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ABSTRACT
The use of aggressive resolution enhancement techniques like mul-
tiple patterning and inverse lithography (ILT) has led to expensive
photomasks. Growing mask write time has been a key reason for
the cost increase. Moreover, due to scaling, e-beam proximity ef-
fects can no longer be ignored. Model-based mask fracturing has
emerged as a useful technique to address these critical challenges
by allowing overlapping shots and compensating for proximity ef-
fects during fracturing itself. However, it has been shown recently
that heuristics for model-based mask fracturing can be subopti-
mal by more than 1.6× on average for ten real ILT shapes, high-
lighting the need for better heuristics. In this work, we propose
a new model-based mask fracturing method that significantly out-
performs all the previously reported heuristics. The number of e-
beam shots of our method is 23% less than a state-of-the-art pro-
totype version of capability within a commercial EDA tool for e-
beam mask shot decomposition (PROTO-EDA) for ten ILT mask
shapes. Moreover, our method has an average runtime of less than
1.4s per shape.
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CAD, EDA, MDP, MB-MDP.

1. INTRODUCTION
The persistent delay in extreme ultraviolet lithography (EUVL)

has forced the semiconductor industry to continue to use 193nm
lithography even at 14nm technology node. Such sub-wavelength
scaling has been made possible by the use of several aggressive
resolution enhancement techniques (RETs) such as multiple pat-
terning and mask optimization, which includes techniques like op-
tical proximity correction(OPC), inverse lithography(ILT) and sub-
resolution assist features (SRAF) to compensate for diffraction.

Although the use of RETs has been a key enabler for semicon-
ductor scaling, it has increased manufacturing cost significantly. In
particular, the cost of mask fabrication has increased tremendously.
The use of aggressive mask optimization techniques that lead to
complex, curvilinear mask shapes is a major cause. In addition,
the use of multiple patterning means that more masks are required
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to pattern critical layers. According to ITRS, more than 70% of
the cost of ownership of wafers is due to masks [1]. As a result,
reducing mask manufacturing cost is extremely important to keep
scaling economically sustainable.

Masks are fabricated using a variable shaped electron beam tool.
Instead of exposing single pixels, axis-parallel rectangles, com-
monly referred to as shots, are directly exposed. Despite signif-
icant improvements in e-beam tool throughput, mask write times
are increasing rapidly with each technology node due to the use
of aggressive RETs for critical layers, and can take more than two
days for critical masks [2]. Mask fracturing is the computational
step that is used to get e-beam shots from the mask pattern. Since
the number of shots is proportional to mask write time [3, 4], reduc-
ing shot count is a key metric for mask fracturing tools. Since mask
write is typically around 20% of the mask manufacturing cost [4],
a reduction of even 10% in shot count would roughly translate to
2% improvement in mask cost1. Since the mask set for a single
modern design typically costs more than a million dollars, this is a
significant cost reduction for semiconductor manufacturing.

The conventional approach to mask fracturing treats it as a geo-
metric partitioning problem for rectilinear polygons. Known to be
polynomial time, this problem has been studied extensively. For ex-
ample, an O(n1.5 logn) time algorithm has been proposed by Imai
and Asano to solve this partitioning problem using the minimum
number of rectangles [5]. To handle additional mask manufactur-
ing constraints such as reducing slivers (narrow shots), Kahng et al.
propose an ILP formulation [6], and a faster heuristic that selects
rays from concave corners of mask shapes [7].

However, the growing complexity of mask shapes, coupled with
e-beam proximity effect has led mask makers to adopt model-based
mask fracturing, which is characterized by two main features:

• Overlapping shots are allowed, which can help reduce shot
count since there is greater flexibility in placing shots. Con-
sequently, mask fracturing must now be treated as a geo-
metric covering problem, instead of partitioning. Rectilinear
covering is known to be NP-hard [8]. Several heuristics with
different bounds and constraints on the rectilinear polygon
(such as hole-free, vertically or horizontally convex) have
been proposed to solve the rectilinear covering problem [9,
10, 11].

• E-beam proximity effect must be accounted for during mask
fracturing. Caused by forward scattering of electrons, prox-
imity effect has now become comparable to mask feature
sizes [12] and must be considered during fracturing.

Several heuristics have been proposed recently to solve the model-
based mask fracturing problem. Jiang and Zakhor propose match-
ing pursuit for complex SRAF shapes [13] and a greedy approx-
imation covering method for simpler OPC shapes [14]. Lin et
1This assumes that mask write time is proportional to cost of mask
write, which is reasonable since mask write cost is dominated by
e-beam tool depreciation.



Table 1: Glossary of Terminology.

Term Meaning
S Set of shots under consideration
s Rectangular shot under consideration
(x,y) Coordinate of point under consideration
Rs(x,y) 2D Rectangular function of shot s
G(x,y) 2D Gaussian kernel function
Is(x,y) Intensity of shot s at point (x,y)
Itot(x,y) Sum of intensity of all shots in S at (x,y)
∆p Pixel size
p(x,y) Pixel at location (x,y)
Pon Set of pixels inside target mask shape
Po f f Set of pixels outside target mask shape
Pf ail Set of pixels which violate the constraint spec-

ified in Equation 4
γ CD tolerance for fracturing
Lmin Minimum allowed shot size
(xbl(s),ybl(s)) Bottom-left coordinate of shot s
(xtr(s),ytr(s)) Top-right coordinate of shot s
VM Vertices of target mask shape to be fractured
V s

M Subset of VM that approximates boundary of
target polygon

vk Vertex of mask shape under consideration
C Set of shot corner points
ci Shot corner point under consideration
Lth Longest 45o line segment that can be made us-

ing a single shot
G(V,E) Undirected graph with set of vertices V corre-

sponding to shot corner points C, and set of
edges E

Ginv(V,E inv) Inverse graph of G(V,E) with edge between
any non-neighboring pair of vertices in G(V,E)

costre f Cost function for iterative shot refinement
Nmax Maximum number of shot refinement itera-

tions
NH Number of non-improving iterations after

which shot addition/removal is done

al. compare several different model-based fracturing methods [15].
Recently, Chan et al. propose a new methodology to benchmark
mask fracturing heuristics [16]. The authors have shown that even a
state-of-the-art prototype [version of] capability within a commer-
cial EDA tool for e-beam mask shot decomposition (PROTO-EDA)
can be suboptimal by up to 3.6×. On their website, the authors of
the benchmarking work have compared the suboptimality of two
heuristics (Greedy set cover (GSC) and matching pursuit (MP)),
along with a newer version of PROTO-EDA [17]. In this work,
we propose a new mask fracturing method that can perform signif-
icantly better than prior art, including GSC, MP and PROTO-EDA.
Our method first performs approximate fracturing using a graph
coloring based method and then uses a shot refinement step to fix
all the CD violations.

The rest of the paper is organized as follows. Section 2 defines
the model-based mask fracturing problem. Section 3 describes our
graph coloring based approximate fracturing method. Our iterative
shot refinement method to fix all the CD violations is described in
Section 4. We show the results of our method in Section 5. Finally,
we conclude the paper in Section 6. The notation we use in this
paper is summarized in Table 1.

2. PROBLEM DESCRIPTION
The goal of model-based mask fracturing is to cover a given

mask shape using as few shots as possible while accouting for e-
beam proximity effect. For a full-field mask, each shape can be

fractured independently. However, since a mask contains billions
of polygons, a practical fracturing method must be extremely fast
for any given polygon. In this work, we focus on solving the fixed
dose model-based fracturing problem with rectangular shots, as
done in the benchmarking work [16]. Although variable-dose shots
[18] and non-rectangular shots [19, 20] have been proposed, Elayat
et al. have concluded that fixed-dose fracturing with rectangular
shots is the most viable approach to reduce shot count without sig-
nificant changes to the mask writing tools [21].

To model the proximity effect, we first define a simple rectangu-
lar function for a particular shot s in Equation 1. Then, we convolve
this function with the proximity kernel function (Equation 2) to ob-
tain the intensity of shot s, Is(x,y) in Equation 3.

Rs(x,y) =
{

1 if xbl(s)≤ x≤ xtr(s)&ybl(s)≤ y≤ ytr(s)
0 otherwise

(1)

G(x,y) =

{
1

πσ2 exp−
x2+y2

σ2 if
√

x2 + y2 ≤ 3σ

0 otherwise
(2)

Is(x,y) = G(x,y)?Rs(x,y) (3)

For any given target shape that needs to be fractured, we first
sample the shape to get pixels. The set of pixels p(x,y) are parti-
tioned into three sets depending on the shape and the required CD
tolerance γ: Px is the set of pixels which lie within γ of the target
shape boundary, Pon are the pixels inside the target shape and Po f f
are outside the target shape.

Given a sampled mask shape and e-beam proximity model, the
goal of model-based mask fracturing is to find a minimal set of
shots S that satisfy the following conditions:

1. The total intensity of all the shots at any pixel p(x,y) must
satisfy the constraint defined in Equation 4. If any pixel
p(x,y) ∈ Pon ∪Po f f violates this constraint, we refer to it as
a failing pixel.

∑
s∈S

Is(x,y) = Itot(x,y) =
{
≥ ρ if p(x,y) ∈ Pon
< ρ if p(x,y) ∈ Po f f

(4)

2. Each shot s ∈ S must satisfy the minimum shot size con-
straint, i.e. xtr(s)− xbl(s)≥ Lmin and ytr(s)− ybl(s)≥ Lmin.

3. GRAPH COLORING BASED APPROXI-
MATE FRACTURING

The goal of this first step of our approach is to quickly obtain an
initial fracturing solution with as few shots as possible. The gen-
erated fracturing solution is imprecise, i.e. it may contain CD vio-
lations, which are later fixed by shot refinement. We first approx-
imate the boundary of the input mask shape to reduce the number
of vertices. Then we determine a set of shot corner points required
to cover this approximate boundary of the shape. Using these shot
corner points as vertices of a graph, we model the fracturing prob-
lem as a graph clique covering problem and then solve this graph
problem using a simple sequential coloring heuristic. These steps
are described in more detail in this section, and summarized in Fig-
ure 1.

First we approximate the boundary of the mask shape using Ramer-
Douglas-Peucker algorithm [22]. This method reads in the list of
vertices of the mask target shape, VM , and iteratively determines a
subset of the vertices V s

M ⊂VM such that the perpendicular distance
between any vertex vk /∈ V s

M and the closest line segment connect-
ing two consecutive points in V s

M is less than an input tolerance,
which we set to γ. This approximation, illustrated in Figure 1, sim-
plifies the shape boundary and helps in reducing the shot count at
the end of this initial step.

After approximating the shape boundary, we find a set of shot
corner points, C, required to construct this approximate boundary.



Figure 1: Approximation of the boundary of a mask target shape us-
ing Ramer-Douglas-Peucker algorithm (left) followed by shot cor-
ner point extraction by traversal of the approximate boundary.

Apart from its location coordinate, each shot corner point is char-
acterized by its type, i.e. whether it corresponds to the bottom-
left, bottom-right, top-left or top-right corner of a shot. To find
shot corner points, we exploit the fact that non-rectilinear bound-
ary segments can be created by using the corner rounding due to
e-beam proximity effect. Based on the proximity model, we define
a threshold distance Lth that corresponds to the longest 45o line
that we can create at the shot corner in a manner similar to [16], as
shown in Figure 2. A horizontal or vertical boundary segment, on
the other hand, can be written easily by placing the horizontal or
vertical edge of a rectangular shot at the segment location.

To obtain the shot corner points, we traverse the list of line seg-
ments connecting every pair of consecutive vertices in V s

M , vk and
vk+1 and then add shot corner points using the following criteria:

• If the line segment connecting vk and vk+1 is vertical or hor-
izontal, then this segment should be constructed by a single
shot edge. So we place two shot corner points at vk and vk+1.
We then shift these two shot corner points by Lth/

√
2 away

from the line segment in the same direction (vertical or hori-
zontal) as the line segment connecting vk and vk+1 to account
for corner rounding. The corner type for the two shot corner
points can be easily determined based on the direction of the
boundary segment and its location relative to the target shape.
For example, if the segment vk and vk+1 is vertical and it lies
to the left of the target shape, then vk and vk+1 must be the
bottom-left and top-left shot corners.

• If the line segment is not vertical or horizontal, then it must
be constructed by using corner rounding. Hence we place
several shot corner points on the line segment, such that the
distance between any two shot corner points is equal to Lth.
We then shift the shot corner points such that they are out-
side the target shape and the perpendicular distance between
the line segment and the points is Lth/

√
2. The corner type

can be easily determined based on the slope of the segment
connecting vk and vk+1.

• If the distance between vk and vk+1 is less than Lth, we ignore
this line segment since it can get approximately covered by
the shot corner points of the neighboring line segments.

After obtaining the shot corner points by traversing the approx-
imate boundary, as illustrated in Figure 1, we cluster any two shot
corner points that have the same type and the distance between the
points is less than Lth. The set of shot corner points obtained af-
ter clustering is the set of shot points C. Next, we need to find the
smallest number of shots such that all the shot corner points in C
are used at least once. Moreover, this set of shots must construct
the target shape as closely as possible to reduce the burden on the
subsequent refinement step.

To solve the problem of finding an appropriate set of shots from
shot corner points C, we construct a graph G(V,E) with each shot

Figure 2: Illustration of corner rounding of a shot due to e-beam
proximity effect and definition of Lth.

corner point in C as a vertex. There exists an edge between two
shot corner points ci ∈ C and c j ∈ C if and only if the following
conditions are met:

• ci and c j must be different corner types.

• The test shot formed by using ci and c j as corners must sat-
isfy the minimum size criteria and must be such that most of
the shot overlaps with the target shape2. If ci and c j are di-
agonally opposite corner points, then the test shot is unique.
However, if ci and c j are non-diagonal, we construct the test
shot by extending the shot to the minimum size. For exam-
ple, if ci is a bottom-left corner and c j is top-left, we con-
struct a shot with width equal to the minimum allowed size,
and ci and c j as the corners of the left edge of the shot.

In the constructed graph G(V,E), every clique corresponds to a
shot that could become a part of the fracturing solution. Since the
goal of this initial fracturing step is to find the smallest number of
shots such that all the shot corner points in C are used, we need to
solve the minimum clique partition problem for G(V,E). However,
clique partition is a well-known NP-complete problem [23]. More-
over, it can be easily transformed to a graph coloring problem for
an inverse graph Ginv(V,E inv), where an edge exists between two
vertices vG,k ∈ V and vG,l ∈ V if there is no edge connecting them
in G(V,E) [24]. In this work, we color Ginv(V,E inv) using a simple
sequential greedy coloring heuristic [25]. Although better heuris-
tics exist for solving both the clique partition problem directly and
graph coloring, we found this fast and simple method to be suf-
ficient to achieve good fracturing solutions. This graph coloring
based appoximate fracturing is illustrated in Figure 3.

After solving the graph coloring problem of the inverse graph,
each color corresponds to one e-beam shot. If the set of shot corner
points that have the same color is such that at least a pair of diagonal
shot corner points are a part of the set, then the shot is unique and
can be easily placed. However, if a particular color is used by just
one shot corner point, or if a particular color is used by only two
non-diagonal shot corner points, we first place a rectangular shot
of minimum allowed width/height using the shot corner points of
the color under consideration. We then increase the shot size by
shifting the shot edges that do not use the colored shot corner points
such that the shot edges touch the opposite boundary of the target
shape. This operation is illustrated in Figure 4.

4. ITERATIVE SHOT REFINEMENT
In this step, we take the fracturing solution from graph coloring

based approximate fracturing and iteratively modify the fracturing
solution to fix all CD violations. However, instead of using the
2More precisely, we used the criteria that more than 80% of the
test shot area must overlap with target shape since it gave the best
fracturing results.



Figure 3: Illustration of steps involved in graph coloring based ap-
proximate fracturing.

Figure 4: Illustration of a shot formed by same colored top-left
and top-right shot corner points. The bottom edge of the minimum
height shot (dotted) is extended to touch the lower boundary of
target shape.

number of failing pixels as a cost function, we use the sum of in-
tensity gap at failing pixels as the main cost metric that we reduce.
This metric, defined in Equation 5, is continuous and is a more
sensitive indicator of whether a shot refinement step is useful.

costre f = ∑
p(x,y)∈Pf ail

|Itot(x,y)−ρ| (5)

We summarize the steps of shot refinement to reduce the cost
function of Equation 5 in Algorithm 1. The method runs for up to
Nmax iterations and stops early only if the number of failing pixels
reaches zero. In each iteration, we first compute the cost function
and find the set of failing pixels in Line 3. We keep track of the
fracturing solution with the smallest number of failing pixels so
far, and the cost value for the past NH iterations. If the cost does
not improve, we either add or remove shots (Line 5). We add a shot
when the number of failing pixels in Pon is more than that in Po f f in
Line 7, since adding a shot is likely to resolve violations in pixels
inside the target shape. If that is not the case, we remove a shot
instead to fix violations in pixels of Po f f in Line 9. After adding or
removing a shot, we use a simple method to merge any two aligned
shots. The details of the method used to add a shot, remove a shot
or merge shots in covered in Sections 4.3, 4.4 and 4.5 respectively.

Note that the primary method we use to reduce the cost function
is shot edge movement ( GreedyShotEdgeAdjustment function in
Line 13), which we describe further in Section 4.1. If this method
is unable to find any shot edge that would reduce the cost function,

we bias all the shot edges (BiasAllShots function in Line 15), which
we describe in Section 4.2. Addition, removal or merging of shots
is done only when both these simple methods, which do not change
the shot count, fail to improve the cost function.

Algorithm 1 Iterative shot refinement algorithm
Input: Mask target shape, Set of shots S that correspond to approximate fracturing

solution
Output: Modified set of shots S with fewer CD violations
1: iter← 0
2: while iter < Nmax&&|Pf ail |> 0 do
3: (C,Pf ail)← GetFailingPixelsAndCost(S)
4: Store fracturing solution with lowest value of |Pf ail |
5: if ∆C < 10−6 for previous NH iterations then
6: if |Pf ail ∩Pon|> |Pf ail ∩Po f f | then
7: AddShot(S)
8: else
9: RemoveShot(S)
10: end if
11: MergeShots(S)
12: else
13: GreedyShotEdgeAdjustment(S)
14: if no shot edge moved then
15: BiasAllShots(S)
16: end if
17: end if
18: iter← iter+1
19: end while

4.1 Greedy Shot Edge Adjustment
This is the main method that we use to reduce the cost function

and help fix CD violations. For all the four edges of every shot in
the current solution set S, we only consider two possible moves.
We either move the edge by +∆p or −∆p. However, if a particular
move makes the shot size less than Lmin, it is considered invalid
and ignored. We then compute the change in cost for the two edge
moves and then pick the move with the most reduction in cost. This
is done for all the shot edges and we sort all the shot edges such that
the edge with the most cost reduction is at the beginning of the list.

We then iterate over the sorted list of shot edges and start ac-
cepting the moves which reduce cost. After accepting a particular
shot edge move, we do not allow any other edge which is within
distance 2σ of the current shot edge to be moved in the current iter-
ation. This blocking step is necessary to avoid cycling, i.e. a set of
shot edge moves which cancel out the benefit of each other in sub-
sequent iterations. We use 2σ as the distance for blocking because
the intensity of any shot is almost zero (< 10−6) at that distance
outside a shot.

This shot edge adjustment step is typically the slowest and most
time consuming step of our method. In particular, the computation
of change in cost for each shot edge move is expensive. To reduce
the time taken by this step, we compute the cost incrementally, and
only recompute the intensity of the shot corresponding to the shot
edge, instead of all the shots in S. Even then, three convolutions
are required to compute the cost of the two potential moves for
each edge. To speed up the convolution step itself, we use a lookup
table based method.

4.2 Bias All Shot Edges
This is a simple operation that can often help the fracturing so-

lution escape from a local minima without changing the number of
shots. First we locate all the failing pixels Pf ail . If the number of
failing pixels that belong to Pon is more than the number of failing
pixels that belong to Po f f , then we shrink all shot edges, i.e. for ev-
ery shot s ∈ S we increment xbl(s) and ybl(s) and decrement xtr(s)
and ytr(s) 3. Similarly, if the number of failing pixels that belong
to Po f f is more than Pon, we expand all shot edges.
3If the width or height of a particular shot will be less than Lmin,
then the corresponding shot edge is not shrunk.



4.3 Add Shot
Shot addition is done when the number of failing pixels in Pon

is more than the number in Po f f , and shot edge adjustment and bi-
asing fail to resolve all CD violations. To add a new shot, we first
merge all the failing pixels in Pon using Boolean OR operation to
construct polygons. This procedure merges all neighboring failing
pixels into a single polygon. Then, we find the bounding box of
each such polygon, increase the width or height of the polygon if
it is less than Lmin, and then pick the bounding box that covers the
most number of failing pixels in Pon. The rectangular shot corre-
sponding to this bounding box is added to the current fracturing
solution. Note that only one new shot is added in a particular itera-
tion of shot refinement.

4.4 Remove Shot
To remove a shot s ∈ S, we find the number of failing pixels in

p(x,y) ∈ Po f f such that the smallest distance between p(x,y) and
shot s is less than σ. The shot for which this number is the largest
is picked as the one to be removed. The intensity of any shot s,
Is(x,y) is less than 0.5 at a distance of σ. By finding the number
of failing pixels which are less than this distance from a shot, we
know that removing the shot is likely to resolve the CD violation
for those pixels. Note that removing a shot typically leads to many
CD violations for pixels in Pon which are resolved in later iterations
of shot refinement.

4.5 Merge Shots
This step helps to keep the shot count low by finding any two

shots that can be merged or combined to reduce the shot count. This
routine is necessary to control the shot count during the iterative
shot refinement step which is primarily focused on resolving CD
violations. For every pair of shots, si ∈ S and s j ∈ S, we have three
criteria for merging shots:

1. If |xbl(si)−xbl(s j)| ≤ γ and |xtr(si)−xtr(s j)| ≤ γ, or if |ybl(si)−
ybl(s j)| ≤ γ and |ytr(si)−ytr(s j)| ≤ γ, then we can potentially
merge the two shots by vertical or horizontal extension, re-
spectively, as illustrated in Figure 5. Note that si and s j are
merged only if more than 90% of the shot area lies inside the
target mask shape.

2. If the two shots si and s j are such that one of the shots is
completely covered by the second shot, then the smaller shot
is redundant and can be safely removed.

5. EXPERIMENTAL RESULTS
We have implemented our method using C++ with OpenAccess

API for reading/writing mask shapes [26], Boost Polygon Library
for polygon Boolean operations [27], Boost Graph Library for graph
coloring [28] and Eigen for matrix operations [29]. We compare
our method to three different heuristics which have been reported
at the benchmarking website [17]; greedy set cover (GSC), match-
ing pursuit (MP) and a commercial EDA tool for e-beam mask shot
decomposition (PROTO-EDA). We compiled the implementation
of our method and the source code of GSC and MP heuristics (ob-
tained from the authors of [17]) using gcc version 4.6.3 and ran
them on a 64-bit Intel i7-3820 CPU. All heuristics are run on a
single thread and we report the wall time for all the methods. We
demonstrate results for CD tolerance γ = 2nm, σ = 6.25nm and
∆p = 1nm as done in the previous work on benchmarking [16]. We
shall report results for ten real ILT mask shapes and ten generated
benchmark shapes with known optimal solution, all of which are
available at the benchmarking website [17]4.

The shot count and runtime for the ten real ILT mask shapes pro-
vided at [17] are summarized in Table 2. We also report a sum

4Shapes are not shown here for the sake of brevity

Figure 5: Illustration of two pairs of shots with aligned x-
coordinates. In the first case (left), shots can be merged by ver-
tical extension since most of the extended shot lies inside the target
shape. The shots cannot be merged in the second case since that
would expose too many Po f f pixels.

of normalized shot count of the ten shapes, where the shot count
is normalized with respect to the reported upper bound. With the
pessimistic assumption that the upper bound of the benchmarking
method is the optimal, the normalized shot count is also the subop-
timality ratio. For the normalized shot count, our method is 23%
better than PROTO-EDA with comparable average runtime. Com-
pared to MP, our method has 47% lower normalized shot count and
33× faster runtime. Interestingly our method is able to find a so-
lution better than the ILP-based benchmarking method, which ran
for 12h on an eight-core machine, for three shapes (Clip-ID 5, 8
and 9). If we just add the number of shots of all the shapes, our
method is about 21% better than PROTO-EDA.

In addition to real ILT shapes, we compare the shot count and
runtime of our method to prior work for benchmark shapes with
known optimal shot count in Table 3. Even for these shapes our
method is significantly better in terms of shot count. However, the
runtime is significantly higher than GSC and PROTO-EDA meth-
ods. This increase in runtime is due to a larger number of iterations
during the shot refinement step to fix all CD violations. Moreover,
our method fails to find a feasible solution for three shapes, AGB-2,
AGB-3 and RGB-3, which have 15, 56 and 8 failing pixels respec-
tively (less than 0.05% of the pixels inside the bounding box of the
respective shape). PROTO-EDA is also unable to find feasible so-
lutions for most benchmark shapes and the number of failing pixels
is significantly higher (1%−2% of pixels inside the bounding box
of shape) due to different termination criteria. Hence, comparing
the shot count for these cases may not be fair. This suggests that
the wavy boundary of the complex benchmark shapes, a character-
istic not seen in real ILT shapes, makes it challenging for both our
method and PROTO-EDA to find feasible solutions in a reasonable
time.

6. CONCLUSION
Increasing mask write time has become a key contributor to grow-

ing semiconductor manufacturing cost with technology scaling. In
this work, we proposed a new model-based mask fracturing method
that helps reduce mask write time by reducing the shot count. We
first obtained an approximate fracturing solution using a graph col-
oring based method. Then, we used an iterative shot refinement
method that uses a combination of greedy shot edge adjustment,
shot addition/removal and shot merging operations to fix CD vi-
olations while keeping the shot count low. Using our proposed
method, the average suboptimality of our method for ten real mask



Table 2: Comparison of shot count and runtime (in seconds) for real ILT mask shapes for three different heuristics (GSC, MP and PROTO-
EDA) with our proposed method. Lower and upper bounds on optimal shot count provided by [17] are also shown here. We do not report the
precise runtime for PROTO-EDA since we did not have access to the executable but it is around one second or less on a different machine.

Clip-ID Shot Count GSC MP PROTO-EDA Our method
LB/UB Shot Count Runtime Shot Count Runtime Shot Count Shot Count Runtime

1 3/4 14 0.5 14 8.0 7 6 1
2 5/9 18 3.0 13 16.0 21 13 1.5
3 3/3 5 1.5 4 4.4 7 4 1.0
4 6/17 31 3.0 14 50.4 21 20 0.5
5 5/13 23 0.5 25 123.2 12 8 3.5
6 3/3 9 0.0 5 2.2 6 5 0
7 3/4 10 0.0 7 4.8 8 5 0
8 5/17 26 0.0 9 157.4 12 14 0.5
9 7/20 39 4.0 14 37.8 26 14 4.5
10 4/8 14 0.5 7 23.2 11 14 0.5

Sum of Normalized Shot Count 21.49 14.54 15.96 12.26wrt Upper Bound

Table 3: Comparison of shot count and runtime (in seconds) of benchmark mask shapes with known optimal shot count provided in [17] for
three previously proposed heuristics (GSC, MP and PROTO-EDA) with our proposed method. Note that PROTO-EDA and our method do
have some failing pixels for these shapes.

Clip-ID Optimal GSC MP PROTO-EDA Our method
Shot Count Shot Count Runtime Shot Count Runtime Shot Count Shot Count Runtime

AGB-1 3 8 0.0 4 1.3 7 5 0.0
AGB-2 16 64 10.0 26 822.4 30 25 32.0
AGB-3 17 52 17.8 35 56.0 40 37 88.5
AGB-4 7 26 2.1 9 80.8 20 7 2.5
AGB-5 3 13 2.1 6 9.6 7 4 0.0
RGB-1 5 12 0.0 19 13.8 8 6 0.0
RGB-2 7 15 3.4 31 29.4 14 8 8.5
RGB-3 5 13 3.0 28 13.3 12 6 19.0
RGB-4 9 45 23.5 19 56.5 17 12 9.5
RGB-5 6 21 4.0 16 8.4 14 9 1.0

Sum of Normalized 10 33.42 26.91 22.31 14.12Shot Count wrt Optimal

shapes was less than 1.3×. Compared to a state-of-the-art pro-
totype version of capability within a commercial EDA tool for e-
beam mask shot decomposition, our method has more than 20%
lower shot count with similar runtime. The latest version of our
source code is available publicly (http://nanocad.ee.ucla.
edu/Main/DownloadForm).
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