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ABSTRACT
Complicated approaches to fault-tolerant voltage-scalable
(FTVS) SRAM cache architectures can suffer from high over-
heads. We propose static (SPCS) and dynamic (DPCS) vari-
ants of power/capacity scaling, a simple and low-overhead
fault-tolerant cache architecture that utilizes insights gained
from our 45nm SOI test chip. Our mechanism combines
multi-level voltage scaling with power gating of blocks that
become faulty at each voltage level. The SPCS policy sets
the runtime cache VDD statically such that almost all of the
cache blocks are not faulty. The DPCS policy opportunis-
tically reduces the voltage further to save more power than
SPCS while limiting the impact on performance caused by
additional faulty blocks. Through an analytical evaluation,
we show that our approach can achieve lower static power
for all effective cache capacities than a recent complex FTVS
work. This is due to significantly lower overheads, despite
the failure of our approach to match the min-VDD of the
competing work at fixed yield. Through architectural sim-
ulations, we find that the average energy saved by SPCS is
55%, while DPCS saves an average of 69% of energy with
respect to baseline caches at 1 V. Our approach incurs no
more than 4% performance and 5% area penalties in the
worst case cache configuration.

1. INTRODUCTION
As the semiconductor industry continues technology scal-

ing, wafer-to-wafer, die-to-die, and intra-die variations are
becoming major obstacles. The impact of variability on per-
formance, power consumption, and yield is now a first-order
concern [10]. The standard practice to dealing with varia-
tion is to guard-band designs, i.e., margin for the worst-case
manufacturing outcomes and operating conditions. How-
ever, these methods incur significant overheads in power,
performance, area, and cost [10].

One way to reduce the overall power consumption of a
circuit is to reduce the supply voltage (VDD). However,
voltage-scaled SRAMs are susceptible to faulty behavior.
Variations in SRAM cell noise margins, mostly due to the
impact of random dopant fluctuation on threshold voltages,
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result in an exponential increase in probability of cell failure
as the supply voltage is lowered [23].

This has motivated research enabling low-voltage cache
operation by tolerating hard and/or soft faults. Static power,
dominated by subthreshold leakage current, is the primary
consumer of power in memories [9] and has an exponential
dependence on supply voltage [24]. Since leakage constitutes
a major fraction of total system power [14], even a minor
reduction in memory supply voltage can have a significant
impact on total chip power consumption. Thus, it is critical
that we continue to develop fault-tolerant voltage-scalable
(FTVS) caches to allow both energy-efficient and reliable
operation.

Most FTVS cache architectures use complicated fault tol-
erance methods to achieve very low min-VDD for a target ex-
pected yield. However, with respect to overall power and/or
energy savings, these approaches are limited by Amdahl’s
Law. Large fault maps and flexible data redundancy mecha-
nisms incur considerable power, area, and performance costs.
For example, [5] reported area and power overheads of up
to 13% and 16%, respectively, for their FTVS scheme in the
L1 cache. These overheads ultimately bound the potential
benefits of a given scheme. Moreover, min-VDD is not the
only factor influencing power consumption; it is important
that designers account for all overheads.

Thus, we believe that a different metric, power vs. ef-
fective capacity, should be used to evaluate and compare
FTVS cache architectures. This metric accounts for the sup-
ply voltage as well as the effectiveness and overheads of the
particular fault tolerance or capacity reduction mechanism
(e.g., cache way-based power gating). With this in mind,
simple FTVS schemes have the potential to fare similarly
or even better than complex ones in terms of power, per-
formance, and/or area, all with less design and verification
effort.

Using ARM Cortex M3-based “Red Cooper” test chips
manufactured in a 45nm SOI technology [15] as part of the
NSF Variability Expedition (variability.org), we ran March
SS tests [11] on the SRAM memory to characterize the na-
ture of bit faults as VDD is reduced. We observed that in
the presence of process variation, SRAM faults caused by
voltage scaling obey the so-called fault inclusion property,
i.e., bits that fail at some supply voltage level will also fail
at all lower voltages. This observation suggested the use of
a compressible fault map such that multiple VDDs can be
used with little additional overhead compared to a single-
VDD fault map.

In this work, we make three major contributions:

1. With insight from the power vs. effective capacity met-
ric, we propose a simple, low-overhead fault tolerance
mechanism that supports multiple VDD levels. Our



mechanism combines global voltage scaling of the data
array SRAM cells with power gating of individual faulty
data blocks to reduce cache power.

2. We propose static (SPCS) and dynamic (DPCS) pol-
icy variants of power/capacity scaling, a novel FTVS
scheme using our simple proposed mechanism that sig-
nificantly reduces overall cache energy with minimal
performance and area overheads while maintaining high
yield.

3. We show analytically that our approach is better than
a recent work using a sophisticated FTVS cache archi-
tecture [5] as well as simple way-based power gating
by achieving lower total static power at all cache ca-
pacities. This is despite the inability of our scheme
to achieve the lowest voltage or the largest capacity at
each voltage compared to [5]. We also evaluate the
power, performance, and energy impact of our scheme
via architectural simulation.

2. RELATED WORK
There is a rich body of literature in circuit and architec-

tural techniques for leakage reduction as well as fault toler-
ance for deep-submicron memories. Two of the best-known
leakage reduction works are Gated-Vdd [18] and Drowsy
Cache [9]. The former dynamically resizes the instruction
cache by turning off blocks which are not used by the appli-
cation, exploiting variability in cache utilization within and
across applications. The latter utilizes the alternative ap-
proach of voltage scaling idle cache lines, which yields good
static power savings without losing memory state. Neither
approach improves dynamic power nor accounts for the im-
pact of process variation on noise margin-based faults, which
are greatly exacerbated at low voltage [14, 23] (particularly
limiting the mechanism of [9]).

In the fault-tolerance area, works targeting cache yield im-
provement include error correction codes (ECC) and archi-
tectural methods [22, 2, 17, 12, 13, 3, 19], none of which tar-
get power reduction as an objective. A variety of low-voltage
SRAM cells that improve read stability and/or writability
have also been proposed, e.g. 8T [8] and 10T [7], but they
have inherently high area overheads compared to a tradi-
tional 6T design. Schemes that use fault-tolerance to achieve
lower voltage and cache power savings include [25, 1, 20],
two very similar approaches [4, 5], as well as [21]. All of
these approaches try to reduce the minimum operable cache
VDD with yield constraints by employing relatively sophis-
ticated fault tolerance mechanisms, such as address remap-
ping, block and set-level replication, etc. They are also sim-
ilar in that they either reduce the effective cache capacity
by disabling faulty regions as VDD is reduced (e.g., [5]),
or boost VDD in “weak” regions as necessary to maintain
capacity (e.g., [21]).

Our approach is different from all the related works as
follows. We use similar circuit mechanisms as in [18, 9], but
combine with fault tolerance to allow lower voltage opera-
tion using 6T SRAM cells, although our scheme could also be
used with other cell designs. To the best of our knowledge,
our scheme is the only one to use voltage scaling along with
power gating blocks as they become faulty for additional
energy savings. Unlike most recent fault-tolerance works,
we use simple mechanisms with no address remapping, data
redundancy, sub-block multiplexing, etc., simplifying design
and verification while minimizing overheads. Also unlike
previous work, we allow for multiple VDD levels that can
be set statically (SPCS) or dynamically (DPCS) while tol-
erating faulty blocks to achieve a desired power/effective ca-
pacity point with little additional fault map overhead. We

do not correct soft errors, but our scheme could be supple-
mented with related ECC methods for soft/transient fault
tolerance. Finally, we also achieve dynamic power savings
as we do not boost the data array SRAM VDD for accesses.

3. POWER/CAPACITY SCALING
Our scheme has two main components: the mechanism,

described in Sec. 3.1, and the policy. We propose two differ-
ent policies, described in Sec. 3.2 and Sec. 3.3, respectively.
These policies both use the same underlying mechanism. To-
gether, the mechanism and one of the policies (implemented
in hardware or software) comprise the power/capacity scal-
ing cache architecture.

3.1 Mechanism
The mechanism consists of a lightweight fault map, pop-

ulated by a built-in-self-test (BIST) routine, a circuit for
globally adjusting the VDD of the data cells, and power
gating transistors for each data subarray row, each of which
corresponds to (part of) a single cache block. The data array
periphery, tag array cells, and tag array periphery are all on
a separate voltage domain at the nominal VDD, where they
are assumed to be never faulty.

Our low-overhead fault map includes two entries for each
data block that are maintained in the corresponding nearby
tag subarray in addition to the conventional bits. The first
entry consists of several fault map (FM ) bits, which encode
the lowest non-faulty VDD for the data block. The second
entry is a single Faulty bit, which indicates whether the
block is currently faulty. Faulty blocks do not contain valid
data and must never allow an access to hit, making them
unavailable for reading and writing. Furthermore, Faulty
blocks must not be used for data placement after a cache
miss (e.g., by LRU block replacement strategy).

For N allowed data VDD levels, dlog2(N+1)e FM bits are
needed to encode the allowed VDD levels (assuming the fault
inclusion property, described in Section 1). Fig. 1a shows the
circuit concept for a N = 3 configuration, requiring two FM
bits and one Faulty bit per block. For simplicity, we assume
three VDD levels are allowed in the remainder of this paper,
although our fault map approach should scale well for more
voltage levels.

Fig. 1b depicts the higher-level architectural concept. The
cache layout is constrained by one major requirement: the
tag subarrays should be directly adjacent to their corre-
sponding data subarrays. This is because the Faulty bit
in the tag array should be physically close to the power gate
mechanism for the matching data block. The layout also has
the benefit that both subarrays could share one row decoder,
although we do not explicitly model this scenario.

It is the responsibility of the power/capacity scaling pol-
icy, implemented in the cache controller hardware and/or
low-level software, to ensure the Faulty and Valid bits are
set correctly for the current data array cell VDD. The policy
must do this before changing the data VDD by comparing
each block’s FM bits with an enumerated code for the in-
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tended VDD level. If the VDD code is less than or equal to
the block’s FM value, then the Faulty bit needs to be set;
otherwise, it should be cleared. The cache controller must
ensure that any block that has Faulty set has Valid cleared.
Otherwise, the cached data might be unreliable.

After all blocks’ Faulty bits are properly set, the data
array VDD transition can occur. When the Faulty bit is
set, a downward level-shifting inverter, connected directly to
the inverted SRAM cell node Qbar, controls the data block’s
power gating transistor. Thus, when Faulty is set, the block
is immediately power-gated, reducing power further than the
savings from pure voltage scaling.

We assume that the power gating implementation is the
gated-PMOS configuration from [18], chosen because it has
no impact on cell read performance, negligible area over-
head, and good energy savings. We model a power-gated
block as having zero leakage power, a reasonable approxi-
mation because it would likely be gated at a dramatically
reduced voltage (compared to nominal VDD) that caused it
to be faulty. For voltage scaling, we assume the presence of
two voltage domains as described earlier, where the global
data array voltage can be set externally from the cache mod-
ule. The process by which the Faulty bit controls the power
gate to a data block is also very similar to that of [9]. We
verified the feasibility of our mechanism by running simple
SPICE simulations to voltage-scale and power-gate SRAM
cells.

Our mechanism requires that each set must have at least
one non-faulty block at all allowed voltages, as we have no
set-wise data redundancy. This is the constraint that lim-
its our min-VDD at a fixed yield target. Higher associa-
tivity and/or smaller block sizes naturally result in lower
min-VDD, but of course incur other design tradeoffs. Nev-
ertheless, as we demonstrate in Sec. 4, using typical cache
configurations, we can still achieve a good power/capacity
tradeoff with the set yield constraint.

3.2 Static Policy: SPCS
In the static version of the architecture, we use the low-

est VDD level that is likely to have at least 99% effective
block capacity (also subject to the constraint mentioned
in Sec. 3.1, that all sets must have at least one non-faulty
block). This is set statically for the cache runtime, grant-
ing both static and dynamic power savings. The only per-
formance overhead to this policy is due to any additional
misses caused by the few faulty blocks, if any. This impact
is shown to be very low in Sec. 4.2.

The primary benefit of using SPCS is that voltage guard-
bands could easily be reduced to suit the unique manufac-
tured outcome of each cache, while only minor modifications
to the cache controller and/or software layers are needed.
Power can be minimized with negligible performance impact.
Because the SRAM cell and block failure rates rise exponen-
tially as the supply voltage is lowered, additional voltage re-
duction beyond the 99% capacity point brings more power
savings, but potentially a loss in performance. This phe-
nomenon is described in more detail during the analytical
evaluation in Sec. 4.2.

3.3 Dynamic Policy: DPCS
The primary motivation to consider a dynamic policy over

SPCS is to exploit situations when the working set size is
smaller than the size of the cache. This can occur due to
varying behavior across different applications, or during the
execution of a single application. For example, with SPCS,
if only 40% of the cache is used in a window of execution,
the cache is over-provisioned for that interval and costs ad-
ditional power than is necessary, because it ensures at least
99% of blocks are available. DPCS tries to utilize varia-

tions in the working set to reduce power further than what
is possible with SPCS while limiting performance degrada-
tion. DPCS consists of two parts: a policy and the voltage
transition procedure which is tightly woven with the mecha-
nisms described earlier. The proposed DPCS policy is only
one of many possibilities.

The policy algorithm (see Listing 1) periodically samples
the miss rate over an Interval number of accesses, which is
used in conjunction with an estimate of the miss penalty
to estimate the current average access time (CAAT ) over
that interval. Every SuperInterval number of intervals, the
algorithm resets the data array VDD to that used by SPCS
to measure the nominal average access time (NAAT ). The
most recent CAAT is compared with the latest NAAT using
a simple high/low thresholding scheme to determine whether
to increase or decrease the operating voltage for the next
Interval number of accesses. This algorithm accounts for the
performance penalty caused by updating the fault maps and
changing the voltage in the cache (DPCSTransitionPenalty
number of cycles).

The transition procedure (see Listing 2), when invoked
by the policy, iterates through all cache sets, handling each
cache way in parallel. For each block in a set, the algorithm
examines the Faulty and FM bits to determine whether the
block will change from faulty to non-faulty or vice versa.
Based on this comparison, the block’s Valid and Dirty bits
may be used to determine whether the block needs to be
written back before invalidation. After these special cases
are handled, the block state is cleared (except for FM ), and
the Faulty bit is set accordingly. Thus, DPCSTransition-
Penalty is conservatively estimated as two cycles per set (to
read, process, and write metadata using the tag array) plus
an additional Penalty number of cycles to actually adjust
the data supply voltage after the blocks have been handled.

1every Interval accesses:
2if IntervalCount == 0:
3sample NAAT over last Interval accesses
4IntervalCount ++
5else if IntervalCount == SuperInterval - 1:
6do DPCSTransition(SPCS_VDD)
7IntervalCount <- 0
8else:
9sample CAAT over last Interval accesses
10if CAAT > (1 + HT) * (NAAT +

DPCSTransitionPenalty):
11do DPCSTransition(CurrVDD + 1)
12else if CAAT < (1 + LT) * (NAAT +

DPCSTransitionPenalty):
13do DPCSTransition(CurrVDD - 1)
14IntervalCount ++

Listing 1: DPCS Transition Policy

1routine DPCSTransition(NextVDD):
2delay DPCSTransitionPenalty cycles
3loop Set in CacheSets:
4parallel[Assoc] Block in Set:
5read metadata bits for Block
6if NextVDD <= Block.FaultMap:
7if Block.Valid and Block.Dirty:
8do Writeback(Block)
9do Invalidate(Block)
10Block.Faulty <- TRUE
11else:
12if Block.Faulty:
13Block.Faulty <- FALSE
14CurrVDD <- NextVDD

Listing 2: DPCS Transition Procedure

4. EVALUATION
4.1 Experimental Methodology

We assessed SPCS and DPCS using a combination of an-
alytical and simulated evaluation (results in Sec. 4.2 and



Table 1: Common gem5 Parameters
Parameter Value Parameter Value

ISA Alpha Simulation Mode Syscall Emul.
CPU Model Detailed (OoO) Blk. Repl. Policy LRU
No. Cores 1 Cache Config. L1 (Split), L2
No. Mem. Chan. 1 Cache Blk. / Sblk. Size 64 B / 2 B
Memory Model DDR3-1600 x64 Phys. Mem Size 2048 MB
Fast-forward 1 B inst. Simulate 2 B inst.
Benchm. Compile Opt. Base Input First ref.

Table 2: System Configurations
Parameter Config. A Config. B

Clock Freq. 2 GHz 3 GHz
L1$ Size, Assoc., Hit Lat. 64 KB by 4, 2 cycles 256 KB by 8, 3 cycles
L2$ Size, Assoc., Hit Lat. 2 MB by 8, 4 cycles 8 MB by 16, 8 cycles
No. Data VDDs, FM Bits/Blk. 3, 3 3, 3
L1$ VDD3 (baseline) 1 V 1 V
L1$ VDD2 (SPCS and DPCS) 0.7 V 0.67 V
L1$ VDD1 (DPCS only) 0.6 V 0.54 V
L2$ VDD3 (baseline) 1 V 1 V
L2$ VDD2 (SPCS and DPCS) 0.67 V 0.67 V
L2$ VDD1 (DPCS only) 0.56 V 0.53 V
L1 Interval (accesses) 100,000 100,000
L2 Interval (accesses) 10,000 10,000
SuperInterval (Intervals) 20 20
DPCSTransitionPenalty (cycles) 2 * No. Sets + 20 2 * No. Sets + 40
Threshold (Low/High) 0.05 / 0.10 0.05 / 0.10

Sec. 4.3, respectively). For the analytical portion, we mod-
ified CACTI 6.5 [16] to calculate delays, static power, dy-
namic access energy, and area of each cache configuration for
the baseline (which lacks fault tolerance and voltage scala-
bility) and proposed architectures. NFET and PFET on/off
current parameters in CACTI were obtained directly from
SPICE data. We used MOSFET models from an industrial
45nm SOI process which is the same as that used in the
production of our test chip mentioned in Sec. 1. We used
the default ITRS 45nm parameters present in CACTI for
other technology information such as wire parasitics. SRAM
bit cells used regular threshold voltage FETs, while the pe-
ripheral logic used low threshold FETs. CACTI generated
optimized cache architectures at the nominal voltage of 1
V (specified by the process technology guidelines) using an
energy-delay metric. Throughout our analytical and simu-
lated evaluations, all delay, power, and energy figures were
based on the CACTI results in 10 mV supply voltage incre-
ments.

Our bit error rates (BER) are shown in Fig. 2. These
were computed using the data and models from [23], which
performed a detailed analysis of SRAM noise margins and
error rates for an industrial 45nm technology. Since our pro-
posed mechanism allows for SRAM access at reduced volt-
age, we adopted the worst case of read, write, and hold
static noise margins, namely, the read operation, for the
BER. Otherwise, in our evaluation, we did not distinguish
between causes of cell failure. Using these BER, we found
the probabilities of block failure for each data array voltage,
thus allowing us to compute the expected cache capacity
and yield. The minimum VDD for all caches was chosen at
“design time” such that the expected yield was at least 99%.

To simulate the baseline, SPCS, and DPCS caches, we
modified the cache architecture in the gem5 [6] framework
to implement our scheme in detail as well as instrument it for
power estimation. We used sixteen SPEC CPU2006 bench-
marks (integer and floating point) that we were able to com-

1.0E-11 
1.0E-09 
1.0E-07 
1.0E-05 
1.0E-03 
1.0E-01 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

B
ER

 

VDD 

Figure 2: SRAM Bit Error Rates (BER) Using Models and
Data From [23]

pile for Alpha using base-level optimization and run success-
fully in the simulator. The benchmarks were fast-forwarded
for one billion instructions, then simulated in maximum de-
tail for two billion instructions, using the first reference data
input. For simplicity, we simulated a single-core system to
run the SPEC benchmarks, which are all single-threaded.
We ran each benchmark for DPCS multiple times, finding
that the impact of random faulty block locations on power
and performance was negligible. For example, over five in-
dependent runs of bzip2 for DPCS using fault maps created
randomly each time, performance and energy results varied
less than 1%. The common gem5 parameters used in all our
simulations are summarized in Table 1.

We had two alternate configurations of the system, which
are summarized in Table 2. In Config. A, we matched cache
details as closely as possible to that of the reference work,
FFT-Cache [5], to allow close analytical comparisons (see
Sec. 4.2 for the results). Although we had access to the
analytical models used in FFT-Cache, we could not make
direct simulated comparisons due to various differences in
technology data, power models, and simulator implementa-
tions. Unfortunately, because we lacked implementations of
other related works, we only compare against their reported
results.

Our CACTI results for each cache configuration indicated
that within the data array voltage range of interest (above
near-threshold), reducing the data cell VDD impacted the
overall cache access time by roughly 15% in the worst case.
In our simulated evaluations in Sec. 4.3, we make the sim-
plifying assumption that the system clock period is not af-
fected. This is reasonable if the cache access is not the crit-
ical path which dictates cycle time. Nevertheless, our hit
times in Table 2 reflect the reported worst-case delays from
CACTI for each cache at the lowest voltage. We assume
that each cache level can be independently voltage scaled
from each other and the CPU.

To explore the impact of our policies on a faster system,
we quadrupled the size of both the L1 and L2 caches and
doubled associativities in Config. B. This was done to see if
overprovisioned caches have a significant impact in the re-
sults between SPCS and DPCS. Furthermore, our scheme
can reach lower voltages using higher associativities for the
same cache size, due to the set yield constraint. For DPCS,
the Interval, SuperInterval, LowThreshold, and HighThresh-
old variables were set to “reasonable” values to reduce the
huge design space and to manage the impact on perfor-
mance. We assumed that the Penalty cycles to scale the
data array VDD is enough to minimize noise and allow a
stable transition in both cache configurations.

4.2 Analytical Results
Using the derived static power numbers from CACTI and

our analytical fault models, we were able to compare our
proposed mechanism with that of FFT-Cache [5] (using their
original fault tolerance model) and a generic way-granularity
power gating scheme using the power vs. effective capacity
metric described in Sec. 1.

The analytical results for the L1 Config. A are shown
in Fig. 3 (similar results were obtained for the L2 cache as
well as both Config. B caches). Our mechanism achieved
lower total static power than that of FFT-Cache and generic
way-based power gating (which has a linear power/capacity
tradeoff) at all effective capacities. This was despite the abil-
ity of FFT-Cache to achieve higher effective capacities at all
voltages. We estimated that for the Config. A L1 cache, our
mechanism achieves 28.2% lower static power than FFT-
Cache at the 99% effective capacity level. This is due to the
lower overheads of our mechanism compared to the com-
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Figure 3: Analytical Results for L1 Config. A

plex fault tolerance of FFT-Cache. The difference arises
from a significantly smaller fault map (only three bits per
block), as well as application of the fault inclusion property
to compress multi-VDD fault maps. In contrast, FFT-Cache
needs two entire fault maps for each of the lower VDDs,
compounding the existing high overheads. If the number of
voltage levels is reduced to two (high/low toggle), the gap
between the two schemes shrinks to 17.8% at 99% effective
capacity. However, as voltage reduces, the gap increases.

Fig. 3 also shows the yield of the proposed scheme and
those of a baseline cache lacking fault tolerance, SECDED
and DECTED variants of ECC, and FFT-Cache for the L1
Config. A. Note that SECDED and DECTED were applied
at the subblock level of two bytes (see Table 1). Note that
our proposed mechanism did not achieve the best min-VDD
at fixed yield, but it did better than SECDED in all cache
configurations. In the depicted configuration, DECTED
achieved slightly better min-VDD than the proposed mech-
anism due to low associativity, but DECTED typically in-
curs much higher area, power, and performance overheads
to achieve the yields shown [12, 19]. Furthermore, SECD-
ED/DECTED may be overkill for sparse voltage-induced
faults, and as voltage is reduced, tolerating bit cell fail-
ures reduces the ability of these ECC schemes to tolerate
transient faults. Nevertheless, these ECC schemes could be
combined with our approach to handle both voltage-induced
faults as well as transient soft errors.

Our CACTI results indicated that from the fault map
alone, our area overheads compared to a baseline cache lack-
ing fault tolerance did not exceed 4% in the worst case of
all configurations. The additional area overheads from the
power gating transistor [18] plus small inverter was esti-
mated to be less than 1%. The DPCS policy implemen-
tation was assumed to have negligible area overhead, due to
its simplicity and that it could be implemented in software,
as the cache controller typically includes the necessary per-
formance counters. Furthermore, the fault map comparison
logic is only a few gates per cache way. Thus, we estimated
the total area overhead to be 5% in the worst case, while in
the best case, the area overhead was only 2%. These area
overheads are a significant improvement compared to the
reported overheads of other FTVS schemes [5] such as 10T
SRAM cells (66%), ZerehCache (16%), Wilkerson08 (15%),
Ansari (14%), and FFT-Cache (13%).

4.3 Simulation Results
The gem5 simulation results for power, performance, and

energy are depicted in Fig. 4. No benchmark suffered more
than 2.3% (SPCS) and 2.6% (DPCS) performance degrada-
tion for Config. A, and no more than 2.8% (SPCS) and 4.4%
(DPCS) for Config. B, compared with the baseline cache ar-

chitecture at the full VDD of 1 V. The execution time over-
heads from DPCS were low due to its performance-aware
opportunistic policy. The performance impact for SPCS was
even lower, as there were no voltage transitions and at least
99% of the nominal capacity was likely to be available. The
higher performance hits from Config. B can be attributed to
two primary factors: (a) higher DPCS transition latencies
due to more sets, and (b) higher configured CPU perfor-
mance combined with larger miss penalties, amplifying the
impact of misses caused by disabled faulty blocks.

SPCS achieved predictable power savings all around, be-
cause cache behavior was not significantly impacted at the
99% capacity point, and no voltage transitions occurred.
Power savings were almost always better for DPCS, par-
ticularly for the larger caches. This was in line with our
expectations, as larger caches can afford to sacrifice more
blocks at lower VDD. SPCS reduced total energy use by
roughly 54% for Configs. A and B on average compared to
the nominal cache architecture running at full VDD of 1 V.
The majority of the energy savings came from static power
reduction thanks to aggressive voltage scaling with power
gating of faulty blocks.

In nearly all cases, DPCS yielded significant energy sav-
ings compared to SPCS: 23.9% for Config. A and 33.2%
for Config. B on average. The corresponding performance
overhead of DPCS compared to SPCS was modest. Overall,
DPCS achieved lower energy than SPCS because it never
used a higher voltage than SPCS, as it would not yield any
improvement in cache performance (recall that at least 99%
of blocks are non-faulty at the SPCS voltage, i.e., VDD2 ),
but it could still drop to VDD1 when it would not im-
pact performance too much. Reducing voltage further than
VDD1 is not likely to be useful, as the yield quickly drops off
and the power savings have diminishing returns with respect
to the baseline cache.

5. CONCLUSION AND FUTURE WORK
In this work, we proposed two policy variants of power/ca-

pacity scaling caches: static (SPCS) and dynamic (DPCS).
The underlying mechanism, used by both policies, achieved
better static power/capacity tradeoffs than a recent complex
fault-tolerant voltage-scalable (FTVS) approach due to its
simple low-overhead implementation. Our mechanism also
allows for multiple runtime VDD levels without a significant
increase in fault map overhead. An architectural simulation-
based evaluation of our scheme showed up to an average of
54.9% (SPCS) and 69.6% (DPCS) total energy savings with
performance overheads of 0.6-4.4% for DPCS compared to
a baseline cache lacking fault tolerance and running at the
nominal 1 V. Our mechanisms incurred an estimated 2-5%
total area overhead. We achieved these results with a design-
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(a) Normalized Cache Power, L1 Config. A
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(b) Normalized Cache Power, L1 Config. B
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(c) Normalized Cache Power, L2 Config. A

0.2 
0.3 
0.4 
0.5 

pe
rlb

en
ch

 
bz

ip2
 

gc
c 

bw
av

es
 

lbm
 

ze
us

m
p 

gr
om

ac
s 

les
lie

3d
 

na
m

d 
go

bm
k 

po
vr

ay
 

sje
ng

 
Ge

m
sF

DT
D 

h2
64

re
f 

as
ta

r 
sp

hin
x3

 
av

g 

N
or

m
al

iz
ed

 
P

ow
er

 

SPCS DPCS 

(d) Normalized Cache Power, L2 Config. B
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(e) Performance Overheads, Config. A
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(f) Performance Overheads, Config. B
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(g) Normalized Total Cache Energy, Config. A
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(h) Normalized Total Cache Energy, Config. B
Figure 4: Simulation Results for SPCS and DPCS

time 99% cache yield requirement, even though we do not
claim the lowest min-VDD compared to previous work. Po-
tential directions for future work include an investigation of
more sophisticated DPCS policies, an evaluation of system-
wide power and energy impacts, a broader design space ex-
ploration involving multi-core systems with consideration of
cache coherence, and a study of the implications for a soft-
ware stack running on a DPCS-enabled system.
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