
ARGO: Aging-aware GPGPU Register File Allocation

Majid Namaki-Shoushtari*, Abbas Rahimi†, Nikil Dutt*, Puneet Gupta‡, Rajesh K. Gupta†

*Department of Computer Science
University of California, Irvine

Irvine, CA 92697-3435
{anamakis, dutt}@ics.uci.edu

†Department of Computer Science and Engineering
University of California, San Diego

La Jolla, CA 92093-0404
{abbas, gupta}@cs.ucsd.edu

‡Electrical Engineering Department
University of California, Los Angeles

Los Angeles, CA 90095-1594
puneet@ee.ucla.edu

ABSTRACT
State-of-the-art general-purpose graphic processing units
(GPGPUs) implemented in nanoscale CMOS technologies offer
very high computational throughput for highly-parallel
applications using hundreds of integrated on-chip resources.
These resources are stressed during application execution,
subjecting them to degradation mechanisms such as negative bias
temperature instability (NBTI) that adversely affect their
reliability. To support highly parallel execution, GPGPUs contain
large register files (RFs) that are among the most highly stressed
GPGPU components; however we observe heavy underutilization
of RFs (on average only 46%) for typical general-purpose kernels.
We present ARGO, an Aging-awaRe GPGPU RF allOcator that
opportunistically exploits this RF underutilization by distributing
the stress throughout RF. ARGO achieves proper leveling of RF
banks through deliberated power-gating of stressful banks. We
demonstrate our technique on the AMD Evergreen GPGPU
architecture and show that ARGO improves the NBTI-induced
threshold voltage degradation by up to 43% (on average 27%),
that yields improving RFs static noise margin up to 46% (on
average 30%). Furthermore, we estimate a simultaneous reduction
in leakage power of 54% by providing sleep states for unused
banks.

Categories and Subject Descriptors
C.1.2 [Multiple Data Stream Architectures (Multiprocessors)]:
Single-instruction-stream, multiple-data-stream processors
(SIMD)

General Terms
Reliability, Design, Performance.

Keywords
NBTI, GPGPU, Aging, Register File, Power-gating.

1. INTRODUCTION
General-purpose graphic processing units (GPGPUs) have
become popular platforms for executing applications that exhibit
a high degree of thread-level parallelism. Nanoscale CMOS
technologies permit fabrication of GPGPUs with hundreds of
integrated on-chip resources and large RFs, allowing very high

computational throughput for a wide range of highly parallel
applications. High performance GPGPU execution greatly
stresses on-chip resources, compromising system reliability due to
aging degradation mechanisms such as negative bias temperature
instability (NBTI) [1].

NBTI manifests itself via an increase in the threshold voltage of
PMOS transistor when a logic ‘0’ at the gate is applied. This Vth
drift strongly depends on the amount of time during which a
PMOS transistor is stressed. On the other hand, when the stress
condition is relaxed, the aging can be recovered partially, and the
Vth decreases toward the nominal value [5],[6]. In SRAMs, the
value dependence of NBTI is weaker than in logic circuits: given
the symmetric structure of a 6T-SRAM cell, one PMOS is always
under stress as long as it stores any value so the SRAM cell
structure degrades continually [39],[23]. This makes SRAM RFs
the most likely candidates for stress and hence reliability failures.
On the other hand, to support massive parallelism, GPGPUs
feature very large RFs to hold the state of each thread making the
RF reliability a major concern. But many GPGPU applications
exhibit imbalanced utilization of these very large RFs.

To ensure necessary observability of the non-uniform aging
degradation, traditionally compact in situ NBTI and oxide
degradation sensors have been proposed [28]. These sensors
enable high-volume data collection to guide dynamic NBTI
management schemes and warn of impending device failure.
Using NBTI sensors, adaptive guardbanding has been proposed
earlier to reduce the otherwise conservative guardbands due to
better than worst-case operating conditions [9]. However, these
post-silicon reliability techniques rely on reactive measures (e.g.,
error detection and error correction) with inevitable overhead. For
controllability, power-gating is deployed as an effective technique
to mitigate NBTI-induced aging [10],[11],[17]; power-gating
achieves intrinsic protection against NBTI by providing sleep
states that spare gates from stress that induce NBTI effects.

The lifetime of the chip is limited by the component that ages the
most. Since RFs are stressed continually during execution, they
exhibit steady growth in aging and could compromise the lifetime
of the chip. Furthermore, since GPGPUs have large RFs, it
becomes critical to devise strategies that heal aging of RFs.
Accordingly, this paper makes the following contributions:

 We observe that RFs are not uniformly utilized: unlike
uniformly-exercised GPGPU compute units, there is a large
kernel-dependent variation in RF utilization. Indeed our
studies on a set of fifteen general-purpose kernels show
significant kernel-to-kernel variations, with only a 46%
average RF utilization. This presents an opportunity to
exploit this imbalanced RF utilization for intelligent RF
allocation to extend RF (and therefore chip) lifetimes.

 We propose ARGO, an adaptive architectural technique for
GPGPU RF allocation that exploits imbalanced RF
utilization to ameliorate lifetime degradation by uniformly
distributing the stress throughout the RFs, without
performance penalty. Unlike traditional reactive approaches,
ARGO is a proactive technique that opportunistically
exploits the underutilized portion of RF by proper leveling,
accomplished through light-weight virtual sensing in
conjunction with deliberated power-gating of stressful banks.

 We apply ARGO on the AMD Evergreen GPGPU
architecture with general-purpose applications written in
OpenCL. Experimental results for fifteen general-purpose
kernels show the efficacy of ARGO through deliberated
power-gating without throughput penalty: ARGO improves
NBTI-induced Vth degradation by up to 43% (on average
27%), improves RFs static noise margin by up to 46% (on
average 30%), and estimates a 54% reduction in leakage
power.

The rest of the paper is organized as follows. Section 2 surveys
prior work in this specific topic area. Section 3 describes GPGPU
architecture. Section 4 covers an overview of NBTI degradation.
ARGO is presented in Section 5. In Section 6, we present
experimental results followed by conclusions in Section 7.

2. RELATED WORK
Various techniques have been proposed to slow down the aging of
processors, using microarchitectural, circuit-level and power
gating strategies [12]−[14]. At the microarchitectural level, Colt
[12] equalizes the duty cycle ratio and the usage frequency of the
functional units in a microprocessor. To mitigate aging effects, it
uses a number of measures such as complement mode execution,
cache set rotation, and operand identifier swapping schemes.
These measures are intrusive and fairly complicated: the
complement mode is applied to the whole data path, control path,
and storage hierarchy. Wearout-aware compiler-directed register
assignment techniques are proposed in [13] to distribute the
stress-induced wearout throughout the RF. Even though [13] does
not impose architectural overheads and modification, its compiler-
based approach is only limited to single-threaded applications.
Another aging-aware assignment of RF is also proposed to
balance the duty cycle ratio of the internal bits in RF [14];
however, with balanced signal probabilities, there is still an
inevitable static noise margin degradation [35],[36]. Kang et al.
[23] show two orders of magnitude increase in read failure
probability even with balanced signal probabilities. Further this
technique results in high power and area overhead for very large
RFs. Single-core techniques also exploit the underutilization of
RFs by putting unused registers into a low-power state or shut-off
state through inserting explicit instructions in the application’s
binary [41],[42]. These techniques not only require intrusive
modification of the Instruction Set Architecture (ISA) and
compiler, but also still result in uneven stress distribution across
the RFs. In contrast, ARGO specifically deploys an unobtrusive
aging management technique (that balances RF stress) for
GPGPUs executing multi-threaded applications.

Several recent efforts have focused on circuit-level measures to
mitigate process variability and aging. To combat the impact of
core-to-core frequency variations on GPGPU throughput, Lee et
al. [15] propose two techniques: run each core at its maximum
frequency independently; and disable the slowest cores. These
solutions impose non-negligible performance penalty: the first

directly diminishes the throughput of a cluster, and the second
imposes extra latency for synchronization of cores with different
frequencies. Furthermore, these techniques only consider the
effects of static process variation on computing cores, and do not
address aging of GPGPUs which is dynamic in nature. In
response to these deficiencies, Rahimi et al. [17] propose NBTI-
aware compiler-directed scheme that uniformly distributes the
stress of instructions with the aim of minimizing aging of GPGPU
without any performance penalty. Wang et al. [16] propose to
compensate process variation-induced SRAM mismatch by
exploiting BTI to partially offset variation that can be applied
during burn-in test. These techniques are complementary to
ARGO, and our aging-aware RF allocation policy with virtual
sensing can be superposed on top of these resilient circuit
techniques.

Recent approaches have also proposed NBTI-aware power-gating
[10],[11],[17] that exploits a circuit’s sleep state that is
intrinsically immune to aging. It has been used for inactive
portion of the cache to meet a given lifetime target [11]. An
orthogonal problem is aging of PMOS sleep-transistors which is
critical to lifetime of whole system. Calimera et al. [18] propose
static and dynamic strategies to compensate the aging effects on
the sleep transistors by means of body biasing, sleep-transistor
oversizing, and equivalent stress-time reduction. Although power-
gating can significantly compensate the Vth shift due to aging, the
benefit is sensitive to the fraction of time that a circuit spends in
sleep mode, and thus significant performance degradation must be
tolerated to achieve high power-gating factors. In contrast, ARGO
arranges GPGPU RF accesses to exploit power-gating without
any performance penalty. The objective of our work is to develop
an iso-throughput dynamic RF allocation policy for compute units
in GPGPUs that increases RF expected lifetime without changing
the flow of execution.

3. GPGPU ARCHITECTURES AND RFs
Extreme multithreading with fast thread switching in GPGPUs is
supported by a large register file that is much larger than the
cache holding the execution state of each thread. For example the
AMD Radeon HD 5870 GPU has 5 MB of on-chip RF while it
only has 160 KB of L1-cache. Similarly, the NVIDIA GTX480
GPU has a 2MB RF, while the shared L1-cache size is only 512
KB. The inversion in sizing between the GPU cache and register
file, compared to a traditional CPU memory hierarchy, is a critical
GPU microarchitectural feature that is needed for supporting
massively parallel execution of multiple threads [27].

Ultra-threaded Dispatcher

Compute
Unit
(CU0)

Compute
Unit

(CU19)

L1 L1

Crossbar

Global Memory Hierarchy

SIMD Fetch Unit

Stream
Core
(SC0)

Stream
Core

(SC15)

Local Data Storage

W
a

v
e

fr
o

n
t S

c
h

e
d

u
le

r

T

General-purpose Reg

X Y Z W

B
ran

ch

Processing Elements (PEs)

Compute Device Compute Unit (CU) Stream Core (SC)

Figure 1. Block diagram of the Radeon HD 5870 architecture

Here we focus on the Evergreen family of AMD GPUs (a.k.a.,
Radeon HD 5000 series), designed to target not only graphics
applications, but also general-purpose data-intensive applications.
The Radeon HD 5870 GPU consists of 20 compute units, a global
front-end ultra-thread dispatcher, and a crossbar to connect the

global memory to the L1-caches [19]. The block diagram of
architecture is shown in Figure 1.

Every compute unit has access to a global memory, implemented
as a hierarchy of private 8KB L1-caches, and 4 shared 512KB L2-
caches. Each compute unit contains a set of 16 stream cores that
have access to a shared 32KB local data storage, as well as a
256KB general-purpose RF. Within a compute unit, a shared
instruction fetch unit provides the same machine instruction for
all stream cores to execute in a single-instruction, multiple-data
(SIMD) fashion. Finally, each stream core is a five-way very long
instruction word (VLIW) processor capable of issuing up to five
floating point scalar operations from a single VLIW that consists
of five slots (slotX, slotY, slotZ, slotW, slotT). Because of this
VLIW structure, the general-purpose registers are actually 128-bit
wide and hold four 32-bit values, described as the X, Y, Z and W
elements.

Applications for HD 5870 are written in OpenCL, comprising a
host program and one or more device kernels executing on the
GPU device. In the OpenCL programming model, an instance of
the OpenCL kernel is called a work-item. Work-items are
arranged into work-groups for SIMD execution. The Evergreen
architecture supports work-groups containing between 1 to 256
work-items. Since the number of stream cores in a compute unit
(16) is lower than the maximum number of work-items in a work-
group, Evergreen supports the notion of a wavefront as the
quantum unit of scheduling. A wavefront is composed of 64
work-items virtually executing at the same time on the 16 stream
cores of a compute unit. Thus a work-group contains up to 4
wavefronts that share execution resources. To manage these
resources, a wavefront scheduler dynamically selects wavefronts
for execution.

3.1 Register File Utilization
Several factors limit the maximum number of concurrent OpenCL
threads that can execute on a compute unit of an AMD GPGPU
(called “compute unit occupancy”). Considering the limited
physical registers within a compute unit, if a work-item uses
many registers, it eventually prevents other wavefronts from
being executed concurrently. The number of registers per work-
item is exclusively decided at compile time. The compute unit
occupancy is also a function of the local memory capacity. When
the compute unit allocates a work-group that increases the usage
of the local memory, it reduces the total number of wavefronts
that can be allocated to the same compute unit. The local memory
used by a work-group could be determined at compile-time or
run-time [25]. The work-group size also determines the total
number of wavefronts that can be allocated. Note that the
allocation unit is an entire work-group (set of wavefronts). The
work-group size is exclusively decided at run-time by the
OpenCL host program [25].

Given a fixed die area, there is an upper bound for all the
aforementioned parameters that yields limited compute unit
occupancy. Applications are typically limited by registers, local
memory usage, or available state preservation capacity in the
architecture and as a result not all RF space is utilized for every
application. Table 1 shows the variation in utilization of RF space
for the Radeon HD 5870 GPGPU while executing different
applications listed in the first column. The second column, #of
Registers, shows the required number of registers for every
kernel, while #of Concurrent WF shows the maximum possible
number of interleaved wavefronts for every kernel. A HD 5870
compute unit cannot preserve state of more than 32 wavefronts at

a time. As shown, even for very large set of input parameters, on
average 54% of RF is not utilized during the execution of these
kernels.

Table 1. Register requirement of different applications

Kernel
#of

Registers
#of

Concurrent WFs
RF

Utilization
Reduction 4 32 50%
BinarySearch 2 32 25%
DwtHaar1D 4 32 50%
BitonicSort 4 8 13%
FastWalshTransform 4 32 50%
FloydWarshall 6 32 75%
BinomialOption 13 16 81%
DiscreteCosineTransform 7 8 22%
MatrixTranspose 3 32 38%
MatrixMultiplication 22 8 69%
SobelFilter 9 28 99%
URNG 6 8 19%
RadixSort 16 1 6%
Histogram 16 2 13%
BlackScholes 19 12 89%

This RF underutilization exists mainly for two categories of
kernels:

 Kernels with high demands of local memory: e.g.,
Histogram, RadixSort, BitonicSort.

 Kernels requiring few registers: e.g., Reduction,
BinarySearch, FastWalshTransform. This low demand of
registers is achieved by the effective usage of the temporary
registers resided in the processing elements.

We note that the kernels preserve these characteristics across a
standard set of OpenCL compiler options1. We utilize options for
math intrinsic, and options that control optimization of
performance and code size; however, #of Registers is changed
slightly by 13% across all kernels. These observations motivate us
to opportunistically exploit the RF underutilization during
runtime allocation to improve the aging reliability of GPGPUs.

4. DEVICE LEVEL NBTI MODELING
We now briefly describe the dynamic NBTI model to show how
our architectural approach can combat the NBTI effects. When
logic input ‘0’ is applied to the gate of a PMOS transistor (Vgs =
−Vdd), the dissociation of Si−H bonds along the silicon oxide
interface, causes the generation of interface traps, [1]−[4]. The
rate of generation of these traps is accelerated by temperature, and
the time of applied stress. The increase in voltage threshold due to
this phenomena, ΔVth-stress, could be modeled with:

nn
tthstressvstressth VtKV 22
0)((1)

where tstress is the time that PMOS is under stress; Kv has
dependence on electrical field, temperature (T), and Vdd; n is the
time exponent parameter, and for H2 diffusion is 1/6; and ΔVth-t0 is
the initial Vth variation of PMOS at time zero due to process
variation [5]. When logic input ‘1’ is applied to the gate (Vgs = 0),
the transistor turns off, and H atoms diffuse back, eliminating
some of the traps. This process is called the recovery phase that
can recover part of the Vth shift:

1 including, ‘-cl-single-precision-constant’, ‘-cl-opt-disable’, ‘-cl-
mad-enable’, ‘-O1’, ‘-O2’, ‘-O3’, etc.

)
)1(

2
1(cov21

cov
Ctt

Ctt
VV

ox

ree
stressthreth

 (2)

where trecov is the time under recovery; tox is the oxide thickness; te

is the effective oxide thickness; t is the total time; C has
temperature dependence; ζ1, ζ2, δ constants are defined in [5]. The
cycle-by-cycle Vth variation at clock cycle i-th is defined in (3),
and (4). Let ΔVth-stress,i and ΔVth-recov,i be changes in the Vth at the
end of i-th stress and recovery cycles, respectively:

nn
irethclkvistressth VTKV 22

1cov,)((3)

)
2

)1(2
1(21

cov

clkox

clke
istressthireth

CiTt

TCt
VV

 (4)

where i = t/Tclk; Tclk is the time period of one stress-recovery
cycle, duty cycle (α) is the ratio of the time spent in stress to the
period time [5]. [20] shows that ΔVth is a monotonically
increasing function of higher duty cycle (α), t, Vdd, T. The NBTI-
induced Vth shift is also a function of process-dependent
parameters, and relatively insensitive to the switching frequency
(f) when it is above 100Hz [21]. Stress distribution can tune duty
cycle (α) and hence decrease NBTI-induced effects.

4.1 NBTI-induced SNM Degradation
The RF memory cells of GPGPUs are typically built as 6T-
SRAM-type cells [27]. As a result of NBTI, the threshold voltage
of PMOS transistors inside a memory cell increases with time.
The amount of increase can be calculated using (3) and (4).
Because of the cell’s symmetric structure, regardless of what
value the cell holds, one of the PMOS transistors is always under
stress.

Figure 2. Graphical representation of the SNM for 6T SRAM

The stability of SRAM cells is measured as static noise margin
(SNM), and is defined as the minimum dc noise voltage required
to change the state of SRAM cell [22]. Typically READ SNM is
considered as the factor determining the life-time of the SRAM-
type memories which is measured when the word line is on and
the cell is being read [23]. SNM can be computed as the side
length of a maximum square enclosed between the two static
characteristics curves of a SRAM cells (Figure 2). During the
time, either of PMOS transistors of the back-to-back inverters is
becoming weaker due to the Vth shift. Both imbalanced Vth shift
and the Vth shift itself contribute to SNM degradation. Even with
balanced signal probabilities, 12 to 16 percent of degradation in
the SNM is unavoidable after 5 years [35],[36], thereby increasing
reliability failures. This necessitates the proper stress leveling of
the SRAM-type cells.

BTI could be exploited during burn-in to compensate initial Vth
mismatch due to the manufacturing variations [16],[45]. Also,
write-margin may improve with BTI as well [44]. This work

assumes that BTI worsens the SRAM VCCmin (i.e., it is dominated
by nominal SNM as opposed to variation induced SNM or write
margin).

5. AGING-AWARE REGISTER FILE
MANAGEMENT
The key idea of ARGO, our aging-aware RF allocation technique,
is to uniformly distribute the stress across the entire physical RF
by exploiting the imbalanced utilization. Thus, it needs a means
for aging instrumentation. Based on this instrumentation, we can
have an estimate of aging while we are allocating (i.e., stressing)
various portions of the RF. ARGO requires minor architectural
modifications to keep track of the RF allocation (described in
Section 5.4). We now describe our aging-aware RF allocation
technique.

5.1 Virtual Sensing
ARGO’s RF allocation technique requires continual assessment of
the impact of NBTI-induced aging on RF. Traditional post-silicon
reactive dynamic NBTI management techniques typically employ
NBTI sensors [28],[29], that provide ΔVth measurement with 3σ
accuracy of 1.23 mV for a wide range of temperatures. However,
these sensors incur area as well as power overheads. Thus, our
technique relies on a concept of virtual sensing where our virtual
sensing capability estimates the aging profile of different portions
of the RF in a relative manner. It is worth noting that our
lightweight sensing ignores manufacturing variability within
register file that could be compensated using the proposed
technique in [16] during burn-in.

When an OpenCL kernel is launched on the GPGPU, the ultra-
threaded dispatcher, as the work-group scheduler, assigns work-
groups to any of the 20 available compute units. The ultra-
threaded dispatcher does not allocate simultaneous execution of
multiple kernels to a compute unit. Consequently, all of the
interleaved wavefronts on a compute unit, execute the same type
of kernels with different data sets. Figure 3 shows the total
execution cycles per work-group for 20 work-groups of three
benchmarks. Our observation shows that variation in the
execution time of different work-groups of a kernel is less than
8% for a wide range of kernels listed in Table 1.

1

10

100

1000

10000

100000

1000000

10000000

C
yc
le
s
p
er
 W

o
rk
gr
o
u
p

DH1D SF BO

3σ/μ = 1.6%

3σ/μ = 0.15%

3σ/μ = 5.1%

Figure 3. Cycles per work-group

Two architectural features justify this observation: (i) the round
robin wavefront scheduler [25], and (ii) the strategy that GPGPUs
follow for handling thread divergence2. As a result, every work-

2 It consists in bringing all work-items together through all
possible execution paths, while keeping active only those work-
items whose conditional execution matches the currently
fetched instruction flow.

group allocates a portion of the RF for a fixed amount of time
during the execution of a kernel. Because all the cells inside the
allocated portion of RF are holding the state of work-groups, they
are being aged. The rate of this aging across different allocated
portions of RF is similar due to the almost same amount of stress
time. This provides a simple virtual sensing metric: at the
granularity of work-groups, various RF portions are aged at the
same rate. Our allocation policy will be defined based on this
observation later in Section 5.3.

5.2 RF Organization
Figure 4 shows the block diagram of the large RF inside one
compute unit along with the RF allocator and the additional
power gaters. Note that the baseline RF does not include power
gaters.

16 bytes

X Y Z W

2
56

X Y Z W

16

...

P
G
0

P
G
1

PG
2

RF Allocator

CU i

Ultra‐threaded
Dispatcher

Wavefront
Scheduler

P
G
25
5

P
G
2
5
6

...

1

Figure 4. Sliced RF organization

The RF is logically partitioned into 16 slices where each slice
serves one stream core inside a compute unit. For higher
throughput, GPGPUs normally have register buffers attached to
their stream cores. This enables a wavefront to read all of its
registers ahead of time, while another wavefront is being
executed, and then starts its execution. There are 64 work-items
inside a wavefront, with groups of four executed on the same
stream core in a time multiplexed fashion. Every slice of the RF is
horizontally banked into 256 banks, with each 1-KB on a separate
power domain. Each bank can be independently power gated
providing sleep states that spare its cells from stress.

5.3 Allocation Policy
Typically, the RF is allocated at the granularity of an entire work-
group. As Figure 4 shows, the ultra-threaded dispatcher maps a
work-group to an available compute unit. Meanwhile, it asks the
RF allocator for a portion of the RF pool. Then, the work-group
data along with the head of allocated space will be inserted into
the wavefront scheduler’s queue. From then on, each work-item
inside the new work-group has its own share of the RF. Given the
head of RF space for the work-group and index of a work-item in
that work-group, the logical to physical register mapping will be
performed during execution time. However, the manner in which
the RF allocator works greatly impacts on durability of RF banks.
We describe the existing aging-oblivious allocator, followed by
our ARGO scheme.

5.3.1 Aging-oblivious Allocation Scheme
Figure 5 outlines the existing aging-oblivious RF allocator that,
allocates the first free portion of the RF for the incoming work-
group without considering the aging profile of each RF bank.

The RF allocator receives two commands: Allocate, which comes
from the ultra-threaded dispatcher, and Deallocate, which is
driven by the wavefront scheduler. The number of registers per
kernel (RegPerKernel), which has been determined offline by the
compiler as a metadata, is given to the RF allocator by the ultra-
threaded dispatcher. In addition, the RF allocator also needs to
know the number of wavefronts inside the work-group
(WFPerWG) [Line 1]. The RF allocator returns as output the head
of the allocated RF portion via AllocatedRFHead [Line 2]. To
keep track of allocations, the RF allocator saves the head of
allocated portions in HeadForWGs [Line 3] and status of each
portion in PortionStatus [Line 4]. Because the maximum number
of work-groups per compute unit, Max#WGperCU, is limited to 8
on HD 5870 (it is a constant number for all GPGPUs in the
Evergreen family), and also work-groups are from the same type,
the RF allocator in this scheme can statically determine 8 possible
portions and save their head indexes in HeadForWGs [Lines 5-7].

00: AGING-OBLIVIOUS-RF-ALLOCATOR ()
01: INPUTS: Allocate, Deallocate, HeadDealloc, RegPerKernel, WFPerWG
02: OUTPUTS: AllocatedRFHead

03: VARIABLE: HeadForWGs[1…Max#WGperCU] /* Holds WG heads */

04: VARIABLE: PortionStatus [1…Max#WGperCU] /* Initially all portions are free */

05: LOOP N: 1…Max#WGperCU
06: HeadForWGs = RegPerKernel × WFPerWG × (N-1);
07: ENDLOOP

08: IF (Allocate)
09: AllocatedPortion = FindFirstFreeRFPortion();
10: AllocatedRFHead = HeadForWGs [AllocatedPortion];
11: PortionStatus [AllocatedPortion] = 1;
12: ENDIF

13: IF (Deallocate)
14: DeallocatedPortion = FindPortionIndex(HeadDealloc);
15: PortionStatus [DeallocatedPortion] = 0;
16: ENDIF

Figure 5. Aging-oblivious RF allocation procedure

While copying the work-group data to the wavefront queue, the
ultra-threaded dispatcher also requests a portion of the RF by
issuing Allocate for the RF allocator. The aging-oblivious
allocator responds to this command [Lines 8-12] by examining
PortionStatus for the first-indexed free portion [Line 9]. The head
of that portion will be returned as the head of the allocated space
[Line 10]. Then, that portion will be marked as occupied [Line
11]. Once the allocation is completed, the wavefront scheduler
marks the work-group as a ready work-group and schedules it for
execution. Finally, when the work-group finishes its execution,
the wavefront scheduler asks the RF allocator for deallocating the
work-group’s RF portion [Lines 13-16].

For a large category of applications that utilize only part of RF (as
discussed in Section 3.1), the simple aging-oblivious allocator
results in more accesses to lower-indexed portions of the RF
rather than higher-indexed portions.

5.3.2 ARGO Scheme
In contrast to the aging-oblivious scheme, ARGO responds to the
allocation requests by greedily choosing portions of RF with
lower aging based on the virtual sensing as described in Section
5.1.

As shown in Figure 6, ARGO requires the same architectural
interface [Lines 1-2] as the aging-oblivious allocator. However, in
contrast to the aging-oblivious scheme, ARGO always returns the
least recently used portion for allocation [Line 5], instead of
returning the first free portion of the RF. ARGO assumes all the
manufacturing variation induced SRAM mismatches are
compensated during burn-in using the technique in [16].
Therefore, to simplify tracking of the least recently used RF
region without requiring the aging sensors and searching the
sensor data, we rotate the allocated space at a constant rate (once
per work-group). Because of this constant rate rotation, the next
candidate is always the portion right after recently allocated space
of RF [Line 6]. Once the request is received, ARGO wakes up the
newly allocated portion [Line 7]. When all of the wavefronts of a
work-group have finished their execution, the wavefront
scheduler informs the RF allocator by issuing the Deallocate
command and providing the head of allocated RF space for that
specific work-group via HeadDealloc. The RF allocator then
shuts off the corresponding memory blocks through PG signals
and puts them into recovery mode [Lines 9-11].

00: ARGO ()
01: INPUTS: Allocate, Deallocate, HeadDealloc, RegPerKernel, WFPerWG
02: OUTPUTS: AllocatedRFHead, PG[1…#ofBanks]

03: VARIABLE: NextAllocCandidate /* Initially all blocks are power-gated */

04: IF (Allocate)
05: AllocatedRFHead = NextAllocCandidate;
06: NextAllocCandidate = NextAllocCandidate + RegPerKernel × WFPerWG;
07: Wake-up register space [AllocatedRFHead…NextAllocCandidate - 1];
08: ENDIF

09: IF (Deallocate)
10: Turn-off register space [HeadDealloc…HeadDealloc + (RegPerKernel ×

WFPerWG) -1];
11: ENDIF

Figure 6. ARGO procedure

5.4 ARGO Overhead
We now discuss the overheads incurred for the hardware
implementation of ARGO. To quantify ARGO’s performance,
area, and power overheads, we implemented both ARGO and the
baseline aging-oblivious allocators using Verilog RTL. Then both
allocator modules were synthesized using Synopsys Design
Compiler with TSMC 45-nm general purpose technology.

Performance Overhead: ARGO does not impose any
performance penalty thanks to its careful single-cycle
implementation. ARGO and the aging-oblivious allocator meet
the target frequency of 800MHz at the worst-case corner.
Regarding the wake-up latency from the sleep state, recent efforts
[32],[33],[43] have shown the latency is less than ten cycles for a
power-gated cell. Due to availability of other ready wavefronts in
the queue, these ten cycles are effectively hidden. Note that these
ten cycles are not in the critical access path; the allocation
portions are rotated at the mapping stage and once a work-group
is mapped to a compute unit, the logical to physical mapping does
not change for the whole execution time of that work-group.

Area Overhead: Hardware implementation of the ARGO module
incurs a relative area overhead of 2.1× compared to the aging-
oblivious module. The other area overhead is due to addition of
the sleep transistors which is < 1% based on an analysis with an
industrial memory compiler [40]. Note that we need an address
translator for each compute unit. This address translator takes
head of allocated space for work-group, index of the current
wavefront, and the register number and does the job of logical to

physical mapping. However this address translator is not an
overhead of our approach: it is also required in the aging-
oblivious scheme for the logical to physical address mapping [37].
To hide this latency, two separate wavefronts execute in an
interleaved fashion: the first wavefront accesses the RF, while the
other executes; and then they switch.

Power Overhead: ARGO consumes 0.92mW at the operating
temperature of 125°C with 800MHz clock frequency. This incurs
a power overhead of 74% in comparison with the aging-oblivious
module (0.56mW). The power overhead of power-gater transistors
is negligible. However, these power overheads could be
efficiently compensated by the side benefit of power savings in
ARGO as presented in Section 6.2.6.

6. EXPERIMENTAL RESULTS
Our goal is to show to what extent ARGO’s opportunistic actions
can improve reliability and extend the lifetime of the RF for a
wide range of applications and different operational conditions.

6.1 Experimental Setup
We have enhanced Multi2Sim [25][26], a cycle-accurate
simulation framework − a CPU-GPU model for heterogeneous
computing targeting AMD Evergreen ISA – with the logical to
physical mapping of register accesses in order to collect statistical
data of physical RF accesses. We have also modified the
framework to support the microarchitectural modeling proposed
in this work. The kernels of AMD APP SDK 2.5 [24], with the
large parameters listed in Table 2, are executed on the simulator.
To be conservative, we choose the parameters so as to put the
highest possible load on compute devices of HD 5870 while
executing the corresponding benchmark.

For Vth and SNM measurements, we use Predictive Technology
Model (PTM) 65nm, and 45nm Bulk transistor models [30] and
the NBTI modeling discussed in Section 4. The SNM is
numerically extracted by using the graphical method described in
[22]. Using Synopsys HSPICE, the characteristics of the two
inverters are plotted into a two coordinate systems where the axes
are rotated of 45º relative to each other. The maximum and
minimum values of the resulting curve represent the side length of
the maximum and minimum squares nested between the two static
characteristics, namely the SNM values. The SNM with the
minimum absolute value represents the actual SNM of the SRAM
cell.

Table 2. AMD APP SDK 2.5 kernels with selected parameters
Kernel Parameter

Reduction Rdn N=4000000
BinarySearch BSe N=50000000
DwtHaar1D DH1D N=500000
BitonicSort BSo N=10000
FastWalshTransform FWT N=100000
FloydWarshall FW N=1000
BinomialOption BO N=600
DiscreteCosineTransform DCT X=600, Y=600
MatrixTranspose MT X=800, Y=800
MatrixMultiplication MM X=1000, Y=1000, Z=1000
SobelFilter SF default input file
URNG URNG default input file
RadixSort RS N=600000
Histogram HS X=2500, Y=2500
BlackScholes BSc N=3000

6.2 Simulation Results

6.2.1 Improvement in ΔVth
Figure 7 shows the improvements in Vth drift with regard to the
aging-oblivious scheme after five years of execution. We observe
worst-case Vth degradation of 22% (19%) for 45nm (65nm)
technology, when the aging-oblivious allocator is used. Our
approach can improve shift in Vth up to 43% for 65nm technology
and up to 46% for 45nm technology. The average improvement is
26% (27%) for 45nm (65nm) technology. There is no opportunity
for the SobelFilter benchmark since the limiting parameter in the
occupancy calculator for this benchmark is the number of
available registers. Therefore almost all the RF space (98.88%) is
being used when the kernel puts the highest possible load on the
HD 5870. Because of that, our approach is not effective in this
case, although it does not incur any performance overhead. From
now on, we consider SobelFilter as the representative of baseline
for comparison purpose.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Im
p
ro
ve
m
e
n
t
in
 in

 Δ
V
th

45nm

65nm

Figure 7. ΔVth improvement after 5 years of execution

6.2.2 Improvement in SNM Degradation
Figure 8 shows the SNM improvements after five years of
execution. As the comparison of Figure 7 and Figure 8 suggests,
improvements in SNM and Vth show the same trend. Indeed, this
has been analytically proved in [23] that SNM sensitivity to Vth
degradation (dSNM/dVth) retains near a constant value throughout
the whole lifetime.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Rdn BSe DH1D BSo FWT FW BO DCT MT MM SF URNG RS HS BSc

Im
p
ro
ve
m
e
n
t
in
 S
N
M
 D
e
gr
ad

at
io
n

45nm

65nm

Figure 8. Read SNM improvement after 5 years of execution

6.2.3 Trend of SNM Degradation
The lifetime of an SRAM is typically defined as the time after
which the SNM of a cell has decreased by 20% [38]. Figure 9
shows the trend of SNM degradation over the course of five
years. The baseline (SF) will fail after 3.2 years in 45nm
technology. Similar aging rate has been reported in [38]. ARGO
facilitates all other benchmarks to reliably execute for at least 5
years. ARGO can improve absolute value of SNM up to 9.8%.
This is significant compared to the 20% SNM guardband for
NBTI that is needed if no adaptation is done.

Figure 9. Trend of SNM degradation (45nm)

6.2.4 Various Operational Conditions
To quantify achievable gain of employing ARGO in different
operational conditions, we have conducted experiments where the
cell voltage and temperature are varied. Figure 10 shows the
percentage of improvement in SNM degradation in four different
operational conditions, summarized below:

 Keeping the temperature constant, achievable gain is the
same while varying the cell voltage from 0.9 to 1.

 Changing the operating temperature from 25°C to 110°C, the
achievable gain will approximately double.

 The achievable gain is consistent across a wide range of
timing scales thanks to the adaptiveness of ARGO.

Figure 10. Achievable SNM improvement in various

conditions for BSe benchmark

6.2.5 Recovery Time vs. Bank Size
If the overhead of power gating logic is of concern, we can
increase the bank size, thereby reducing the power gater
addressing logic power and area overhead. The trade-off is
illustrated in Table 3 by showing worst case recovery time (i.e.,
the time that bank remain power gated) for different bank sizes.
Remarkably, in most cases we can achieve the same recovery
percentage without any performance overhead with regard to case
of 1K banks. The same recovery percentage comes from the well-
organized RF; each row of RF corresponds to one register for
whole work-items inside a wavefront. In many cases, wavefronts
per work-group × number of required registers is already a
multiple of bank size. Therefore there is no difference between
the power-gating at that granularity or at a lower granularity. The
results suggest to bank up the RF at the granularity of 2K or 4K
where the recovery percentage is still comparable with case of 1K
banks.

Table 3. Worst case recovery time vs. bank size

Kernel
Recovery Time (%)

1K 2K 4K 8K
Rdn 48% 48% 48% 48%
BSe 63% 63% 63% 63%

DH1D 44% 44% 44% 44%
BSo 87% 87% 87% 87%
FWT 53% 53% 53% 53%
FW 29% 29% 29% 29%
BO 13% 13% 13% 8%

DCT 77% 73% 73% 73%
MT 56% 56% 56% 42%
MM 21% 21% 14% 14%
SF 0% 0% 0% *

URNG 81% 81% 75% 75%
RS 86% 86% 86% 86%
HS 78% 78% 78% 78%
BSc 9% 9% 9% 4%

* Bank size=8K cannot be selected since it
results in performance degradation

6.2.6 RF Leakage Power Reduction Estimation
At a first order of approximation, SRAM leakage power is
proportional to its size [31]. Figure 11 shows the achievable
reduction in leakage power of RF for different benchmarks: an
average of 54% and up to 94%. This power saving compensates
the power overheads, except for the SF benchmark.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Le
ak
ag
e
 P
o
w
e
r
R
ed

u
ct
io
n

Figure 11. Estimated reduction in register file leakage power

6.3 Discussion on Wakeup Latency
When a RF portion is coming out of the sleep mode, the switch
cells are turned on to supply power to the cells. The simultaneous
switching current of charging the design to a full power-on state
might be too high to tolerate in some cases. A practical method to
control the wakeup rush current is to implement the switch cells
in a daisy chain where the switch cells are driven by a buffer
chain and turned on gradually in the delayed sequence [34]. Our
analysis on a commercial 45nm memory compiler shows that it
could be up to 100 cycles depending of the rush current that can
be tolerated. Our technique is still applicable in that scenario. For
that purpose we modify RF allocator in a manner that performs
the rotation in intervals of 10’s of seconds (which can completely
amortize 100 cycles wakeup latency) instead of rotating the
allocations once per work-group. Since in long term the fraction
of time that cells are in recovery mode does not change, this leads
to same Vth improvement. Also it simplifies RF allocator and
power gating logic, therefore reduces their area and power
overheads. Instead we need a watch-dog timer per each compute
unit to count for intervals that incur area and power overheads.

7. CONCLUSION AND FUTURE WORK
We proposed ARGO, an architectural technique suitable for
GPGPUs parallel applications, to uniformly distribute the stress
within RFs, with the aim of improving the NBTI-induced

degradation. ARGO not only improves the RF’s static noise
margin up to 46% (on average 30%), but also incurs no
throughput penalty over fifteen general-purpose kernels
execution. This is achieved by leveraging the underutilized
portion of RFs, and deliberated power-gating of stressful banks.
Moreover, leakage power is reduced by 54% thanks to power-
gating of unused banks.

Ongoing work is focused on generalizing the proposed approach
on other memory subsystems, and exposing the aging
characterization to OpenCL runtime software for obtaining a
favorable tradeoff between performance and lifetime.

8. ACKNOWLEDGMENTS
This research was partially supported by NSF Variability
Expedition Grant Numbers CCF-1029783 and CCF-1029030.

9. REFERENCES
[1] G. Chen, M. F. Li, C. H. Ang, J. Z. Zheng, and D. L.

Kwong, “Dynamic NBTI of p-MOS Transistors and its
Impact on MOSFET Scaling,” IEEE Electron Device
Letters, vol. 23, no. 12, pp. 734-736, December 2002.

[2] G. Chen, K. Y. Chuah, M. F. Li, D. S. Chan, C. H. Ang, J.
Z. Zheng, Y. Jin, and D. L. Kwong, “Dynamic NBTI of
PMOS Transistors and its Impact on Device Lifetime,”
Proc. IEEE IRPS, pp. 196-202, 2003.

[3] K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L.
Ji, S. R. Nassif, E. J. Nowak, D. J. Pearson, and N. J.
Rohrer, “High-performance CMOS Variability in the 65-
nm Regime and Beyond,” IBM Journal of Research and
Development, vol. 50, no. 4.5, pp.433-449, July 2006.

[4] S. Chakravarthi, A.T. Krishnan, V. Reddy, C.F. Machala,
and S. Krishnan, “A Comprehensive Framework for
Predictive Modeling of Negative Bias Temperature
Instability,” Proc. IEEE IRPS, pp. 273-282, 2004.

[5] W. Wang, S. Yang, S. Bhardwaj, S. Vrudhula, F. Liu, and
Y. Cao, “The Impact of NBTI Effect on Combinational
Circuit: Modeling, Simulation, and Analysis,” IEEE Trans.
on VLSI Systems, vol. 18, no. 2, pp. 173-183, February
2010.

[6] S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao, and S.
Vrudhula, “Predictive Modeling of the NBTI Effect for
Reliable Design,” Proc. IEEE CICC, pp. 189-192, 2006.

[7] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “An
Analytical Model for Negative Bias Temperature
Instability,” Proc. IEEE/ACM ICCAD, pp. 493-496, 2006.

[8] M. Gebhart, S. W. Keckler, B. Khailany, R. Krashinsky,
and W. J. Dally, “Unifying Primary Cache, Scratch, and
Register File Memories in a Throughput Processor,” Proc.
IEEE/ACM MICRO, pp. 96-106, 2012.

[9] A. Rahimi, L. Benini, and R. K. Gupta, “Hierarchically
Focused Guardbanding: An Adaptive Approach to Mitigate
PVT Variations and Aging,” Proc. IEEE/ACM DATE, pp.
1695-1700, 2013.

[10] A. Calimera, E. Macii, and M. Poncino, “NBTI-aware
Power Gating for Concurrent Leakage and Aging
Optimization,” Proc. IEEE/ACM ISLPED, pp. 127-132,
2009.

[11] M. Loghi, H. Mahmood, A. Calimera, M. Poncino, and E.
Macii, “Energy-optimal Caches with Guaranteed Lifetime,”
Proc. IEEE/ACM ISLPED, pp. 141-146, 2012.

[12] E. Gunadi, E. Gunadi, A. A. Sinkar, N. S. Kim, and M. H.
Lipasti, “Combating Aging with the Colt Duty Cycle
Equalizer,” Proc. IEEE/ACM MICRO, pp. 103-114, 2010.

[13] F. Ahmed, M. M. Sabry, D. Atienza, and L. Milor,
“Wearout-aware Compiler-directed Register Assignment
for Embedded Systems,” Proc. IEEE ISQED, pp.33-40,
2012.

[14] S. Wang, T. Jin, C. Zheng, and G. Duan, “Low Power
Aging-Aware Register File Design by Duty Cycle
Balancing,” Proc. IEEE/ACM DATE, pp. 546-549, 2012.

[15] J. Lee, P. P. Ajgaonkar, and N. S. Kim, “Analyzing
Throughput of GPGPUs Exploiting Within-die Core-to-core
Frequency Variation,” Proc. IEEE ISPASS, pp.237-246,
2011.

[16] J. Wang, S. Nalam, Z. Qi, R. W. Mann, M. Stan, and B. H.
Calhoun, “Improving SRAM Vmin and Yield by Using
Variation-aware BTI Stress,” Proc. IEEE CICC, pp.1-4,
2010.

[17] A. Rahimi, L. Benini, and R. K. Gupta, “Aging-aware
Compiler-Directed VLIW Assignment for GPGPU
Architectures,” Proc. IEEE/ACM DAC, 2013.

[18] A. Calimera, E. Macii, and M. Poncino, “Design
Techniques for NBTI-Tolerant Power-Gating
Architectures,” IEEE Trans. on Circuits and Systems II,
vol.59, no.4, pp.249-253, April 2012.

[19] AMD Corporation. ATI Radeon HD 5870 Graphics

[20] W. Wang, Z. Wei, S. Yang, and Y. Cao, “An Efficient
Method to Identify Critical Gates under Circuit Aging,”
Proc. IEEE/ACM ICCAD, pp.735-740, 2007.

[21] S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao, and S.
Vrudhula, “Predictive Modeling of the NBTI Effect for
Reliable Design,” Proc. IEEE CICC, pp. 189-192, 2006.

[22] E. Seevinck, F. List, and J. Lohstroh, “Static-noise Margin
Analysis of MOS SRAM Cells,” IEEE J. Solid-State
Circuits, vol. SSC-22, no. 5, pp. 748–754, October 1987.

[23] K. Kang, H. Kufluoglu, K. Roy, and M. A. Alam, “Impact
of Negative-Bias Temperature Instability in Nanoscale
SRAM Array: Modeling and Analysis,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 26, no. 10, pp. 1770- 1781, 2007.

[24] AMD Accelerated Parallel Processing (APP) SDK 2.5.
Available: http://developer.amd.com/gpu/AMDAPPSDK

[25] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. R. Kaeli,
“Multi2Sim: a Simulation Framework for CPU-GPU
Computing,” Proc. ACM PACT, pp. 335-344, 2012.

[26] Multi2Sim [Online]. Available: http://www.multi2sim.org

[27] M. Abdel-Majeed and M. Annavaram, “Warped Register
File: A Power Efficient Register File for GPGPUs,” Proc.
IEEE HPCA, 2013.

[28] P. Singh, E. Karl, D. Blaauw, and D. Sylvester, “Compact
Degradation Sensors for Monitoring NBTI and Oxide
Degradation,” IEEE Trans. on VLSI Systems, vol. 20, no. 9,
pp. 1645-1655, September 2011.

[29] P. Singh, E. Karl, D. Sylvester, and D. Blaauw, “Dynamic
NBTI Management Using a 45 nm Multi-Degradation
Sensor,” IEEE Trans. on Circuits and Systems, vol. 58, no.
9, pp. 2026-2037, September 2011.

[30] PTM, “Predictive Technology Model,” in Nanoscale
Integration and Modeling (NIMO) Group at ASU,
Available: http://ptm.asu.edu

[31] S. Kaxiras, S. Kaxiras, Z. Hu, and M. Martonosi, “Cache
Decay: Exploiting Generational Behavior to Reduce Cache
Leakage Power,” Proc. IEEE/ACM ISCA, pp. 240-251,
2001.

[32] Y. Wang, S. Roy, and N. Ranganathan, “Run-time Power-
gating in Caches of GPUs for Leakage Energy Savings,”
Proc. IEEE/ACM DATE, pp. 300-303, 2012.

[33] A. Kahng, S. Kang, T. Rosing, and R. Strong, “TAP:
Token-based Adaptive Power Gating,” Proc. IEEE/ACM
ISLPED, pp. 203-208, 2012.

[34] K. Shi and J. Li, “A Wakeup Rush Current and Charge-up
Time Analysis Method for Programmable Power-gating
Designs,” Proc. IEEE SoCC, pp. 163-165, 2006.

[35] A. Calimera, E. Macii, and M. Poncino, “Analysis of
NBTI-induced SNM Degradation in Power-gated SRAM
Cells,” Proc. IEEE ISCAS, pp. 785-788, 2010.

[36] N. Gong, S. Jiang, A. Challapalli, M. Panesar, and R.
Sridhar, “Variation-and-aging Aware Low Power
Embedded SRAM for Multimedia Applications,” Proc.
IEEE SoCC, pp. 21-26, 2012.

[37] P. Xiang, Y. Yang, M. Mantor, N. Rubin, and H.
Zhou, “Many-Thread Aware Instruction-level Parallelism:
Architecting Shader Cores for GPU Computing,” Proc.
ACM PACT, pp. 449-450, 2012.

[38] A. Calimera, M. Loghi, E. Macii, and M. Poncino,
“Partitioned Cache Architectures for Reduced NBTI-
induced Aging,” Proc. IEEE/ACM DATE, pp. 938-943,
2011.

[39] H. Yang, S.Yang, W. Hwang, and C. Chuang, “Impacts of
NBTI/PBTI on Timing Control Circuits and Degradation
Tolerant Design in Nanoscale CMOS SRAM,” IEEE Trans.
on Circuits and Systems, vol. 58, no. 6, pp. 1239-1251, June
2011.

[40] ARM Memory IP: www.arm.com

[41] H. Tabkhi and G. Schirner, “AFReP: Application-guided
Function-level Register file Power-gating for Embedded
Processors,” Proc. IEEE/ACM ICCAD, pp. 302-308, 2012.

[42] J. L. Ayala, A. Veidenbaum, and M. López-Vallejo,
“Power-aware Compilation for Register File Energy
Reduction,” Springer International Journal of Parallel
Programming, vol. 31, no. 6, pp. 449-465, December 2003.

[43] E. Pakbaznia and M. Pedram, “Design of a Tri-modal
Multi-threshold CMOS Switch with Application to Data
Retentive Power Gating,” IEEE Trans. on VLSI Systems,
vol. 20, no. 2, pp. 380-385, February 2012.

[44] J.C. Lin, A. Oates, H. Tseng, Y. Liao, T. Chung, K. Huang,
P. Tong, S. Yau, and Y. Wang, “Prediction and Control of
NBTI – Induced SRAM Vccmin Drift,” Proc. IEEE IEDM,
pp. 1-4, 2006.

[45] C. T. Boon, V. Balakrishnan, Y. Cao, and P. Gupta,
“Extended Burn-in for Vth Variation Reduction Using
NBTI,” Proc. IEEE DFM&Y, pp. 25-28, 2009.

