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Abstract—Although a significant fraction of emerging failure and
wearout mechanisms result in intermittent or permanent faults in
hardware, their impact (as distinct from transient faults) on software
applications has not been well studied. In this paper, we develop a
distinguishing application characteristic, referred to as similarity from
fundamental circuit-level understanding of the failure mechanisms. We
present a mathematical definition and a procedure for similarity compu-
tation for practical software applications and experimentally verify the
relationship between similarity and fault rate. Leveraging dependence
of application robustness on the similarity metric, we present example
architecture independent code transformations to reduce similarity and
thereby the worst-case fault rate with minimal performance degradation.
Our experimental results with arithmetic unit faults show as much as
74% improvement in the worst case fault rate on benchmark kernels,
with less than 10% runtime penalty.

I. INTRODUCTION

With the scaling of technology in the nanometer regime, in-
creased process, voltage and temperature variations have exacerbated
the infant mortality rate of VLSI ICs. Moreover, due to multiple
aging and wearout induced hardware reliability loss mechanisms
such as time dependent dielectric breakdown, hot electron injection,
electromigration, negative bias temperature instability, and stress
migration [2], it is expected that more components would suffer from
unpredictable operational or in-field failures [26] [3] which initially
manifest as intermittent faults and later develop into permanent faults
[8] [7] [25]. Recent work [14] has shown that failures arising from
process variations increasingly resemble the traditional permanent
faults, i.e. the hardware’s erroneous behavior is a function of its state
rather than time.

Existing software based fault tolerance mechanisms such as check-
pointing and roll back [28], time redundant execution [19], recovery
blocks [15], algorithm based fault tolerance [11] and executable
assertions [20] exploit the impersistent nature of transient faults to
either mask or detect and recover from them. Hence, they are ineffi-
cient to guard against the permanent and intermittent faults. Software
monitors [12] for detecting in-field breakdowns rely on catastrophic
software symptoms like application abort, kernel panic, etc. Although
they are low cost solution, they do not provide coverage against
silent data corruptions (SDC). Subsequent work [21] uses program
invariants to detect SDC but they are susceptible to false positives.
Authors in [9] [10] insert program-level detectors in SDC-hot sites to
detect them. In this work, to reduce SDCs, we identify the sections
of code that are more susceptible to large fault rates and propose
architecture independent code transformations. The transformations
proposed in this work complement other code optimizations [4] [24]
[17] [18] employed to robustify codes. Our analysis is based on
fundamental understanding of the circuit level fault models and hence,
yields simple code transformations which incur minimal run-time
overhead. We partly share our goal with [16] [30] where authors
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Fig. 1: Intermittent fault model pa-
rameters, adapted from [8] Fig. 2: A sample code

analyze the impact of intermittent faults on programs in terms of
crashes and hangs, whereas we focus on SDC.

Our major contributions are

• We develop a code metric, called similarity, to quantify a code’s
susceptibility to permanent and intermittent faults.

• We propose simple code transformations to reduce similarity and
consequently, the worst case fault rate.

Although the theory and the conclusions presented in this work are
applicable to any functional unit that accepts two operands as inputs,
we inject and study faults only in the multiplier as they cause difficult
to detect SDCs more often than faults in other units like the adder.
Authors in [1] study the detection of permanent faults in multipliers
for the same reason.

The paper is organized as follows: Section II presents the fault
models followed by a discussion on the similarity metric and the
code transformations in the Section III. In Section IV, experimental
setup and results are described and we conclude in Section V.

II. FAULT MODELS

Firstly, we define some commonly used terms. An input vector, v,
is a bit vector feeding the inputs of a hardware unit. Faulty run refers
to the tuple {A, I, F} - an application A executing an input I on a
hardware with fault F . Fault rate is the fraction of input vectors that
activate the fault amongst all the input vectors that access the faulty
hardware in a faulty run.

In this section, we’ll present the permanent and the intermittent
fault models used in this study and discuss how they are distinct
from the transient fault model.

Various failure mechanisms, depending upon their circuit level
impact, have been modeled at the gate-level as stuck-at(0,1) or delay
faults [7]. While permanent faults, remain active throughout the
execution of the application, intermittent faults have been assumed
to activate in the beginning and are characterized by an activation
period (ta), an idle period (ti), and a burst length (lburst) - number
of times the activation-idle cycle repeats, as shown in Fig.1.

Transient fault activation which is usually modeled as a single
event upset is time dependent. At the gate-level, a fault is said to be
activated if any one of the input or the output bits of the faulty gate
is flipped. Whereas, since permanent faults perpetually exist, their
activatation is solely dependent on the system state, independent of
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Fig. 3: Average conditional failure probability (CFP, γavg(k)) as a
function of the number of bits shared (k) between input vectors for 8-
bit multiplier designs. (a) Stuck-at fault model: 3 different designs (D)
and 3 different randomly chosen nets as fault locations (L). (b) Delay
fault model: 3 different designs (D) and 2 different frequency overscaling
factors (F) - 10% (F1) and 5% (F2). Note that for delay faults we compute
bit sharing between two pairs of consequtive input vectors. Hence, they
can share upto 32 bits.

the time. Time independence in case of intermittent fault activation
is partial because faults do not perpetually exist.

Under stuck-at fault model, state dependence can be interpreted
as dependence on the current input vector. For instance, consider a
2-input AND gate - {a, b} are the inputs and z is the output. If
z is stuck-at 0, fault can be activated only when a = b = 1. In
other words, this stuck-at fault can be characterized by a boolean
expression, ab, such that the fault is activated if and only if this
expression is satisfied. Under the delay fault model, however, the
fault activation depends on the current as well as the previous input
vector [31]. Timing violations are contingent upon the sensitization
of critical paths which in turn depends on two consequtive input
vectors, assuming the faulty unit is isolated and does not receive off
path inputs. Exploiting this input vector dependence, we make the
following observation:

The conditional failure probability, defined for two vectors1 vi
and vj , increases as they share more bits. The conditional failure
probability (CFP) is the probability that vj activates a fault given
that vi activates the same fault or vice-versa.

This should not be surprising because the conditional probability
of satisfying the boolean expression increases with the increasing
number of shared bits. This observation has been empirically con-
firmed through verilog simulations on three synthesized gate-level
8-bit multiplier designs. One of them is a general design synthesized
using Cadence RTL Compiler [5] (D1) and other two are synthesized
using Synopsys Design Compiler [6], out of which one is a general
design (D2) and another is based on ‘carry save array’ synthesis
model (D3) - a Synopsys DesignWare Building Block IP.

Fig.3a and 3b, plot CFP as a function of (lower bound on) the
number of bits shared (k) between input vectors. For instance, k = 8
means atleast 8 bits are shared. CFP is computed as the ratio of 1) the
average number of fault activating input vectors that share atleast
k bits with a given fault activating input vector, and 2) the average
number of input vectors that share atleast k bits with any given
fault activating input vector. CFP rises exponentially with k for both
the fault models, but with delay faults it is almost flat until k = 22

1In case of delay faults, instead of “input vectors” we should always
consider “a pair of consequtive input vectors”

Fig. 4: Code Transformations for the original code of Fig.2. (a) Trans-
formation Swap (Sw): Half the operands are swapped (b) Transformation
Swap-Negate (SwN): Half the operands are swapped and multiplied by
-1.

because due to small overscaling factors, only very specific pairs of
input vectors sensitize critical paths.

A clear implication of this observation is that if a code execution
generates a lot of input vectors that share atleast one operand then
the fault rate would tend to be either very large or very small.
To summarize, operand sharing implies large amount of bit sharing
which implies high CFP which implies large standard deviation in the
fault rate, σFR (computed over several faulty runs for a given A and
F) which implies large worst case fault rates, ωFR (= µFR+3∗σFR),
assuming µFR remains same. µFR is the mean fault rate. In [23]
we have mathematically derived σFR as a function of CFP.

III. SIMILARITY METRIC AND CODE TRANSFORMATIONS

In this section, we define similarity, to quantify the amount of
operand sharing in a given piece of high-level code and then propose
code transformations to reduce it. According to our claim, that should
reduce σFR. We are targetting fault rate because the energy benefits
derived from timing speculative architectures [22] critically require
low fault rate. Similarly, the performance penalty due to recovery
and reprocessing in checkpointing based fault tolerance mechanisms
is directly proportional to the fault rate [27].

Assume that in an execution, N input vectors, each composed of
two operands, access a faulty unit. Then, similarity is defined as,

S ∼ 1

N2

N∑
i=1

N∑
j=1,i 6=j

sij (1)

where, sij is the number of non-constant operands shared between
the ith and the jth input vectors. Non-constant operands refer to
those operands whose values are independent of the input to the
application. Mathematical justification for constant operand sharing
not contributing to the similarity is explained in [23].

Using the procedure outlined in Eqn.(1), similarity which is
inherent to a code, can be statically computed. For instance, consider
the kernel shown in Fig.2. N input vectors share the first operand
with the value e. Thus, there are

(
N(N−1)

2

)
pairs sharing an operand.

Therefore, for this original code (Org), SOrg = N−1
2N

. Drawback
of static computation is that if there is no compiler visible operand
sharing in the source code then statically computed similarity will be
zero. To account for the contribution of application inputs, similarity
averaged over several fault-free profiled executions needs to be
computed. Since one of the benchmark kernels has zero compiler
visible operand sharing amongst multiply instructions, profiling has
been used to compute similarity.

To reduce operand sharing, we propose two architecture indepen-
dent code transformations, referred to as Swap (Sw) and Swap-Negate
(SwN). For the original code of Fig.2, both the transformations are
shown in Fig.4a-b, respectively. In Sw, for-loop is divided into two
equal halves, each half increments by 2 and in one of the loops
operands are swapped. As a result, there are only half as many input
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App Fr Ac Mm Km Ft
SOrg 14.9 5.50 4.70 0.40 0.04
SSw 7.95(0.53) 4.36(0.79) 4.31(0.91) 0.38(0.96) 0.04(1.00)
SSwN 7.94(0.53) 3.25(0.59) 4.30(0.91) 0.37(0.96) 0.04(1.00)

TABLE I: Similarity values (in the order of 1e-3) for the original (Org),
swapped (Sw) and swap-negated (SwN) codes of all the applications are
shown. Normalized (with respect to Org) similarity values are shown in
the brackets. Number of faulty input vectors, N ∼ 42000

vectors sharing a particular operand, although there are two sets of
them. Therefore, when statically computed, similarity would be,

SSw =
1

N2

(
2

[
N
2

(
N
2
− 1
)

2

])
=
N − 2

4N

which is approximately, 2X smaller than SOrg .
SwN is an improvement over Sw to handle those faults that are

immune to operand order. SwN not only swaps the operands but also
multiplies them by -1. In presence of loop-carried dependences, the
two for-loops should be interleaved to maintain the iteration order.

Table I compares the similarity of the transformed codes with the
original codes for five different applications - FIR filter (Fr), Au-
tocorrelation (Ac), Matrix Multiplication (Mm), Kmeans Clustering
(Km) and FFT (Ft). There is orders of magnitude difference between
the absolute similarity of Fr (14.9e-3) and Ft (0.04e-3). Since the
original code of Fr has relatively very large compiler visible operand
sharing, transformations cause significant reduction. Whereas, in case
of Km and Ft, operand sharing is minimal, mainly due to the value of
the inputs. Hence, transformations could not systematically reduce it
further. Morevover, compiler does not preserve all the transformations
which are applied at the high-level.

IV. EXPERIMENTAL SETUP AND RESULTS

We inject faults in architecture visible multiply instructions using
VarEmu [29], an instruction-level emulator. A gate-level timing
simulator, Mentor ModelSim, back-annotated with the standard delay
format (SDF) file from the logic synthesis is coupled with VarEmu.
It is selectively and on-demand invoked to accurately model the
architecture-level manifestations of gate-level delay faults, as also
done in [13]. For stuck-at faults, however, to achieve the same accu-
racy while not incurring the run-time overhead due to communication
with an external simulator, we translated every single gate-level
synthesized netlist with a unique fault injected into it, into a C++
equivalent and linked it with the VarEmu.

We used Cadence RTL Compiler synthesized 32-bit multiplier de-
sign for fault injection. While for delay fault injection we overscaled
the frequency by 20%, for stuck-at fault, 300 nets were randomly
chosen and a fault was injected in one of these locations. Intermitent
fault model parameters are as follows: ta = ti = 100 instructions,
lburst = {50, 500, 2500} cycles. We study the efficacy of code
transformations under three different burst lengths. We experimented
with three fault models: Permanent/Stuck-at (PS), Permanent/Delay
(PD) and Intermittent/Stuck-at (IS). Since focus of this work is to
study the impact of hardware faults on SDC, faults in OS which
often has some detectable catastrophic impact were not injected.

PS fault model: There are two important observations:
• Both the transformations reduce σFR which follows the re-

ductions in the similarity (see Table II). While reduction is
maximum for Fr (S reduces to 0.53X and σFR reduces to 0.57X
by SwN), it is negligible for Km and Ft.

• Subject to the reduction in µFR, reduction in σFR implies
reduction in ωFR. For Mm, maximum improvement of 74%

App S σFR ωFR
Sw SwN Sw SwN Sw SwN

Fr 0.53 0.53 0.58 0.57 0.88 0.88
Ac 0.79 0.59 0.83 0.79 0.92 0.78

Mm 0.92 0.91 0.72 0.69 0.85 0.57
Km 0.96 0.96 1.00 0.97 1.00 1.00
Ft 1.00 1.00 1.00 0.98 1.00 0.92

TABLE II: Permanent/Stuck-at fault model: Correlating reduction in
similarity (S) and reduction in σFR due to Sw and SwN transformations.
Also shown are the worst-case fault rates ωFR of transformed codes. All
figures are normalized with respect to the original code.

App σFR ωFR
IS0 IS1 IS2 IS0 IS1 IS2

Fr 1.05 0.75 0.61 0.98 0.88 0.86
Ac 0.72 0.81 0.77 0.78 0.80 0.79

Mm 1.15 1.28 0.94 1.01 0.98 0.93
Km 0.80 1.10 1.10 0.65 0.98 0.98
Ft 0.93 1.31 1.07 1.00 1.03 1.03

TABLE III: Intermittent/Stuck-at fault model: Table shows normalized
values of σFR and ωFR due to SwN transformation for three different
burst lengths (lburst = 50, 500, 2500), corresponding to IS0, IS1 and
IS2, respectively. Values are normalized with respect to the original code
values corresponding to the respective burst length.

in ωFR is observed due to combined reduction in µFR as well
as σFR.

IS fault model: Table III reports reduction in σFR and ωFR due to
SwN transformation. Results due to Sw transformation (not shown in
the table) are very similar to SwN. There are two main observations:

• For less enduring faults (IS0), even significant reduction in
similarity may not effect any reduction in σFR because as the
fault duration reduces, fault activation is more time dependent.
Consequently, for an instance, if two instructions which are
separated by many instructions generate identical input vectors
and one of them activates the fault, then other would not activate
if the separation between them is more than the fault duration.
Therefore, transformations can’t guarantee systematic reduction
in σFR, as evident from the column under IS0 in Table III.

• As fault duration rises (IS1→ IS2), results consistently improve.

PD fault model: Table IV shows results for 3 out-of 5 applications
because in Km and Ft, no timing violations were observed. In Ac,
Fr and Mm, although transformations reduce σFR as well as ωFR,
reductions vary with designs. We experimented with DC synthesized
multiplier design using “carry-save-array” synthesis model and much
larger reductions were observed. Last two columns in the same
table show that for Fr, ωFR reduced by 55X. This was effected
due to 64X reduction in σFR and 17X reduction in µFR. We
observed remarkable design dependence for delay faults because
timing violations depend on critical path sensitization which depends
on very specific input vector sequence which vary with designs.

Although the results show that the transformations improve µFR,
we need to understand the dynamics between µFR and the similarity.

App σFR ωFR ωFR (DC synth)
Sw SwN Sw SwN Sw SwN

Fr 0.62 0.53 0.64 0.57 0.02 0.02
Ac 1.01 0.98 1.01 0.99 0.77 0.68

Mm 0.66 0.67 0.87 0.88 0.88 0.94

TABLE IV: Permanent/Delay fault model: Table shows normalized
values of σFR and ωFR due to Sw and SwN transformation. For Km
and Ft, no faults are observed. Last two columns show results from a DC
synthesized design.
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App Ac Ft Fr Km Mm
RSw,norm 1.01 1.01 1.00 1.00 1.00
RSwN,norm 1.02 1.01 1.09 0.98 1.08

TABLE V: Runtime penalty in transformed codes. RSw,norm and
RSwN,norm are the runtimes of the transformed codes normalized with
respect to the original code’s runtime.

It demands more careful analysis because µFR is a strong function
of inputs and the fault location rather than being just inherent to
an implementation. Though we applied our code transformations by
modifying the high-level code, compiler can likely do a better job
by applying transformations automatically since it can preserve them
through the compiler optimizations.

Both the transformations have minimal performance overhead of
< 10% as recorded in the Table V. For estimating performance
overhead, benchmarks were executed on the host machine (x86 64)
instead of VarEmu because due to emulation overhead, runtime
numbers obtained from VarEmu are not meaningful.

V. CONCLUSIONS AND FUTURE WORK

In this work, we have studied the impact of permanent and
intermittent hardware failures on programs in terms of fault rate
and based on our analysis developed a code metric, similarity, that
correlates with the standard deviation in the fault rate. Leveraging
this dependence, we have proposed architecture independent code
transformations to reduce similarity and thus, curb the worst-case
fault rates by as much as 74%. We conclude that similarity as a code
metric can be reliably applied to model standard deviation in the fault
rate for permanent stuck-at fault model and intermitten faults with
long duration. In case of delay faults due to heavy design dependence
the correlation is comparatively weaker. More details on this work can
be found in [23]. In the future, we would like to 1) study the impact
of similarity on average fault rate, 2) explore architecture dependent
code transformations, and 3) apply the proposed transformations at
the compiler level.
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