
Evaluating and Exploiting Impacts of Dynamic Power
Management Schemes on System Reliability

Liangzhen Lai
Electrical Engineering

Department, UCLA
liangzhen@ucla.edu

Vikas Chandra
ARM Research

vikas.chandra@arm.com

Puneet Gupta
Electrical Engineering

Department, UCLA
puneet@ee.ucla.edu

ABSTRACT
Hardware reliability has been a major concern for nano-scale
computing systems. Different hardware design choices, ap-
plication workloads and software management schemes can
jointly affect the system’s resilience. In this paper, we first
develop a hardware evaluation platform based on an em-
bedded/mobile development board and standard Linux ker-
nel. We demonstrate the use of our platform to evaluate
the system’s power and radiation-induced soft error rate in
presence of system power management schemes and with
different application workloads and various hardware design
configurations. We also propose system/cloud-based virtual
sensing to capture varying ambient conditions for reliability
evaluation. New reliability management policies are pro-
posed and implemented in Linux kernel to exploit the flexi-
bility in different existing power management schemes. We
demonstrate that our policies can achieve the system relia-
bility target under varying application workloads and am-
bient conditions. Experiments show that our policies are
efficient and with less than 3% additional power overhead
compared to the optimal schemes characterized offline.

Categories and Subject Descriptors
B.8.0 [Hardware]: PERFORMANCE AND RELIABIL-
ITY—General

Keywords
Power Management, Soft Error, Operating System, Linux
Kernel

1. INTRODUCTION
Hardware reliability has been a major concern for nano-

scale computing systems. Different design-time hardware
implementation choices and run-time software management
schemes, though may not be specifically designed for reliabil-
ity purposes, can significantly affect the system’s resilience.
Therefore, it is necessary to analyze their effects under dif-
ferent application workloads and even exploit them to retain
system resilience.

There can be two possible ways to implement system power
management schemes to use system performance slack. Run-
fast-then-stop (RFTS) completes the workload with nominal
performance and then goes to certain sleep states for the re-
maining slack to reduce power. Just-in-time (JIT) tries to
adjust the peak performance to elongate the runtime with

lower power consumption. Both of them can be used to
achieve power saving but can have different impacts on reli-
ability.

There are two main questions to be answered:

• How are reliability-related phenomena affected by dif-
ferent power management mechanisms and hardware
implementation choices?

• Can the system exploit different power management
mechanisms to achieve its reliability target under vary-
ing ambient conditions and runtime workload?

In this work, we try to address the two issues in the con-
text of radiation-induced soft error, as the hardware design
choices and system power management schemes can jointly
affect soft error rate (SER). For example, power gating, as
one of RFTS schemes, can be implemented with or without
state retention flip-flops (FFs) [16]. Power gating without
retention FFs will dump its state into memory, which helps
eliminate logic SER during gating. However, power gating
with retention FFs will increase SER as FFs in retention
mode are more vulnerable to soft errors.

Radiation-induced soft error also poses challenges of how
to estimate SER, especially for mobile devices. It is difficult
to monitor by hardware itself due to the unique ambient
(i.e., location/altitude) dependence [14] and rare occurrence
nature. The same type of device can be used by users liv-
ing at different geographic locations. Even the same mobile
device can be used at different locations over time. We ob-
serve that most mobile devices are typically equipped with
various hardware sensors (barometers, GPS etc.) and Inter-
net connection capabilities. Therefore, system-level or even
cloud-based SER monitors can be implemented to capture
the device location information and to assist the reliability
management.

The key contributions of our work are the following:

• We implement a hardware evaluation platform based
on BeagleBone Black development board and standard
Linux kernel. We demonstrate the use of our platform
for studying the system power and SER under dif-
ferent hardware design choices, application workloads
and software management schemes.

• We propose a system/cloud-based virtual sensing ap-
proach to capture the varying location/altitude for SER
estimate. This enables the reliability adaptation and
management.

• We propose new reliability management policies to ex-
ploit the flexibility in existing Linux power manage-
ment schemes. We show that our forbidden-state based



approaches are effective in achieving system reliability
target with minimal power overhead compared to the
optimal schemes characterized offline.

Previous work addressed either the hardware reliability
modeling challenges [3, 11] or proposed new sophisticated
power management algorithms [21,25,31]. They focused on
a specific hardware model and did not consider the power
and reliability impacts of wide varieties of hardware support
for power management. Our evaluation platform focuses on
studying the interactions between different hardware design
choices and representative power management schemes in
generic system software (i.e., Linux kernel). Our evaluation
platform will be using the reliability models in some of the
existing work. Our reliability management policies are pro-
posed to exploit flexibility in different existing power man-
agement schemes rather than proposing new power man-
agement algorithms. Previous work [15, 18, 25] addressed
the reliability management problem in the context of other
reliability-related issues, including Negative-/Positive-biased
Temperature Instability (N/PBTI), Electromigration (EM),
etc. Our framework can be extended to consider these reli-
ability issues as well.

The rest of the paper is organized as follows: Section 2
introduces some background information about radiation-
induced soft error, hardware support for power management
and power management schemes in Linux kernel. Section 3
describes the development of our evaluation platform and
some results of using the platform to assess the system power
and SER. Section 4 presents our approaches and results of
power state management policies for retaining system relia-
bility targets. Section 5 concludes the paper.

2. BACKGROUND

2.1 Radiation-Induced Soft Error
Radiation-induced soft error is caused by alpha particles

or neutrons hitting silicon and flipping circuit logic states.
The actual failure rate or failure-in-time (FIT) rate depends
on the technology [17, 26], circuit structure (e.g., logic gate
structure, size) [11], operating points (e.g., supply voltage) [7]
and ambient conditions (e.g., altitude) [14].

A model for calculating altitude-dependent SER is pro-
posed in [14] as:

SER =

Z
σ(E) · ( dφ

dE
)dE (1)

where σ(E) is the bit fail cross section for particle energy
E, dφ/dE is the fluence rate per unit energy, or differential
flux. The main altitude dependence of dφ/dE is exponen-
tial attenuation based on the atmospheric depth d. This
dependence can be represented as a factor Falt(d):

Falt(d) = exp(
dSL − d

Ln
) (2)

where dSL is the atmospheric depth at sea level, and Ln is
the effective attenuation length. This altitude-dependence
model is reported with less than 5% error compared to mea-
sured data across different geographic locations [14]. In this
work, we will use pre-characterzied FIT rate data as baseline
and apply the altitude dependence in Equation 2.

Various techniques have been proposed to detect and cor-
rect soft errors [19,23,24,28]. Different architecture compo-
nents can have different vulnerability to soft error [20], and
the error propagation can become very complicated [8]. It

Figure 1: An example of state retention Flip-
Flop [16]. The retention part is powered by a differ-
ent supply rail than the main master/slave latches.

is difficult to combine the SER of different components into
one system failure rate. In this work, we assume that the
system has two separate SER targets for the processor core
and memory, since the factors we studied, such as supply
voltage and location, affect the SER of either or both com-
ponents. For core SER, only FF soft errors are considered, as
combinational soft errors contribute a relatively small frac-
tion [11]. The FFs include both architectural visible and
non-visible (i.e., pipleline FFs, control FFs etc.) ones. For
memory SER, we consider only soft errors in SRAM with-
out ECC, as SRAM can be well-protected with ECC and
physical interleaving.

2.2 Hardware Support for Power Management
Most power management mechanisms are supported by

some special hardware design techniques or configurations.
Different design choices can result in different management
efficiency (e.g., power saving and switching latency) as well
as hardware reliability.

One example is the design of on-chip power delivery net-
work in support for voltage scaling. In a typical design,
memory other than L1 cache is designed to operate at a
constant voltage and thus on a separate memory power rail.
There are two possible ways to connect the power supply of
L1 cache. One common way is to connect it to the same
power rail as the processor core. This design can avoid the
voltage level converter between the processor core and L1,
but will also limit the lowest supply voltage which is usually
determined by the SRAM Vmin. The other way is to connect
L1 to the separate power rail. This allows more aggressive
voltage scaling but requires level converter and results in
longer delay and higher design overhead.

Another example is the implementation of state retention
for power gating. As mentioned earlier, the state retention
can be realized by either retention FFs or dumping archi-
tecture states into memory. An example of retention FF is
plotted in Fig. 1 [16]. The retention part is usually imple-
mented by smaller transistors and powered by lower sup-
ply voltage than the master/slave latches on the main path.
This makes the FF under retention mode more vulnerable
to soft errors.

There can be a lot of different consideration for making
these hardware design choices. The purpose of our work is
studying the interactions between these design choices and
system-level power management schemes rather than com-
paring them from reliability or power perspective. There-
fore, we will make our implementation flexible for targeting
these different hardware configurations.

2.3 Power Management in Linux Kernel



Figure 2: State transition diagram example based
on CPU utilization µ for CPUFreq governors. On-
demand governor can switch between any two levels
while conservative governor can only switch between
neighboring levels. The switching threshold values
are configurable in Linux kernel, and we use the de-
fault values for ondemand governor.

Different power management schemes can have substan-
tially different impacts on SER. Previous work has proposed
sophisticated scheduling and voltage scaling algorithms in
the context of soft error for real-time systems [12,21,22,27,
31]. However, most existing work does not consider the in-
teractions between software management schemes and hard-
ware implementation choices.

For evaluating hardware design choices, it is important to
correctly account for the generic software system and work-
load behavior. In this work, we build our platform based on
Linux kernel of version 3.12. The two power management
schemes, JIT and RFTS, are implemented in Linux kernel
as CPUFreq and CPUIdle modules respectively.

CPUFreq [9] (see left top of Fig. 4) is the module in-
side Linux kernel for CPU frequency scaling. Depending on
the hardware driver and implementation, the supply voltage
may or may not scale with the frequency, as voltage scaling
does not need to be visible to the software. The CPUFreq
policy is a data structure used to record information, such
as current governor, operating frequency etc. The module
is scheduled to run at a fixed period. At the beginning of
each period, CPUFreq governor retrieves system utilization
information from the kernel. Based on CPUFreq policy data
and the frequency table, the governor will set a frequency
target or range. An example state diagram of CPUFreq gov-
ernor is shown in Fig. 2. The utilization threshold for state
switching is configurable in Linux kernel. In this work, we
use the default values of ondemand governor. Driver, which
is the actual code talking to the hardware, will try to scale
the frequency/voltage (i.e., P-states) to match the target
specified by the governor. 1 The actual change done by the
driver will be updated to CPUFreq policy and broadcasted
through a system notifier.

CPUIdle [10] (see Fig. 3) is the module to support multi-
ple CPU idle levels inside Linux kernel. Different available
idle states (i.e., C-states) are pre-characterized with their
corresponding power consumption and exit latency. The idle
state selection is based on target residency, which is the min-
imum idle time to achieve a net energy saving compared to

1Latest version of the kernel deprecates this and requires
the driver to set to the exact target frequency as specified.

Figure 3: CPUIdle module flow chart

a lighter idle state. At runtime, CPUIdle module is called
when the system completes the tasks and enters the idle
loop. The module generates an estimate of the expected
residency (i.e., sleep time) based on next scheduled event
and other history information like past interrupts. The gov-
ernor will select the idle state whose target residency is the
largest but is still not larger than the expected residency.
Corresponding driver function is used to prepare and enter
the selected idle state. Upon wake up, the module will re-
cover the system state and record the actual residency time.

3. RELIABILITY EVALUATION OF POWER
MANAGEMENT SCHEMES

An evaluation platform is essential for studying system re-
liability under system-level power management with various
hardware configurations and software applications. Some
key questions can be answered by experiments using such
an evaluation platform, e.g., how will software management
schemes in conjunction with hardware design choices affect
system reliability, what is the worst-case workload for sys-
tem reliability. In this section, we describe the implementa-
tion of the evaluation platform. The base platform is intro-
duced in Section 3.1. The targeting hardware configurations
and corresponding power and SER models are explained in
Section 3.2. The platform customization is described in Sec-
tion 3.3. Some experimental results on system reliability
evaluation are presented in Section 3.4.

3.1 Base Platform for Reliability Evaluation
The hardware evaluation platform has to be general enough

for targeting different hardware configurations as well as
fast enough for running system software. Therefore, im-
plementing actual hardware for each of the configuration is
impractical and simulation-based approaches are not feasi-
ble. Emulation-based tools [29] can meet both the speed and
flexibility requirements, but lack accurate time accounting
for frequency scaling and entering/leaving idle states.

In this work, we build the platform based on BeagleBone
Black [6] board, on which the kernel and software are run-
ning. Power, reliability and different power management la-
tencies are emulated online with a customized kernel module
or by inserting dummy busy loops. The power and reliabil-
ity models are pre-characterized and treated as input for the
kernel module.

BeagleBone Black board is based on AM335x ARM Cortex-
A8 processor [4] with 45nm process technology. The proces-
sor has separate L1 32KB data cache and 32KB instruction
cache. L2 cache is of 256KB. The software stack is based on
TI SDK7 [5]. Linux kernel is of version 3.12 with support
for both CPUIdle and CPUFreq modules. Software bench-
marks are used to represent different workloads, including



Table 1: Table of different hardware implementa-
tions

Retention FF L1 Rail L1 ECC

Case I No Same as core No

Case II No Separate No

Case III Yes Same as core No

Case IV No Same as core Yes

web browsing, MPEG 4 decoding, FFPlay [13] and 3D image
rendering. We also implement a synthetic benchmark in or-
der to study the system behaviors under different workload
intensity.

3.2 Hardware Configuration and Modeling
As discussed in Section 2.2, different hardware configura-

tions can have different impacts on reliability. The hard-
ware evaluation platform will be used to emulate systems
with these configurations. The design configurations to be
explored include the use of retention FFs for power gating,
whether L1 cache is under the same power rail as the proces-
sor core, and whether L1 cache is protected with ECC. The
hardware design configuration cases studied in this work are
listed in Table 1.

Power and SER models for these configurations are essen-
tial for our evaluation platform. In this work, we derive the
power and SER models based on a 45nm technology. We also
use projected power and SER model for 28nm technology to
study the impacts of technology scaling in Section 3.4.

BeagleBone Black is based on Cortex-A8 processor. Since
we do not have the detailed design information, building
the power and delay models at different supply voltages and
idle states for the exact processor is not possible. In this
work, the power and delay model is derived based on the
synthesis, placement and routing results of a similar proces-
sor using commercial tools [1] with commercial 45nm pro-
cess technology and libraries. The power and delay models
should reflect the voltage-dependence of this process tech-
nology and libraries for mobile-class processors. As will be
discussed later, the SER model is based on the FIT rate
of individual elements (i.e., FFs and SRAM cells), which is
independent of the processor model after normalization.

The power values are calculated using the same commer-
cial tools [1] with the libraries. To model the power dif-
ference under voltage scaling, we also re-characterize the
libraries at the supply voltages for all P-states in Table 2.
The libraries include the retention FF cells, which are used
to model the power when retention FFs are used. The power
saving for clock gating (i.e., C2 state in Table 3) is derived
by stripping off clock power. The memory power model is
based on the memory compiler results for the same process
technology. The memory compiler is configurable with op-
tions to include memory ECC and/or retention modes. The
power difference is taken into account with respect to the
corresponding targeting design configuration cases in Ta-
ble 1. The power model projection for 28nm is done by
repeat the same process with commercial 28nm technology
and libraries, including memory compiler results.

As mentioned earlier in Section 2.1, it is difficult to model
or compute the system failure rate based on SER of each in-
dividual component. So the processor core SER and memory
SER are considered separately. In fact, even for individual
component like processor core, the failure rate is extremely
difficult to model due to masking effects at various levels,

Figure 4: Overall block diagram

different visibility and vulnerability. However, the factors
we are considering in this work, i.e., voltage and altitude,
have similar effects on FFs or SRAM cells. Moreover, none
of these factors will change the error propagation or behav-
iors other than increasing or decreasing the probability of
getting bit-flips. In this work, we model SER of processor
core or memory by the FIT rates of FFs or SRAM cells.

Sea-level processor core SER values are based on FIT rates
in [11] for 45nm technology and only sequential elements
(i.e., FFs) are considered. The core soft error rate is calcu-
lated based on the total number of FFs in the synthesized
processor netlist. The SRAM SER values are also derived
based on the results in [3,11] and voltage dependence in [7].
The 28nm SER values are scaled based on the model in [7].
Altitude dependence of SER is modeled by Equation 1 based
on the work in [14]. The parameters in Equation 1 are de-
rived based on the design manual of the same 45nm tech-
nology.

3.3 Platform System Customization
The platform supports both CPUFreq and CPUIdle mod-

ules with five frequency levels and two idle states, Wait-For-
Interrupt (WFI) and clock gating. To be able to evaluate
more variety of power management schemes, two more idle
states, including core power gating with and without mem-
ory retention mode, are added. Extra latency are emulated
by inserting additional dummy busy loops. In this work, we
use the ondemand CPUFreq governor.

A customized power/reliability bookkeeping module is de-
veloped for taking the system trace and keeping track of the
system power and SER at runtime. The module structure
is illustrated on the left bottom of Fig. 4. The module reads
in the pre-characterized power and nominal SER model val-
ues for the processor core and cache. Based on these values
and device location information, the module updates the
system’s current power consumption and SER for normal
running and each C-state. Any frequency change notifier
or location update will trigger the module and recalculate
the power/SER values. A logging thread is running at a
fixed period to calculate and record the accumulated power
and SER, based on the corresponding time spent in normal
running and each C-state.

The information for supported P-states and C-states are
summarized in Table 2 and Table 3. The frequency switch-
ing delay shown in the driver is 0.3ms, which makes the
CPUFreq module run every 300ms. But our actual measure-
ment shows much longer latency for frequency level switch-
ing, which is mainly caused by the low bandwidth I2C com-



Table 2: Table of different CPUFreq states spec used

Frequency Voltage Latency

1000 MHz 0.90V 2.1ms

800 MHz 0.82V 2.1ms

720 MHz 0.80V 2.2ms

600 MHz 0.76V 2.2ms

300 MHz 0.72V 3.2ms

Table 3: Table of different CPUIdle states spec used

State Description Exit Latency
Target
Residency

C1 WFI 68us 150us

C2 clock gating 130us 200us

C3 core power gating 530us/1060us2
800us/
1450us

C4
core power gating
with SRAM reten-
tion

650us/1180us2
1000us/
1550us

munication between the processor and the off-chip regulator.
Since only frequency change need to be visible to software
stack, we also implement a customized version of the driver
that bypasses the voltage changes and only does the fre-
quency scaling. This gives our platform the capabilities to
emulate systems with fast frequency switching latencies.

3.4 Results of Reliability Evaluation
The experiments are done with the hardware evaluation

platform based on BeagleBone Black board (see Fig. 5). The
device is assumed to be operated at sea level. The reliabil-
ity bookkeeping thread is configured to generate a log entry
every 100ms to limit the interference and have enough reso-
lution for tracking the states.

The results of different hardware configuration cases with
our synthetic workload are plotted in Fig. 6. The synthetic
workload is implemented as a busy-loop that is scheduled
every 20ms. The busy-loop is configurable with a tunable
number of iterations to load the system with different work-
load intensity. 100% workload intensity means the number
of iterations in the busy-loop is configured to fully load the
system with no performance slack. 40% workload intensity
means the number of iterations in the busy-loop is 40% of
that for the 100% workload intensity case. For the ease of
cross-comparison, all results in this section are normalized
with respect to the maximum power/SER values from Case
I study, which is about or equivalent to 0.26W power, 200
FF FIT and 500 SRAM FIT for per mega cells.

In all cases, the power increases with increased workload
intensity. This is expected as higher workload intensity im-
poses higher performance demand on the system, which re-
sults in higher voltage state and less idle time. For systems
without L1 memory ECC, i.e., case I, II and III, memory
SER decreases with increased workload intensity, due to less
time spent in retention mode and lowered supply voltage lev-
els.

An interesting observation is that for systems without
retention FFs, i.e., case I, II and IV, core SER is non-
monotonic with respect to the workload intensity. Peak core
SER occurs at medium (around 40% - 50%) workload inten-

2Exit latency and target residency for system with/without
retention FFs

Figure 5: Photo of the hardware evaluation plat-
form setup based on BeagleBone Black development
board.

Figure 6: Power/SER Results of different hardware
configuration cases with different software work-
load intensity at sea level. 100% workload intensity
means the system is fully loaded and has no perfor-
mance slack.

sity, where system is operating at low voltage level and with
little slack for going into deep idle states. This suggests
the potential of preferring an RFTS power management ap-
proach to reduce SER. This motivates the reliability man-
agement policies proposed in Section 4. For system with
retention FF, i.e., case III, core SER is significantly higher
than other cases and peaks at low workload intensity re-
gions, as the FFs in retention mode are more vulnerable
to soft errors. A potential software solution to this can be
implementing a virtual idle state with all or part of CPU
states dumped to RAM even in presence of retention FFs.
This idle state can be used for low workload intensity sce-
narios, where sleep/wake-up latency requirements may be
relaxed but core SER is the highest.

To study the impact of technology, the experiments with
synthetic workload is repeated with the projected 28nm power
and SER models. The results are plotted in Fig. 7. The
trend of power and SER changes is very similar to the re-
sults in Fig. 6. Similar to the results reported in [26], we
observe reduced SER of sequential elements at smaller tech-
nology. This reduced SER is primarily due to the smaller
FIT rate for each individual sequential element, as a result
of shrinked diffusion area and increased driving strength per
diffusion area. In reality, this result may be different con-
sidering that the design at smaller technology is likely to
have more logic gates and larger memory capacity.



Table 4: Normalized power/core SER/memory SER results of different software benchmarks with different
configuration cases at sea level

Web browsing MPEG 4 decoding FFPlay 3D image rendering

Case I 0.35/0.57/1.05 0.58/0.83/0.77 0.36/0.80/0.51 0.54/0.85/1.01

Case II 0.39/0.59/0.65 0.57/0.77/0.45 0.37/0.80/0.39 0.58/0.85/0.62

Case III 0.34/2.30/1.04 0.61/1.93/0.70 0.35/1.57/0.52 0.52/2.42/1.01

Case IV 0.34/0.55/0 0.55/0.86/0 0.33/0.76/0 0.52/0.83/0

Figure 7: Power/SER Results of different hardware
configuration cases with different software workload
intensity for 28nm technology.

We also demonstrate the use of our platform for evaluating
power/SER with real life benchmarks. Four software bench-
marks are used, including web browsing, MPEG 4 decoding,
FFPlay and 3D image rendering. We launch one benchmark
at a time on the platform and record the average power and
SER over a fixed period. The period starts 3 seconds before
the beginning of the benchmark and lasts long enough for
the benchmark to finish. This matches the running envi-
ronments of typical embedded/mobile devices and includes
the warm-up and cool-down period of the system, which is
important for modeling the system-level power management
schemes.

The power and SER results of running different software
benchmarks are highlighted in Table 4. The numbers are in
line with the results in Fig. 6. MPEG 4 decoding is the most
demanding workload, therefore have the highest power con-
sumption and lowest memory SER. The core SER is highest
for 3D image rendering, which has slightly smaller workload
intensity than MPEG 4 decoding. Comparing the results
of web browsing and FFPlay, they have very similar power
results. However, both core SER and memory SER are very
different for these two benchmarks. Average core SER is
much higher for FFPlay, and memory SER is much higher
for web browsing. This is because the two benchmark have
very different workload patterns. Workload for FFPlay is
more steady, while web browsing behaves more like bursts
of workload. As the results of these workload patterns, the
power management behaves more like RFTS for web brows-
ing and JIT for FFPlay. This further motivate our proposed
reliability management policies, which will be described in
Section 4.

4. EXPLOITING POWER MANAGEMENT
SCHEMES FOR RELIABILITY

Since different power management schemes can all achieve
power saving but have different impacts on system reliability,
they can potentially be used to retain the system reliability
target if ambient condition (e.g., location) changes. As pre-
requisite of such adaptation, a system/cloud-based virtual
SER sensing is proposed in Section 4.1.

As mentioned earlier in Section 3.2, we consider the pro-
cessor core SER and memory SER separately. In this work,
we assume the system has specific SER target for the pro-
cessor core and memory in order to retain its mean-time-
between-failure (MTBF). For a real system, error injection
studies can be performed to derive the relationship between
soft errors (i.e., bit flips) and system failures. Based on the
desired system MTBF, the SER target can be calculated.

The SER target can be a static constraint, i.e., specifica-
tion sheet target, which means that the instantaneous SER
at any time should be kept smaller than it. We propose
a forbidden-state based policy for such static constraints in
Section 4.2. Since typical soft error MTBF can be of days to
months, restricting the instantaneous SER may be too pes-
simistic and unnecessary. We also consider the case when the
constraint is dynamic, i.e., the system’s overall SER within
certain period should be kept smaller than the SER tar-
get. This period should be much shorter than the soft error
MTBF (in days to months) but still significant longer than
the power management operation time (in milliseconds). We
propose a dynamic state enabling/disabling policy for such
dynamic constraints in Section 4.3. Experiment results are
described in Section 4.4. The effectiveness of our dynamic
policy is evaluated in Section 4.5.

4.1 SER Estimation Mechanism
Soft error itself can result in different software/hardware

symptoms and be detected by corresponding mechanism [28].
SER, however, is extremely difficult to measure or estimate
due to soft error’s rare occurrence nature and unique ambi-
ent dependence. Direct measurement of the error occurrence
such as measuring memory ECC [30] errors or checkpoint
recovery events may be possible. But it will require huge
memory size or extremely long measurement time, as the
soft error rate are typically less than one per mega devices
per month.

Our proposed mechanism is motivated by the fact that
most modern mobile devices are equipped with various types
of sensors (e.g., GPS, barometer) and network connection
capabilities. A system-level virtual altitude/location sensor
can be implemented based on these sensors. SER estimation
of current location can be made with altitude-dependence
model [14] or a locally-stored look-up table. A cloud-based
service can also be used to answer incoming queries of the
measured flux rate data, solar activities and SER estimate
from mobile devices with given location information.

In this work, we assume the system is equipped with the
virtual altitude sensor. Whenever the virtual altitude sensor
updates the altitude value, our reliability bookkeeping mod-



ule (see Fig. 4) will update the SER estimate for both core
SER and memory SER based on the altitude-dependence
model. The SER estimate is based on a pre-characterized
reference SER value at sea level and scales with an exponen-
tial function of altitude dependence from Equation 2. The
overhead of SER calculation is negligible. Alternatively, a
local look-up table can be used to store the pre-characterized
SER values at different altitudes.

4.2 Forbidden-State Based Policy
Different approaches can be used to affect the system

power management choices and account for ambient con-
dition changes. A good approach should be both effective
and non-intrusive so that the impacts on the system be-
havior and performance is minimal and mostly predictable.
Based on these considerations, we decide to preserve ex-
isting Linux power management modules and perform the
reliability management by manipulating the available power
states. In this way, our reliability management policy is iso-
lated and independent from the power management schemes.
This also improves the compatibility of our approaches with
arbitrary power management governors.

Considering the structure of kernel power management
schemes (see Fig. 4 ), we propose a forbidden-state based
policy for enabling/disabling certain P-states and C-states,
depending on system’s current SER. The policy is imple-
mented as a stand-alone module (see Fig. 4). For P-states,
the module will change the frequency table directly so that
the driver that decides the final frequency level will select
only the available states. For C-states, a C-state table is
maintained for CPUIdle governor to enter only the available
idle states.

A static policy can be used for the case of static SER tar-
get. Whenever the reliability bookkeeping module updates
the system SER, the state management module compares
the SER values to the target SER and disables all states
whose SER values are higher. This guarantees that the in-
stantaneous SER at any possible power state can meet the
reliability target.

4.3 Dynamic State Enabling/Disabling Policy
For dynamic SER target, the static policy may be too con-

servative and unnecessary. Therefore, we propose a policy
which limits the average SER, SERavg, within a given pe-
riod of T through dynamically enabling/disabling the avail-
able P-states and C-states.

The policy is built based on our reliability bookkeeping
module described in Section 3.3. The module keeps track of
the accumulated SER at any time t as SERacc(t). So at the
beginning of each period tstart, the accumulated SER target
for the end of this period, SERend, can calculated as:

SERend = SERacc(tstart) + SERavg · T (3)

At any time t, the remaining SER budget, SERbudget, until
the end of this period tend can be calculated as:

SERbudget =
SERend − SERacc(t)

tend − t
(4)

The policy will use SERbudget instead of the actual SER
target to determine which states should be enabled or dis-
abled.

The overall structure of the state management module is
kept the same with this dynamic policy. Only an update
request mechanism is added to calculate SERbudget on de-
mand. Whenever the CPUFreq or CPUIdle module access

Figure 8: Power/SER Results of different software
benchmarks on case I with dynamic policy.

the state table, a request is initiated to update current power
management states. The state management module can also
initiate a request for reliability bookkeeping module to up-
date the SER values. Though we are working on a single-
core platform, the module and policies are compatible for
multi-core systems. For multi-core system, scheduling can
also be a strong knob with techniques like workload aggre-
gation or distribution in trading-off JIT vs. RFTS.

4.4 Experimental Evaluation of Reliability Man-
agement Policies

All experiments are run with the hardware evaluation
platform described in Section 3. The dynamic policy is con-
figured to account for overall SER over a period of one sec-
ond, i.e., T = 1s for Equation 3. The altitude values are fed
to the system through a script. Corresponding SER values
for processor core and memory are calculated based on the
model in [14]. The reliability target is calculated based on
each hardware configuration’s worst SER states at an alti-
tude of 2000m. In this section, if not otherwise mentioned,
we report the maximum accumulative SER value over the
period of one second and normalize it with respect to the
SER targets, i.e., an SER value 1 means we are right at the
SER target.

The implementation of the policies is verified by the re-
liability bookkeeping module. Both the static policy and
dynamic policies can effectively control the SER with in-
creasing altitude value. Some of the results with dynamic
policies are plotted in Fig. 8, 9, 10, 11. For all benchmarks,
our dynamic policy is able to retain both core SER and
memory SER under the targets. In Fig. 8, the core SER
reaches the target at around 2000m altitude, while the mem-
ory reach the target at 2500m altitude. The reason is that
the worst-case workload patterns for core SER and memory
SER are different (as suggested in Fig. 6). In Fig. 10, the
core SER and memory SER are in the same pace because
their dependence on workload is similar (see Fig. 6).

For all cases, the power overhead is small except for some
large altitude cases. This is because extensive use of higher
voltage states and shallower idle states are required once the
gap between reference SER values and SER targets becomes
large. This can also be explained with the limited dynamic
range of SER in all possible power states. The study on the
effectiveness of our dynamic policy against optimal power



Figure 9: Power/SER Results of different software
benchmarks on case II with dynamic policy.

Figure 10: Power/SER Results of different software
benchmarks on case III with dynamic policy.

state selection schemes will be described in Section 4.5.
The other way to study the policy behavior is to ana-

lyze how different power states are enabled/disabled. An
example of web browsing benchmark is shown in Fig. 12.
A free-running trace at sea level (see Fig. 12(a)) is used
as a baseline for comparison. For case I at 2500m altitude
(see Fig. 12(b)), where memory SER dominates, the policy
retain SER target by disabling low voltage states, result-
ing in entering higher frequency states at around t = 5s in
Fig. 12(b). For case III at 2500 altitude (see Fig. 12(c)),
where core SER dominates, the policy retain SER target by
disabling deep sleep state so that the FFs spend less time in
retention mode. This results in static frequency but varying
SER (due to enabling/disabling the deepest idle state) at
around t = 5s in Fig. 12(c).

The system performance is also evaluated through quality
metrics such as runtime and frame miss rate. Since our poli-
cies only disable lower frequency levels or long exit latency
idle states, system performance with our policies is always
the same or better. The overhead of our reliability book-
keeping module and state management module is negligible
compared to the latency involved in changing power states.

Figure 11: Power/SER Results of different software
benchmarks on case IV with dynamic policy.

The small power overhead seen in the results is partly
due to the fact that voltage scaling is not a strong knob for
this technology. We also observe this from the generated
libraries at different supply voltages. For other high sub-
threshold swing devices like FinFET, the circuits may scale
better with voltage and thus have different results.

4.5 Policy Effectiveness Evaluation
Our dynamic policy adopts a pessimistic approach by dis-

abling all possible power states that will violate the relia-
bility target if the states last for the entire remaining time,
i.e., tend − t in Equation 4. This can result in left-over SER
budget and unnecessary power overhead. To study the effec-
tiveness of our policies, we also implement a trace-recording
module, which can be enabled to store the all power state
switching information. With these traces, we can charac-
terize the optimal power state selection scheme offline and
compare with our policies. Since our purpose is evaluating
the effectiveness of our policies rather than evaluating the
built-in Linux governors, we will use the power states sug-
gested by the Linux governors as baseline. Only the same
or higher power states, i.e., higher voltage states or shal-
lower idle states are considered so that we won’t have any
performance impacts.

Considering the fact that P-state selection will change the
idle time length and corresponding C-state selection con-
texts, we will implement two separate schemes for P-state
and C-state selection.

To find the optimal C-state selection, we formulate the
problem as an integer linear programming (ILP) problem as
in Equation 5:

minimize:

NX
n=1

(Tn ×Pn
t · Sn)

subject to: ∀ n : Sn
t · 1 ≥ 1

NX
n=1

(Tn ×Rn
t · Sn) ≤ K

∀ n : Sn
t · Ln ≤ 0

∀ n : Sn ≥ 0

(5)

The optimization objective is to minimize the energy over-
head, where n is the index for each C-state selection, N is



(a) sea level (b) 2500m altitude Case I (c) 2500m altitude Case III

Figure 12: An example of web browsing benchmark execution with different altitude and hardware cases.
For case I, P-states are exploited by the policy while C-states are used for case III. Note some y-axis scale
for the figures are different.

the total number of C-state selections. Tn is the actual res-
ident time for the C-state selection. Since we have four idle
states here, Pn is a 4x1 vector corresponding to the power
of each C-state. The power can be different for different n
because the corresponding P-state can be different. Sn is
selection vector, i.e., 4x1 integer vector for each C-state se-
lection. The i-th entry in Cn equals 1 means the i-th C-state
is selected. The first constraint ensures that one state is se-
lected3. K is the SER budget for these idle time selection.
The second constraint is to make sure that SER budget will
not be exceeded. Rn is a 4x1 vector corresponding to the
SER of each C-state. This SER can also be different for
different n because of the corresponding P-state. Ln is a
4x1 vector representing the selection of built-in Linux gov-
ernor. If the i-th C-state is selected by Linux governor, all
entries including and after the i-th entry are 1 and 0 other-
wise. So the third and fourth constraints are used to limit
the available state selection.

For P-state selection, we will first calculate the total ac-
tive time until next P-state switching time according to the
operating frequency, then scale the idle time spent in each
C-state accordingly. This actually is likely to be optimistic
because the optimal scheme will prefer a lower voltage state
compared to our policies, which can result in less active time
within the scheduling ticks and thus entering more into the
shallower idle states.

For each P-state, we can first compute the new active time
and idle time of each C-state. The we can characterize the
energy and SER impacts for all P-states. To find the optimal
P-state selection, we can also formulate the problem as an
Integer Linear Programming (ILP) problem in Equation 6.

minimize:

MX
m=1

(Em
t · Sm)

subject to: ∀ m : Sm
t · 1 ≥ 1

MX
m=1

(Rm
t · Sm) ≤ K

∀ m : Sm
t · Lm ≤ 0

∀ m : Sm ≥ 0

(6)

where m is the index for each P-state selection, M is the
total number of P-state selections. Since we have five P-
states, Em and Rm are 5x1 vectors and corresponding to
the pre-characterized energy and SER difference. Similar
to C-state formulation, Sm is the 5x1 selection vector for

3An upper bound here is unnecessary due to the minimiza-
tion and the fact that Pn and Tn are non-negative

Table 5: The additional power of running the bench-
marks with our policies compared to the optimal P-
state and C-state selection schemes

Benchmark
P-state optimal C-state optimal

Mean Max Mean Max

Web browsing 0.08% 0.42% 0.72% 2.18%

MPEG 4 decoding 0.14% 0.73% 0.63% 2.47%

FFPlay 0.18% 1.31% 0.58% 2.51%

3D Image rendering 0.14% 1.17% 0.53% 1.89%

P-states. K is the SER budget.
The formulated ILP problems are solved by LP solve [2].

The comparison results for software benchmarks running at
altitude of 3000m are summarized in Table 5. Over all cases,
our dynamic policy is within 1.5% with the optimal P-state
selection scheme and within 3% with the optimal C-state
selection scheme. The difference is smaller for P-state be-
cause the overhead of selecting higher voltage state can be
compensated by spending more time in idle state, i.e., JIT
vs. RFTS. But selecting shallower idle state will not change
the utilization and thus the P-state selection. This also sup-
ports our claim that different power management schemes
(i.e., JIT and RFTS) can be exploited for achieving system
reliability targets.

5. CONCLUSION
In this paper, we developed a hardware evaluation plat-

form to assess system reliability under different system power
management schemes. We also propose a system/cloud-
based virtual sensing for reliability evaluation. We propose
two reliability management policies based on the already
existing power management schemes. Experimental results
with real life benchmarks show that our policy is effective
and achieves system reliability target with minimal power
overhead, compared to the optimal schemes characterized
offline. Future work will try to include more reliability is-
sues. The kernel module code is available for download at
https://github.com/nanocad-lab/JIT-RFTS.

Acknowledgment
This work is supported in part by NSF Variability Expedi-
tion grant CCF-1029030. The authors would like to thank
Prof. Mehdi Tahoori and Mojtaba Ebrahimi, Karlsruhe In-
stitute of Technology, for their generous help in getting the
FIT rate data. The authors would also like to thank the
anonymous reviewers for their valuable comments and sug-
gestions to improve the quality of the paper.



6. REFERENCES
[1] Cadence encounter digital implementation system.

http://www.cadence.com/products/di/edi system/pages
/default.aspx.

[2] lp solve. http://lpsolve.sourceforge.net/.

[3] D. Alexandrescu. A comprehensive soft error analysis
methodology for socs/asics memory instances. In
On-Line Testing Symposium (IOLTS), 2011 IEEE
17th International, pages 175–176. IEEE, 2011.

[4] am335x. http://www.ti.com/product/am3358.

[5] Am335xsdk. http://software-
dl.ti.com/sitara linux/esd/AM335xSDK/-latest/index

FDSḣtml.

[6] Beaglebone black.
http://beagleboard.org/Products/BeagleBone+Black.

[7] V. Chandra and R. Aitken. Impact of technology and
voltage scaling on the soft error susceptibility in
nanoscale cmos. In Defect and Fault Tolerance of
VLSI Systems, 2008. DFTVS’08. IEEE International
Symposium on, pages 114–122. IEEE, 2008.

[8] H. Cho et al. Quantitative evaluation of soft error
injection techniques for robust system design. In
Design Automation Conference (DAC), 2013 50th
ACM/EDAC/IEEE, pages 1–10. IEEE, 2013.

[9] cpufreq.
https://www.kernel.org/doc/Documentation/cpu-
freq/.

[10] cpuidle.
https://www.kernel.org/doc/Documentation/cpuidle/.

[11] M. Ebrahimi et al. Comprehensive analysis of alpha
and neutron particle-induced soft errors in an
embedded processor at nanoscales. In Design,
Automation and Test in Europe Conference and
Exhibition (DATE), 2014, pages 1–6. IEEE, 2014.

[12] M. Fan, Q. Han, S. Liu, and G. Quan. On-line
reliability-aware dynamic power management for
real-time systems. In Quality Electronic Design
(ISQED), 2015 16th International Symposium on,
pages 361–365. IEEE, 2015.

[13] ffmpeg. https://www.ffmpeg.org/.

[14] M. Gordon et al. Measurement of the flux and energy
spectrum of cosmic-ray induced neutrons on the
ground. Nuclear Science, IEEE Transactions on,
51(6):3427–3434, 2004.

[15] E. Karl et al. Reliability modeling and management in
dynamic microprocessor-based systems. In Proceedings
of the 43rd annual Design Automation Conference,
pages 1057–1060. ACM, 2006.

[16] M. Keating et al. Low Power Methodology Manual:
For System on Chip Design. Springer, 2007.

[17] N. Mahatme et al. Analysis of soft error rates in
combinational and sequential logic and implications of
hardening for advanced technologies. In Reliability
Physics Symposium (IRPS), 2010 IEEE International,
pages 1031–1035. IEEE, 2010.

[18] P. Mercati et al. A linux-governor based dynamic
reliability manager for android mobile devices. In
Design, Automation and Test in Europe Conference
and Exhibition (DATE), 2014, pages 1–4. IEEE, 2014.

[19] S. Mitra et al. Built-in soft error resilience for robust
system design. In Integrated Circuit Design and
Technology, 2007. ICICDT ’07. IEEE International
Conference on, pages 1–6, May 2007.

[20] S. S. Mukherjee et al. A systematic methodology to
compute the architectural vulnerability factors for a
high-performance microprocessor. In Proceedings of
the 36th annual IEEE/ACM International Symposium
on Microarchitecture, page 29. IEEE Computer
Society, 2003.

[21] P. Pop et al. Scheduling and voltage scaling for
energy/reliability trade-offs in fault-tolerant
time-triggered embedded systems. In Proceedings of
the 5th IEEE/ACM international conference on
Hardware/software codesign and system synthesis,
pages 233–238. ACM, 2007.

[22] X. Qi, D. Zhu, and H. Aydin. Global scheduling based
reliability-aware power management for multiprocessor
real-time systems. Real-Time Systems, 47(2):109–142,
2011.

[23] S. Rehman, K.-H. Chen, F. Kriebel, A. Toma,
M. Shafique, J.-J. Chen, and J. Henkel. Cross-layer
software dependability on unreliable hardware.
Computers, IEEE Transactions on, PP(99):1–1, 2015.

[24] S. Rehman, F. Kriebel, D. Sun, M. Shafique, and
J. Henkel. dtune: Leveraging reliable code generation
for adaptive dependability tuning under process
variation and aging-induced effects. In Proceedings of
the 51st Annual Design Automation Conference, pages
1–6. ACM, 2014.

[25] T. S. Rosing, K. Mihic, and G. De Micheli. Power and
reliability management of socs. Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on,
15(4):391–403, 2007.

[26] P. Shivakumar et al. Modeling the effect of technology
trends on the soft error rate of combinational logic. In
Dependable Systems and Networks, 2002. DSN 2002.
Proceedings. International Conference on, pages
389–398. IEEE, 2002.

[27] R. Sridharan and R. Mahapatra. Reliability aware
power management for dual-processor real-time
embedded systems. In Proceedings of the 47th Design
Automation Conference, pages 819–824. ACM, 2010.

[28] N. J. Wang et al. Restore: Symptom-based soft error
detection in microprocessors. Dependable and Secure
Computing, IEEE Transactions on, 3(3):188–201,
2006.

[29] L. Wanner et al. Varemu: an emulation testbed for
variability-aware software. In Proceedings of the Ninth
IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis,
page 27. IEEE Press, 2013.

[30] H. Zhang et al. Guard: Guaranteed reliability in
dynamically reconfigurable systems. In Proceedings of
the The 51st Annual Design Automation Conference
on Design Automation Conference, pages 1–6. ACM,
2014.

[31] D. Zhu. Reliability-aware dynamic energy
management in dependable embedded real-time
systems. In Real-Time and Embedded Technology and
Applications Symposium, 2006. Proceedings of the 12th
IEEE, pages 397–407. IEEE, 2006.


