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Abstract—Despite the use of mask defect avoidance and mitigation
techniques, finding a usable defective mask blank remains a challenge

for Extreme Ultraviolet Lithography (EUVL) at sub-10nm node due to
dense layouts and low CD tolerance. In this work, we propose a pattern
shift-aware metric called critical density, which can quickly evaluate the
robustness of EUV layouts to mask defects (300 − 1300× faster than
Monte Carlo, with average mask yield root mean square error (RMSE)
ranging from 0.08%−6.44%), thereby enabling design-level mask defect
mitigation techniques. Our experimental results indicate that reducing
layout regularity improves the ability of layouts to tolerate mask defects

via pattern shift.

I. INTRODUCTION

A. Background and Motivation

Extreme ultraviolet lithography is considered one of the most

promising next generation lithography solutions to replace the current

deep ultraviolet lithography [1]. Reflective EUV mask blanks suffer

from hard-to-repair defects that can significantly alter the printed

pattern on the wafer [2]. Mask blank defectivity is a key concern

that could prevent the insertion of EUVL into volume manufacturing

[1], [3].

Defect avoidance based techniques have emerged as an effective

means to tolerate mask defects. These techniques rely on inspection

of mask blanks to first determine defect locations. The position of the

design pattern, which needs to be written on the mask, can be shifted

relative to the mask to avoid the defects. Several approaches and

results have been shown for such pattern shift based defect avoidance

[4]–[7]. A similar, but more general mask floorplanning based defect

avoidance has been proposed as well [8], [9]. Rotation of the mask

pattern has also been explored, either small-angle [10] or 180o/flips

[8]. Recent techniques have also looked at methods that can tolerate

defect position inaccuracy [8], [11]. Elayat et. al. [12] and Jeong et.

al. [13] provide a cost-benefit assesment of different defect avoidance

and reticle planning strategies, respectively.

A likely design to fabrication flow for EUV masks is illustrated in

Figure 1. A mask shop will typically have a collection of inspected

mask blanks with known defect locations. Since each critical layer of

the taped out design must be patterned on a defective mask blank, the

mask shop must apply defect avoidance to find a defective mask blank

that works for each layer. Given a defect density and size distribution,

the probability of finding a mask blank from a large set of blanks on

which the given design layout can be patterned without causing any

yield loss is referred to as mask yield.

Certain layout topologies may be more capable of tolerating mask

defects, and exploiting the benefits of defect avoidance strategies.

An understanding of what characteristics of a layout can make it

more robust to EUV mask defects can significantly aid EUV layout

design and even the formulation of design rules. In order to develop

any layout or design level techniques to create robust layouts, a

quantifiable metric that characterizes the robustness of layouts to such

Fig. 1. Set of steps involved in a EUV mask shop involving pattern shift
based mask defect mitigation.

mask defects is needed. In addition to layout optimization, such a

layout robustness metric can be used for mask blank assignment as

well. Layouts with low mask yield can be assigned to a mask blank

with lower defect density. This would save the computational effort

of performing pattern shift for each layout-blank pair, as done in [14].

B. Key Contributions of this Work

In this work, we propose a new metric, critical density, that eval-

uates the robustness of EUV layouts to mask defects. To the best of

our knowledge, this work is the first attempt towards developing such

a metric. This metric allows us to estimate pattern shift aware mask

yield for any defect density using a simple analytical expression, and

enables us to distinguish between layouts that have different mask

yield for any given defect density.

The need for a metric that quantifies robustness of layouts to

mask defects bears resemblance to conventional critical area analysis

(CAA) [15]. CAA is commonly used to check robustness of layouts

to random wafer defects through the use of statistical metrics that

estimate chip yield for some random distribution of defects. The key

features of this work that also distinguish EUV-CDA and conventional

CAA are the following:

• Unlike wafer defects, a single mask defect will print on every

copy of the design on the wafer. Hence, the goal of EUV-CDA

is to predict mask yield, not chip yield.

• The impact of defect avoidance techniques on mask yield must

be probabilistically modeled as a part of EUV-CDA since actual

defect locations are not known at the design stage. Pattern shift

based defect avoidance is modeled in this work since it is the

most popular defect avoidance strategy [12].

• The need to account for pattern shift means that mask failure

depends on the simultaneous location and size of several defects

on the mask. This is in contrast to conventional CAA, where

every defect can cause failure independently. This dependence

complicates the analysis significantly, requiring much more

computational effort and modeling.

The remainder of this paper is organized as follows. Prohibited

region of a layout is described in Section II. In Section III, we propose

analytical methods to estimate mask yield for two limited scenarios.



TABLE I
GLOSSARY OF TERMINOLOGY

Term Description

s Defect size (Height, full width half maximum pair)

PBs Prohibited Region for defect size s

P (s) Probability of occurrence of defect size s

AM Mask area

Ds
P

Prohibited region density (
Area(PBs)

AM
)

DP Expected prohibited region density (
∑

s
P (s)Ds

P
)

K Number of different defect sizes considered

Nd Number of defects on mask

∆X Available pattern shift in X direction

∆Y Available pattern shift in Y direction

A∆ Total pattern shift area (∆X × ∆Y )

LX Design layout width

LY Design layout height

AL Total design area (LX × LY )

ρ Number of prohibited region shapes per unit area

NX Number of discrete X direction shifts

NY Number of discrete Y direction shifts

(Xi, Yj) Potential pattern shift solution

E∆
ij Event that pattern shift solution (Xi, Yj) works

P (E∆
ij

) Probability of event E∆
ij

PBs
ij

Prohibited region for defect size s, shifted by (Xi, Yj)

Ar(PBs
ij) Total area of all the polygons in the prohibited region

Wpl Width of periodic parallel line structure

Ppl Pitch of periodic parallel line structure

Y ct
M

Mask Yield of periodic contact array layout

Dcric Critical density

Y true
M

Accurate mask yield (Monte Carlo method)

Nmin
d

Minimum defect count considered

Nmax
d

Maximum defect count considered

AC Autocorrelation matrix

ACF FFT of AC

pix Pixel size (Sampling size) for computing AC

NF Number of terms from ACF used for predicting Dcric

We describe our critical density method in Section IV. Experimental

results are then presented in Section V. We conclude this work in

Section VI. All notation used in this paper is described in Table I.

II. PROHIBITED REGION

We define the prohibited region of a given layout, for a particular

defect size s, as the set of polygons PBs such that if the center of a

mask defect lies inside any polygon p ∈ PBs, the given mask layout

pattern will not yield.

The method for constructing prohibited region is the same as

proposed by Zhang et. al. [5] with the additional step of merging

the constructed rectangles. It is similar to the process of using

simple Boolean operations to compute critical area in conventional

CAA [15]. But the criteria for determining prohibited region is CD

tolerance, in constrast to opens/shorts in conventional CAA.We chose

this pessimistic approach since we are dealing with mask defects.

Assignment of this CD tolerance to layout shapes can be done by

either setting a single pessimistic value for all the patterns (10% of the
technology node, in our case), or by using some design information

(timing slack, redundant/dummy patterns) to assign an appropriate

CD tolerance, as done in [16]. Although EUV-CDA can be easily

applied for such smart CD tolerance, for the sake of brevity we assign

a single CD tolerance to all shapes in this work.

If pattern shift was not a part of EUV mask manufacturing,

estimating mask yield from prohibited region would be fairly straight-

forward. Assuming a uniform spatial distribution of defects on the

mask, mask yield could be estimated as (1 − Ds
P )Nd since every

defect must lie outside the prohibited region1. This simple approach

would imply that any two design layouts with the same prohibited

region density will have the same mask yield. But if pattern shift is

used to avoid mask defects, layout topology may also affect mask

yield. To confirm this suspicion, we created four 20µm × 20µm

layouts such that their prohibited region is a set of parallel lines

with pitch 80nm. The width of the lines was treated as a Gaussian

random variable with mean 20nm. Different values of variance (σ)

were used to construct the four layouts. We compared the mask

yield of these four layouts, which is estimated using rigorous Monte

Carlo simulation (described in Section III). The results, shown in

Figure 2, highlight the huge difference in post pattern shift mask

yield between the layouts which have very similar prohibited region

density (confirmed by the pre-pattern shift mask yield of the four

layouts, which are almost same).
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Fig. 2. Comparison of pre-pattern shift (dashed lines) and post-pattern shift
(solid lines) mask yield of four parallel line layouts with same prohibited
region density but different σ of Gaussian width.

III. APPROXIMATE ANALYTICAL METHODS

Monte Carlo based mask yield estimation is a simple, but compu-

tationally expensive strategy of generating random defect maps and

performing pattern shift for each defect map. Mask yield can then be

computing as the ratio of samples for which the final mask works, i.e.

every defect on the mask is avoided. The Monte Carlo method starts

off by constructing the prohibited region for different defect sizes. We

then generate a defect map with Nd defects, assigning a size to each

defect based on the given defect size distribution P (s). Pattern shift
is then applied for this defect map to determine if a feasible solution

exists. Note that for each Monte Carlo iteration, Nd defects need

to be generated since pattern shift makes mask failure dependent on

location of several defects on the mask. This dependence necessitates

a large number of Monte Carlo iterations to achieve convergence. The

methodology we used for pattern shift is the same as the approach

proposed by Wagner [6], which is optimal with respect to mask yield.

This naive method of estimating mask yield, although accurate,

is cumbersome and slow, requiring many Monte Carlo iterations to

give accurate results. Therefore this method of estimating mask yield

is impractical for realistic layouts. Moreover, the method does not

provide any design insights that could help improve the mask yield of

a given layout. Despite these limitations, the accuracy of this method

makes it appropriate for validating the faster, approximate method

that we shall propose in this paper.

1All defects are assumed to be of size s in this example.



A. Inclusion-Exclusion Method

In this section, we propose a method to estimate the mask yield with

one simplifying assumption: pattern shift picks a feasible solution

from a finite set of alternatives.

Let us first discretize all the potential defect sizes, into K discrete

defect sizes, s1, s2, ..., sK with respective probabilities of occurrence,

P (s1), P (s2), ..., P (sK). For a uniform spatial distribution of de-
fects, we can then calculate the probability that a particular pattern

shift solution (Xi, Yj) works using Equation 1. Note that
Ar(PB

sk
ij

)

AM

is equal to the prohibited region density for defect size sk since

shifting the polygons does not change area.

P (E∆
ij ) =

(

∑

k

P (sk)

(

1 −
Ar(PB

sk
ij )

AM

)

)Nd

(1)

Pattern shift aware mask yield can be estimated as the union of

all the events E∆
ij since the mask will yield if any of the potential

solutions work (Note that a solution is picked once the defect

locations are known). Calculating this union of events can be done

using inclusion-exclusion principle as shown in Equation 2.

P (∪i,jE
∆
ij ) =

∑

P (E∆
mn) −

∑

P (E∆
pq ∩ E

∆
mn) . . . (2)

The second order intersection term P (E∆
pq ∩ E∆

mn) corresponds
to the event that all defects lie in the non-prohibited region of both

solution E∆
pq and E∆

mn. Hence, it can be computed using a polygon

Boolean OR operation as shown in Equation 3.

P (E∆
pq ∩ E

∆
mn) =

(

∑

k

P (sk)

(

1 −
Ar(PB

sk
pq ∪ PB

sk
mn)

AM

)

)Nd

(3)

Computation of all the inclusion exclusion terms comprising NX×
NY orders (only first two order are shown above), is a #P -complete

combinatorial enumeration problem since it requires the computation

of 2NX×NY terms [17]. This computational limitation, along with the

quantization error incurred due to the assumption that the pattern shift

solution space is discrete, make this method unsuitable for estimating

mask yield for any realistic layouts.

Despite the impracticality of the inclusion-exclusion method, it

does provide one interesting insight: in addition to prohibited region

density, mask yield depends on autocorrelation of the prohibited

region of the input layout. The second order terms in Equation 3,

Ar(PB
sk
pq ∪ PB

sk
mn), are linearly related to Ar(PB

sk
pq ∩ PB

sk
mn),

which measures the degree of overlap between the prohibited region

PBsk with a shifted transform of PBsk (shifted by (Xp−Xm, Yq−
Yn)). Each such overlapping area corresponds to one entry of the
autocorrelation matrix of the 2D binary prohibited region signal,

PBsk . Moreover, mask yield depends on the weighted sum of

the prohibited region autocorrelation for different defect sizes. We

will later leverage this dependence of mask yield on the weighted

autocorrelation of prohibited region for critical density computation.

B. Spacings Method

In this sub-section, we will show that if the prohibited region of

a given layout is regular, the problem of finding the post-pattern

shift mask yield can be mapped to the maximal spacing distribution

problem, a classic geometric probability problem. Note that pattern

shift is assumed to be continuous here, unlike the previous sub-

section. Also, we consider only one defect size s here, and the

assumption on regularity is for the prohibited region, PBs.

First, suppose the prohibited region of the entire layout is a periodic

parallel line structure. Assuming the lines are infinitely long and

parallel to Y axis, any pattern shift in Y direction will not improve

mask yield. Hence, only the X coordinates of the defects is relevant,

and we can map all the defects to a single line. The periodicity

assumption implies that the X coordinates of all the defects can

be mapped to a modulo Ppl space with a single line of width

Wpl. An optimal pattern shift based defect avoidance technique can

successfully avoid all the defects, if and only if there exists a gap

or spacing of size Wpl with no defect inside it. This mapping is

illustrated in Figure 3.

Fig. 3. Mapping mask yield estimation of parallel line to maximal spacing
distribution.

This problem is equivalent to finding the probability of existence

of a gap larger than
Wpl

Ppl
on a unit circle with a uniform distribution

of points 2. This geometric probability, also referred to as the one

dimensional maximal spacing problem [18], was first computed

exactly by Stevens [19], which allows us to estimate pattern shift

aware mask yield of a parallel line layout.

Similar to the parallel line case above, we can show that the the

mask yield for a regular, square contact array pattern is equivalent to

the two-dimensional maximal spacing distribution. Janson derived an

asymptotic analytical expression for the multi-dimensional maximal

spacing problem [20], that holds true as the number of random points

(defects, in our case) tend to infinity. Using his expression, we can

estimate pattern shift aware mask yield for an infinite contact array

layout as shown in Equation 4. An additional condition is included

for Nd ≤ 2
DP
to correct for the anomaly that mask yield increases

with increase in the number of defects. This analytical expression

will be referred to as Janson’s formula in the rest of this paper.

Y
ct

M = 1 − e
−N2

d
DP e−NdDP

if Nd ≥
2

DP

= 1 otherwise (4)

IV. CRITICAL DENSITY METHOD

Although the periodicity assumption of parallel line and contact

arrays enables us to map the yield estimation problem to a maximal

spacing distribution problem, deriving such analytical expressions for

random layouts is not straight-forward. In order to address the issue

of estimating the yield of realisitic layout patterns, we propose a

two-step model that applies principles from Section III-A and III-B.

We first define critical density of a layout as follows. For any given

input layout, critical density is the value of DP such that Equation

2Since there is no mask defect distribution data available, we assume
uniform spatial distribution of defects as it usually gives more pessimistic
yield estimates compared to clustering [6], [13]



4 can most accurately predict the actual mask yield of the layout for

any number of defects. Mathematically, we can use the ubiquitous

least squares as the criteria for accuracy and thereby define critical

density as given in Equation 5.

Dcrit = argmin
0≤DP ≤1

Nd=Nmax
d

∑

Nd=Nmin
d

(Y ct
M (Nd, DP ) − Y

true
M (Nd))2 (5)

With this definition of critical density, our two-step model first

estimates critical density of an input layout using the weighted

autocorrelation matrix of the prohibited region as the predictor

variables (motivated by the derivation in Section III-A). Equation

4 is then used to estimate mask yield.

The use of critical density as a part of a two-step model to estimate

mask yield abstracts out defect density thereby providing a defect

density-independent metric that depends solely on the prohibited

region of a given layout. This metric can be used to compare the

robustness of different layouts to EUV mask defects. Additionally,

critical density is similar to probability of failure (ratio of critical

area to chip area) in conventional CAA.

For a realistic full chip layout, using the entire autocorrelation ma-

trix of a layout as a feature set to predict critical density is infeasible,

both from the perspective of computing the autocorrelation, and fitting

a model (“curse of dimensionality”). We propose the following set

of steps to reduce the dimension of the autocorrelation matrix which

is then used to predict the critical density:

• Limited autocorrelation: Based on the derivation in Section

III-A, only the first
∆X

pix
× ∆Y

pix
entries of the autocorrelation

matrix of size
LX

pix
× LY

pix
need to be considered as a part

of the feature set. Moreover, we scale all the entries of the

autocorrelation matrix by the reticle area, to make it independent

of design size.

• Compression: Only the low-frequency Fourier components of

the limited autocorrelation matrix are used as features for

predicting critical density. This is reasonable since layouts are

dominated by lower frequency components due to design rule

constraints.

With this reduced autocorrelation based feature set, we apply a

simple multivariate linear regression model to predict critical density

of any given layout. Since the autocorrelation matrix size depends

on the maximum available pattern shift and is scaled by reticle size,

it is independent of the layout size. Therefore the linear regression

model can be trained using small layout clips, and the trained model

can then be applied to large realistic designs. This makes the training

of the model manageable.

The operations involved in computing critical density, and then

mask yield, of a given random layout are specified in Algorithm 1.

Note that the two-step critical density model does not assume discrete

pattern shift solutions. It actually accounts for the optimal continuous

pattern shift since the linear model that estimates critical density is

fitted using the Monte Carlo method that uses the optimal continuous

pattern shift.

The runtime for estimating critical density is dominated by the

polygon Boolean operations to compute the autocorrelation matrix.

Each polygon Boolean operation takes O(ρAL log ρAL) runtime.
With a sampling pixel size of pix, fast fourier transform can be

performed in O( A∆

pix2 log A∆

pix2 ). Hence, the runtime order complexity

to compute the critical density is O(K × A∆

pix2 × ρAL log ρAL +
A∆

pix2 log A∆

pix2 ). In constrast, the order complexity of Monte Carlo is

O(Nd × (ρA∆ log ρA∆ +(log ρAL)3))) per iteration3. This method
can also be easily parallelized by computing each entry of the

autocorrelation matrix independently.

Algorithm 1 Steps for estimating critical density

Input: Design layout of size LX ×LY and total shift size permitted

∆X × ∆Y . Tunable parameters: sample size for autocorrelation

pix, and number of fourier order to pick NF

Output: Critical density of layout.

1: Construct prohibited region of layout PBs for s ∈ s1, s2, ...sK

2: Define matrix AC of size
∆X

pix
× ∆Y

pix

3: reticleArea = (LX + ∆X) × (LY + ∆Y )
4: for all Xi ∈ {0, p, 2p, .....∆X} do
5: for all Yj ∈ {0, p, 2p, .....∆Y } do

6: AC( Xi

pix
,

Yj

pix
) =

∑

k
P (sk)

Area(PBsk∪PB
sk
ij

)

AM

7: end for

8: end for

9: ACF = fft(AC)
10: Pick all terms of ACF with Fourier order less than or equal to

NF

11: Apply fitted linear model to get critical density

V. EXPERIMENTAL RESULTS

Both the Monte Carlo method, and our proposed critical density

method are implemented in C++. OpenAccess API [21] is used

to read and query layouts. The polygon Boolean operations are

performed using Boost Polygon Library [22]. Fourier transform of

the autocorrelation matrix is done using FFTW library [23], and

matrix operations are done using Eigen [24]. OpenMP is used to

parallelize both the Monte Carlo Method4 and the autocorrelation

matrix construction step of our critical density method, with eight

threads for execution. All our computation has been done on a high

performance compute cluster. The reported runtime for the various

testcases is the wall time on the compute nodes of the cluster.

The number of Monte Carlo iterations is kept fixed at 20, 000 for
all the training clips and test layouts. For all our testcases, the Monte

Carlo method is run 15 times, with defect density ranging from 10
defects to 150 defects. All of our reported average, maximum and
average root mean square error (RMSE) values are across this range

of defects.

All our analysis in this section is done on designs created using

Synopsys 32nm standard cell library [26], and scaled down to 8nm.

The designs were synthesized, placed and routed using Cadence

Encounter [27] with 90% cell utilization, unless otherwise stated.

All mask defects are taken as 3D Gaussian-shaped, with three

discrete height values (0.5nm, 1.0nm, 2nm) and three discrete full

width half maximum values (25nm, 50nm, 75nm). The correspond-

ing nine discrete defect sizes are assigned probability of occurrence

inversely proportional to their respective volume. The CD tolerance

of all the shapes was set at 0.8nm.

The available pattern shift (∆X×∆Y ) is taken as 0.5µm×0.5µm.

Current literature on pattern shift suggest that the total available shift

is around 200µm × 200µm [7]. A smaller shift value is chosen

to demonstrate our methodology since the runtime of the validation

Monte Carlo method becomes too slow with large shift area (≥ 5, 000
hours based on the runtime of [5]). Moreover, the shift area we have

3Number of Monte Carlo iterations also depends on AL and A∆
4Thread-safe random number generation is done here [25]



chosen is sufficient for comparing different layouts since it is large

enough to cover several pitches at 8nm node. pix is set to 20nm
5, and the size of the autocorrelation based feature vector for each

layout is 17. It comprises all the entries from the FFT matrix of the
limited autocorrelation matrix with both row and column indices less

than 4, and a constant.
The linear regression model to estimate critical density of a layout

is trained using 5µm×5µm layout clips obtained from a large 32nm

layout. We used a total of 400 layout clips from each of the four
critical layers of a design as the training set: polysilicon, metal 1,

contact and active. For these small layout clips, we used the Monte

Carlo method to estimate the true mask yield for different number

of defects. Using this data, we computed the critical density of the

layout clips by solving Equation 5 in MATLAB with the interior

point method. The autocorrelation based features are computed for

each clip, and used to train the linear regression model for critical

density in MATLAB.

A. Model Validation

The trained linear regression model is then applied on different

layers of four benchmark layouts from ISCAS’89 [28], and one RISC

processor layout. All these layouts are different from the training clips

used to fit the model. The results are summarized in Table II 6.

Compared to the rigorous Monte Carlo method, our critical density

method is able to predict critical density fairly accurately for all

the test layouts with a runtime improvement ranging from 300× to
1300× The average RMSE in estimating mask yield ranges from
0, .08% − 6.44%. Moreover, the method is able to track the general
trend of how mask yield changes with defect density fairly accurately.

This is illustrated in Figure 4, which plots the mask yield versus

defect density of the Monte Carlo and the critical density method for

the polysilicon and metal 1 layers of s1423.
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(b) Polysilicon layer

Fig. 4. Mask yield versus defect density for two layers of s1423 design

B. Impact of Layout Density and Regularity

The critical density of a layout is strongly influenced by the layout

density. This is confirmed by comparing two version of s1196 in

Table II with cell utilization of 90% (default) and 70%. Reducing the
cell utilization reduces the layout density of all the layers, thereby

reducing the critical density as well. Moreover, note that different

designs constructed with the same utilization have almost equal

critical density for each respective layer. This suggests that critical

density depends on global layout characteristics instead of local

hotspot-like regions. Hence, improving this metric may necessitate

changes in design rules or physical design techniques.

5Pixel size only dictates the shift values for which the Boolean AND
operations are performed.
6The validation Monte Carlo method is too slow to be run for the larger

processor layout, hence the missing entries in the table.

Although layout density plays an important role in determining

critical density, it is not the only factor that affects critical density.

Polysilicon layer (which is a fixed pitch regular grating) has higher

critical density compared to irregular metal 1 layer of each design,

despite lower layout density. This indicates that random layout

patterns are better suited to exploit the benefits of pattern shift due

to better autocorrelation properties. To further highlight this impact

of regularity, we constructed two regular layouts, parallel line and

contact array, which have the same layout density as the polysilicon

layer of s1423 and metal 1 layer of s1196−u70. The results, shown
in Figure 5, highlight two key aspects of layouts that affect mask

yield:

• 1D layout topology (parallel line and polysilicon), are signif-

icantly worse than 2D topology (contact array and metal 1)

because 2D layouts can benefit from pattern shift in both X and

Y directions, whereas 1D layouts benefit only in the direction

perpendicular to the parallel lines.

• An irregular 2D layout like metal 1 is much better suited to

derive the benefit of pattern shift compared to a regular 2D

contact array.

Most manufacturing processes, especially lithography, favor 1D reg-

ular layouts. This has led to increasing layout regularity with each

technology node. But our results show that the reduced mask yield

of such regular layouts can significantly increase mask cost for EUV

lithography. Hence, a systematic co-optimization to balance these two

competing requirements may be required for EUV layouts.

Fig. 5. Illustration of impact of regularity on critical density (and conse-
quently, mask yield) for layouts with same density.

VI. CONCLUSION AND FUTURE WORK

In this work, we proposed a new metric for evaluating the

robustness of EUV layouts with respect to mask defects, critical

density. Using critical density, layout designers and mask makers

can quickly estimate the probability of finding a defective EUV mask

blank on which the layout can be safely patterned for any defect den-

sity(mask yield). Our method accounts for the impact of pattern shift

based defect avoidance technique on mask yield, which is the most

challenging part of this methodology. We first solved the problem

assuming discrete pattern shift solutions using inclusion-exclusion.

Then we mapped the problem to a classic geometric probability

problem, maximal spacings, for the limited case of parallel line and

contact array patterns. Using principles from both these approaches,

we defined our critical density metric and proposed a novel method

to estimate critical density, which can then be used to estimate the

pattern shift aware mask yield for any arbitrary layout. Our method

was shown to be 300− 1300× faster than the rigorous Monte Carlo
method for estimating mask yield and was able to predict mask yield

with 0.08%−6.44% average RMSE across a range of defect density
for four critical layers (polysilicon, active, contact and metal1).



TABLE II
VALIDATION OF CRITICAL DENSITY METHOD. MASK YIELD RMSE IS AVG.RMSE BETWEEN THE MASK YIELD ESTIMATE OF MONTE CARLO AND
PROPOSED METHOD ACROSS THE DEFECT RANGE. RUNTIME IS TOTAL WALL TIME REQUIRED TO COMPUTE MASK YIELD FOR THE DEFECT RANGE.

Design Layer Number of Layout Monte Carlo method Critical density method
shape edges density Runtime (sec.) Critical density Mask yield RMSE Runtime (sec.)

s349-syn32nm
POLY 4084 0.16 10742 0.14 4.15% 19
ACT 2384 0.32 14725 0.04 4.67% 16

Utilization 90%
CO 20132 0.03 57432 0.03 0.32% 62
M1 9432 0.22 48382 0.08 2.84% 84

s1423-syn32nm
POLY 20672 0.16 66651 0.14 4.24% 86
ACT 11348 0.33 24895 0.04 4.54% 79

Utilization 90%
CO 101856 0.03 239572 0.03 0.50% 349
M1 47554 0.22 261816 0.08 1.98% 465

s1196-syn32nm
POLY 11788 0.16 28201 0.14 4.28% 47
ACT 5800 0.29 23522 0.03 3.40% 39

Utilization 90%
CO 60448 0.03 253287 0.03 0.54% 192
M1 26128 0.19 198613 0.07 2.91% 222

s1196-syn32nm-u70
POLY 11788 0.12 34597 0.10 6.44% 47
ACT 6176 0.23 12797 0.03 0.94% 41

Utilization 70%
CO 62336 0.03 255483 0.03 0.08% 233
M1 26502 0.16 208513 0.06 4.15% 227

Cortex M0
POLY 333748 0.15 NA 0.13 NA 858
ACT 178396 0.29 NA 0.03 NA 999

Utilization 90%
CO 1746968 0.03 NA 0.03 NA 4743
M1 767380 0.19 NA 0.07 NA 5852

The methodology for estimating critical density shows that mask

yield is a strong function of the autocorrelation of the layout. Our

analysis indicates that irregular 2D layouts have better mask yield

for the same layout density, which is contrary to most manufacturing

processes that demand layout regularity. By using dummy features

to make irregular layouts regular with respect to printability, this

problem can be addressed since defects on dummy features do not

matter.

Fast estimation of critical density enabled by our method can allow

us to develop techniques to improve the mask yield of EUV layouts.

Our preliminary experiments to improve critical density by iteratively

adjusting the whitespace after placement suggests that 3% − 7%
improvement in mask yield is possible without any area penalty.

Since we used a random search based whitespace optimization for

each row independently. the method is too slow to be practically

useful. In the future, we plan to develop a scalable layout optimization

methodology to improve the robustness of EUV layouts. Our future

work also includes further enhancing the critical density model to

account for other defect avoidance strategies such as pattern rotation

or floorplanning, and dealing with non-uniform spatial distribution of

defects (if defect data necessitate so).
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