 17.4 2.24 24.2 -1.2 -1.8 -1.9 -2.2 -5.5 -5.9 -1.7 -3.5 -3.3 -2.5 -6.8 -7.1

6 17.5 2.23 24.3 -1.1 -1.5 -1.6 -2.2 -4.1 -4.2 -1.2 -2.6 -2.4 -2.2 -4.5 -4.3
3 17.6 2.22 24.4 -0.9 -1.2 -1.1 -1.1 -1.8 -1.6 -1.0 -1.5 -1.5 -1.9 -2.1 -2.5

c3540 10 25.6 3.42 34.6 -1.0 -2.2 -1.6 -1.4 -6.2 -4.9 -1.8 -5.4 -4.8 -2.2 -7.5 -6.9
6 25.8 3.45 34.3 -0.8 -1.2 -1.0 -1.2 -3.8 -3.3 -1.5 -3.4 -3.0 -1.3 -4.2 -3.7
3 25.8 3.44 34.4 -0.5 -1.0 -1.0 -1.1 -2.1 -2.0 -1.0 -1.9 -1.9 -1.1 -2.2 -2.3

c7552 10 48.9 6.47 64.7 -1.2 -1.1 -1.4 -2.8 -3.5 -3.7 -2.5 -2.2 -2.7 -3.2 -5.6 -6.3
6 48.9 6.47 64.7 -1.0 -1.1 -1.3 -1.4 -2.5 -2.3 -2.2 -2.1 -2.5 -2.9 -3.1 -3.3
3 48.9 6.47 64.7 -0.6 -0.9 -1.0 -1.0 -1.1 -1.2 -0.9 -1.3 -1.4 -1.3 -1.4 -1.6

TABLE III: Percentage error for ISCAS85 benchmark stretch-
ing on a chip with different chip size. Note: We assume square
chips and chip size means edge length in mm. The exact delay
values are in ns.

has less than 2% accuracy loss. This is because in our
experiment, the cell delay variation is well approximated
by a linear function.

• For linear cell delay model, SAAW achieves about 6X
speed up compared to SPC. This is because there are
100 grids in the spatial correlation model, resulting in
37 spatial random variables11, while SAAW has only 6
random variables.

• LDAW and IW are very efficient. However, both models
have much larger error than others. This is because both
model ignore correlation. But LDAW is still more accurate
than IW without run time penalty.

Since linear cell delay model and semi-quadratic SSTA are
accurate, we assume linear cell delay and apply semi-quadratic
SSTA for all experiments. Moreover, since SAAW is more
accurate than QAW with only a small run time overhead, we
do not consider the QAW model in the following experiments.

In our experiment, we only consider big chips. As discussed
in Section III-D, when the chip size is small, the impact
on across-wafer variation at die level is not significant. In
order to verify this, we perform delay estimation of ISCAS85
benchmarks stretching on different size chips. Table III shows
the percentage error for different models with different chip
size. From the table, we find that when chip size is small,
LDAW and IW is accurate. Considering that LDAW has similar
run time but is more accurate (although when chip size is
small, the accuracy improvement is limited) compared to IW,
LDAW is always better than IW.

2) Delay of Blocks on Different Locations on a Chip: The
above experiment assumes that the benchmarks are stretched
on a chip. However, in real design, especially for big chips,
the design is separated into several blocks and each block only
occupies a small region on a chip. In this case, the critical path
is within a small region instead of spanning all over the chip.
As discussed in Section III-A, different chip locations may
have different mean and variance. Therefore, when a block
is place at different locations of a chip, its delay variation
may be different. In order to show such effect, we assume
that the ISCAS85 benchmark circuit is placed (no stretched)
in different locations of a chip: center (C), lower left corner
(LL), lower right corner (LR), upper left corner (UL), and

11There are 100 correlated spatial random variables, we apply PCA to trun-
cate some insignificant principle components and there remains 37 significant
principle components.

upper right corner (UR), and then calculate the delay variation
with location. Since ISCAS85 benchmarks are very small, the
impact of spatial variation on delay is not significant within
the circuit. Therefore, in this experiment, we only compare
two models LDAW and IW12.

Table IV compares the percentage error of LDAW and IW
for ISCAS85 benchmarks placed on different locations of a
2cm×2cm chip. From the table, we find that the error of LDAW
is within 1% error from the exact simulation and the error of
IW is up to 8%. This is because LDAW predicts different mean
and variance for different location correctly, as discussed in
Section V while IW can only give the same mean and variance
for all locations.

bench loca- Exact LDAW IW
mark tion µ σ 95% µ σ 95% µ σ 95%
c3540 C 25.4 3.29 32.2 +0.4 +0.3 +0.3 +1.1 +2.4 +2.8

LL 24.8 3.22 31.9 +0.8 +0.6 +0.3 +3.5 +1.4 +1.9
LR 26.2 3.35 33.1 -0.7 +0.6 -0.6 -1.9 -2.4 -1.8
UL 26.5 3.36 33.3 -0.2 +0.3 +0.3 -3.3 -3.0 -4.4
UR 27.1 3.41 34.1 -0.3 -0.3 -0.6 -6.1 -4.1 -5.2

c7552 C 48.2 6.37 60.2 +0.8 +0.3 +0.2 +1.0 +0.9 +0.9
LL 47.2 6.11 58.5 +0.4 +0.3 +0.7 +3.6 +4.6 +3.1
LR 49.4 6.51 62.3 -0.2 +0.3 +0.3 -0.8 -1.9 -3.0
UL 49.5 6.65 63.1 -0.2 +0.1 +0.1 -1.0 -4.0 -4.1
UR 50.1 6.91 65.3 -0.4 +0.3 +0.1 -1.0 -7.4 -7.4

TABLE IV: Delay percentage error at different locations in a
2cm×2cm chip. Note: The exact delay values are in ns.

Table V, VI, and VII shows percentage error of LDAW and
IW for ISCAS85 benchmarks placed on different locations of
a 1cm×1cm, 6mm×6mm, and 3mm×3mm chip, respectively.
From the tables, we find that the error of IW becomes smaller
when chip size is small.

bench loca- Exact LDAW IW
mark tion µ σ 95% µ σ 95% µ σ 95%
c3540 C 25.4 3.26 31.9 +0.5 +0.4 +0.2 +1.3 +1.6 +1.9

LL 25.0 3.25 31.6 +0.5 +0.3 +0.3 +2.4 +1.3 +2.4
LR 25.8 3.30 32.4 -0.4 -0.4 -0.4 -1.1 -0.9 -0.8
UL 26.1 3.32 32.6 -0.4 +0.3 -0.2 -2.0 -1.5 -1.4
UR 26.2 3.34 33.0 -0.3 -0.3 -0.6 -2.6 -1.8 -2.2

c7552 C 48.6 6.38 60.4 +0.2 -0.1 -0.2 +1.0 +0.5 +0.6
LL 48.2 6.35 60.3 -0.2 -0.2 +0.2 +1.7 +1.0 +1.1
LR 48.9 6.42 60.4 +0.2 -0.2 +0.2 -0.2 -0.7 -0.5
UL 49.1 6.43 61.0 -0.2 -0.2 -0.2 -0.9 +1.0 -1.3
UR 49.2 6.45 61.2 -0.3 -0.4 -0.5 -1.1 -1.4 -1.8

TABLE V: Delay comparison for ISCAS85 benchmark in
1cm×1cm chip. Note: The exact delay values are in ns.

bench loca- Exact LDAW IW
mark tion µ σ 95% µ σ 95% µ σ 95%
c3540 C 25.5 3.27 32.0 +0.4 +0.2 +0.3 +0.9 +0.7 +1.4

LL 25.1 3.25 31.7 +0.5 +0.3 +0.3 +2.4 +1.3 +2.4
LR 26.0 3.32 32.6 -0.4 -0.4 -0.4 -1.1 -0.9 -0.8
UL 26.2 3.34 32.8 -0.4 +0.3 -0.2 -2.0 -1.5 -1.4
UR 26.3 3.35 33.1 -0.3 -0.3 -0.6 -2.6 -1.8 -2.2

c7552 C 48.4 6.37 60.1 +0.2 -0.1 -0.2 +1.0 +0.5 +0.6
LL 48.1 6.34 59.9 -0.2 -0.2 +0.2 +1.7 +1.0 +1.1
LR 49.0 6.43 60.7 +0.2 -0.2 +0.2 -0.2 -0.7 -0.5
UL 49.3 6.46 61.3 -0.2 -0.2 -0.2 -0.9 +1.0 -1.3
UR 49.4 6.48 61.5 -0.3 -0.4 -0.5 -1.1 -1.4 -1.8

TABLE VI: Delay comparison for ISCAS85 benchmark in
6mm×6mm chip. Note: The exact delay values are in ns.

12When the circuit is in a small region, SAAW and QAW will give similar
result as LDAW, and SPC will give similar result as IW.
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Bench- delay Exact SAAW Quad SAAW S-Quad QAW Quad QAW S-Quad LDAW∗ SPC∗ IW∗

mark model µ σ 95% µ σ 95% T µ σ 95% T µ σ 95% T µ σ 95% T µ σ 95% T µ σ 95% T µ σ 95% T
c1908 Quad 17.6 2.27 24.5 -0.4 -0.9 -1.0 146 -0.9 -1.7 -1.7 27 -0.8 -1.9 -2.3 54 -1.3 -2.5 -3.2 19 -2.1 -7.5 -6.9 9 -1.5 -4.2 -3.8 1450 -2.6 -10.2 -8.9 8

Lin - - - -0.8 -1.5 -1.4 150 -1.4 -1.8 -2.0 26 -0.9 -3.6 -3.1 53 -1.2 -3.4 -3.9 18 -2.6 -7.5 -8.1 10 -2.1 -4.4 -4.0 135 -3.0 -11.5 -10.3 10
c3540 Quad 25.7 3.43 34.5 +0.4 +0.9 +0.7 212 -0.4 -1.3 -1.1 36 +0.4 -1.8 -1.2 76 -0.9 -2.1 -1.9 25 +0.4 -5.8 -4.6 13 -1.2 -4.8 -4.0 4210 -1.4 -7.3 -6.5 12

Lin - - - -0.6 -1.2 -1.2 209 -1.1 -1.9 -1.6 35 -0.9 -3.6 -3.1 77 -1.2 -5.1 -3.9 27 -1.8 -6.5 -6.0 9 -2.0 -6.5 -5.7 202 -2.9 -9.3 -8.8 10
c7552 Quad 48.9 6.47 64.7 -0.6 +0.3 +0.2 435 -0.8 -0.2 -0.9 67 -0.8 -1.6 -1.4 115 -1.6 -1.5 -1.7 48 -2.7 -3.6 -4.0 20 -1.0 -2.3 -2.9 8182 -2.1 -6.7 -6.5 22

Lin - - - -0.6 -0.5 -0.6 430 -1.5 -1.4 -1.6 101 -1.1 -1.3 -1.4 109 -1.9 -2.2 -2.8 79 -3.3 -4.6 -4.9 16 -3.3 -3.5 -4.3 433 -3.9 -8.9 -8.2 15

TABLE II: Delay percentage error for different variation models. Note: the µ, σ, and 95-percentile point for exact simulation
is in ns. Run time (T) is in ms. ∗ for LDAW, SPC, and IW, linear SSTA is applied when assuming linear cell delay model.

bench loca- Exact LDAW IW
mark tion µ σ 95% µ σ 95% µ σ 95%
c3540 C 25.6 3.28 32.2 +0.4 +0.2 +0.3 +0.5 +0.3 +0.8

LL 25.4 3.26 320 +0.5 +0.6 +0.3 +1.2 +1.0 +1.2
LR 25.8 3.31 32.4 -0.2 -0.4 -0.6 -0.5 -0.7 -0.7
UL 25.9 3.22 32.5 -0.2 +0.3 -0.2 -1.0 -1.1 -0.9
UR 26.0 3.31 32.7 -0.2 -0.2 -0.3 -0.7 -0.8 -1.1

c7552 C 48.6 6.38 60.3 +0.2 -0.3 +0.7 +0.2 +0.5 +1.1
LL 48.4 6.37 60.1 -0.2 0.1 +0.2 +0.4 +0.3 +0.7
LR 48.8 6.42 60.6 +0.2 -0.3 +0.3 -0.6 -0.9 -0.5
UL 48.9 6.43 60.9 -0.2 +0.2 -0.2 -0.4 +0.0 -0.6
UR 49.2 6.45 61.2 -0.2 -0.2 -0.3 -0.7 -0.8 -1.1

TABLE VII: Delay comparison for ISCAS85 benchmark in
3mm×3mm chip. Note: The exact delay values are in ns.

VII. APPLICATION TO STATISTICAL LEAKAGE ANALYSIS

Besides SSTA, we also apply our variation model to sta-
tistical leakage power analysis. Usually, cell leakage power
variation is modeled as exponential function of variation
sources:

Pleak = P0 · e∑ciVi (21)

where P0 is the nominal leakage power and ci’s are sensitivity
coefficients. The full chip leakage power is calculated as the
sum of leakage power of all cells:

Pchip = ∑
i∈Cell

Pi,leak (22)

where Cell is the set of all cells in the chip and Pi,leak is
leakage power of the ith cell. Since each variation source
is a quadratic function as in Equation (17), the cell leakage
power is an exponential of a quadratic function of random
variables. Considering the random variables may be non-
Gaussian, there is no closed-form equations to calculate the
full chip leakage power. Therefore, in this paper, we apply
Monte-Carlo simulation to obtain the full chip leakage power
variation.

We have implemented leakage variation analysis with dif-
ferent models in Matlab. In the experiment, we use the same
setting and comparison cases as the SSTA experiment in
Section VI. For each variation model, we use 100,000 sample
Monte-Carlo simulation to obtain the full chip leakage power
for all variation models. For the leakage analysis, we assume
that 900 copies of ISCAS benchmark circuits are placed in a
30×30 array on a 2cm×2cm chip. Table VIII compares the
leakage variation for ISCAS85 benchmarks. From the table,
we observe that:

• Error of SAAW is within 5% while error of SPC is up
to 17%. Moreover, SAAW is 7X faster than SPC because
there are fewer random variables for SAAW.

• SAAW is more accurate than QAW, but is about 50%
slower.

• Both LDAW and IW are not accurate. This is because
both these models does not consider correlation and hence
under estimate the leakage power variation.

Similar to the SSTA, for leakage variation analysis, we also
perform leakage estimation in different size chips: 1cm×1cm,
6mm×6mm, and 3mm×3mm. For the 1cm×1cm chip, we
assume that 225 copies of ISCAS85 benchmark circuits are
placed in a 15×15 array, for the 6mm×6mm chip, we assume
100 copies of ISCAS85 benchmark circuits are placed in a
10× 10 array, and for the 3mm×3mm chip, we assume 25
copies of ISCAS benchmark circuits are placed in a 5×5 array.
Table IX shows the error percentage for different models for
different size chips. From the table, we find that the error of
LDAW, SPC, and IW reduces when chip size becomes smaller
as expected.

Bench- Chip Exact SAAW LDAW SPC IW
mark size µ σ 95% µ σ 95% µ σ 95% µ σ 95% µ σ 95%
c1355 10 15.4 3.52 23.2 +1.2 +3.1 +3.0 -4.7 -10.6 -11.2 +4.8+7.5 +9.2 -5.4 -12.3 -13.8

6 5.92 1.62 10.3 +1.0 +2.7 +2.9 -3.5 -7.5 -8.3 +2.7+6.2 +6.7 -3.9 -8.1 -9.2
3 1.48 0.40 2.58 +0.6 +1.8 +2.0 -1.8 -3.5 -3.7 +1.6+2.9 +3.1 -2.0 -3.5 -4.0

c1908 10 23.9 5.7 36.1 +1.0 +2.7 +2.9 -4.2 -12.3 -14.1 +3.7+8.5 +9.2 -5.5 -13.9 -15.1
6 10.6 2.25 16.1 +0.9 +2.0 +2.1 -3.4 -7.3 -8.2 +1.9+5.6 +6.8 -3.5 -7.3 -9.0
3 2.65 0.57 4.03 +1.0 +2.2 +2.2 -1.3 -3.5 -4.0 +1.2+2.9 +3.1 -1.9 -4.0 -4.4

c2670 10 32.8 5.72 45.2 +1.2 +2.8 +2.9 -5.3 -11.1 -14.0 +4.2+8.2 +9.1 -6.5 -12.3 -17.1
6 14.6 2.55 20.1 +1.0 +1.8 +1.9 -3.5 -6.2 -7.1 +2.4+4.3 +6.0 -4.3 -7.1 -8.3
3 3.65 0.65 5.03 +0.8 +1.4 +1.7 -1.9 -3.2 -3.7 +2.0+3.6 +3.5 -2.2 -4.5 -5.1

c3540 10 50.5 9.37 71.1 +1.2 +1.8 +2.1 -3.9 -7.8 -10.5 +2.9+5.3 +6.2 -5.0 -9.6 -14.5
6 22.3 4.16 30.2 +1.0 +1.4 +1.7 -2.3 -4.5 -5.5 +1.8+3.5 +3.6 -3.4 -6.1 -8.5
3 5.58 1.05 7.55 +0.9 +1.2 +1.4 -1.2 -3.1 -3.0 +1.0+1.4 +2.0 -1.4 -3.4 -3.9

c7552 10 102 18.5 141 +1.4 +2.3 +2.4 -4.6 -7.3 -9.9 +4.0+6.2 +8.6 -6.3 -8.2 -12.5
6 45.0 8.19 6.26 +1.2 +1.9 +1.9 -3.0 -5.2 -7.3 +2.7+4.2 +5.1 -3.5 -6.0 -8.2
3 11.4 2.06 1.58 +0.9 +0.7 +1.3 -1.2 -1.8 -2.0 +1.5+1.6 +1.6 -2.3 -2.9 -3.4

TABLE IX: Leakage error for different variation model on
different size chips. Note: exact values are in mW .

VIII. SUMMARY OF DIFFERENT MODELS

In the previous sections, we compared the accuracy and effi-
ciency of different models. Table X summarizes the advantages
and disadvantages of our proposed spatial variation models
(SAAW, QAW, and LDAW), and the traditional variation models
(SPC and IW). Our proposed across-wafer variation models
exactly model the across-wafer variation and the number of
random variables does not depend on chip size. Therefore they
are accurate and efficient. SAAW has six random variables
and it can be applied to any across-wafer variation models.
QAW has four random variables, hence it is more efficient than
SAAW. However, it can be applied only when the across-wafer
variation is a perfect parabola. LDAW is the most efficient,
ignores correlation and only works for small chips. Moreover,
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Bench- Exact SAAW QAW LDAW SPC IW
mark µ σ 95% µ σ 95% T µ σ 95% T µ σ 95% T µ σ 95% T µ σ 95% T
c1355 62.1 14.5 92.5 +1.5 +3.3 +3.2 16.3 +3.4 +6.5 +5.4 9.8 -5.5 -15.6 -16.9 2.5 +5.3 +10.4 +12.2 123 -7.9 -19.6 -20.9 2.7
c1908 95.6 20.3 144 +0.9 +4.4 +3.7 15.5 +2.3 +7.8 +6.3 9.7 -6.5 -17.8 -19.6 2.6 +5.7 +14.8 +14.3 122 -8.6 -19.2 -23.5 2.9
c2670 131 22.9 181 +1.4 +2.7 +1.7 15.7 +2.9 +8.5 +4.7 9.5 -7.9 -16.9 -22.0 2.8 +6.8 +12.2 +9.4 122 -9.2 -20.3 -25.5 2.4
c3540 201 37.4 282 +1.5 +2.3 +1.8 15.4 +3.1 +5.8 +4.4 10.4 -5.6 -16.5 -20.2 2.6 +4.9 +11.2 +8.2 123 -8.3 -18.2 -23.5 2.7
c7552 403 73.2 562 +1.6 +2.7 +1.9 15.3 +3.7 +6.0 +5.0 10.1 -7.3 -12.6 -16.9 2.6 +7.1 +13.8 +10.7 122 -9.2 -20.3 -24.5 2.5

TABLE VIII: Leakage error percentage for different models in 2cm×2cm chip. Note: The exact values are in mW . Run time
(T) is in s.

SAAW and QAW need to know the across-wafer variation.
Therefore, one needs to track the die locations within the wafer
to build up the model.

On the other hand, the traditional variation models as well as
LDAW) only require measurement on a die without tracking
die locations. Therefore, they are somewhat easier to build.
However, such models are not accurate compared to our
proposed models. Moreover, for SPC, since the number of
random variables depends on number of grids, it is not as
efficient as our proposed models.

IX. ARBITRARY ACROSS-WAFER VARIATION FUNCTION

In this paper, we assume across-wafer variation to be a
parabola. In most cases, our proposed SAAW model is good
enough to model the across-wafer variation at die level.
However, there are some special cases where the across wafer
variation is an arbitrary function as follows:

vp = f (xw,yw)+vd−d +vr

In this case, the statistical characteristics such as mean,
variance, covariance, and correlation coefficient depend on
the function f . In most of the cases, we may not have the
closed form formulae to calculate the statistical characteristics.
However, we may still apply similar method as in Section III to
model the across-wafer location for a die as random variables:

vp(x,y) = f (xc +x,yc +y)+vd−d +vr

When we know the function f , either in closed form or
as a numerical lookup table, we may perform Monte-Carlo
simulation on the above formula for statistical analysis. In
this case, since there is no closed-form, we cannot perform
analytical statistical analysis, such as SSTA or statistical
leakage analysis.

X. CONCLUSION

In this paper, we analytically study the impact of systematic
across-wafer variation on within-die spatial variation. For
simplicity, we first assume that across-wafer variation is a
quadratic function. We first observe that different locations
on a chip may have different means and variances and such
difference becomes more significant when chip size increases.
Secondly, we find that spatial correlation is visible only when
the across wafer systematic is not taken into account. When
it is taken into account, we show that within die random
variability does not exhibit a strong or useful pattern of spatial
correlation. We exploited these observations in order to create
a much more accurate and efficient model for performance
variability prediction. Thirdly, we find that the within-die

spatial variation is NOT independent of the inter-die variation.
However, when chip size is small enough, such dependence
is weak and the across-wafer variation can be lumped in to
inter-die variation. In this case, the two level inter-/within-die
variation model is still accurate. We further consider the case
when the across-wafer variation is not with a perfect quadratic
function. Based on the above analysis, we have proposed
accurate and efficient variation models for deterministic across
wafer variation. We further apply our new variation models to
two applications: statistical static timing analysis and statistical
leakage analysis. Experimental result shows that compared to
the distance-based spatial variation model, our new model
reduces the error from 6.5% to 2% for statistical timing
analysis and reduces error from 17% to 5% for statistical
leakage analysis. Our model also improves the run time by 6X
for statistical timing analysis and by 7X for statistical leakage
analysis.

APPENDIX

A. Moments of xc and yc

2nd and 4th order moments of xc and yc:

E[x2
c ] = E[ρ2]E[cos2 θ] =

Z rw

0
ρ2 ·2ρ/r2

wdρ
Z 2π

0
cos2(θ)/2πdθ

= (ρ4/2r2
w)|rw

0 · (θ+ sin(θ)cos(θ))|2π
0 /4π

= r2
w/4

E[x4
c ] = E[ρ4]E[cos4 θ] =

Z rw

0
ρ4 ·2ρ/r2

wdρ
Z 2π

0
cos4(θ)/2πdθ

= (ρ6/3r2
w)|rw

0 · (12θ+8sin(2θ)+ sin(4θ))|2π
0 /64π

= r4
w/8

Since xc and yc are symmetric, we have:
E[y2

c ] = E[x2
c ] = r2

w/4
E[y4

c ] = E[x4
c ] = r4

w/8 �

Joint moment of xc and yc:

E[x2
c y2

c ] = E[ρ4]E[cos2 θ sin2 θ]

=

Z rw

0
ρ4 ·2ρ/r2

wdρ
Z 2π

0
cos2(θ)sin2(θ)/2πdθ

= (ρ6/3r2
w)|rw

0 · (4θ− sin(4θ))|2π
0 /64π

= r4
w/24 �

B. Mean and variance of vp

We first express vaw as:
vaw(xc + x′ ,yc + y′)= a(xc + x′)2 +b(yc + y′)2 + c(xc + x′)+d(yc + y′)

= a(xc + x′′
√

b/a)2 + b(yc + y′′
√

a/b)2 − c2/4a−d2/4b
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Model Type Advantages Disadvantages Models # of RVs Case to Apply
Across- Accurate Need die tracking SAAW Equ(17) 6 large chip, non-parabola across-wafer variation
wafer Efficient to extract QAW Equ (5) 4 large chip, parabola across-wafer variation

models LDAW Equ (18) 2 small chip
Traditional Easy to Not SPC Depend on # of grids large chip

models extract accurate IW 2 small chip

TABLE X: Summary of different variation models.

Mean of vp: We first compute the mean of vaw as follows,
notice that we only need to consider even order moments and
joint moments of xc and yc as discussed in Section III:

µvaw = E[vaw(xc + x′ ,yc + y′)]

= E[a(xc + x′′
√

b/a)2 +b(yc + y′′
√

a/b)2]− c2/4a−d2/4b

= aE[x2
c ]+bE[y2

c ]+bx′′2 +ay′′2 − c2/4a−d2/4b

= r2
w(a+b)/4− c2/4a−d2/4b +bx′′2 +ay′′2

= k0 + r2
dµ

Since we assume that vd−d and vr are with zero mean, mean
of vp is:

µvp = µaw + µd−d +µr = k0 + r2
dµ �

Variance of vp: We first compute the variance of vaw:
σ2

vaw = E[v2
aw(xc + x′,yc + y′)]−E2[vaw(xc + x′ ,yc + y′)]

= a2E[x4
c ]+4abx′′2E[x2

c ]+b2E[y4
c ]+4aby′′2E[y2

c ]+2abE[x2
c y2

c ]− (aE[x2
c ]+ bE[y2

c ])
2

= r4
w(a2 +b2)/16− r4

wab/24+abr2
w(x′′2 + y′′2)

Then the variance of vp is:
σ2

vp = σ2
vaw +σ2

vd−d
+σ2

vr

= r4
w(a2 +b2)/16− r4

wab/24 +σ2
d−d +σ2

r + abr2
w(x′′2 + y′′2)

= k1 + σ2
r +abr2

wr2
dσ �

C. Covariance and correlation coefficient between vp(x1,y1)
and vp(x2,y2)

Covariance between vp(x1,y1) and vp(x2,y2): We fist
compute the covariance between vaw(x1,y1) and vaw(x2,y2):

covaw = E[vaw(xc + x′1,yc + y′1) · vaw(xc + x′2,yc + y′2)]−
E[vaw(xc + x′1,yc + y′1)] ·E[vaw(xc + x′2,yc + y′2)]

= a2E[x4
c ]+ 4abx′′1 y′′2E[x2

c ]+ b2E[y4
c ]+4abx′′2 y′′1E[y2

c ]+

2abE[x2
c y2

c ]− (aE[x2
c ]+bE[y2

c ])
2

= r4
w(a2 + b2)/16− r4

wab/24+ abr2
w(x′′1y′′2 + x′′2y′′1)

Since all devices on the same chip share the same inter-die
variation and within-die random variation is independent for
different devices, then the covariance between vp(x1,y1) and
vp(x2,y2) is:

cov = covaw +σ2
d−d

= r4
w(a2 +b2)/16− r4

wab/24+σ2
d−d + abr2

w(x′′1y′′2 + x′′2y′′1)

= k1 +abr2
wα �

Correlation coefficient vp(x1,y1) and vp(x2,y2):

ρ =
cov

σ1σ2
=

√

cov2

σ2
1σ2

2

=

√

(k1 + abr2
wα)2

(k1 +σ2
r +abr2

wr2
dσ1)(k1 +σ2

r + abr2
wr2

dσ2)

=

√

(k1/(abr2
w)+ α)2

(k1/(abr2
w)+ σ2

r /(abr2
w)+ r2

dσ1)(k1/(abr2
w)+σ2

r (abr2
w)+ r2

dσ2)

=

√

(k2 +α)2

(k2 +β+ r2
dσ1)(k2 +β+ r2

dσ2)

=

√

k2
2 +2k2α+α2

(k2 +β)2 +(r2
dσ1 + r2

dσ2)(k2 +β)+ r2
dσ1r2

dσ2
�

D. Upper bound and lower bound of ρ
Upper bound of ρ:

ρ =

√

k2
2 +2k2α+ α2

(k2 + β)2 +(r2
dσ1 + r2

dσ2)(k2 +β)+ r2
dσ1r2

dσ2
(23)

=

√

1− 2k2β+β2 + δ2k2 +(x′′1y′′2 − x′′2y′′1)2 +(r2
dσ1 + r2

dσ1)β
(k2 +β)2 +(r2

dσ1 + r2
dσ2)(k2 +β)+ r2

dσ1r2
dσ2

In the above equation, ρ is represented in a form of:
√

1−ζ/η. To obtain the upper bound, we increase the de-
nominator η and reduce numerator ζ. Considering that:

(x′′1y′′2 − x′′2y′′1)2 ≥ 0
r2

dσ1 + r2
dσ2 = x′′21 + y′′21 + x′′22 + y′′22

≥ ((x′′1 − x′′2)2 +(y′′1 − y′′2)2)/2
= δ2/2

−l′′x /2 ≤ x′′ ≤ l′′x − l′′y /2 ≤ y′′ ≤ l′′y

⇒ r2
dσ = x′′2 + y′′2 ≤ l′′2x /4+ l′′2y /4 = r′′2m

⇒ r2
dσ1 + r2

dσ2 ≤ 2r′′2m r2
dσ1r2

dσ2 ≤ r′′4m

Replacing (x′′1y′′2 −x′′2y′′1)
2 with 0 and (r2

dσ1 + r2
dσ2) with δ2/2

in the numerator, and replacing (r2
dσ1 + r2

dσ2) with 2r′′2m and
r2

dσ1r2
dσ2 with r′′4m in the denominator, we have:

ρ ≤
√

1− δ2k2 + δ2β/2+ 2βk2 + β2

(k2 +β)2 +2r′′2m (k2 +β)+ r′′4m
�

Lower bound of ρ: ρ is represented in a form of
√

1−ζ/η
as shown in Equation (23). Consider that ζ/η is between 0 and
1, increasing ζ and η with the same value will increase ζ/η,
then reduces ρ. Therefore, to obtain the lower bound, we first
add a non-negative value (r2

dσ1 − r2
dσ1)

2/4 to both numerator
and denominator:

ρ≥
√

1− 2k2β+β2 +δ2k2 +(x′′1y′′2 − x′′2y′′1)2 +(r2
dσ1 + r2

dσ1)β+(r2
dσ1 − r2

dσ1)
2/4

(k2 +β)2 +(r2
dσ1 + r2

dσ2)(k2 +β)+ r2
dσ1r2

dσ2 +(r2
dσ1 − r2

dσ1)
2/4

=

√

1− 2k2β+β2 +δ2k2 +(x′′1y′′2 − x′′2y′′1)2 +(r2
dσ1 + r2

dσ1)β+(r2
dσ1 − r2

dσ1)
2/4

(k2 + β)2 +(r2
dσ1 + r2

dσ2)(k2 +β)+(r2
dσ1 + r2

dσ1)
2/4

=

√

1− 2k2β+β2 +δ2k2 +(r2
dσ1 + r2

dσ1 − δ2/2)2/4+3δ4/16+(r2
dσ1 + r2

dσ1)β
(k2 +β)2 +(r2

dσ1 + r2
dσ2)(k2 + β)+(r2

dσ1 + r2
dσ1)/4

Considering that:
2r′′2m ≥ r2

dσ1 + r2
dσ2 ≥ δ2/2 ⇒ (2r′′2m − δ2/2)2 ≥ (r2

dσ1 + r2
dσ2 −δ2/2)2

Similar to the upper bound proof, replacing (r2
dσ1 + r2

dσ2 −
δ2/2)2 with (2r′′2m − δ2/2)2 and (r2

dσ1 + r2
dσ2) with 2r′′2m in

the numerator, and replacing (r2
dσ1 + r2

dσ2) with δ2/2 in the
denominator, we have:

ρ≥
√

1− 2k2β+ β2 + δ2k2 +(2r′′2m −δ2/2)2/4+3δ4/16+ 2r′′2m β
(k2 +β)2 + δ2(k2 +β)/2+ δ4/16

=

√

1− δ2(k2 − r′′2m /2 +δ2/4)+β(β+2k2 +2r′′2m )+ r′′4m

(k2 +β)2 + δ2(k2 +β)/2+ δ4/16 �

Range of ρ: To obtain the range of ρ, similar to the proof
of lower bound, we add a non-negative value 2r′′2m (k2 +β)/2+
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r′′4m −δ2(k2 +β)/2−δ4/16 to both numerator and denominator
of the lower bound to obtain a looser lower bound:
ρl ≥ρ′

l

=

√

1− δ2(k2/2− r′′2m /2+3δ2/16−β/2)+β(β+ 2k2 +2r′′2m )+2r′′4m +2r′′2m (k2 + β)/2
(k2 +β)2 + 2r′′2m (k2 +β)+ r′′4m

Then, the range of ρ can be calculated as:

ρu −ρl=
√

(ρu −ρl)2 ≤
√

(ρu −ρl)(ρu +ρl) =
√

ρ2
u −ρ2

l

≤
√

ρ2
u −ρ′2

l =

√

k2(2r′′2m −δ2/2)+ β(4r′′2m −δ2)+3δ4/16+ 2r′′4m − δ2r′′2m /2
(k2 +β+ r′′2m )2

≤
√

2k2r′′2m +4βr′′2m +5r′′4m

(k2 +β+ r′′2m )2

Since usually the wafer size is much larger than the die size,
that is k2 � r′′2m , then 2k2r′′2m � r′′4m . Therefore, we have:

ρu −ρl≤
√

2k2r′′2m +4βr′′2m +2k2r′′2m +4r′′4m

(k2 + β+ r′′2m )2 =

√

4r′′2m

k2 + β+ r′′2m
�

E. Computation of vg and vs

Computation of vg:

vg=
1

lx ly

ZZ

|x|<lx/2
|y|<ly/2

vp(x,y)dxdy

=ax2
c +by2

c + cxc + dyc + vd−d +

1
lx ly

ZZ

|x|<lx/2
|y|<ly/2

(

2(axc cosω−byc sinω)x+2(axc sinω+byc cosω)y+(acos2 ω+b sin2 ω)x2 +

(asin2 ω+bcos2 ω)x2 +2(a−b)cosω sinωxy+ vr(x,y)
)

dxdy

Since the integration region is symmetric, the integration of
odd order moments and joint moments of x and y is zero.
Moreover,notice that vr(x,y) is zero mean. Then, we have:

vg=ax2
c +by2

c + cxc + dyc + vd−d +((acos2 ω+b sin2 ω)l2
x +(a sin2 ω+bcos2 ω)l2

y )/12
=ax2

c +by2
c + cxc + dyc + vd−d + cos2 ω(al2

x +bl2
y )/12+ sin2 ω(bl2

x +al2
y )/12

=ax2
c +by2

c + cxc + dyc + vd−d + s0 �

Computation of vs:

vs=vaw(x,y)+ vd−d − vg

=a(xc + x′)2 + b(yc + y′)2 + c(xc + x′)+d(yc + y′)+ vd−d −
(ax2

c +by2
c + cxc +dyc + vd−d + s0)

=2ax′xc +2by′yc + ax′2 +by′2 + cx′ +dy′ − s0

=2ax′xc +2by′yc + bx′′2 + ay′′2 − s0 − c2/4a− d2/4b

=r2
dµ +2ax′xc +2by′yc − s1 �
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