
Variability-Aware Memory Management for Nanoscale Computing

Nikil Dutt1, Puneet Gupta2, Alex Nicolau1, Luis Angel D. Bathen1, Mark Gottscho2

1Department of Computer Science 2Electrical Engineering Department
University of California, Irvine University of California, Los Angeles

Irvine, CA 92697-3435 Los Angeles, CA 90095-1594
e-mail: {dutt, nicolau, lbathen}@ics.uci.edu e-mail: puneet@ee.ucla.edu, mgottscho@ucla.edu

Abstract— As the semiconductor industry continues to push
the limits of sub-micron technology, the ITRS expects hardware
(e.g., die-to-die, wafer-to-wafer, and chip-to-chip) variations to
continue increasing over the next few decades. As a result, it is
imperative for designers to build variation-aware software stacks
that may adapt and opportunistically exploit said variations to
increase system performance/responsiveness as well as minimize
power consumption. The memory subsystem is one of the largest
components in today’s computing system, a main contributor to
the overall power consumption of the system, and therefore one of
the most vulnerable components to the effects of variations (e.g.,
power). This paper discusses the concept of variability-aware
memory management for nanoscale computing systems. We show
how to opportunistically exploit the hardware variations in on-
chip and off-chip memory at the system level through the deploy-
ment of variation-aware software stacks.

I. INTRODUCTION

The International Technology Roadmap for Semiconductors
(ITRS) predicts that over the next decade, both performance
and power consumption variation will increase by up to 66%,
and 100%, respectively [28]. Variations can stem from semi-
conductor manufacturing processes, ambient conditions, de-
vice wear out, and in case of multi-sourced systems, vendors:

• Manufacturing. The ITRS highlights power/performance
variability and reliability management in the next decade
as a red brick (i.e., a problem with no known solutions)
for design of computing hardware.

• Environment. The ITRS projects Vdd variation to be 10%
while the operating temperature can vary from -30oC to
175oC (e.g., in the automotive context) resulting in over
an order of magnitude sleep power variation and several
tens of percent performance change.

• Aging/Wear-out. Wires and transistors in integrated cir-
cuits suffer substantial wear-out leading to power and per-
formance changes over time of usage. Physical mecha-
nisms leading to circuit aging include bias temperature in-
stability, hot carrier injection, and electromigration.

• Vendor. Parts with almost identical specifications can have
substantially different power, performance or reliability
characteristics. This variability is a concern as single ven-
dor sourcing is difficult for large-volume systems.

Despite considerable hardware variability, the software stack
has traditionally assumed homogeneity in both frequency and
power dissipation for a given hardware specification. Device
manufacturers have partially masked the presence of variability
by guardbanding systems, leading to over-design with less than
optimal power and performance.

An example of guardbanding is the common practice of pro-
cessor binning based on operating frequencies to reduce the
impact of inter-die variation. Despite the use of guardband-
ing, binning, and dynamic voltage and frequency scaling, vari-
ations are inherently present in any set of chips with identical
specifications. Furthermore, with the emergence of multi-core
technology, intra-die variation has also become an issue [26].
Recent efforts have shown that exploiting the inherent variation
in devices [22, 58, 16, 51] yields significant improvements in
both the energy-delay product and overall system performance
over traditional guardbanding techniques.

Variations also manifest themselves in the memory subsys-
tems in the form of power and timing variations. Given that
off-chip DRAM memory may consume as much power as the
processor in a server-class system [37, 63, 27, 64], the prob-
lem worsens as we move towards emerging many-core plat-
forms (e.g., Tilera’s TILEPro64 [57], Intel’s Single Chip Cloud
Computer (SCC) [24]). A recent study observed up to approx-
imately 20% power variation in an off-the-shelf set of nine-
teen 1 GB DDR3 DIMMs [19]. On-chip memory designers
have tried to create process variation-aware memory subsys-
tems [42, 39, 52, 4] to address this issue, and multiple efforts
have been made to minimize off-chip memory accesses via
caching [59, 31, 50, 21], OS-level [65, 17, 27], and DRAM-
level power management [14, 40, 27]. However, these de-
signs required changes to existing memory configurations. As
a result, we should adapt existing DRAM power management
schemes in software to account for these variations in power
consumption. Moreover, this layer should be flexible enough
to deal with a predicted increase in power variation for current
[28] and emerging [66, 1] memory technologies (e.g., phase-
change memory).

The rest of this paper is organized as follows: Section II
gives an overview of the NSF Variability Expedition Project,
that attempts to address hardware variations through oppor-
tunistic software at the system level. Section III briefly dis-
cusses how memory variations may be addressed through ef-
ficient memory management. Section IV describes strategies
for addressing on-chip and off-chip memory variations by ex-
ploiting hardware-assisted memory virtualization. Section V

outlines an OS-level approach that exploits DRAM memory
power variation to save energy. Finally, Section VI presents
the concluding remarks.

II. NSF VARIABILITY EXPEDITION VISION:
UNDERDESIGNED AND OPPORTUNISTIC COMPUTING

We envision a new paradigm for computer systems, one
where nominally designed (and hence underdesigned) hard-
ware parts work within a software stack that opportunistically
adapts to variations. We call this paradigm Underdesigned and
Opportunistic Computing (UnO).

UnO machines can be classified along the following two
axes:

• Type of Underdesign. Use parametrically under-
provisioned circuits (e.g., voltage over-scaling as in [2,
10]) or be implemented with explicitly altered functional
description (e.g., [32, 13, 53]);

• Type of Operation. Erroneous operation may rely upon
applications’ level of tolerance to limited errors (as in [8,
11, 29] to ensure continued operation. By contrast, error-
free UnO machines correct all errors (e.g., [2]) or operate
hardware within correct-operation limits (e.g., [45, 60]).

The IC design flow will use software adaptability and error
resilience for relaxed implementation and manufacturing con-
straints. UnO machines make a paradigm shift away from
a traditional “crash-and-recover” approach to errors, towards
an approach that makes proactive measurements, and predicts
parametric and functional deviations to ensure continued sys-
tem operation and availability. This will preempt impact on
software applications, rather than just reacting to failures (as is
the case in fault-tolerant computing) or under-delivering along
power/performance/reliability axes. Fig. 1 shows the UnO
adaptation scheme. Underdesigned hardware may be accept-
able for appropriate software applications (i.e., the ones that
degrade gracefully in presence of errors or are made robust).
In other cases, software adaptation may be aided by hardware
signatures (i.e., measured hardware characteristics). There
are several ways to implement such adaptation ranging from

Variability manifestations

-faulty cache bits

-delay variation

-power variation

sensors & models

Hardware signatures:

-cache bit map

-cpu speed-power map

-memory access time

-ALU error rates

Selective use of

Hardware Resources

Disabling parts of the

cache, cores with

asymmetric reliability

Quality-Complexity

Tradeoffs

Codec parameters,

iteration control,

Duty Cycling

Alternate Code Paths

Multiple algorithm

implementations,

dynamic recompilation

Do Nothing

Elastic User,

Robust App

Fig. 1. Examples of UnO adaptation aided by embedded hardware
monitoring.

software-guided hardware power management to just-in-time
recompilation strategies.

A. Sensing Hardware Signatures

A hardware signature provides a way of capturing one or
more hardware characteristics of interest and transmitting these
characteristics to the software at a given point in time. Exam-
ples of hardware signatures include performance, power, tem-
perature, error rate, delay fluctuations and working memory
size.

Hardware signatures may be collected at various levels of
spatial and temporal granularities depending on hardware and
software infrastructure available to collect them and their tar-
geted use in the UnO context. Part of the NSF Variability Expe-
dition goal is to develop efficient monitoring methods: replica-
based (e.g., [9]), in-situ (e.g., [7]), online self-test (e.g., [38])
or software-based inference (e.g., [49]). Since each method of
runtime sensing inevitably makes a fundamental trade-off be-
tween cost, accuracy and applicability across various stages of
system lifetime, it is necessary to combine these approaches to
meet the area/power/test time/accuracy constraints.

B. Variability-Aware Software

Hardware variability may be visible to the software in sev-
eral ways: changes in the availability of modules in the plat-
form (e.g., a processor core not being functional); changes in
module speed or energy performance (e.g., the maximum fea-
sible frequency for a processor core becoming lower or its en-
ergy efficiency degraded); and changes in error rate of modules
(e.g., an ALU computing wrong results for a higher fraction
of inputs). The range of possible responses that the software
can make is rich: alter the computational load (e.g., throttle the
data rate to match what the platform can sustain); use a differ-
ent set of hardware resources (e.g., use instructions that avoid
a faulty module or minimize use of a power hungry module);
change the algorithm (e.g., switch to an algorithm that is more
resilient to computational errors); and change hardware’s op-
erational setting (e.g., tune software-controllable control knobs
such as voltage/frequency).

Ev
en

t o
f I

nt
er

es
t

(ty
pe

, s
ev

er
ity

)

Po
ll

P

P

timer

App

Va
ria

bi
lit

y
Ev

en
t

handler

App
App

Duty Cycling
Scheduler

OS

Sc
en

ar
io

 1

Sc
en

ar
io

 2

Sc
en

ar
io

 3

Hardware Signature Inference

Platform Sensors: P , P , Memory, Temperature, Battery, ...

sl
ee

p

sl
ee

p

sleep active

Power State (On/Sleep/Off
Read Sample

Sampling Configuration

Sample
Event
Time-Series, ...

Fig. 2. Designing a Software Stack for Variability-Aware Duty Cy-
cling

Recently, there have been some efforts to handle variability
at higher layers of abstraction. For instance, software schemes
have been used to address voltage [47] or temperature vari-
ability [12]. Hardware “signatures” are used to guide adap-
tation in quality-sensitive multimedia applications in [45]. Us-
ing architecture similar to that of Scenario 3 in Fig. 2, [60]
explored a variability-aware duty cycle scheduler where ap-
plication modules specify a range of acceptable duty cycling
ratios, and the scheduler selects the actual duty cycle based on
run-time monitoring of operational parameters, and a power-
temperature model that is learned off-line for the specific pro-
cessor instance. In context of erroneous UnO machines, sev-
eral alternatives exist ranging from detecting and then correct-
ing faults within the application as they arise (e.g., [23, 25])
to designing applications to be inherently error-tolerant (e.g.,
application robustification [55]).

C. Building Underdesigned Hardware

Unfortunately, current design methodologies are not always
suitable for such underdesign. For example, conventional pro-
cessors are optimized such that all the timing paths are critical
or near-critical (“timing slack wall”). This means that any time
an attempt is made to reduce power by trading off reliability (by
reducing voltage, for example), a catastrophically large num-
ber of timing errors is seen [29]. The slack distribution can be
manipulated (for example, to make it look gradual, instead of
looking like a wall, to reduce the number of errors when power
is reduced [30]).

Though most existing work [44, 34, 18] introduces errors by
intelligently over-scaling voltage supplies, there has been some
work in the direction of introducing errors into a system via ma-
nipulation of its logic-function. Let us consider an example of a
functionally underdesigned integer multiplier circuit [32] with
potentially erroneous operation. We use a modified 2x2 mul-
tiplier as a building block which computes 3 × 3 as 7 instead
of 9. By representing the output using three bits (111) instead
of the usual four (1001), we are able to significantly reduce the
complexity of the circuit. These inaccurate multipliers achieve
an average power saving of 31.78% - 45.4% over correspond-
ing accurate multiplier designs, for an average percentage er-
ror of 1.39% - 3.32%. The design can be enhanced (albeit at
power cost) to allow for correct operation of the multiplier us-
ing a correction unit, for non error-resilient applications which
share the hardware resource. Of course the benefits are strongly
design-dependent. For instance, in the multiplier case, the sav-
ings translate to 18% saving for a FIR filter and only 1.5% for a
small embedded microprocessor. Functional underdesign will
be a useful power reduction and/or performance improvement
knob especially for robust and gracefully degrading applica-
tions.

At its core, handling variability of hardware specification at
run-time amounts to detecting the variability using hardware
or software based sensing mechanisms, followed by selecting a
different execution strategy in the UnO machine’s hardware or
software or both. Our early results illustrating UnO hardware-
software stack are very promising. For instance, our implemen-
tation of variability-aware dutycycling in TinyOS gave over
6X average improvement in active time for embedded sens-

ing. With shrinking dimensions approaching physical limits of
semiconductor processing, this variability and resulting bene-
fits from UnO computing are likely to increase in future.

III. VARIATIONS IN THE MEMORY SUBSYSTEM

Like processors, where power consumption variability
across various dies has been reported despite following the
same design specs [22, 61, 51, 46], similar phenomena have
been observed in the memory subsystem [22, 19]. [19] tested
19 DDR3 DIMMs, and found that power usage in DRAMs is
dependent both on operation type (write, read, and idle) as well
as data type. Idle power variations were up to 12.29% for the
same model (same vendor) and 16.40% for different models
from the same vendor. More importantly, dynamic power was
also affected as there was up to 21.84% variation in write power
across the different 1 GB DIMMs tested.

These variations can be observed in Fig. 3, where power
(write, read, and idle) variability is shown across various cat-
egories (e.g., across all nineteen 1 GB DIMMs tested, across
same exact parts, etc.) tested at 30 C. As a result, just like
[62, 51, 46] exploited variability in processor power consump-
tion, our goal is to adapt our memory management layer and
opportunistically take advantage of these variations to reduce
power consumption.

Furthermore, the move towards deep sub-micron (DSM)
technologies makes integrated circuits increasingly vulnerable
to both transient errors, as well as process-variation induced er-
rors [15, 43, 6, 41, 48, 20, 54]. The problem is further exacer-
bated as systems are aggressively voltage scaled to save power,
resulting in even higher error rates for embedded memories.

One major concern for memories is the increasing incidence
of soft errors, i.e., transient faults, or single-event upsets (SEU),
that are caused primarily by external radiations in microelec-
tronic circuits. As alpha or cosmic particles come into contact
with a silicon device, the probability of a single event failure
increases with decreasing charge within a memory cell [36].
Aggressive voltage scaling greatly reduces the capacitance that
keeps the charge in a single cell, therefore increasing its vul-
nerability to low energy alpha particles, or cosmic rays [36].

Memories are believed to be the most vulnerable compo-
nents to soft-errors since they may occupy up to 90% of the
on-chip real-estate [33, 28]. Indeed, this problem worsens for

Fig. 3. Power Variation in Off-The-Shelf DIMMs [19]

Low Power SPM
Nominal SPM

Low Power PEM
Low Power DIMM

Medium Power DIMM
High Power DIMM

Application
Policies Application

Policies Application
Policies

Application
Priority/Privilege

Level

A
pp

lic
at

io
n

La
ye

r
O

S

La
ye

r

VaMVisor D
ev

ic
e

S
ig

na
tu

re

S
ys

te
m

Lo

ad

Allocation Decisions

Fig. 4. VaMV: Variability-aware Memory Virtualization

many-core platforms, as a result, software must account for the
increased probabilities of failure in the memory subsystem.

The next two sections describe two approaches that leverage
software and hardware to opportunistically exploit the varia-
tions introduced in this section.

IV. HARDWARE-ASSISTED VARIATION-AWARE MEMORY
VIRTUALIZATION

To address and exploit these variations, [5] proposed the con-
cept of VaMV: a power variation-aware memory virtualization
layer for scratchpad memory-based chip-multiprocessors. The
goal of the VaMV layer is to allow programmers to opportunis-
tically exploit variability across various levels of the memory
hierarchy through annotations in order to reduce power con-
sumption. Fig. 4 shows a high-level view of VaMV, which
has five main components: 1) the application’s programmer-
specified source-code annotated data mapping policies, 2) the
application’s priority, which is used to prioritize use of the
memory space among the various applications, 3) the device’s
signature, which is based on the memory subsystem’s charac-
teristics (e.g., power consumption), 4) current memory alloca-
tion information used to derive available memory resources and
memory re-mapping opportunities, and 5) the VaMVisor, which
enforces the mapping policies at run-time while using the ap-
plication’s priority, the device’s signature, and the allocation
information to efficiently allocate the memory space.

A. Programmer-driven Address Space Partitioning

In order to efficiently exploit the available memory variabil-
ity (on- and off-chip [5]), programmers can provide VaMV with
data mapping hints in the form of policies. A programmer will
consider the application’s requirements and partition its virtual
address space into regions, which are then associated with a
mapping policy that dictates how to map the data into physical
address space and the type of guarantee needed (power, perfor-
mance, fault-tolerance).

Data	
 Type	
 Descrip-on	

T1	
 Look-­‐up	
 tables	
 (e.g.,	
 quan6za6on	
 variables)	

T2	
 Commonly	
 used	
 data	
 (e.g.,	
 variables)	

T3	
 Non-­‐cri6cal	
 data	
 –	
 (e.g.,	
 pixels)	

T4	
 All	
 other	

Policy	

P	
 Physical	
 mapping	
 –	
 varia6on	
 un-­‐aware	

M1	
 Low-­‐Power	
 vSPMs:	
 Tables	
 	
 E-­‐RAID	
 1,	
 Pixel	
 Data	
 à	
 NO	
 ERAID,	
 DCT,Q,ZZ	
 Buffers	
 	
 NO	

ERAID,	
 Huffman	
 buffer	
 low-­‐power	
 off-­‐chip	

Tables (2KB), low-power/E-RAID1
Pixel Data, low-power/NO ERAID
DCT,Q,ZZ Data, low-power/NO ERAID
Huff. Data, low-power/irregular access

Fig. 5. Sample User Annotations and Policies

HP DRAM LP DRAM

Voltage Scaled SPMs

Read once/
backup

O
ften-

updated
P

E
M

E

-R
A

ID
 1

b) VaM-V Mapping

RD
BMP

DCT

Q

ZIGZAG

HUFFMAN

Full Physical
SPMs (4KB)

Virtual Memory/DRAM

a)  Traditional Mapping
HUFFMAN

Fig. 6. Partitioning the Application’s Memory Space

Fig. 5 shows a sample address space partitioning for JPEG
[35], where the programmer has identified: 1) read-only and
highly utilized data, e.g., look up tables (red blocks), 2) a tem-
porary buffer for inter-task communication (gray block), 3)
read-only pixel data (black blocks), and 4) irregularly accessed
data (green blocks).

Fig. 6 (a) shows a traditional mapping of these data blocks,
where variability is not taken into account. Fig. 6 (b) shows
the result of VaMV’s virtualization layer mapping that exploits:
1) data mapping policies customized by the programmer and
used to make dynamic memory allocation decisions, 2) on-chip
memory voltage scaling (using E-RAIDs [4] to deal with pro-
cess variation), and 3) DRAM variability. For the sake of illus-
tration, VaMV maps commonly used read-only data to voltage
scaled SRAM protected by an E-RAID 1 level, pixel data to
voltage scaled SRAM (NO ERAID), and irregular commonly
used data to low power DRAM. A programmer with knowl-
edge of the application’s requirements can create custom data
mapping policies with low-power (LP) memory space in mind.
VaMV then takes these policies and tries to opportunistically
enforce them, regardless of how the LP memory space is im-
plemented by the hardware layer. For instance: 1) if there is
no noticeable DRAM power variability, then VaMV will not
prioritize DRAMs and follow a more traditional memory man-
agement scheme (e.g., malloc), or 2) if voltage scaling on-chip
memories is not possible, VaMV will proceed to treat all on-
chip memories the same.

Consider the case where there is power and latency variation
in both on-chip (due to voltage scaling the SPMs) and off-chip
memories (due to the inherent hardware-variability in DRAM
memories). The programmer can then partition each applica-
tion’s virtual address space as shown in Fig. 5, and define allo-
cation policies for each virtual address space as shown in Fig. 6
(pictorially shown by adding a “color” to each virtual address
space according its requirements). These annotations are used
by VaMV’s run-time system, which opportunistically exploits
the variations in the memory subsystem. Each application will

0	

0.5	

1	

1.5	

2x1x1	
 4x2x2	
 8x2x4	
 2x1x1	
 4x2x2	
 8x2x4	

Normalized	
 Execu7on	
 Time	
 Normalized	
 Dynamic	
 Power	

P	
 M1	
 App. 2x2x1 4x2x2 8x2x4

adpcm Y Y
aes Y Y
blowfish Y
gsm Y
h263 Y Y Y
jpeg Y Y Y
motion Y
sha Y

P:	
 Tradi7onal	
 SPM	
 alloca7on	
 (no	
 voltage	
 scaling),	
 tradi7onal	
 malloc,	
 tradi7onal	
 context	
 switching	

M1:	
 Voltage	
 scale	
 on-­‐chip	
 memory,	
 variability	
 aware	
 off-­‐chip	
 memory	
 alloca7on	

Fig. 7. Dynamic Policy-driven Variability-Aware Allocation

then have different requirements (e.g., fault-tolerant memory
space, secure memory space, etc.), some being more critical
than others (e.g., h263’s higher memory footprint requirements
vs. sha’s need for full memory isolation).

B. Applying Policies to Runtime Allocations

Fig. 7 shows various configurations of a chip multi-processor
(CMP) system that has SPMs for each processor, with multiple
applications managed by multiple operating systems (OSes)
execution on this CMP; the triplet on the x-axis represents
{#Apps}x{#OSes}x{#CPUs} with 4x8KB physical SPMs and
the set of applications run for each configuration (marked by
a Y in their respective row/column). The base-line policy (P)
utilized the entire physical space with context-switching (CX)
enabled [56] (e.g., swap SPM data on CX). Policy M1 uses
vSPMs and allows VaMV to dynamically map each applica-
tion’s data. Because we are running various applications con-
currently, VaMV needs to prioritize and judiciously map dif-
ferent data to on-chip and off-chip memory. The data sets
(T1-4) in Fig. 7 represent a high-level abstraction of the ap-
plication’s workload. In this experiment, despite mapping all
T1-3 data to vSPM for a given application, it is not guaran-
teed that the data will go into physical SPM space, as the re-
sources are limited (only 4x8KB). So VaMV prioritizes among
all data blocks of each category (T1-4), and based on their pri-
orities (BlkPriority=block utilization), decides where to map
the data. For example, h263 has much higher on-chip/off-chip
memory requirements, as a result, higher priority is given to
h263’s T1-4 blocks than the other applications (on-chip SRAM
and low-power DRAM). User-defined policies (represented by
M1) managed to reduce dynamic power consumption by 63%
on average while reducing total execution time by an average of
34% because: 1) there are up to {8Apps}x{4OSes}x{4CPUs}
competing for memory resources, and traditional malloc (P) is
unable to efficiently cope with the demand, and 2) VaMV ef-
ficiently manages the memory space by exploiting the idea of
variability-aware dynamic policy-driven memory allocation.

V. OS-BASED VARIABILITY-AWARE MEMORY
ALLOCATION

For more conventional systems without scratchpad memo-
ries, a different approach from VaMV is needed. Here, we
introduce ViPZonE [3], an OS-based variability-aware mem-
ory management solution that targets server-class systems with
many DDR3 memory modules (DIMMs). Essentially, ViP-
ZonE allows the application programmer to hint to the OS the
expected usage patterns for dynamic memory allocations (e.g.,
write or read-dominated, high or low utilization). With suffi-
cient knowledge about the power consumption characteristics
of the underlying DRAM system, the OS can physically allo-
cate pages for a process using these hints to reduce memory
power consumption. Although our approach targets the DIMM
modular level (motivated by power variability data from [19]),
it could be generalized to work at arbitrary granularities of
memory, if power data are available.

ViPZonE is currently implemented for a Linux-based, high-
end x86-64 desktop system. Its software stack is composed

DIMM
Group 1

DIMM
Group 2

DIMM
Group 3

DIMM
Group N

O
S

Layer

Upper OS Layer [Linux]
Virtual memory management

Application
(ViPZonE aware)

Lower OS Layer [Linux]
DIMM power-variability aware

physical address zoning and page allocation

Memory Controller

ViPZonE

DIMM
Power
Profiles

H
ardw

are
Layer

A
pplication

Layer

Application
(Legacy)

Runtime Libraries [GLIBC]
Variability-aware memory pooling

malloc vip_malloc

vip_mmap
syscall

mmap
syscall

Fig. 8. ViPZonE Software Architecture

of a modified GLIBC layer (with a special version of malloc),
and a modified kernel with power variability-aware allocation
features and a new system call. Fig. 8 depicts the software
architecture of ViPZonE. Note that it has no need for spe-
cial hardware support beyond the availability of DIMM power
data (e.g., characterization is done at boot time through embed-
ded power sensors, which is sufficient for instance-to-instance
static variability that changes slowly over time). We discuss the
implementation of ViPZonE in a top-down manner.

A. Front-End Implementation

One of the features of the ViPZonE software stack is a mini-
mal impact on application development. ViPZonE-enabled ap-
plications simply use the API vip malloc for dynamic alloca-
tions. Implemented in the GLIBC library, the API only re-
quires a single additional parameter which is a bitwise-OR of
two flags. vip malloc relies on a new syscall, vip mmap, which
embeds the bitwise ViPZonE flags into the prot bits (as there
are no free bits in flags, and Linux does not support a sev-
enth syscall parameter). Available flags for the user include
VIP READ or VIP WRITE, combined with VIP HI UTIL or
VIP LO UTIL. Table I summarizes the available API.

TABLE I
ViPZonE User-space API

Function Parameter Type Description
void * vip malloc size size t Request size in bytes
(GLIBC function) vip flags int Bitwise flags used by

ViPZonE back-end page allocator

void * vip mmap addr void * Address to be mapped.
(kernel syscall) (best effort mapping)

length size t Size to be allocated
prot int PROT READ |PROT WRITE

|vip flags
flags int MAP PRIVATE

|MAP ANONYMOUS
fd int File descriptor
offset off t Page offset

D
IM

M
s

in
 C

ha
nn

el
 N

D
IM

M
s

in
 C

ha
nn

el
 3

D
IM

M
s

in
 C

ha
nn

el
 2

D
IM

M
s

in
 C

ha
nn

el
 1

M
em

or
y

C
on

tr
ol

le
r

ZONE 1

DMA

Top of
Chan 1

16 MB

ZONE 2

ZONE 3

ZONE n

DMA32 requests map to any zones < 4 GB. This model assumes that channel
interleaving is disabled and within-channel rank interleaving is enabled.

Top of
Chan 2

Top of
Chan 3

Top of
Chan N

Ch. 1

Ch. 2

Ch. 3

Ch. N

Fig. 9. ViPZonE Physical Address Space Partitioning (Zoning) in the
Linux Kernel for x86-64

An application could use the ViPZonE API to reduce mem-
ory power consumption by intelligently using the flags. For
example, if a piece of code will use a dynamically-allocated
array for heavy read utilization (e.g., an input for matrix multi-
plication), then it can request memory as follows:
retval = vip_malloc(arraySize*elementSize, VIP_READ

| VIP_HI_UTIL);

Alternatively, the application could use the syscall directly:
retval = vip_mmap(NULL, arraySize*elementSize,

PROT_READ | PROT_WRITE | VIP_READ | VIP_HI_UTIL
, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);

For each vip mmap call, the kernel tries to either expand an
existing VM area that will suit the set of flags, or create a new
area. When the kernel handles a request for physical pages, it
checks the associated VM area, if applicable, and can use the
ViPZonE flags passed from user-space to make an informed
allocation.

B. Back-End Implementation

At some point during process execution, physical pages must
be allocated, usually on demand from the page fault mecha-
nism. For physical page allocations that are directly related to
a virtual memory region, the ViPZonE page allocator checks
the associated ViPZonE flags. By default, the flags are a com-
bination of VIP READ with VIP LO UTIL for user-space, and
VIP READ with VIP HI UTIL for kernel-space (this assumes
that the kernel’s memory will be referenced heavily over time
and should always be given preferred low power space). Any
applications that used the vip mmap syscall will have their cho-
sen flags handled appropriately by the physical page allocator.

At boot time, the kernel constructs a set of zones (contiguous
sets of physical addresses), to align with the different physical
memories in the system. The current implementation assumes
that channel interleaving is disabled, while within-channel rank
interleaving is enabled. Peak bandwidth could potentially be
reduced for some workloads due to the lack of channel in-
terleaving, but each channel is still independently accessible.

0
2
4
6
8

10
12
14
16
18
20

bla
ck

sc
ho

les

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fac
es

im

fer
ret

flu
ida

nim
ate

fre
qm

ine

rtv
iew

str
ea

mclu
ste

r

sw
ap

tio
ns

vip

s
x2

64

av
g

Av
er

ag
e

P
ow

er
 S

av
in

gs
 (%

)

Sim2Core Sim8Core

Fig. 10. Simulated Memory Power Savings of ViPZonE vs. Tradi-
tional Linux Kernel With PARSEC Benchmarks

By disabling channel interleaving and physically partitioning
the address space, we can achieve power savings by allowing
more DIMMs to be idle while also harnessing power variability
across channels of DIMMs. This scheme is depicted in Fig. 9.

Using data on each DIMM’s power consumption, obtained
either through power sensors at boot time or offline profiling,
the ViPZonE kernel constructs ordered lists of all the zones in
the system by write and read power consumption. Together
with the ViPZonE flags, it can choose the most suitable zone
to grant an allocation at runtime. A number of allocation al-
gorithms of varying complexity are possible. ViPZonE, in the
interest of simplicity and performance, uses a simple thresh-
olding scheme. For allocations with “high utilization” flags,
it attempts to allocate in the low power zones first. For allo-
cations that do not directly request it, it still prefers low power
space, only if a given zone has at least threshold amount of free
space that is reserved for allocations that ask for it.

C. Simulation Results and Ongoing Work

Our simulation of PARSEC benchmarks on a dual-core sys-
tem with two DIMMs (30% power variation, as suggested by
[19]) [3] indicated promising memory power savings of around
13.1% with only a 1% increase in execution time, compared
to the traditional Linux kernel (see Fig. 10). In our ongoing
work, we are evaluating ViPZonE on an Intel Core i7-based
testbed with four DDR3 memory channels that are populated
with eight 2 GB DIMMs. This system is fully instrumented for
memory power measurements. The goal for this evaluation is
to characterize the real performance and power impact of the
ViPZonE software stack to achieve energy savings for typical
workloads.

VI. SUMMARY AND CONCLUSIONS

In this paper, we focused on two examples of variability-
aware memory management for on- and off-chip memories
(VaMV and ViPZonE), in context of the larger NSF Variabil-
ity Expedition project. The Expedition attempts to holistically
and proactively exploit hardware variability across multiple ab-
straction levels, as well as across different subsystems of com-
puting platforms, part of a larger push for the Underdesigned
and Opportunistic (UnO) computing paradigm. Such solutions
will be necessary to improve the power consumption and per-
formance of future systems with ever-increasing amounts of
variability due to technology scaling.

ACKNOWLEDGMENT

This work was partially supported by NSF Variability Expe-
dition Grant Numbers CCF-1029783 and CCF-1029030.

REFERENCES

[1] C. Augustine et al. Spin-transfer torque mrams for low power
memories: Perspective and prospective. Sensors Journal, IEEE,
2012.

[2] T. Austin, D. Blaauw, T. Mudge, and K. Flautner. Making Typi-
cal Silicon Matter with Razor. Mar. 2004.

[3] L. Bathen, M. Gottscho, N. Dutt, P. Gupta, and A. Nico-
lau. ViPZonE: OS-level memory variability-driven physical ad-
dress zoning for energy savings. In ACM International Con-
ference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2012.

[4] L. Bathen et al. E-RoC: Embedded RAIDs-on-Chip for low
power distributed dynamically managed reliable memories. In
DATE, 2011.

[5] L. Bathen et al. VaMV: Variability-aware Memory Virtualiza-
tion. In DATE, 2012.

[6] K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L. Ji,
S. R. Nassif, E. J. Nowak, D. J. Pearson, and N. J. Rohrer. High-
performance cmos variability in the 65-nm regime and beyond.
IBM J. Res. Dev., 50:433–449, July 2006.

[7] D. Blaauw, S. Kalaiselvan, K. Lai, W.-S. Ma, S. Pant, S. Toku-
naga, S. Das, and D. Bull. Razor ii: In situ error detection and
correction for pvt and ser tolerance. In IEEE ISSCC, 2008.

[8] M. Breuer, S. Gupta, and T. Mak. Defect and error tolerance in
the presence of massive numbers of defects. 21(3), 2004.

[9] T. B. Chan, P. Gupta, A. B. Kahng, and L. Lai. DDRO: A
novel performance monitoring methodology based on design-
dependent ring oscillators. In IEEE ISQED, 2012.

[10] V. K. Chippa, D. Mohapatra, A. Raghunathan, K. Roy, and S. T.
Chakradhar. Scalable effort hardware design: exploiting algo-
rithmic resilience for energy efficiency. In IEEE/ACM DAC,
2010.

[11] H. Cho, L. Leem, and S. Mitra. ERSA: Error resilient system
architecture for probabilistic applications. 31(4), 2012.

[12] J. Choi, C.-Y. Cher, H. Franke, H. Hamann, A. Weger, and
P. Bose. Thermal-aware task scheduling at the system software
level. In IEEE/ACM ISLPED, 2007.

[13] M. R. Choudhury and K. Mohanram. Approximate logic circuits
for low overhead, non-intrusive concurrent error detection. In
IEEE/ACM DATE, 2008.

[14] V. Delaluz et al. Scheduler-based dram energy management. In
DAC, 2002.

[15] A. Devgan and S. Nassif. Power variability and its impact on
design. In Proceedings of the 18th International Conference on
VLSI Design held jointly with 4th International Conference on
Embedded Systems Design, VLSID ’05, pages 679–682, 2005.

[16] J. Dong et al. Variation-aware scheduling for chip multiproces-
sors with thread level redundancy. In PRDC, 2009.

[17] W. Felter et al. A performance-conserving approach for reducing
peak power consumption in server systems. In ICS, 2005.

[18] J. George, B. Marr, B. E. S. Akgul, and K. V. Palem. Probabilis-
tic arithmetic and energy efficient embedded signal processing.
2006.

[19] M. Gottscho, A. A. Kagalwalla, and P. Gupta. Power variabil-
ity in contemporary DRAMs. IEEE Embedded Systems Letters,
2012.

[20] T. Granlund, B. Granbom, and N. Olsson. Soft error rate increase
for new generations of srams. Nuclear Science, IEEE Trans. on,
50(6):2065 – 2068, dec. 2003.

[21] X. Gu et al. P-opt: Program-directed optimal cache manage-
ment. In J. N. Amaral, editor, LCPC. 2008.

[22] H. Hanson et al. Benchmarking for power and performance.
2007 SPEC Workshop, 2007.

[23] R. Hegde and N. R. Shanbhag. Energy-efficient signal pro-
cessing via algorithmic noise-tolerance. In IEEE/ACM ISLPED,
1999.

[24] J. Howard et al. A 48-core ia-32 message-passing processor with
dvfs in 45nm cmos. In ISSCC, 2010.

[25] K.-H. Huang and J. Abraham. Algorithm-based fault tolerance
for matrix operations. IEEE Transactions on Computers, 33(6),
1984.

[26] E. Humenay et al. Impact of process variations on multicore
performance symmetry. In DATE, 2007.

[27] I. Hur et al. A comprehensive approach to dram power manage-
ment. In HPCA, 2008.

[28] ITRS. http://www.itrs.net/.

[29] A. B. Kahng, S. Kang, R. Kumar, and J. Sartori. Designing pro-
cessors from the ground up to allow voltage/reliability tradeoffs.
In International Symposium on High-Performance Computer Ar-
chitecture, 2010.

[30] A. B. Kahng, S. Kang, R. Kumar, and J. Sartori. Slack redis-
tribution for graceful degradation under voltage overscaling. In
The 15th IEEE/SIGDA Asia and South Pacific Design and Au-
tomation Conference, 2010.

[31] M. Kandemir. Impact of data transformations on memory bank
locality. In DATE, pages 10506–, 2004.

[32] P. Kulkarni, P. Gupta, and M. Ercegovac. Trading accuracy for
power in a multiplier architecture. Journal of Low Power Elec-
tronics, 2011.

[33] F. Kurdahi et al. Low-power multimedia system design by ag-
gressive voltage scaling. TVLSI, 18(5), may 2010.

[34] M. S. Lau, K.-V. Ling, and Y.-C. Chu. Energy-aware probabilis-
tic multiplier: design and analysis. 2009.

[35] C. Lee et al. Mediabench: a tool for evaluating and synthesizing
multimedia and communicatons systems. In MICRO ’97, 1997.

[36] K. Lee et al. Mitigating soft error failures for multimedia appli-
cations by selective data protection. In CASES ’06, 2006.

[37] C. Lefurgy et al. Energy management for commercial servers.
Computer, 2003.

[38] Y. Li, Y. Kim, E. Mintarno, D. Gardner, and S. Mitra. Over-
coming early-life failure and aging challenges for robust system
design. IEEE DTC, 26(6), 2009.

[39] X. Liang et al. Process variation tolerant 3t1d-based cache ar-
chitectures. In MICRO ’07, 2007.

[40] C.-G. Lyuh et al. Memory access scheduling and binding con-
sidering energy minimization in multi-bank memory systems. In
DAC, DAC ’04, 2004.

[41] R. Mastipuram and E. C. Wee. Soft errors’ impact on system re-
liability. In http://www.edn.com/ article/ CA454636, September
2004.

[42] M. Mutyam et al. Working with process variation aware caches.
In DATE ’07, 2007.

[43] S. Nassif. Modeling and analysis of manufacturing variations.
In Custom Integrated Circuits, 2001, IEEE Conf. on., pages 223
–228, 2001.

[44] K. V. Palem. Energy aware computing through probabilistic
switching: A study of limits. IEEE Transactions on Comput-
ers, 54(9), 2005.

[45] A. Pant, P. Gupta, and M. v.-d. Schaar. AppAdapt: Opportunistic
application adaptation to compensate hardware variation. IEEE
Transactions on VLSI, 2012.

[46] A. Pant et al. Software adaptation in quality sensitive applica-
tions to deal with hardware variability. In GLSVLSI ’10, 2010.

[47] V. J. Reddi, M. S. Gupta, M. D. Smith, G.-y. Wei, D. Brooks, and
S. Campanoni. Software-assisted hardware reliability: abstract-
ing circuit-level challenges to the software stack. In IEEE/ACM
DAC. ACM, 2009.

[48] F. Ruckerbauer and G. Georgakos. Soft error rates in 65nm
srams–analysis of new phenomena. In On-Line Testing Sym.,
2007. IOLTS 07. 13th IEEE Int., pages 203 –204, july 2007.

[49] S. K. Sahoo, M.-L. Li, P. Ramachandran, S. V. Adve, V. S. Adve,
and Y. Zhou. Using likely program invariants to detect hardware
errors. In DSN, June 2008.

[50] J. Sartor et al. Cooperative caching with keep-me and evict-me.
In INTERACT, 2005.

[51] J. Sartori et al. Variation-aware speed binning of multi-core pro-
cessors. In ISQED, 2010.

[52] A. Sasan et al. Process variation aware sram/cache for aggressive
voltage-frequency scaling. In DATE, 2009.

[53] D. Shin and S. K. Gupta. Approximate logic synthesis for error
tolerant applications. In IEEE/ACM DATE, 2010.

[54] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and
L. Alvisi. Modeling the effect of technology trends on the soft
error rate of combinational logic. In DSN, pages 389–398, 2002.

[55] J. Sloan, D. Kesler, R. Kumar, and A. Rahimi. A numerical
optimization-based methodology for application robustification:
Transforming applications for error tolerance. In IEEE DSN,
2010.

[56] H. Takase et al. Partitioning and allocation of scratch-pad mem-
ory for priority-based preemptive multi-task systems. In DATE
’10, 2010.

[57] Tilera. Tilepro 64. http://www.tilera.com/, 2010.

[58] F. Wang et al. Variation-aware task allocation and scheduling for
mpsoc. In ICCAD, 2007.

[59] Z. Wang et al. Power aware variable partitioning and instruction
scheduling for multiple memory banks. In DATE, 2004.

[60] L. Wanner, C. Apte, R. Balani, P. Gupta, and M. Srivastava.
Hardware variability-aware duty cycling for embedded sensors.
IEEE Transactions on VLSI, 2012.

[61] L. Wanner et al. A case for opportunistic embedded sensing in
presence of hardware power variability. In HotPower’10, 2010.

[62] L. Wanner et al. Variability-aware duty cycle scheduling in long
running embedded sensing systems. In DATE ’11, 2011.

[63] J. Yue et al. Evaluating memory energy efficiency in parallel i/o
workloads. In CLUSTER, 2007.

[64] H. Zheng et al. Mini-rank: Adaptive dram architecture for im-
proving memory power efficiency. In MICRO, 2008.

[65] P. Zhou et al. Dynamic tracking of page miss ratio curve for
memory management. In ASPLOS, 2004.

[66] P. Zhou et al. A durable and energy efficient main memory using
phase change memory technology. In ISCA ’09, 2009.

