
Accurate and Inexpensive Performance Monitoring
for Variability-Aware Systems

Liangzhen Lai Puneet Gupta

Dept. of Electrical Engineering Dept. of Electrical Engineering
University of California Los Angeles University of California Los Angeles

Los Angeles, CA 90095 Los Angeles, CA 90095
e-mail: liangzhen@ucla.edu e-mail: puneet@ee.ucla.edu

Abstract—Designing reliable integrated systems has become
a major challenge with shrinking geometries, increasing fault
rates and devices which age substantially in their usage life.
The proposed research is motivated by the observation that
many of the in-field failures are delay failures and several
variability signatures are also delay-related. The origins of tem-
poral delay fluctuations include manufacturing variability, volt-
age/temperature changes, negative or positive bias temperature
instability-related Vth degradation, etc. Since the actual delay
changes depend on process variations as well as workload, on-
chip monitoring may be the best way of predicting them. There is
a need to monitor circuit performance during manufacturing as
well as at runtime to predict achievable performance and warn
against impending failures. Adaptive mechanisms in hardware
and/or software can optimize the trade-off between errors, energy
and performance based on the feedback from runtime circuit
performance monitors.

This paper presents approaches for automated synthesis of
design-dependent performance monitors. These monitors can
be used to predict impending delay failures relatively inexpen-
sively. For low-overhead monitoring, we propose multiple design-
dependent ring oscillators (DDROs) as smart canary structures
which can reliably predict achievable chip frequency but with
margins for local variations. Early silicon results indicate that
DDROs can reduce delay monitoring error by 35% compared to
conventional ring oscillators. To further improve the prediction
(albeit at a higher overhead), we propose in-situ slack monitors
(SlackProbe) which can match local variations as well at over-
heads much smaller than monitoring all sequential elements.
SlackProbe reduces the number of monitors required by over
15X with 5% additional delay margin in several commercial
processor benchmarks. Finally, we show an example of software
testbed that demonstrates a variability-aware system that utilizes
the hardware monitors and operates with both hardware and
software adaptation.

I. INTRODUCTION

With CMOS technology scaling, hardware variability con-
tinues to increase due to increasing amounts of manufacturing
variability, ambient fluctuation, and circuit wear-out (e.g.,
NBTI, HCI etc.) degradation. These increased variations have
led to increased margining in designing reliable integrated
systems. If these variations can be captured and exposed to the
software/system level during runtime, corresponding hardware
and software adaptation can opportunistically reduce or even
eliminate the design margin [1].
There are different approaches to capture hardware vari-

ability at runtime. On-line self-test and diagnostics allow a
system to test itself concurrently during normal operation [2]–
[4]. Software-based inference methods [5]–[7] use software-
implemented test operations to capture variation and detect
errors. Other than testing approaches, hardware monitors can
also be used to capture variations. In this work, we focus on
designing and utilizing hardware monitors to capture circuit
performance variations. The proposed research is motivated

by the observation that many of the in-field failures are
delay failures and several variability signatures are also delay-
related.
There are mainly two classes of monitors that aim at

monitoring circuit performance (i.e., measuring circuit critical
path delay). They are replica monitors and in situ monitors.
Replica monitors, also known as canary circuits, [8]–[11]

are stand-alone circuits which are designed to mimic the tim-
ing behavior of the original circuits. By measuring the replica
circuit delay, one can estimate the delay of the original circuits.
Typically, the replicas are simple circuits, e.g., simple paths or
ring oscillators. Therefore, replicas are usually non-intrusive
and with low overhead, but hard to cover the heterogeneity
within the original circuits. Furthermore, replica monitors may
fail to capture the variation that are local to real circuits such
as random manufacturing variations and circuit aging.
In situ monitors measure the delay directly from the circuit

paths [12]–[14].They can accurately capture the real path
delay, but with significant overhead, especially when a large
number of registers are timing critical.
In this work, we first introduce two circuit performance

methodologies. Design-dependent ring oscillator (DDRO) [15]
designs and leverages multiple replicas to accurately monitor
circuit performance. SlackProbe [16] inserts in situ monitors
at both path intermediate nets and path endpoints, which can
greatly reduce the overhead of in situ monitoring. Then we
present our implementation of an end-to-end variability-aware
system [17] which utilizes the hardware monitors and operates
with both hardware and software adaptation.
The rest of the paper is organized as follows: Section II

presents DDRO replica monitoring methodology. Section III
presents SlackProbe in situ monitoring methodology. The
variability-aware system implementation and demonstration is
described in Section IV, and Section V concludes the paper.

II. DESIGN-DEPENDENT RING OSCILLATOR (DDRO)

A. Motivation and Overview

In order to accurately estimate the circuit delay, replica
monitors should be designed to follow the timing behavior of
original circuits under variations. We know that the circuit’s
performance is determined by delay of the slowest path, i.e.,
critical path. Therefore, the replica should be designed to
follow the timing behavior of the critical path.
Due to variations, there may be a number of potential critical

paths and they may behave differently under variations, which
makes a single replica monitor inadequate. The motivation
of DDRO is shown in Fig. 1, in which each dot represents
the delta delay of one critical path under variations of PMOS
threshold voltage V thp (y-axis) and NMOS threshold voltage
V thn (x-axis). The critical path delay sensitivities form natural

978-1-4799-2816-3/14/$31.00 ©2014 IEEE 467

6S-1

Fig. 1. Every dot represents delay sensitivities of a critical path in a design.
In this example, we cluster the paths into 3 different clusters indicated by
different colors. The results are based on SPICE simulation using commercial
45nm process technology. Critical paths are extracted from AES [18].

������ ���	���
����� �����������

����������� �����	 ������
��	�� �������������

�	����� �����	 �����

���������� � ����
��� 	�����

������ �	
��

������� �� ���
���� ��	���

������ �	
��

��
���
�������

����� ������

���� ��	���

���� ��	�� ����������

Fig. 2. Overview of DDRO design methodology.

clusters, which implies that multiple replica monitors can be
designed to cover these clusters.
An overview of DDRO monitoring strategy is shown in

Fig. 2. First, we extract critical paths of a design and char-
acterize their delay sensitivities to variation sources. Second,
we cluster the critical paths based on the sensitivities, and
synthesize DDROs to match delay sensitivity of the clusters.
By matching DDRO and cluster delay sensitivities, we ensure
that the synthesized DDROs have good correlation with the
critical paths. Since we use only standard cells (gates) to
synthesize the DDROs, the design and placement of DDROs
can be easily integrated with conventional implementation
flows. Based on DDRO frequencies, we can estimate chip
delay during manufacturing or runtime.

B. Path Sensitivity Extraction and Clustering

Delay sensitivity of path i (V
path
i) can be obtained using

finite differences, i.e., taking the Δdelay by perturbating each
variation source by 1σ. After characterizing all path delay
sensitivities, we can cluster the critical paths. The objective
function of the clustering is defined as

minimize

N∑
i=1

(wi × |Vpath
i − Vro

k |) (1)

where the summation is taken over paths i in cluster k, and
wi is the probability of a critical path delay exceeding the
clock period of the design. The weight factor wi is added so
that we can impose a higher penalty for having mismatched
delay sensitivities on a path with higher probability to fail (less
timing slack). Detailed derivation of wi can be found in [15].

���
����	�

���� ����! ����" ����#

$��� ����	�

������ ��
����� ����	��

$��� ����	�

Fig. 3. Illustration of a gate module in a DDRO.

����������

�����

Fig. 4. Simulation results show that the sensitivities under different input
slews {5ps, 50ps} and output loads {FO1, FO5} combinations converge as
the number of stages in a gate module increases.

C. DDRO Synthesis

1) Gate Module: For the ease of synthesizing DDRO, we
use gate module as basic building block. A gate module is
constructed as several identical gates connected in series as
illustrated in Fig. 3.
This repeated pattern can help decouple the load and slew

interaction between gates. Simulation results in Fig. 4 show
that the sensitivity difference due to different input slew and
output load is reduced from 0.15% to 0.03%, as the number of
stages in a gate module increases from 1 to 15. In this work,
we use 5-stage gate modules as a trade-off between stability
of sensitivity and total area of a gate module. For a gate with
multiple input pins, gate delays through different input pins
will have different delay sensitivities. Thus, each gate module
type is defined with respect to a specific input pin. Extra input
pins of a multi-input gate are assigned to high or low to make
a gate module inverting or buffering (see Fig. 3).
Since the interconnect also affects path delay sensitivity, we

use different wirelength in building our gate modules. Gate
modules with different wirelength are considered as different
instance types even if they have the same gate type.
2) ILP-based Synthesis: Given a delay sensitivity target

(Vro) obtained from path clustering, we want to choose the
number of each gate module in a DDRO, so that the delay sen-
sitivities of the DDRO match the targeted delay sensitivities.
Because of its unique structure, gate module delay variation
is less sensitive to input slew and output load. Since each gate
module type is instantiated a discrete number of times, we can
formulate DDRO synthesis as an integer linear programming
(ILP) problem, where the integer variable is the number of
certain gate modules in the synthesized DDRO. Appropriate
constraints are applied to limit the maximum RO length.
Detailed description of gate module and ILP formulation can
be found in [15].

D. Delay Estimation

1) Path-based Estimation: As shown in Fig. 2, at manu-
facturing and/or runtime, DDRO delay is measured and used

468

6S-1

to estimate chip delay.

Each critical path delay can be estimated by DDROs.
Given M DDROs, we can represent delay sensitivity of

each path (V
path
i) as a linear combination of DDRO delay

sensitivity(Vro
k (k = 1, ...,M)) as in Equation (2).

V
path
i =

M∑
k=1

bik · V
ro
k + V

res path
i (2)

where bik is a [1×M] matrix containing constant coefficients
and V

res path
i is a [1×Q] matrix that represents the decom-

position residue.

Using bik, we can estimate the path delay by:

d
path
i = dnom path

i (1 +

M∑
k=1

measurable︷ ︸︸ ︷
(bikV

ro
k · g)+ ui︸︷︷︸

uncertainty

)

where ui = lpathi + V
res path
i · g

(3)

where g is global variation vector, l
path
i is the local variation

of the path. Equation (3) shows that d
path
i consists of a

measurable term and an uncertainty term. While the value
of the measurable term can be determined from the delays of
DDROs, the value of the uncertainty term cannot be measured
directly.

2) Cluster-based Estimation: The path-based estimation
method requires one estimation for each critical path, which
can cause significant computation and storage overhead. To
reduce the overhead, we propose to utilize the clustering
nature of critical paths and to have one estimation for each
path cluster. We calculate the maximum delay of paths in
each cluster using the method in [19], assuming that the
means of path delays correspond to their nominal values. The
outcome of this step gives us the expected maximum delay.
But more importantly, it also extracts the sensitivity of the
maximum delay to variation sources (Vmax). Similar to the
path-based approach, we treat the cluster as a pseudo path
with delay sensitivity Vmax. Simulation results show that the
estimation error of this approximation approach compared to
the reference method is very small.

E. Simulation and Silicon Result Highlights

To validate DDRO performance monitoring methodology,
we synthesized, placed and routed processor benchmark cir-
cuits using a commercial 45nm SOI technology. Some sim-
ulation results of DDRO on Cortex-M0 [20] are highlighted
in Fig. 5. For global variation only case, using more DDROs
can dramatically decrease mean overestimation (i.e., required
delay margin). But this benefit becomes less in presence of
local variation. The results show that the estimation error
of cluster-based approximation, compared to the path-based
approach, is very small.

A testchip was taped out with DDRO-based performance
monitoring using a 45nm IBM SOI technology with dual-Vth
(RVT and HVT) libraries. The testchip has an ARM Cortex-
M3 microprocessor [21] with five DDROs. For comparison, we
also implemented several inverter-based ROs in the testchip.
The silicon measurement results are shown in Fig. 7. The
measurement results show that by using five DDROs, we can
reduce the mean delay estimation error by 35% (from 2.3%
to 1.5%) compared to generic inverter-based ROs.

Fig. 5. Simulation results of DDRO on Cortex-M0 with global variation only
(left) and both global and local variations (right).

Fig. 6. Testchip die photo and layout illustration

III. SlackProbe: AN EFFICIENT AND FLEXIBLE IN SITU

MONITORING METHODOLOGY

With DDRO methodology, replica monitors can predict
global variation near perfectly. But the accuracy is still limited
and constrained by local variation. In situ monitors can capture
the actual path delay, including local variation, but usually
incur significant overhead. We observe that most of existing
work focuses on monitoring destination registers. In this
section, we introduce a novel and flexible in situ monitoring
methodology, SlackProbe, which inserts monitors at both path
endpoints and path intermediate nets.

A. Monitor Working Principle and Overview

The monitor working principle is shown through an example
in Fig. 8. If a monitor is inserted at an intermediate node
A, a “probe”, which consists of delay matching gates and a
transition detector, is connected to A through a minimum size
inverter. Signal transitions at node A are transferred through
the delay chain to the transition detector and compared with
incoming clock edge. If the transition is close to its required
arrival time (RAT), i.e., within the margin window as in Fig. 8,
a corresponding signal transition will arrive at node E after
the clock edge. This triggers the transition detector and flags
a signal indicating an impending delay failure.
The monitor inserted at node A is capable to monitor the

delay of all critical paths passing through A. As shown in
Fig. 8, in stead of monitoring all four destination registers,

Fig. 7. Mean delay estimation error obtained from DDROs and inverter-
based ROs. Estimation errors are calculated by taking the absolute difference
between normalized estimation and normalized chip delay. RVT and HVT are
the two Vt options for the inverters.

469

6S-1

Fig. 8. SlackProbe working principle. As shown in the timing diagram,
compared to inserting monitors at destination registers, the monitor inserted
at A can monitor the path delay even when the transition does not propagate
to the destination register (i.e., T1 at C). But the monitor inserted at node A
cannot capture transitions that do not pass through A (i.e., T2 at B).

SlackProbe can use only two monitors while achieving the
same path coverage.
Different transition detector designs as in [14], [22]. can be

applied here. SlackProbe also allows monitors to be inserted
at path endpoints where monitors as in [23]–[26] can be used
as well. Since the additional margin makes the monitor detect
an impending timing failure rather than an actual one, there is
no datapath metastability issue as raised and discussed in [14].
The metastability issue of the monitor signal either results in
a more pessimistic detection or is guardbanded by the monitor
delay margin.
With the proposed monitoring strategy, the problem now

becomes when, where and how to insert these monitors. In
this work, we propose the monitor insertion flow as in Fig. 9.
Different alternatives will also be discussed and compared
against conventional approaches.
Monitor insertion starts with a placed and routed design, as

the timing information is more accurate at this stage. Since we
only care about timing-critical paths, a path selection process
is applied to extract timing-critical paths and to construct the
critical path graph. Then, monitor locations are picked from
the graph using our proposed method. For each of the monitor
locations, a delay cell path is synthesized. The final insertion
flow is similar to Engineering Change Order (ECO) where the
monitors are incrementally placed and routed. ECO metrics
like those in [27] are applied when picking monitor locations
to minimize the interference to the original design.

B. Monitor Delay Margin

If the monitor is placed at a path intermediate net, the path
delay before the monitor can be captured. But some extra delay
margin will be required for the remaining part of the path. As
shown in Fig. 10, there are three types of relations between
monitor and a path:

1) The path passes through the net, for example path A in
Fig. 10. Since the delay up to G4 can be captured by

Fig. 9. Monitor insertion flow

Fig. 10. Example of path-monitor pairs

the monitor, the delay path should account for the delay
uncertainty of G6.

2) The path branches out at some net before the monitor,
for example path B in Fig. 10. Depending on the
application and gate type of G4, the monitor may be
treated as being inserted between G3 and G5 with G4
as part of the delay matching. If the application is speed
sensing, i.e., monitoring slow delay changes, path B can
be considered as being monitored with delay uncertainty
of G4, G5 and G8. If the application is event detection,
only G4 with gate types that are transparent to signal
transitions (e.g., inverter, buffer) are allowed.

3) None of the path instances fall in the fan-in cone of the
monitor net. In this case, we consider that the path is
not monitored.

Though different paths may require different delay margin,
each monitor will have only one margin matching chain. The
monitor margin should account for worst delay uncertainty
after monitor insertion point and guarantee that the delay chain
is always slower than margined part of monitored circuit paths.
In the example in Fig. 10, the best case delay of the delay

chain (i.e., n4 to the monitor) should match the worst case
delay of the original path (i.e., G6). But this may be too
pessimistic since the delay is likely to be correlated. Similar
to on-chip variation modeling, in this work the delay chain is
designed so that its delay at typical process corner matches
the worst case delay of the original path. The equivalent delay
margin in this case equals the delay of G6 at slow process
corner (i.e., delay of the delay chain at typical process corner)
minus the delay of G6 at typical process corner. This margin
is considered as the delay uncertainty of G6.
The final delay margin for the entire circuit will be dom-

inated by the monitor with the largest margin. Therefore, in
this work, we define the delay margin cost as the maximum
monitor delay margin constraint ε on each monitor. For a
given ε, we can identify the feasible monitor candidate loca-
tions. Larger ε will give more flexibility in choosing monitor
insertion location, which can potentially reduce the number
of monitors required. But it will also reduce the monitoring
benefit. The trade-off of delay margin ε will be discussed
together with critical path selection in Section III-C.

470

6S-1

Fig. 11. Opportunism window is the margin saving comparing to worst-
case design. Both monitoring benefit and overhead is affected by opportunism
window size and monitor delay margin size.

C. Opportunism Window

As shown in Fig. 9, given a placed and routed design,
the first step is to identify the part of the design that may
be timing critical. Depending on the application, different
criticality criteria may be applied for the selection process.
In this work, we propose a flexible path selection method by

introducing user-defined opportunism window. As illustrated
in Fig. 11, opportunism window and monitor margin will
dictate the potential monitoring benefits. Typical worst-case
design margins for the worst-case scenario, i.e., all chips
will by default run at the worst-case chip delay regardless
of what their actual delays are. In the presence of monitors,
we may reduce the design margin and decrease the default
operating clock period. The paths whose worst-case delay
exceeds the default operating clock period should be selected
and monitored. The amount of design margin reduction is
called opportunism window, within which the circuit will
operate opportunistically at its best effort.
This path selection method does not require any knowledge

of correlation in the variations between the delay of different
paths. Therefore, it can be used to select paths for applications
like aging sensors, where exact delay degradations are context
dependent with little pre-assumed correlation.
As illustrated in Fig. 11, there is a natural trade-off between

monitoring benefits and monitoring overhead when deciding
the opportunism window and monitor delay margin (ε). Larger
opportunism window size and smaller monitor delay (ε) will
increase the monitoring benefit, but also will increase the
monitoring overhead.
After picking the critical paths, monitor location selection

can be formulated as a Linear Programming (LP) problem,
which resembles a max-flow problem. Detailed problem for-
mulation and solution can be found in [16].

D. Experimental Result Highlights

To evaluate the effectiveness of our monitoring methodol-
ogy, we apply SlackProbe on commercial processor bench-
marks using a commercial sub-32nm process technology and
libraries. For comparison purpose, three different monitoring
methods are implemented:

• Baseline: A monitor is inserted at every critical path
endpoint

• SlackProbe Event Detection: Monitors are inserted at
both path intermediate nets and path endpoints. Moni-
tors are inserted to capture every timing-critical signal
switching events.

Fig. 12. Monitor count comparison between SlackProbe and baseline. The
y-axis is plotted in log scale.

Fig. 13. Monitor count and cost vs. delay margin for processor A

• SlackProbe Speed Sensing: Monitors are inserted at both
path intermediate nets and path endpoints. Monitor are
inserted to capture the delay changes of all critical paths,
given sufficient time of operations.

To evaluate our methodology and show the opportunism
window trade-off, we implement all three methods on a
processor benchmark. SlackProbe monitors are inserted with
monitor delay margin ε as 5% of the clock period. The results
are shown in Fig. 12. Compared to the baseline endpoint
monitoring, with the 5% additional delay margin, SlackProbe
can achieve up to 16X reduction in total number of monitors.
To show the trade-off between delay margin and monitor

count, we also sweep the delay margin ε with opportunism
window size of 0.2ns, i.e., equivalently 20% of the clock
period. By allowing more delay margin and flexibility in
selecting monitor candidate location, the number of monitor
reduces for both SlackProbe methods (see Fig. 13).

IV. RedCooper: A TESTBED FOR VARIABILITY-AWARE
SYSTEM

In this section, we will present our implementation of a
complete end-to-end system [17] that demonstrates the use
of hardware monitors with both hardware and software adap-
tation. We first describe the software adaptation concept of
variability-aware software duty-cycling. Then we present our
testbed implementation and variability-aware system demon-
stration.

A. Variability-Aware Software Duty-Cycling

For battery-powered embedded sensing system, the total
lifetime energy is usually constrained. In order to meet the
lifetime requirements, one particularly common power man-
agement techniques is duty cycling, where the system is at
default in a sleep state and woken up periodically to attend
to pending tasks and events. A system with higher duty cycle
may, for example, sample sensors for longer intervals or at

471

6S-1

Fig. 14. Designing a software stack for variability-aware duty cycling [28]

higher rates, increasing data quality. A typical application-level
goal is to maximize quality of data through higher duty cycles,
while meeting a lifetime goal. Conventional approach deter-
mines duty cycles by either worst-case power specifications or
datasheet power values, which may be heavily guardbanded. If
the system’s power consumption can be measured and exposed
to the software, the application may be able to adapt its duty
cycle rate and increase its QoS opportunistically according to
the hardware power consumption status [28].
For example, for a fixed lifetime energy budget E and spec-

ified targeting lifetime constraints L, the software duty cycle
rateDC can be calculated through the following equation [28]:

PA ·DC+PS · (1−DC) =
E

L

DC =
E − L · PS
L · (PA − PS)

(4)

where PA and PS are the active and sleep power consumption
respectively. By determining PA and PS on a per-instance
basis, the duty cycle may be tailored to maximize active time
for each individual sensor under a given deployment scenario
(temperature profile, lifetime requirement, battery capacity).
There are several different ways that such an opportunistic

stack may be organized as shown in Fig. 14. The scenarios
differ in how the sense-and-adapt functionality is split between
applications and the operating system. In this work, we use
the last scenario, where variability is largely offloaded to the
operating system.

B. Testbed Implementation and System Demonstration

The testbed is built upon DDRO testchip (Fig. 6). On the
testchip, there are on-chip performance monitors (DDRO) and
leakage sensors. For the purpose of demonstrating software
duty-cycling, we also implement on-board power sensors to
measure the power consumption of the testchip. the power of
the Cortex-M3 processor and the (on-chip) SRAM memory are
measured separately. A picture of the testbed board is shown
in Fig. 17. Because DDRO and the processor are implemented
as separate blocks when taping-out the testchip, we use on-
board MCUs [29] to sample the monitor readings and feed
into the on-chip SRAM.
The software running on the M3 core is shown in Fig. 16.

The operating system (OS) is based on CoOS [30]. Three tasks
are implemented within the OS:

Fig. 15. RedCooper Testbed.

Fig. 16. Software Adaptation Illustration.

• Task I sends the sensing request by writing to a pre-
specified memory location. Upon seeing the request, the
on-board MCUs will start reading the sensor values and
write the sensor readings directly to certain memory
locations.

• Task II acts as the central adaptation center, which reads
the sensor readings, including DDRO frequencies, current
drawn by the M3 core, current drawn by the on-chip
SRAM, and the on-chip leakage sensor. DDRO frequen-
cies are used to calculate the performance slack and
determine the adjusted voltage. The current and leakage
sensor values are used to calculate the feasible duty cycle
using Equation (4). The duty cycle rate is further translate
to the number of iterations for Task III.

• Task III is the main application running in the OS, which
calculates the value of π with its best effort under the
constrained duty cycle.

In this demo, all three OS tasks are fired every 10 seconds. We
set the processor to run at a fixed 600 MHz clock frequency.
The active power includes both the core and SRAM power
consumption. The sleep power includes the SRAM power and
the projected leakage power of the core.
A snapshot of the entire hardware is shown in Fig. 17.

We have two copies of RedCooper running side-by-side.
Each testbed is equipped with an LCD reporting the system
status. Some results are highlighted in Table I.1 At room
temperature, Instance B system has smaller sleep power than

1The complete demo video can be found at
http://nanocad.ee.ucla.edu/Main/Codesign

472

6S-1

Fig. 17. A snapshot of the demo hardware.

TABLE I
SYSTEM DEMONSTRATION RESULT HIGHLIGHTS

Instance A Instance B Instance A
(room temperature) (room temperature) (after heat-up)

Supply Voltage 0.93 V 0.96 V 0.96 V

Active power 23.81 mW 24.29 mW 26.50 mW

Sleep power 4.74 mW 1.63 mW 7.58 mW

DC 27 49 18

Calculated π 3.1028 3.1206 3.2002

Calculation error 1.235% 0.668% 1.865%

Instance A, which implies the potential of achieving high duty
cycle rate. Therefore, the adaptive software set the number of
iterations (DC) at 49 for Instance B and the calculation error is
smaller. After heating up Instance A from room temperature to
about 45◦C, the system shows its capability for both runtime
software and hardware adaptation (see last column in Table I).
The voltage is boosted to compensate the performance loss.
Software duty-cycle is reduced to compensate the increased
power consumption. If the system is without hardware sensors
and designed for the worst-case scenario (including process
variations and temperature fluctuations), the number of itera-
tions (DC), as in this demo, will be at most 18 (the case for
Instance A after heat-up) with 1.865% calculation error. With
the hardware sensors and adaptations, we are able to achieve
49 iterations and calculation error as small as 0.668%.

V. CONCLUSION

In this paper, we first present DDRO, an accurate replica
performance monitoring methodology. Then we present Slack-
Probe, an efficient and flexible in situ performance monitoring
methodology. Last, we demonstrate an end-to-end variability-
aware system that utilizes hardware monitors for both hard-
ware and software adaptation.

ACKNOWLEDGMENTS

The work in Section II was jointly done with Tuck-Boon
Chan and Andrew B. Kahng. The author would like to thank
Vikas Chandra and Robert Aitken for collaboration for work
presented in Section III. Finally, RedCooper testbed was
jointly developed by the authors and Yuvraj Agarwal, Alex
Bishop, Matt Fotjik, Paul Martin, Mani Srivastava, Dennis
Sylvester, Lucas Wanner, and Bing Zhang.
This work is supported in part by NSF Variability Expedi-

tion grant CCF-1029030.

REFERENCES

[1] P. Gupta et al., “Underdesigned and opportunistic computing in presence
of hardware variability,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2012, Keynote Paper.

[2] Y. Li et al., “Overcoming early-life failure and aging for robust systems,”
IEEE Design and Test of Computers, vol. 26, no. 6, pp. 28–39, 2009.

[3] H. Inoue et al., “Vast: Virtualization-assisted concurrent autonomous
self-test,” in Proc. IEEE International Test Conference. IEEE, 2008,
pp. 1–10.

[4] Y. Li et al., “Casp: concurrent autonomous chip self-test using stored
test patterns,” in IEEE/ACM Design, Automation and Test in Europe.
ACM, 2008, pp. 885–890.

[5] D. Lin et al., “Quick detection of difficult bugs for effective post-silicon
validation,” in Proc. ACM/IEEE Design Automation Conference. IEEE,
2012, pp. 561–566.

[6] S. K. Sahoo et al., “Using likely program invariants to detect hardware
errors,” in Dependable Systems and Networks, IEEE International Con-
ference on. IEEE, 2008, pp. 70–79.

[7] M.-L. Li et al., “Understanding the propagation of hard errors to
software and implications for resilient system design,” ACM Sigplan
Notices, vol. 43, no. 3, pp. 265–276, 2008.

[8] A. Drake et al., “A distributed critical-path timing monitor for a 65nm
high-performance microprocessor,” in Proc. IEEE International Solid
State Circuits Conference, feb. 2007.

[9] M. Bhushan et al., “Ring oscillators for cmos process tuning and vari-
ability control,” IEEE Transactions on Semiconductor Manufacturing,
vol. 19, no. 1, pp. 10–18, 2006.

[10] Q. Liu et al., “Capturing post-silicon variations using a representative
critical path,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 29, no. 2, pp. 211–222, 2010.

[11] T.-B. Chan et al., “Tunable sensors for process-aware voltage scaling,” in
Proc. IEEE/ACM International Conference on Computer-Aided Design.
ACM, 2012, pp. 7–14.

[12] D. Fick et al., “In situ delay-slack monitor for high-performance pro-
cessors using an all-digital self-calibrating 5ps resolution time-to-digital
converter,” in Proc. IEEE International Solid State Circuits Conference,
feb. 2010.

[13] S. Kim et al., “Razor-lite: A side-channel error-detection register for
timing-margin recovery in 45nm soi cmos,” in Proc. IEEE International
Solid State Circuits Conference. IEEE, 2013, pp. 264–265.

[14] K. Bowman et al., “Energy-efficient and metastability-immune resilient
circuits for dynamic variation tolerance,” IEEE Journal of Solid State
Circuits, jan. 2009.

[15] T.-B. Chan et al., “Synthesis and analysis of design-dependent ring
oscillator (ddro) performance monitors,” IEEE Transactions on Very
Large Scale Integration Systems, 2013, accpted for publication.

[16] L. Lai et al., “Slackprobe: A low overhead in situ on-line timing slack
monitoring methodology,” in IEEE/ACM Design, Automation and Test
in Europe, 2013, pp. 282–287.

[17] Y. Agarwal et al., “Redcooper: Hardware sensor enabled variability
software testbed for lifetime energy constrained application,” Tech. Rep.,
http://nanocad.ee.ucla.edu/pub/Main/Codesign/red cooper.pdf.

[18] [Online]. Available: http://opencores.org
[19] C. Visweswariah et al., “First-order incremental block-based statistical

timing analysis,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 25, no. 10, pp. 2170–2180, 2006.

[20] [Online]. Available: http://www.arm.com/products/processors/
cortex-m/cortex-m0.php

[21] [Online]. Available: http://www.arm.com/products/processors/
cortex-m/cortex-m3.php

[22] B. Rebaud et al., “Digital timing slack monitors and their specific in-
sertion flow for adaptive compensation of variabilities,” in International
Conference on Integrated Circuit and System Design: Power and Timing
Modeling, Optimization and Simulation, ser. PATMOS’09, 2010.

[23] D. Ernst et al., “Razor: a low-power pipeline based on circuit-level
timing speculation,” in IEEE/ACM International Symposium on Microar-
chitecture, dec. 2003.

[24] S. Das et al., “RazorII: In situ error detection and correction for pvt and
ser tolerance,” IEEE Journal of Solid State Circuits, jan. 2009.

[25] H. Fuketa et al., “Adaptive performance compensation with in-situ
timing error prediction for subthreshold circuits,” in IEEE Custom
Integrated Circuits Conference, sept. 2009.

[26] M. Eireiner et al., “In-situ delay characterization and local supply
voltage adjustment for compensation of local parametric variations,”
IEEE Journal of Solid State Circuits, vol. 42, no. 7, pp. 1583–1592,
2007.

[27] J. Lee et al., “Eco cost measurement and incremental gate sizing for
late process changes,” ACM Transactions on Design Automation of
Electronic Systems, vol. 18, no. 1, p. 16, 2012.

[28] L. Wanner et al., “Hardware variability-aware duty cycling for embedded
sensors,” IEEE Transactions on Very Large Scale Integration Systems,
vol. 21, no. 6, pp. 1000–1012, 2013.

[29] [Online]. Available: http://mbed.org/
[30] [Online]. Available: http://www.coocox.org/CoOS.htm

473

6S-1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

