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Abstract—In response to the increasing variations in
integrated-circuit manufacturing, the current trend is to create
designs that take these variations into account statistically. In
this paper, we quantify the difference between the statistical and
deterministic optima of leakage power while making no assump-
tions about the delay model. We develop a framework for deriving
a theoretical upper bound on the suboptimality that is incurred
by using the deterministic optimum as an approximation for the
statistical optimum. We show that for the mean power measure,
the deterministic optima is an excellent approximation, and for
the mean plus standard deviation measures, the optimality gap
increases as the amount of inter-die variation grows, for a suite of
benchmark circuits in a 45 nm technology. For large variations,
we show that there are excellent linear approximations that can
be used to approximate the effects of variation. Therefore, the
need to develop special statistical power optimization algorithms
is questionable.

Index Terms—Algorithms, gate sizing, optimization, physical
design, statistical power.

I. Introduction

STATISTICAL optimization via circuit sizing has been an
active research topic over the last decade. The realization

was that the traditional corner-based optimization [2]) may be
too pessimistic [3], and the trend was to incorporate more and
more statistical data into the optimization process.

There are many papers that explore the benefits of adding
statistical delay data into the optimization process [4], [5]–
[10], and there are also a number of papers that use a statistical
power measure [7], [11]–[15]. However, to the best of our
knowledge, there is no publication that shows the benefits of
using the statistical power measure alone.

This brings up an interesting question: how much of the
improvement should be attributed to the use of a statistical
delay model and how much should be attributed to the use of
a statistical power model? This question is part of a growing
skepticism over the benefits of statistical optimization, and
whether they outweigh its costs. Adopting statistical analyses
and optimization involve considerable overhead in terms of the
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engineering effort involved as well as the turn-around time. It
requires an almost complete overhaul of process modeling,
circuit simulation, and also a modification to the algorithms
for statistical optimization. It is, therefore, important to do
a thorough cost-benefit analysis of statistical optimization
compared to conventional deterministic optimization methods.

The related question of statistical delay optimization vs.
deterministic delay optimization has already been studied
[16]–[18]. In [16], the claim is made that corner or scenario-
based optimization is still the most practical because of the
following:

1) intra-die effects are still small;
2) there is usually not enough information to do a full-

blown statistical analysis;
3) the gains of using a full-blown statistical analysis are

small.

In [18], the authors quantify the difference between corner-
based methodologies and full statistical optimization methods.
They find that with a 5% variation in stage delay, the full-
blown statistical analysis and optimization gives a mere 2%
improvement, and a 12% variation gives a 6% improvement
over a statistical worst-case corner that employs a guardband.
In [17], the tradeoff between yield and circuit delay, and
the improvements in slack are examined. Significant improve-
ments are shown for a set of benchmark circuits.

In this paper, we focus on the amount of improvement that
can be made by using a statistical power measure as an objec-
tive for gate sizing, leff and Vth assignment, when compared
to the deterministic power measure. The key contributions of
the paper are as follows.

1) We develop a mathematical programming-based frame-
work to estimate the suboptimality gap between different
power measures.

2) For the common case of discrete gate sizing, we give an
intuitive explanation of the suboptimality using solution
rank orders.

3) We show that for certain sizes of variations, the deter-
ministic power measure is a provably good approximation
for the statistical power measures, which means that the
deterministic power measure can be used in place of the
statistical power measures with very similar optimization
results.

4) We present a simplified measure of statistical power
that can be used as a proxy for full statistical power
optimization.

It is important to mention that the analysis in this paper
is independent of the model for the delay. This paper does
not give judgments on the difference between statistical and
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TABLE I

Notations

Symbol Meaning
wi, �w Width of gate i/vector of gate widths
li,�l Length of gate i/vector of gate lengths
vthi

, �vth Threshold voltage of gate i/vector of threshold voltages

�z Adjusted gate widths zi = wie
αl2i +βli e

−γvthi

Lw Within-die gate length variation random variable
Ld Die-to-die gate length variation random variable
Vthw Within-die vth variation random variable
Vthd Die-to-die vth variation random variable

TABLE II

Measures of Statistical Leakage Power

Measure Symbol Expression
Deterministic pd (·) ∑

κi

Mean pm(·) ∑
κi exp((λ2

w(i)σ
2
Lw(i)

+ λ2
d(i)σ

2
Ld

+ ...

τ2
w(i)σ

2
Vthw(i)

+ τ2
d(i)σ

2
Vthd

)/2)

Mean + 3σ pm3σ (·) pm(·) + 3pσ (·)
99.87% – pq(·) ∑

κi exp(3(λd(i)σLd + τd(i)σVthd
))

quantile1

Standard pσ (·) [see (4)]
deviation, σ

1For inter-die variation only.

deterministic delay optimization, or the difference between
static and statistical static timing analysis. The delay is only
used to generate examples for the suboptimality bounds.

The approach in this paper intends to remove the depen-
dence on timing feasibility, which is a consideration that
makes the problem of finding bounds difficult. To remove this
dependence, we rely on the structure of the power objective
to create a relaxation of the timing feasible region. This
can be done because a power optimum inherently contains
information about the timing feasible region, as this optimum
is the minimum power point in the region. Once this is done,
the relaxation can be used to find bounds without any further
dependence on the timing feasible region.

The rest of the paper is organized as follows. The following
section outlines the leakage power measures and models used
in this paper. Section III describes the test circuits that are
used in this paper. Section IV gives an intuitive explanation
of the suboptimality gap using rank orders. Section V develops
the mathematical framework to estimate the suboptimality gap
incurred from using the deterministic power measure in place
of the statistical power measures. Section VI introduces a
simplified measure of statistical power that can be used as
a proxy for full statistical power optimization. The paper is
summarized in Section VII.

II. Statistical Power

In this paper, uppercase bold symbols represent random
variables (e.g., X) and uppercase non-bold symbols represent
commonly used constants (e.g., Vdd). Vector quantities will
have arrows above them (e.g., �x) and scalar quantities will
be lowercase non-bold (e.g., p). The principal symbols are
summarized in Table I.

This paper examines the benefits of using the statistical
power as an objective to the problem as follows:

minimize Statistical Power(w, l, vth)
subject to Delay(w, l, vth) ≤ Tmax

(1)

compared to using the deterministic power as the objective.
In this section, we derive expressions for statistical leakage
power, review its mathematical properties, and discuss how
the different properties of the statistical power would affect
the resulting optima.

A. Variations

In this paper, the gate length and the threshold voltage
are assumed to be the sources of power variations. These
variations are assumed to be Gaussian in both the length
and the threshold voltage. The standard deviations in vth are
4.714% in both die-to-die (dtd) and within-die cases (wid);
the within-die variations are uncorrelated and they affect each
gate independently. Three different standard deviations for the
length are used in this paper:

1) 1 nm (dtd) and 0.5 nm (wid);
2) 1.6 nm (dtd) and 1.15 nm (wid);
3) 2 nm (dtd) and 0 nm (wid).

These are representative of the variations for 45 nm given
in the International Technology Roadmap for Semiconductors
Roadmap 2007.

The effects of the variation are simulated for the gates in
the Nangate Open Cell Library v1.2 [19] using predictive
technology model 45 nm and HSPICE 2007.1 We assumed that
the input combinations to each gate are equi-probable and the
measured leakage power is the average power over all the input
combinations.

B. Models

The leakage power is modeled as a log-normal random
variable as follows [20]:

PL =
∑

κie
λd(i)�Ld+λw(i)�Lw(i)eτd(i)�Vthd+τw(i)�Vthw(i) (2)

=
∑

PLi

where κi is the nominal power for the gate i; �Lw(i), �Ld,
�Vthw(i), and �Vthd are independent Gaussian random vari-
ables; and λd(i), λw(i), τd(i), and τw(i) are coefficients that are
used to fit the mean and the standard deviation of the SPICE-
simulated data. In (2) above, the variations in the threshold
voltage and the gate length are assumed to be Gaussian, and
the relationship between these parameters to the leakage power
is exponential.

To model the change in the leakage as a function of the
size, threshold voltage and the length (see Section V), we use

1For reference, the channel length used in the HSPICE models was 50 nm.
Also, note that this simulation tool is different from the one in [1]. It was
changed because the version of the tool in [1] could not simulate the effects
of vth variation.
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the approximation as follows:

κi ≈ κ′
iwie

αil
2
i +βili e−γivthi (3)

= κ′
izi

where κ′
i, αi, βi, and γi are parameters that are fitted to the

data. The variable zi denotes the “adjusted gate width,” which
incorporates the effect of w, l, and vth on the power into an
equivalent gate width. The z variables cannot be re-mapped
to a unique w, l, and vth, but this is not a problem, as z is
used only to compute lower bounds and is not used for design
purposes. The nonlinear mapping from w, l, and vth to z has
the effect of shifting the nonlinear relation of pd on vth to a
linear one in z (which is, in turn, nonlinear in vth), creating a
useful abstraction for computing bounds.

C. Measures of Statistical Leakage Power

In this paper, we will cover the statistical measures summa-
rized in Table II: the deterministic, mean, mean + 3σ, and the
quantile power measures. The mean + 3σ measure refers to
the mean + 3σ of the total leakage power of a design. When
there is no within-die variation, the 99.87% quantile measure,
which corresponds to the three sigma quantile of a Gaussian
distribution, will be used as well.

In the table, pσ(·) is the measure of the standard deviation
of the power, which can be expressed as follows:

p2
σ =

∑
i

∑
j

E
[
PLi

PLj

] − E
[
PLi

]
E

[
PLj

]
. (4)

The quantile measure pq is used only when inter-die vari-
ation is present. When intra-die, or within-die, variation is
present, there is no closed-form expression for pq.

The power measures above have useful mathematical prop-
erties. pd , pm, and pq are all linear in κi, and are thus concave
and convex in zi. pm3σ is convex in �z.

D. Why Do We Expect the Optimizations to be Similar?

The statistical power and deterministic power are not sim-
ilar. For example, the statistical leakage power can be larger
than the deterministic leakage by 10–500%. It is natural to
expect that the influence of these measures will also be differ-
ent, and that optimizing statistical power will yield different
results compared to deterministic power.

In optimization, however, it is not the magnitude of the
power but the relative magnitude which matters. If the sta-
tistical power is a scaled version of the deterministic power,
then the optima will be the same. To see this mathematically,
we examine the optimality condition for an optimum x	: x	 is
optimal if for any feasible x	 + �x

f (x	) ≤ f (x	 + �x). (5)

This condition will also hold for any positive scaling of f (x).
Although the values of the statistical power and the deter-

ministic powers may be quite different, the trends are similar;
the mean power is larger than the deterministic power for all
of the gates, as is the quantile power, and so on. For example,

Fig. 1. Power sensitivities for the different gates in the Nangate Library.
The power vs. size sensitivities of the deterministic power measure (∂pd/∂z),
the mean power measure (∂pm/∂z), and the quantile measure (∂pq/∂z) for
σL = 2 nm (dtd)/0 nm (wid) and σVth = 4.7% (dtd)/0% (wid) are shown. The
sensitivities are sorted by the pd . Notice that a sorting by pm would be very
similar, while a sort by pq would be significantly different.

Fig. 2. Percentage increase in the quantile power vs. size sensitivity (∂pq/∂z)
as σL = 1 nm increases to 2 nm is shown. The increase in the sensitivity is
not seen equally for all the gates.

consider Fig. 1, which shows the power vs. size sensitivities.
The sensitivities for the different gates follow the same trend.
This suggests that the optimizations will be similar as well.

To see why this happens for statistical power, we take the
quantile power expression with inter-die length variation as an
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Fig. 3. Visual representation of the power vector for deterministic power
and statistical power. Each axis represents the power for a different gate type.
The vectors have different magnitude and direction, but the angle � between
them is very small.

example

pq =
∑

κie
3λd(i)σ�Ld . (6)

If the λd(i) are all equal, then the effect of variation will be
seen equally for each gate and the objective will be a scaled
version of the deterministic power as follows:

pq =
∑

κie
3λd(i)σ�Ld (7)

= e3λdσ�Ld

∑
κi

= e3λdσ�Ld pd.

In actuality, the values of e3λd(i)σ�Ldtd are different for differ-
ent gates. Fig. 2 plots the percentage increase in the power
vs. size sensitivities, ∂pq/∂z, from σL = 1 nm to 2 nm. The
percentage increase is not uniform across the different gates,
indicating that the λd(i) are not equal. The larger variations
thus magnify the discrepancies between the different gates.

Surprisingly, the effect of the scaling leaves the orienta-
tion of the power sensitivities mostly intact. The magnitude
changes significantly, but the direction of the vector remains
similar. We can plot a power vector where each gate is a
separate dimension, and the magnitude along the dimension is
the leakage power for that gate. We can compute the difference
in the angle of the corresponding statistical power vector and
the deterministic power vector, θ, as shown in Fig. 3. For
σ�L = 2 nm (dtd)/0 nm (wid) and σ�Vth = 4.7% (dtd and
wid), the difference between the vectors is very small, at
� ≈ 1 deg. In Section V, we will see that the effects may
not be large enough to make a significant difference in the
optimized powers.

E. Increasing Variations

It is also interesting to examine how the sensitivities change
as the variations increase. We can use (2) for a first-order
analysis of how the sensitivities will change as the variations
change.

We reconsider the case with inter-die length variation only.
Doubling the variations results in the following:

pq =
∑

κie
3λd(i)(2σ�Ld ) (8)

=
∑

(e3λd(i)σ�Ld )2κi.

TABLE III

Number of Gates in Test Circuits and the Corresponding Delay

Target in Parenthesis (in ps)

v1 v2 v3 v4
c432 118 (431) 137 (494) 93 (557) 81 (619)
c499 586 (477) 322 (612) 189 (746) 174 (881)
c880 346 (408) 237 (562) 212 (716) 176 (871)
c1355 598 (473) 356 (599) 222 (724) 174 (850)
c1908 676 (802) 571 (863) 533 (923) 528 (990)
c2670 1041 (610) 791 (787) 748 (964) 723 (1140)
c3540 1615 (1096) 1359 (1289) 1107 (1482) 1046 (1675)
c5315 2019 (1090) 1867 (1226) 1766 (1362) 1717 (1498)
c6288 3089 (1845) 1656 (4127) 1780 (6410) 1189 (8692)
c7552 2894 (866) 2640 (977) 2481 (1089) 2425 (1200)
alu 12 598 (896) 5190 (8460) 5271 (16 025) 3237 (23 652)

TABLE IV

Gate Sizes in the Nangate Library

Gates Sizes
HA, FA, OAI33 1x
MUX2, XNOR2, XOR2 1x–2x
AND2/3/4, AOI211/21/221/222/22, 1x–4x
NAND2/3/4, NOR2/3/4,
OAI211/21/221/222/22, OR2/3/4
BUF, INV 1x–32x

This will increase the difference in the scaling factors between
gates. This is seen in Fig. 2, where the increase in the
variations changes the sensitivities for each gate. Notice that
the sensitivities do not increase uniformly for each gate. The
growth of the sensitivities depends on the topology of the
design, and how much effect the variations will have on
the gate.

III. Circuit Examples

In this paper, we use the International Symposium on
Circuits and Systems ’85 benchmarks and a 128-bit arithmetic
logic unit (ALU) [21] as examples. The Verilog register-
transfer level (RTL) of these benchmarks are synthesized to
four different target speeds using the Encounter RTL com-
piler [22] to the the Nangate Open Cell Library v1.2 [19],
which uses the 45 nm technology node and has the sizes given
in Table IV. The synthesized speeds are the maximum speed,
the minimum speed, and two speeds in between. The fastest
speed is labeled v1 and the slower synthesized speeds have
higher cardinality (e.g., the slowest speed is v4). A table listing
the number of gates in each design and the target delays is
given in Table III. The tighter delay constraints result in larger
designs, as these designs utilize more buffering to meet the
delay constraint. These larger synthesized designs are also
more interesting from a sizing point of view, as the space
of possible solutions is larger.

All the optimization routines in this paper are solved using
the MATLAB Optimization Toolbox [23].

IV. Comparing Randomly Generated

Configurations

The major difficultly in estimating the difference between
statistical and deterministic optimization is due to the difficulty
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TABLE V

Rank Correlation τ

pm pm3σ

v1 v2 v3 v4 v1 v2 v3 v4
c432 0.989 0.986 0.985 0.985 0.653 0.591 0.603 0.604
c499 0.990 0.988 0.990 0.990 0.685 0.605 0.516 0.524
c880 0.989 0.989 0.989 0.987 0.658 0.651 0.649 0.585
c1355 0.995 0.987 0.987 0.991 0.684 0.603 0.504 0.537
c1908 0.988 0.987 0.987 0.987 0.671 0.624 0.608 0.606
c2670 0.991 0.991 0.991 0.992 0.712 0.647 0.646 0.651
c3540 0.991 0.990 0.989 0.989 0.702 0.668 0.619 0.602
c5315 0.991 0.991 0.991 0.991 0.675 0.659 0.641 0.634
c6288 0.989 0.999 0.999 0.999 0.680 0.894 0.913 0.922
c7552 0.990 0.990 0.990 0.990 0.686 0.660 0.637 0.642
ALU 0.997 0.999 0.999 0.999 0.894 0.899 0.885 0.905

in gate sizing itself. With discrete sizes (e.g., �w ∈ {1, 2, 4, 8}n
and �l ∈ {1, 2, 3}n), the problem is NP-complete [24] and it is
tremendously difficult to find an optimal solution. However,
there is some intuition that can be gained by examining the
statistical and deterministic powers of points even if timing
feasibility is ignored. Namely, we can consider: 1) how does
a sorting of configurations (w, l, and vth assignments) change
when ordered statistically, instead of deterministically, and
2) how does the statistical power vary for configurations with
the same deterministic power?

As an experiment, the deterministic and statistical powers
were computed for 10 000 randomly generated widths, lengths,
and vth, for each design. Three different vth values were used
(low, high, and normal), and four different gate lengths were
used ({+0 nm, +1 nm, +2 nm, +3 nm}). In these examples, we
assumed that σL = 2 nm(dtd)/0 nm(wid), and σVth = 4.7%
(dtd & wid).

Fig. 4 plots the deterministic power vs. the statistical power
for the c1355 v2 circuit. From the plot, it is clear that the
pd and the pm measures correlate more than the pd and the
pm3σ . We can measure the correlation between the ranks using
Kendall’s τ [25]. Sequences that are perfectly correlated (e.g.,
have the same ranking) have a τ = 1 and sequences that are
perfectly anti-correlated (e.g., are reverses of each other) have
a τ = −1. The values for the different designs are given in
Table V.

From this table, we can see that the pm rankings are near
perfect (≈ 1). This indicates that the optimizations will be
very similar. However, the pm3σ rankings range from 0.5 to
0.9. In this case, it is not clear from the rankings whether
the statistical power is a good surrogate for the deterministic
power.

Why the pm rankings correlate better than the pm3σ mea-
sures can be seen in Fig. 1, which plots the power vs. size
sensitivities for the pd , pm, and pq measures (the pm3σ can
be thought of as a rough approximation of the pq measure).
Notice that a sorting of the gates by sensitivity would be very
similar for the pd and the pm measures. However, the sorting
by pq, and, hence, the relations of the sensitivities of different
gates, is very different.

In the analysis above, it is difficult to tell exactly how
large the gap will be between the deterministic and statistical
sizing solutions. To get a direct idea of the difference between
the deterministic power compared to the statistical power,

Fig. 4. Plot of the deterministic power (x-axis) vs. statistical power (y-axis)
for the c1355 v2 circuit for width sizing only. (a) Plots for the pd vs. the
pm measure, whose relation is nearly linear. In contrast, the pd vs. pm3σ

measure in (b) has more noise. If the optimal deterministic power (p	
d ) is

known, we can focus on a region of the plot where pd ≈ p	
d to estimate the

suboptimality at this power value. (c) Region of the pd vs. pm3σ plot is chosen
around pd = 4.2 · 10−6. Upper bounding and lower bounding lines are added
to the figure. The difference in pm3σ between the two lines (approximately
2.6 ·10−7 or about 3.5%) is an estimate of the suboptimality bound. Compare
this with the bounds in Table VI.

we can make a useful assumption. Suppose we know the
value of the minimum deterministic power (p	

d) that is timing
feasible. Then, we can estimate the difference between the
best statistical sizing and the worst sizing for the given
deterministic power as in Fig. 4(c).

There is inherent error in this process because it depends
on the number of samples. As the number of samples grows,
the gap will increase as the number of extreme points are
sampled. In the following section, we will compute these
bounds without needing to sample the distribution.

V. Suboptimality Bounds

The central question in this paper is whether the determin-
istic power solution is a good approximation for the statistical
power optimum. This generally requires information about the
space of timing-feasible solutions (T ), which is difficult to
describe, and is highly problem dependent, making it hard
to give an exact answer. However, there is a way to solve a
simpler problem with no assumption on the structure of T ,
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instead, relying on the structure of the deterministic power
objective.

In this section, we consider the following question. Suppose
we approximate the solution to the statistical power optimiza-
tion problem as follows:

minimize ps( �w) (statistical power)
subject to �w ∈ T (timing constraint

& discreteness)
�w ∈ B (upper and lower)

(size bounds on �w)

(S)

using the deterministic power optimum, �w	
d , which is the

solution to the problem as follows:

minimize pd( �w) (deterministic power)
subject to �w ∈ T (timing constraint

& discreteness)
�w ∈ B (upper and lower).

(size bounds on �w).

(D)

How good of an approximation will this be, and what is a
bound for the suboptimality of this solution?

In the following, we will describe a method for creating
suboptimality bounds. First, a simple set T ′ is constructed that
contains T . Optimizing the statistical power over this simpler
set will return a lower bound on the statistical power optimum.
This lower bound is then compared with the statistical power
of the approximate solution, ps( �w	

d), to bound the accuracy of
the approximation. This is described in detail below.

A. Relaxed Constraints, Enclosing Sets, and Lower Bounds

The difficult part of w, l, and vth optimization is the timing
constraint and the discreteness constraint. Thus, to find a quick
lower bound, we must first relax the timing constraint with a
looser constraint. In other words, we would like to relax the
constraints, by enclosing the timing feasibility and discreteness
condition in a simple, convex set.

Relaxing the constraints of a problem turns the resulting
solution into a lower bound for the true solution. For example,
consider the sets T0 ⊆ T1 ⊆ ... ⊆ Tk and the following
sequence of problems:

(Pi) minimize ps( �w)
subject to �w ∈ Ti

�w ∈ B ⊆ Rn.

(9)

If the optimal solution of problem (Pi) is �w	
i , then we have

the property as follows:

ps( �w	
0) ≥ ps( �w	

1) ≥ ... ≥ ps( �w	
k). (10)

In other words, the optimal value for the relaxed problem is
a lower bound for the original problem.

The intuition for this is the fact that the constraints in
the relaxed problem enclose the constraints on the original
problem. Thus, the optimal solution in the original problem is
also feasible for the relaxed problem. In the process of solving

the relaxed problem, the solver is free to choose a better point
in the larger space, making the resulting optimum a lower
bound for the original problem.

B. Linear Functions, Optimum Solutions, and Enclosing Sets

For certain classes of functions, it is easy to find a simple set
that encloses the optimum. The following analysis will derive
a set using the properties of linear functions, but the results
also hold for more general functions.2

The key to finding an enclosing set for the constraints is to
start with an optimal solution and leverage the fact that any
other feasible point cannot be better. For example, if �w	

d is
optimal for (D), then

∀�w ∈ (T ∩ B) : pd( �w	
d) ≤ pd( �w). (12)

For linear functions, the inequality on the right side can be
rewritten in a simple form. This is because any linear function
f (x) can be expressed in the form f (x) = f (x0) + sT (x − x0),
where s = ∇f (x).3 Thus, expanding about the minimum x	 of
f gives the following:

f (x	) ≤ f (x	) + sT (x − x	) (13)

0 ≤ sT (x − x	). (14)

Applying this to (12) with s = ∇pd( �w	
d) shows the following:

(T ∩ B) ⊆ T ′ = { �w | 0 ≤ sT ( �w − �w	
d)}. (15)

Note that T ′ is a continuous, connected set. This gives the
following relaxed problem:

minimize pd( �w)
subject to �w ∈ T ′

�w ∈ B ⊆ Rn.

(16)

C. Creating Lower Bounds for Related Problems

The above analysis seems a little circular; the optimum is
required to create a lower bound for the optimum. However,
the utility emerges when we use the same enclosing sets to
find lower bounds for related problems.

Suppose the solution for (D) is known, and we would now
like to find the lower bound for (S), which has a different
objective function, but identical constraints. This can be done
by leveraging the solution �w	

d for (D) to compute a simple,

2Specifically, (15) holds whenever pd ( �w) satisfies the following:

{ �w | pd ( �w	) ≤ pd ( �w)} ⊆ { �w | 0 ≤ ∇pd ( �w	)T ( �w − �w	)}. (11)

Mathematically, this is equivalent to saying that 0 ≤ ∇pd ( �w	)T ( �w − �w	)
defines a supporting hyperplane for the super-level sets pd ( �w	) ≤ pd ( �w).
This includes functions that are linear, concave, and quasi-concave. This does
not necessarily hold for convex functions or posynomial functions, and in
these cases, other properties of the timing-feasible region must be assumed
for the results in this section to hold.

3Note that s is constant over x for linear functions.
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enclosing set for the constraints, as in the section above. The
relaxed problem is then solved as follows:

minimize ps( �w)
subject to �w ∈ T ′

�w ∈ B ⊆ Rn.

(17)

The problem is solved over the continuous set T ′, and
the continuous upper and lower bound constraints in B. The
corresponding solution �w′ can be used as a lower bound on the
true optimum w	

s (ps( �w′) ≤ ps( �w	
s )). In the case of ps = pm

and ps = pq, this is a linear programming problem, and for
ps = pm3σ , this is a nonlinear convex optimization problem.

Using this lower bound, we can now find a bound for how
well the deterministic solution approximates the solution for
the statistical problem. The suboptimality gap between this
approximation �w	

d , and the true optimum, �w	
s is bounded by

the following:

δso = 100 · ps( �w	
d) − ps( �w′)
ps( �w	

d).
(18)

Smaller values indicate that �w	
d is a good approximate solution

for �w	
s , and larger values indicate that it is a bad approxima-

tion. For example, if

δso ≤ 5% (19)

then �w	
d is a 5% approximate solution for �w	

s . In other words,
using �w	

d in place of the real optimum �w	
s , would cost at most

5% (it is suboptimal by at most 5%).
This process also works with optimization over w, l, and vth.

This is exactly similar to the above example, with w replaced
by z, the adjusted gate widths.4

A surprising fact is that no properties of ps( �w) are assumed.
It may be non-convex or it may be nonlinear, as in the case of
the pm3σ measure. The only assumption is that (17) is solvable.

Another interesting fact is that the deterministic optima is
only used to determine: 1) the minimum deterministic power
that is timing feasible, and 2) its corresponding statistical
power. The delay of the design is thus important in determining
the deterministic optimum, but does not play any other role
in the bounding process. This highlights the independence of
this method on the timing feasible region.

4This gives the following problem:

minimize ps(�z)
subject to 0 ≤ ∇pd (�z	

d )T (�z − �z	
d )

zmin ≤ �z ≤ zmax.

(20)

Here, z is a continuous variable, which represents the effect of the widths,
lengths, and vth on the power. zmin and zmax are the minimum and maximum
values of �z. For example, for the ith entry, they are

zi,min = wi,mine
αl2i,max+βli,max e

−γvthi ,max and

zi,max = wi,maxe
αl2

i,min+βli,min e
−γvthi ,min .

Interestingly, the actual values of �l, �w, and vth do not play a direct role in
the optimization above. They affect the optimization by determining a range
for the values of zi. In fact, the corresponding values of wi, li, and vth may
not be unique; it is only important that there is at least one combination of
wi, li, and vth that satisfies zi = wie

αl2i +βli e
−γvthi . Thus, z acts as a proxy for

w, l, and vth and a corresponding value is not important, as z is used solely
to find a lower bound on the power, and not a minimum power configuration.

Fig. 5. Suboptimality examples for the (a) two gates. The examples in
(b) and (c) have the same optimal solutions for both the statistical and
deterministic measures, which means that the actual suboptimality is zero.
However, the two examples have different suboptimality bounds.

A visual example of the lower bounding process is shown
in Fig. 5. The figure shows that the suboptimality bound is
more related to the geometry of the problem than the actual
difference between the statistical and deterministic optima.

D. Width-Sizing Experiment

In this section, we compute suboptimality bounds for width
sizing. The bounds (δso) are computed for each circuit in
Section III and the results are presented in Table VI.

The Nangate Library is modeled using (3). The synthesized
widths from the Cadence RTL compiler are assumed to be the
optimal deterministic widths,5 �w	

d .
These tables show that the bounds grow larger as the

proportion of die-to-die variation increases. Note that this is
in spite of the fact that the total σL per gate is roughly the
same, for example

σ2
L,total ≈ 1.152 + 1.62 ≈ 22. (21)

This is because the die-to-die variations effect the power more
efficiently than within-die variations, which may cancel each
other out [see (4)]. The case σL = 1 nm (dtd) /0.5 nm (wid) is
given for comparison with [1].

5We will drop the assumption that the synthesized widths are optimal in
Section V-E.
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TABLE VI

Suboptimality (δso ) for Leakage Optimization With l and Vth Variations

σL = 1 nm (dtd)/0.5 nm (wid) and σVth = 4.7% (dtd and wid)
pm pm3σ

v1 (%) v2 (%) v3 (%) v4 (%) Avg v1 (%) v2 (%) v3 (%) v4 (%) Avg
c432 0.34 0.31 0.39 0.42 0.37 3.7 3.5 4.5 4.9 4.1
c499 0.33 0.33 0.25 0.2 0.28 3.6 3.6 2.7 2.2 3
c880 0.28 0.28 0.29 0.29 0.29 3.1 3.3 3.3 3.2 3.2
c1355 0.34 0.25 0.29 0.15 0.26 3.7 2.8 3.3 1.6 2.8
c1908 0.37 0.36 0.38 0.38 0.37 4.1 4.1 4.2 4.2 4.1
c2670 0.43 0.4 0.4 0.39 0.4 4.6 4.3 4.3 4.1 4.3
c3540 0.42 0.46 0.42 0.4 0.43 4.5 5 4.6 4.3 4.6
c5315 0.34 0.36 0.37 0.36 0.36 3.7 3.8 4 3.9 3.8
c6288 0.25 0.26 0.31 0.34 0.29 2.8 2.9 3.5 3.8 3.3
c7552 0.39 0.38 0.37 0.37 0.38 4.2 4.1 4 4 4.1
ALU 0.3 0.27 0.29 0.21 0.27 3.3 3 3.2 2.4 3

σL = 1.6nm (dtd)/1.15nm (wid) and σVth = 4.7% (dtd and wid)
c432 0.640 0.6 0.76 0.83 0.71 5.9 6.2 8.1 8.7 7.2
c499 0.630 0.58 0.42 0.35 0.5 5.7 5.4 4 3.4 4.6
c880 0.520 0.5 0.52 0.53 0.52 4.9 5 5.2 5.1 5.1
c1355 0.650 0.45 0.49 0.25 0.46 5.9 4.3 4.8 2.4 4.3
c1908 0.710 0.69 0.71 0.71 0.71 6.8 6.9 7 7.1 6.9
c2670 0.820 0.74 0.73 0.72 0.75 7.4 6.6 6.5 6.4 6.7
c3540 0.820 0.87 0.79 0.76 0.81 7.4 7.9 7.3 6.9 7.4
c5315 0.650 0.67 0.67 0.66 0.67 5.9 6.1 6.1 6 6
c6288 0.460 0.47 0.56 0.6 0.52 4.5 4.4 5.3 5.5 4.9
c7552 0.720 0.69 0.66 0.67 0.68 6.5 6.2 6 6 6.2
ALU 0.550 0.50 0.53 0.4 0.49 5.2 5.1 5.2 4 4.9

σL = 2 nm (dtd)/0 nm (wid) and σVth = 4.7% (dtd & wid)
c432 1.1 1.1 1.4 1.5 1.2 8.3 9.7 13 14 11
c499 1.1 0.91 0.64 0.54 0.79 8.1 7.1 5.1 4.5 6.2
c880 0.85 0.82 0.86 0.88 0.85 6.8 7.2 7.8 7.4 7.3
c1355 1.1 0.73 0.73 0.39 0.74 8.3 5.9 6.1 3.1 5.9
c1908 1.2 1.2 1.2 1.2 1.2 9.8 10 10 10 10
c2670 1.4 1.2 1.2 1.2 1.2 10 8.8 8.7 8.6 9.1
c3540 1.4 1.5 1.3 1.2 1.3 10 11 10 9.7 10
c5315 1.1 1.1 1.1 1.1 1.1 8.2 8.5 8.3 8.1 8.3
c6288 0.76 0.75 0.88 0.91 0.83 6.4 6 7 7.1 6.6
c7552 1.2 1.1 1.1 1.1 1.1 8.8 8.3 7.9 8 8.3
ALU 0.9 0.86 0.88 0.7 0.84 7.3 7.6 7.5 6.4 7.2

Fig. 6. Worst-case suboptimality for the example c432 v4 as a function of
the assumed deterministic power value p′

d .

Another interesting thing is that adding vth variations does
not necessarily increase the suboptimality bound. When the
length variations are small, the bounds do tend to increase.
However, for large σL, the effect of vth variations is unpre-
dictable and small.

E. Assumption Free Bounds

The biggest weakness of the analyses above is that the
deterministic optimum is not available, as the problem is too

difficult to solve exactly for real circuits. In this part, we derive
bounds that do not rely on an initial deterministic solution.
This works by exploiting the geometry of the deterministic
power measure.

We begin by assuming that only the value of the determinis-
tic power measure p′

d is known. Thus, the actual deterministic
optimum is one of the configurations that has a corresponding
power p′

d . Out of these possible configurations, the worst-
case statistical power can be found by solving the following
problem:

maximize ps( �w)
subject to p′

d = pd( �w)
wmin ≤ �w ≤ wmax.

(22)

Denoting the optimal solution of the above as �wub, the worst-
case suboptimality bounds can be found as follows:

δwc = 100 · ps( �wub) − ps( �wlb)

ps( �wlb)
(23)

where �wlb is found using (17). Note that in (17), only the
value p′

d and not the actual sizes of the deterministic optimum
are used. As an experiment, we chose 20 equally spaced
values for p′

d (between the minimum power and the maximum
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TABLE VII

Worst-Case Suboptimality for pm3σ

σL = 1.6 nm (dtd)/1.15 nm (wid)
σVth = 4.7% (dtd and wid)
v1 (%) v2 (%) v3 (%) v4 (%)

c432 19.1 19.5 21.3 21.1
c499 18.1 15.1 10.2 8.9
c880 17.7 16.5 16.4 15.2
c1355 18.0 16.4 11.6 6.6
c1908 20.1 18.5 17.4 17.7
c2670 15.3 13.1 12.3 12.2
c3540 16.3 14.5 13.7 13.3
c5315 13.9 12.7 12.1 11.8
c6288 18.2 13.6 13.5 9.4
c7552 15.5 14.8 14.3 14.0
ALU 17.8 15.4 14.6 13.6

power), and computed the worst-case suboptimalities using
(23). Running these examples for the mean + 3σ measure
gives the values in Table VII, which gives values that are
approximately 3x-4x the values in Table VI. Note that these
numbers are only for width sizing.

It is interesting to note how the suboptimality changes as a
function of p′

d . This is shown for the c432 v4 circuit in Fig. 6.
At the minimum value of p′

d , there is only one possible sizing
(e.g., all gates at minimum size), so the suboptimality is zero.
Similarly, for the maximum value of p′

d , there is also only
one size, so the suboptimality is also zero. For the remainder
of the values, the suboptimality grows to a peak at a third of
the way, and decreases for the remainder of the values. This
implies that the suboptimality is larger for more aggressive
designs, and smaller for low power designs.

F. Relating Maximum Gate Size to Suboptimality Bounds

In this section, we use (2) and (3), which model the power
as a function of the gate size, to see how the bounds would
change if the maximum gate sizes are increased for all gates.

Table VIII shows how the upper bounds in Table VI
(Section V-D) increase when the gate size upper bounds are
removed. In this case, the optimal deterministic power value
is fixed. The values are given for the case σL = 1.6 nm
(dtd)/1.15 nm (wid) and σVth = 4.7% (dtd and wid). When
compared to Table VI, the suboptimalities for pm increase by
0.05–0.75 percentage points, and the suboptimalities for pm3σ

increase by 0.5–8.6 percentage points.
The suboptimalities increase because a better lower bound is

found when larger gates are available in (17). This is because
the maximum size bounds limit the sizes of the gates with
the best deterministic power vs. statistical power tradeoff.
As the maximum sizes increase, more of the power is used on
the gates with the best tradeoffs. However, once the maximum
gate size is large enough to use all of the power budget on the
gates with the best tradeoff, the suboptimality will not increase
any further.

The relation between suboptimality and the maximum size
can be seen in Fig. 7. The increase in suboptimality from
a maximum size of 4 to 8, and from 8 to 16, is approx-
imately 3.5 percentage points. However, the increase tapers
off; the increase from 16 to 32 is 1.48 percentage points and
the increase from 32 to 64 is 0.01 percentage points. The

Fig. 7. Change in the suboptimality as a function of the maximum gate size
in c1355 v4. Changing the maximum gate size from 2 to 128 increases the
suboptimality by 8.6 percentage points.

Fig. 8. Change in the worst-case suboptimality (δwc) as a function of the
maximum gate size in c1355 v4 for the case in Section V-E with the same
range of p	

d as in Table VII. The worst-case suboptimality δwc reaches its
limit of 20.58% for large maximum gate sizes.

suboptimalities for 64 and 128 are identical. This happens
because the maximum size bound no longer plays a role in
determining the lower bound.6

Results for the “assumption free bounds” in Section V-E can
also be analyzed to see how the maximum gate size affects
the worst-case suboptimality δwc. Recall that in this case, the
bounds are computed for a range of values for p	

d and not just
one value. Using the same range of values as used in Table VII,
the suboptimality also reaches a limit as the maximum gate
size increases, as in Fig. 8. The values for a maximum gate
size of 64 and 128 are identical.

The explanation for this trend is similar to the case in Fig. 7.
However, in this case, an upper bound is also computed in (22).
This upper bound can also take advantage of the increasing
maximum gate size by enabling it to use more of the power
on the gates with the worst deterministic power vs. statistical
power tradeoff.

6In the terminology of Section V-C, increasing the maximum sizes ceases
to change the optimum in (17). This is because the optimum has sizes strictly
less than the maximum gate size, and, therefore, the upper bounds do not
affect the solution.
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TABLE VIII

Suboptimality (δso ) for Leakage Optimization With l and Vth Variations and No Size Upper Bounds

σL = 1.6 nm (dtd)/1.15 nm (wid) and σVth = 4.7% (dtd and wid)
pm pm3σ

v1 (%) v2 (%) v3 (%) v4 (%) Avg v1 (%) v2 (%) v3 (%) v4 (%) Avg
c432 0.93 0.74 0.81 0.89 0.84 9.9 8.5 8.8 9.6 9.2
c499 0.92 0.88 0.93 0.92 0.91 9.8 9.8 10 10 10
c880 0.77 0.7 0.75 0.82 0.76 8.8 8.2 8.6 9.1 8.7
c1355 0.94 0.74 0.77 1 0.88 10 8.4 8.7 11 9.5
c1908 0.96 0.9 0.91 0.9 0.92 11 10 10 10 10
c2670 1.1 1 1 0.78 0.97 12 11 10 7.8 10
c3540 1.1 1.2 1.2 1.2 1.2 12 13 13 13 13
c5315 1.1 1 1 1 1 11 11 11 11 11
c6288 0.68 0.72 0.76 0.72 0.72 8.2 8 8.7 6.6 7.9
c7552 1 0.99 0.96 0.97 0.99 11 11 11 11 11
ALU 0.84 0.79 0.82 0.63 0.77 10 9.4 9.5 7.4 9.1

It is important to note that in realistic libraries, gate sizes
will not go beyond 64x, with most cells being limited to 16x.
As a result, numbers presented in this section are somewhat
exaggerated.

G. Suboptimalities for w, vth, and l Sizing

In this section, we extend these results to w, vth, and l

assignment. Because we do not have designs with optimal w,
vth, and l assignment and, hence, an optimal z	, we follow a
methodology that is similar to Section V-E. Ten equally spaced
values of the deterministic power are chosen ({pd1 , ..., pd10}),
where pd1 is the power with all gates at the minimum power
cell, and pd10 is the power with all gates at the maximum
power cell. For each deterministic power, a corresponding
lower bound is found (zlb, as in the prior sections) and a
corresponding upper bound is found (zub). The lower bound
is computed by using a variation of (20) that uses a given
deterministic power value pdi

as follows:

minimize ps(�z)
subject to pdi

≤ pd(�z)
zmin ≤ �z ≤ zmax.

(24)

The upper bound is computed by using a variation of (24) as
a maximization problem as follows:

maximize ps(�z)
subject to pdi

= pd(�z)
zmin ≤ �z ≤ zmax.

(25)

The latter problem finds the maximum statistical power con-
figuration that has a deterministic power equal to pdi

. Thus, we
find the maximum statistical power that can also be an optimal
deterministic power solution. Combining the two results, the
maximum suboptimality is computed as follows:

δmax = 100 · ps(�z	
ub) − ps(�zlb)

ps(�zlb).
(26)

This results in a more conservative bound than in Section V-D,
because a worst-case lower bound and a worst-case upper
bound are computed as follows:

TABLE IX

Suboptimality Ratios δfull,max /δw,max

σL = 1.6 nm (dtd) /1.15 nm (wid)
σVth = 4.7% (dtd and wid)
v1 v2 v3 v4 Avg

c432 2.1 1.9 1.7 1.7 1.8
c499 1.7 1.8 2.9 3.6 2.5
c880 2 1.9 2 1.8 1.9
c1355 1.7 1.6 2.5 4.3 2.5
c1908 2 1.9 1.8 1.8 1.9
c2670 1.8 1.9 2 2 2
c3540 2.1 2 2.1 2.2 2.1
c5315 2.3 2.1 2.2 2.2 2.2
c6288 2 1.9 2.5 3 2.4
c7552 2 1.8 2 1.9 1.9
alu 1.8 1.7 2.1 1.4 1.7

These values are computed for width sizing (δw,max ),
and full w, vth, and l assignment (δfull,max ). The ratios
δfull,max /δw,max are shown in Table IX.

The ratios in Table IX can be used to relate the suboptimal-
ity bounds from Section V-D to the case of full w, vth, and l

assignment. This table indicates that the values will roughly
double in most of the cases, but may increase up to 6.6x.

Note that in the process above, w, l, and vth are not used.
This is because the effect on the power is central to the
bounding process, and the effect of w, l, and vth on the power
can be summarized by the variable z. Using the actual w, l,
and vth cannot be done as pd is not quasi-concave in w, l,
and vth.

H. How Conservative are These Bounds?

A natural question to ask about the bounds above is, “How
conservative are they?” This is because the bounds for the
larger length variations are significant, and it may be useful
to perform statistical optimization to see what the actual
suboptimality is for those cases.

One indication of how conservative these bounds are comes
from looking at the sizes that are used to compute the lower
bound. In Fig. 9, the sizes of the deterministic optimum are
plotted against the sizes that are used to compute the lower
bound. The difference in the sizings is large; many of the
minimum-sized gates become large gates, and vice-versa.



1760 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2010

Fig. 9. Difference between the sizes that are synthesized for deterministic
power (wd ), and the sizes that are used to compute the lower bound (wlb).
The c1355 v2 circuit is shown.

The effect of flipping the gates will generally violate timing.
Gates are usually sized larger because they need to drive
larger fanouts, and smaller gates are smaller because they have
smaller fanouts. Thus, by flipping the sizes of these gates,
small gates will need to drive larger fanouts, and there will be
large gates with small fanout load.

Another intuition can be gained by re-examining Fig. 5.
In both cases of (b) and (c), the actual suboptimality is 0%.
However, due to the geometry of the sets and the sensitivities,
the suboptimality bounds are very different. This indicates that
the bounds may be very loose in some cases.

A final comment is related to the mathematical procedure
used to create the bounds. The space was relaxed to be con-
tinuous, and the lower bound is found by finding a continuous
sizing that is a bound. Adding in the discreteness constraints
can only make the suboptimalities smaller.

To test the bounds, we made several small circuit examples
as follows:

1) 7 gate fanout tree: 1 primary input gate, 4 primary output
gates;

2) 7 gate fanin tree: 4 primary input gates, 1 primary output
gate;

3) 9 gate diamond: 1 primary input gate, 1 primary output
gate, with 2, 3, and 2 gates at logic depth 2, 3, 4, respec-
tively;

4) 13 gate star: there is 1 gate in the middle at depth 3, and
the fanout and fanin cones are both trees with root at this
node;

5) 14 gate, 2-bit adder.

We randomly assigned the gates to these examples, and used
enumeration to compute the suboptimality. A variation of σL =
1.6nm (dtd)/1.15nm (wid) and σVth = 4.7% (dtd & wid) is
used. After running an optimization however, we found that
all of these designs have suboptimality of 0%.

To find examples with suboptimalities, we randomly gener-
ated circuits according to the following rule:

1) with an N gate circuit;
2) j is a fanout of i with probability p if j > i, probability

0 otherwise.

We used N = 10 and p = 0.5. All the possible width
combinations were enumerated, and the best designs for a

Fig. 10. Suboptimality plot for a ten gate circuit (computed by enumeration).
The x-axis is the delay constraint, while the y-axis is the statistical power.
The “x” denote statistical minima and the “o” denote deterministic optima.
When the black and gray lines diverge, there is a suboptimality gap, which
is the difference between the two lines. The maximum gap in this plot is
10.1%. Note that for the majority of the delay constraints, the deterministic
and statistical optima are the same.

Fig. 11. Histogram of the suboptimalities for 500 randomly generated cir-
cuits. The majority of the examples have suboptimality of 0%.

series of delay targets were recorded. Fig. 10 shows one
example case. The statistical and deterministic optima are the
same for the majority of the cases, but they depart for a few
different delay targets. In this case, the maximum suboptimal-
ity is 10.1%. This example circuit has logic depth 5, and the
non-primary output gates have fan-outs of {6, 5, 5, 4, 3, 2, 1},
respectively.

We generated 500 of these random circuits, and computed
the worst-case suboptimality for each circuit across all delay
targets. Most of the circuits that were generated have 0%
suboptimality (see the histogram in Fig. 11), however the
worst-case suboptimality was 16.6% which correlates with
the numbers in Table VII. This shows that the suboptimality
is likely to be 0%, although the worst-case numbers may be
significant.

VI. Bridging the Suboptimality Gap

The suboptimality bounds for large l variations cause some
reason for concern. Some of the bounds are over 10%, which
is a significant amount that is too large to ignore. In this
section we present ways to the suboptimality gap using simpler
measures.

There is a significant cost to using the pm3σ(·) measure. It is
significantly more complicated than the other power measures.
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TABLE X

Worst-Case Suboptimality (δwc ) of papprox as an Estimate of pm3σ

for a Maximum Size of 32, and w, l, vth Assignment

σL = 1.6 nm (dtd)/1.15 nm (wid)
σVth = 4.7% (dtd and wid)

v1 (%) v2 (%) v3 (%) v4 (%) Avg
c432 2.2 1.9 1.6 1.4 1.8
c499 2.0 2.1 2.0 1.4 1.9
c880 2.1 2 2 1.9 2.0
c1355 2.1 2.2 1.7 1.6 1.9
c1908 2.2 2.2 2.2 2.2 2.2
c2670 1.9 1.7 1.6 1.6 1.7
c3540 2.1 2.2 2.1 2.1 2.1
c5315 1.8 1.7 1.7 1.6 1.7
c6288 2.1 3.1 2.7 1.4 2.3
c7552 1.7 1.6 1.6 1.6 1.6
ALU 2.2 3.5 3.0 3.5 3.0

While the deterministic (pd(·)) or the mean (pm(·)) power
measures are linear in z, the pm3σ(·) is nonlinear in z (although
it is convex in z). Linear measures have the advantage that
the total power is the sum of the individual powers. Thus,
these measures can be used in existing optimization methods
by replacing the power values in the library files with the
statistical power values.

Fortunately, there is a simple linear approximation that we
can use to bridge the suboptimality gap. The idea is to use
the variation information to construct a linear measure that
has a low suboptimality gap. This would result in a measure
that is a provably good approximation to the full statistical
optimization, and can be used by replacing the deterministic
power values by these approximate values. We define this
approximation to the pm3σ measure as follows:

papprox =
∑

κi exp
(
λw(i)σLw(i) + λd(i)σLd + ... (27)
√

2(τw(i)σvthw(i)
+ τd(i)σvthd

)/2
)

.

The derivation of this approximation is purely empirical;
this measure was found to give very small suboptimality
bounds. It can be interpreted as using the 1-σ value of
the random variables vthw(i) , vthd , Lw(i), and Ld. The

√
2/2

factor used to account for intra-die cancellation. This measure
performs better than the pm measure and it is also better than
the 3-σ value of the random variables.

Worst-case suboptimality bounds for this approximation are
given in Table X for full w, vth, and l assignment (as in
Section V-G), 1–32x sized gates (as in Section V-F), and the
same range for p	

d as used in Table VII. This measure is very
effective, as it reduces the suboptimality gap to 3.5% and less.
This is around an 80% reduction in the suboptimalities. This
indicates that although the pm3σ measure may be different
from the deterministic measure, the sensitivities can be well
approximated by a linear measure.

In contrast pm is not as good of a linear approximation to
pm3σ . The resulting suboptimality bounds give about a 10%
reduction in the suboptimalities.

VII. Conclusion

In this paper, we compared deterministic solutions of sizing
problems with statistical solutions of sizing problems. The
rankings of the solutions coincide very well for the mean
power measure, indicating that good deterministic solutions
will be equally good mean power solutions. However, the
other measures have significant discrepancy in their rank.
These findings were substantiated by computing the worst-
case bounds on the suboptimality gap. The bounds are always
insignificant for the mean-power measure pm, but they may
become significant for the pm3σ measure when the inter-die
component of the length variations are large. As a way to
bridge the suboptimality gap, we presented a proxy measure
for the pm3σ measure, which is an excellent approximation,
and has an insignificant suboptimality.
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