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ABSTRACT 
State-of-the-art general-purpose graphic processing units 
(GPGPUs) implemented in nanoscale CMOS technologies offer 
very high computational throughput for highly-parallel 
applications using hundreds of integrated on-chip resources. 
These resources are stressed during application execution, 
subjecting them to degradation mechanisms such as negative bias 
temperature instability (NBTI) that adversely affect their 
reliability. To support highly parallel execution, GPGPUs contain 
large register files (RFs) that are among the most highly stressed 
GPGPU components; however we observe heavy underutilization 
of RFs (on average only 46%) for typical general-purpose kernels.  
We present ARGO, an Aging-awaRe GPGPU RF allOcator that 
opportunistically exploits this RF underutilization by distributing 
the stress throughout RF.  ARGO achieves proper leveling of RF 
banks through deliberated power-gating of stressful banks. We 
demonstrate our technique on the AMD Evergreen GPGPU 
architecture and show that ARGO improves the NBTI-induced 
threshold voltage degradation by up to 43% (on average 27%), 
that yields improving RFs static noise margin up to 46% (on 
average 30%). Furthermore, we estimate a simultaneous reduction 
in leakage power of 54% by providing sleep states for unused 
banks. 

Categories and Subject Descriptors 
C.1.2 [Multiple Data Stream Architectures (Multiprocessors)]: 
Single-instruction-stream, multiple-data-stream processors 
(SIMD) 

General Terms 
Reliability, Design, Performance. 

Keywords 
NBTI, GPGPU, Aging, Register File, Power-gating. 

1. INTRODUCTION 
General-purpose graphic processing units (GPGPUs) have 
become popular platforms for executing applications that exhibit 
a high degree of thread-level parallelism. Nanoscale CMOS 
technologies permit fabrication of GPGPUs with hundreds of 
integrated on-chip resources and large RFs, allowing very high 

computational throughput for a wide range of highly parallel 
applications. High performance GPGPU execution greatly 
stresses on-chip resources, compromising system reliability due to 
aging degradation mechanisms such as negative bias temperature 
instability (NBTI) [1]. 

NBTI manifests itself via an increase in the threshold voltage of 
PMOS transistor when a logic ‘0’ at the gate is applied. This Vth 
drift strongly depends on the amount of time during which a 
PMOS transistor is stressed. On the other hand, when the stress 
condition is relaxed, the aging can be recovered partially, and the 
Vth decreases toward the nominal value [5],[6]. In SRAMs, the 
value dependence of NBTI is weaker than in logic circuits: given 
the symmetric structure of a 6T-SRAM cell, one PMOS is always 
under stress as long as it stores any value so the SRAM cell 
structure degrades continually [39],[23]. This makes SRAM RFs 
the most likely candidates for stress and hence reliability failures. 
On the other hand, to support massive parallelism, GPGPUs 
feature very large RFs to hold the state of each thread making the 
RF reliability a major concern. But many GPGPU applications 
exhibit imbalanced utilization of these very large RFs. 

To ensure necessary observability of the non-uniform aging 
degradation, traditionally compact in situ NBTI and oxide 
degradation sensors have been proposed [28]. These sensors 
enable high-volume data collection to guide dynamic NBTI 
management schemes and warn of impending device failure. 
Using NBTI sensors, adaptive guardbanding has been proposed 
earlier to reduce the otherwise conservative guardbands due to 
better than worst-case operating conditions [9]. However, these 
post-silicon reliability techniques rely on reactive measures (e.g., 
error detection and error correction) with inevitable overhead. For 
controllability, power-gating is deployed as an effective technique 
to mitigate NBTI-induced aging [10],[11],[17]; power-gating 
achieves intrinsic protection against NBTI by providing sleep 
states that spare gates from stress that induce NBTI effects.  

The lifetime of the chip is limited by the component that ages the 
most. Since RFs are stressed continually during execution, they 
exhibit steady growth in aging and could compromise the lifetime 
of the chip. Furthermore, since GPGPUs have large RFs, it 
becomes critical to devise strategies that heal aging of RFs. 
Accordingly, this paper makes the following contributions: 

 We observe that RFs are not uniformly utilized: unlike 
uniformly-exercised GPGPU compute units, there is a large 
kernel-dependent variation in RF utilization. Indeed our 
studies on a set of fifteen general-purpose kernels show 
significant kernel-to-kernel variations, with only a 46% 
average RF utilization. This presents an opportunity to 
exploit this imbalanced RF utilization for intelligent RF 
allocation to extend RF (and therefore chip) lifetimes. 

 

 



 We propose ARGO, an adaptive architectural technique for 
GPGPU RF allocation that exploits imbalanced RF 
utilization to ameliorate lifetime degradation by uniformly 
distributing the stress throughout the RFs, without 
performance penalty. Unlike traditional reactive approaches, 
ARGO is a proactive technique that opportunistically 
exploits the underutilized portion of RF by proper leveling, 
accomplished through light-weight virtual sensing in 
conjunction with deliberated power-gating of stressful banks.  

 We apply ARGO on the AMD Evergreen GPGPU 
architecture with general-purpose applications written in 
OpenCL. Experimental results for fifteen general-purpose 
kernels show the efficacy of ARGO through deliberated 
power-gating without throughput penalty: ARGO improves 
NBTI-induced Vth degradation by up to 43% (on average 
27%), improves RFs static noise margin by up to 46% (on 
average 30%), and estimates a 54% reduction in leakage 
power. 

The rest of the paper is organized as follows. Section 2 surveys 
prior work in this specific topic area. Section 3 describes GPGPU 
architecture. Section 4 covers an overview of NBTI degradation. 
ARGO is presented in Section 5. In Section 6, we present 
experimental results followed by conclusions in Section 7. 

2. RELATED WORK 
Various techniques have been proposed to slow down the aging of 
processors, using microarchitectural, circuit-level and power 
gating strategies [12]−[14]. At the microarchitectural level, Colt 
[12] equalizes the duty cycle ratio and the usage frequency of the 
functional units in a microprocessor. To mitigate aging effects, it 
uses a number of measures such as complement mode execution, 
cache set rotation, and operand identifier swapping schemes. 
These measures are intrusive and fairly complicated: the 
complement mode is applied to the whole data path, control path, 
and storage hierarchy. Wearout-aware compiler-directed register 
assignment techniques are proposed in [13] to distribute the 
stress-induced wearout throughout the RF. Even though [13] does 
not impose architectural overheads and modification, its compiler-
based approach is only limited to single-threaded applications. 
Another aging-aware assignment of RF is also proposed to 
balance the duty cycle ratio of the internal bits in RF [14]; 
however, with balanced signal probabilities, there is still an 
inevitable static noise margin degradation [35],[36]. Kang et al. 
[23] show two orders of magnitude increase in read failure 
probability even with balanced signal probabilities. Further this 
technique results in high power and area overhead for very large 
RFs. Single-core techniques also exploit the underutilization of 
RFs by putting unused registers into a low-power state or shut-off 
state through inserting explicit instructions in the application’s 
binary [41],[42]. These techniques not only require intrusive 
modification of the Instruction Set Architecture (ISA) and 
compiler, but also still result in uneven stress distribution across 
the RFs. In contrast, ARGO specifically deploys an unobtrusive 
aging management technique (that balances RF stress) for 
GPGPUs executing multi-threaded applications. 

Several recent efforts have focused on circuit-level measures to 
mitigate process variability and aging. To combat the impact of 
core-to-core frequency variations on GPGPU throughput, Lee et 
al. [15] propose two techniques: run each core at its maximum 
frequency independently; and disable the slowest cores. These 
solutions impose non-negligible performance penalty: the first 

directly diminishes the throughput of a cluster, and the second 
imposes extra latency for synchronization of cores with different 
frequencies. Furthermore, these techniques only consider the 
effects of static process variation on computing cores, and do not 
address aging of GPGPUs which is dynamic in nature. In 
response to these deficiencies, Rahimi et al. [17] propose NBTI-
aware compiler-directed scheme that uniformly distributes the 
stress of instructions with the aim of minimizing aging of GPGPU 
without any performance penalty. Wang et al. [16] propose to 
compensate process variation-induced SRAM mismatch by 
exploiting BTI to partially offset variation that can be applied 
during burn-in test. These techniques are complementary to 
ARGO, and our aging-aware RF allocation policy with virtual 
sensing can be superposed on top of these resilient circuit 
techniques. 

Recent approaches have also proposed NBTI-aware power-gating 
[10],[11],[17] that exploits a circuit’s sleep state that is 
intrinsically immune to aging. It has been used for inactive 
portion of the cache to meet a given lifetime target [11]. An 
orthogonal problem is aging of PMOS sleep-transistors which is 
critical to lifetime of whole system. Calimera et al. [18] propose 
static and dynamic strategies to compensate the aging effects on 
the sleep transistors by means of body biasing, sleep-transistor 
oversizing, and equivalent stress-time reduction. Although power-
gating can significantly compensate the Vth shift due to aging, the 
benefit is sensitive to the fraction of time that a circuit spends in 
sleep mode, and thus significant performance degradation must be 
tolerated to achieve high power-gating factors. In contrast, ARGO 
arranges GPGPU RF accesses to exploit power-gating without 
any performance penalty. The objective of our work is to develop 
an iso-throughput dynamic RF allocation policy for compute units 
in GPGPUs that increases RF expected lifetime without changing 
the flow of execution. 

3. GPGPU ARCHITECTURES AND RFs 
Extreme multithreading with fast thread switching in GPGPUs is 
supported by a large register file that is much larger than the 
cache holding the execution state of each thread. For example the 
AMD Radeon HD 5870 GPU has 5 MB of on-chip RF while it 
only has 160 KB of L1-cache. Similarly, the NVIDIA GTX480 
GPU has a 2MB RF, while the shared L1-cache size is only 512 
KB. The inversion in sizing between the GPU cache and register 
file, compared to a traditional CPU memory hierarchy, is a critical 
GPU microarchitectural feature that is needed for supporting 
massively parallel execution of multiple threads [27]. 
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Figure 1. Block diagram of the Radeon HD 5870 architecture 

Here we focus on the Evergreen family of AMD GPUs (a.k.a., 
Radeon HD 5000 series), designed to target not only graphics 
applications, but also general-purpose data-intensive applications. 
The Radeon HD 5870 GPU consists of 20 compute units, a global 
front-end ultra-thread dispatcher, and a crossbar to connect the 



global memory to the L1-caches [19]. The block diagram of 
architecture is shown in Figure 1.  

Every compute unit has access to a global memory, implemented 
as a hierarchy of private 8KB L1-caches, and 4 shared 512KB L2-
caches. Each compute unit contains a set of 16 stream cores that 
have access to a shared 32KB local data storage, as well as a 
256KB general-purpose RF. Within a compute unit, a shared 
instruction fetch unit provides the same machine instruction for 
all stream cores to execute in a single-instruction, multiple-data 
(SIMD) fashion. Finally, each stream core is a five-way very long 
instruction word (VLIW) processor capable of issuing up to five 
floating point scalar operations from a single VLIW that consists 
of five slots (slotX, slotY, slotZ, slotW, slotT). Because of this 
VLIW structure, the general-purpose registers are actually 128-bit 
wide and hold four 32-bit values, described as the X, Y, Z and W 
elements. 

Applications for HD 5870 are written in OpenCL, comprising a 
host program and one or more device kernels executing on the 
GPU device. In the OpenCL programming model, an instance of 
the OpenCL kernel is called a work-item. Work-items are 
arranged into work-groups for SIMD execution. The Evergreen 
architecture supports work-groups containing between 1 to 256 
work-items. Since the number of stream cores in a compute unit 
(16) is lower than the maximum number of work-items in a work-
group, Evergreen supports the notion of a wavefront as the 
quantum unit of scheduling. A wavefront is composed of 64 
work-items virtually executing at the same time on the 16 stream 
cores of a compute unit. Thus a work-group contains up to 4 
wavefronts that share execution resources. To manage these 
resources, a wavefront scheduler dynamically selects wavefronts 
for execution. 

3.1 Register File Utilization 
Several factors limit the maximum number of concurrent OpenCL 
threads that can execute on a compute unit of an AMD GPGPU 
(called “compute unit occupancy”). Considering the limited 
physical registers within a compute unit, if a work-item uses 
many registers, it eventually prevents other wavefronts from 
being executed concurrently. The number of registers per work-
item is exclusively decided at compile time. The compute unit 
occupancy is also a function of the local memory capacity. When 
the compute unit allocates a work-group that increases the usage 
of the local memory, it reduces the total number of wavefronts 
that can be allocated to the same compute unit. The local memory 
used by a work-group could be determined at compile-time or 
run-time [25]. The work-group size also determines the total 
number of wavefronts that can be allocated. Note that the 
allocation unit is an entire work-group (set of wavefronts). The 
work-group size is exclusively decided at run-time by the 
OpenCL host program [25]. 

Given a fixed die area, there is an upper bound for all the 
aforementioned parameters that yields limited compute unit 
occupancy. Applications are typically limited by registers, local 
memory usage, or available state preservation capacity in the 
architecture and as a result not all RF space is utilized for every 
application. Table 1 shows the variation in utilization of RF space 
for the Radeon HD 5870 GPGPU while executing different 
applications listed in the first column. The second column, #of 
Registers, shows the required number of registers for every 
kernel, while #of Concurrent WF shows the maximum possible 
number of interleaved wavefronts for every kernel. A HD 5870 
compute unit cannot preserve state of more than 32 wavefronts at 

a time. As shown, even for very large set of input parameters, on 
average 54% of RF is not utilized during the execution of these 
kernels. 

Table 1. Register requirement of different applications 

Kernel 
#of 

Registers 
#of 

Concurrent WFs
RF 

Utilization
Reduction 4 32 50%
BinarySearch 2 32 25%
DwtHaar1D 4 32 50%
BitonicSort 4 8 13%
FastWalshTransform 4 32 50%
FloydWarshall 6 32 75%
BinomialOption 13 16 81%
DiscreteCosineTransform 7 8 22%
MatrixTranspose 3 32 38%
MatrixMultiplication 22 8 69%
SobelFilter 9 28 99%
URNG 6 8 19%
RadixSort 16 1 6%
Histogram 16 2 13%
BlackScholes 19 12 89%

This RF underutilization exists mainly for two categories of 
kernels:  

 Kernels with high demands of local memory: e.g., 
Histogram, RadixSort, BitonicSort. 

 Kernels requiring few registers: e.g., Reduction, 
BinarySearch, FastWalshTransform. This low demand of 
registers is achieved by the effective usage of the temporary 
registers resided in the processing elements. 

We note that the kernels preserve these characteristics across a 
standard set of OpenCL compiler options1. We utilize options for 
math intrinsic, and options that control optimization of 
performance and code size; however, #of Registers is changed 
slightly by 13% across all kernels. These observations motivate us 
to opportunistically exploit the RF underutilization during 
runtime allocation to improve the aging reliability of GPGPUs.  

4. DEVICE LEVEL NBTI MODELING 
We now briefly describe the dynamic NBTI model to show how 
our architectural approach can combat the NBTI effects. When 
logic input ‘0’ is applied to the gate of a PMOS transistor (Vgs = 
−Vdd), the dissociation of Si−H bonds along the silicon oxide 
interface, causes the generation of interface traps, [1]−[4]. The 
rate of generation of these traps is accelerated by temperature, and 
the time of applied stress. The increase in voltage threshold due to 
this phenomena, ΔVth-stress, could be modeled with: 

nn
tthstressvstressth VtKV 22
0 )(                                       (1) 

where tstress is the time that PMOS is under stress; Kv has 
dependence on electrical field, temperature (T), and Vdd; n is the 
time exponent parameter, and for H2 diffusion is 1/6; and ΔVth-t0 is 
the initial Vth variation of PMOS at time zero due to process 
variation [5]. When logic input ‘1’ is applied to the gate (Vgs = 0), 
the transistor turns off, and H atoms diffuse back, eliminating 
some of the traps. This process is called the recovery phase that 
can recover part of the Vth shift: 

                                                                 

1 including, ‘-cl-single-precision-constant’, ‘-cl-opt-disable’, ‘-cl-
mad-enable’, ‘-O1’, ‘-O2’, ‘-O3’, etc.  
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where trecov is the time under recovery; tox is the oxide thickness; te 

is the effective oxide thickness; t is the total time; C has 
temperature dependence; ζ1, ζ2, δ constants are defined in [5]. The 
cycle-by-cycle Vth variation at clock cycle i-th is defined in (3), 
and (4). Let ΔVth-stress,i and ΔVth-recov,i be changes in the Vth at the 
end of i-th stress and recovery cycles, respectively: 
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where i = t/Tclk; Tclk is the time period of one stress-recovery 
cycle, duty cycle (α) is the ratio of the time spent in stress to the 
period time [5]. [20] shows that ΔVth is a monotonically 
increasing function of higher duty cycle (α), t, Vdd, T. The NBTI-
induced Vth shift is also a function of process-dependent 
parameters, and relatively insensitive to the switching frequency 
(f) when it is above 100Hz [21]. Stress distribution can tune duty 
cycle (α) and hence decrease NBTI-induced effects. 

4.1 NBTI-induced SNM Degradation 
The RF memory cells of GPGPUs are typically built as 6T-
SRAM-type cells [27]. As a result of NBTI, the threshold voltage 
of PMOS transistors inside a memory cell increases with time. 
The amount of increase can be calculated using (3) and (4). 
Because of the cell’s symmetric structure, regardless of what 
value the cell holds, one of the PMOS transistors is always under 
stress.  

 
Figure 2. Graphical representation of the SNM for 6T SRAM  

The stability of SRAM cells is measured as static noise margin 
(SNM), and is defined as the minimum dc noise voltage required 
to change the state of SRAM cell [22]. Typically READ SNM is 
considered as the factor determining the life-time of the SRAM-
type memories which is measured when the word line is on and 
the cell is being read [23]. SNM can be computed as the side 
length of a maximum square enclosed between the two static 
characteristics curves of a SRAM cells (Figure 2). During the 
time, either of PMOS transistors of the back-to-back inverters is 
becoming weaker due to the Vth shift. Both imbalanced Vth shift 
and the Vth shift itself contribute to SNM degradation. Even with 
balanced signal probabilities, 12 to 16 percent of degradation in 
the SNM is unavoidable after 5 years [35],[36], thereby increasing 
reliability failures. This necessitates the proper stress leveling of 
the SRAM-type cells. 

BTI could be exploited during burn-in to compensate initial Vth 
mismatch due to the manufacturing variations [16],[45]. Also, 
write-margin may improve with BTI as well [44]. This work 

assumes that BTI worsens the SRAM VCCmin (i.e., it is dominated 
by nominal SNM as opposed to variation induced SNM or write 
margin).  

5. AGING-AWARE REGISTER FILE 
MANAGEMENT 
The key idea of ARGO, our aging-aware RF allocation technique, 
is to uniformly distribute the stress across the entire physical RF 
by exploiting the imbalanced utilization. Thus, it needs a means 
for aging instrumentation. Based on this instrumentation, we can 
have an estimate of aging while we are allocating (i.e., stressing) 
various portions of the RF. ARGO requires minor architectural 
modifications to keep track of the RF allocation (described in 
Section 5.4). We now describe our aging-aware RF allocation 
technique. 

5.1  Virtual Sensing 
ARGO’s RF allocation technique requires continual assessment of 
the impact of NBTI-induced aging on RF. Traditional post-silicon 
reactive dynamic NBTI management techniques typically employ 
NBTI sensors [28],[29], that provide ΔVth measurement with 3σ 
accuracy of 1.23 mV for a wide range of temperatures. However, 
these sensors incur area as well as power overheads. Thus, our 
technique relies on a concept of virtual sensing where our virtual 
sensing capability estimates the aging profile of different portions 
of the RF in a relative manner. It is worth noting that our 
lightweight sensing ignores manufacturing variability within 
register file that could be compensated using the proposed 
technique in [16] during burn-in. 

When an OpenCL kernel is launched on the GPGPU, the ultra-
threaded dispatcher, as the work-group scheduler, assigns work-
groups to any of the 20 available compute units. The ultra-
threaded dispatcher does not allocate simultaneous execution of 
multiple kernels to a compute unit. Consequently, all of the 
interleaved wavefronts on a compute unit, execute the same type 
of kernels with different data sets. Figure 3 shows the total 
execution cycles per work-group for 20 work-groups of three 
benchmarks. Our observation shows that variation in the 
execution time of different work-groups of a kernel is less than 
8% for a wide range of kernels listed in Table 1.  
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Figure 3. Cycles per work-group 

Two architectural features justify this observation: (i) the round 
robin wavefront scheduler [25], and (ii) the strategy that GPGPUs 
follow for handling thread divergence2. As a result, every work-

                                                                 

2 It consists in bringing all work-items together through all 
possible execution paths, while keeping active only those work-
items whose conditional execution matches the currently 
fetched instruction flow. 



group allocates a portion of the RF for a fixed amount of time 
during the execution of a kernel. Because all the cells inside the 
allocated portion of RF are holding the state of work-groups, they 
are being aged. The rate of this aging across different allocated 
portions of RF is similar due to the almost same amount of stress 
time. This provides a simple virtual sensing metric: at the 
granularity of work-groups, various RF portions are aged at the 
same rate. Our allocation policy will be defined based on this 
observation later in Section 5.3.  

5.2 RF Organization 
Figure 4 shows the block diagram of the large RF inside one 
compute unit along with the RF allocator and the additional 
power gaters. Note that the baseline RF does not include power 
gaters.  
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Figure 4. Sliced RF organization 

The RF is logically partitioned into 16 slices where each slice 
serves one stream core inside a compute unit. For higher 
throughput, GPGPUs normally have register buffers attached to 
their stream cores. This enables a wavefront to read all of its 
registers ahead of time, while another wavefront is being 
executed, and then starts its execution. There are 64 work-items 
inside a wavefront, with groups of four executed on the same 
stream core in a time multiplexed fashion. Every slice of the RF is 
horizontally banked into 256 banks, with each 1-KB on a separate 
power domain. Each bank can be independently power gated 
providing sleep states that spare its cells from stress.  

5.3 Allocation Policy 
Typically, the RF is allocated at the granularity of an entire work-
group. As Figure 4 shows, the ultra-threaded dispatcher maps a 
work-group to an available compute unit. Meanwhile, it asks the 
RF allocator for a portion of the RF pool. Then, the work-group 
data along with the head of allocated space will be inserted into 
the wavefront scheduler’s queue. From then on, each work-item 
inside the new work-group has its own share of the RF. Given the 
head of RF space for the work-group and index of a work-item in 
that work-group, the logical to physical register mapping will be 
performed during execution time. However, the manner in which 
the RF allocator works greatly impacts on durability of RF banks. 
We describe the existing aging-oblivious allocator, followed by 
our ARGO scheme. 

5.3.1 Aging-oblivious Allocation Scheme 
Figure 5 outlines the existing aging-oblivious RF allocator that, 
allocates the first free portion of the RF for the incoming work-
group without considering the aging profile of each RF bank. 

The RF allocator receives two commands: Allocate, which comes 
from the ultra-threaded dispatcher, and Deallocate, which is 
driven by the wavefront scheduler. The number of registers per 
kernel (RegPerKernel), which has been determined offline by the 
compiler as a metadata, is given to the RF allocator by the ultra-
threaded dispatcher. In addition, the RF allocator also needs to 
know the number of wavefronts inside the work-group 
(WFPerWG) [Line 1]. The RF allocator returns as output the head 
of the allocated RF portion via AllocatedRFHead [Line 2]. To 
keep track of allocations, the RF allocator saves the head of 
allocated portions in HeadForWGs [Line 3] and status of each 
portion in PortionStatus [Line 4]. Because the maximum number 
of work-groups per compute unit, Max#WGperCU, is limited to 8 
on HD 5870 (it is a constant number for all GPGPUs in the 
Evergreen family), and also work-groups are from the same type, 
the RF allocator in this scheme can statically determine 8 possible 
portions and save their head indexes in HeadForWGs [Lines 5-7]. 

00: AGING-OBLIVIOUS-RF-ALLOCATOR () 
01: INPUTS: Allocate, Deallocate, HeadDealloc, RegPerKernel, WFPerWG 
02: OUTPUTS: AllocatedRFHead 
 

03: VARIABLE: HeadForWGs[1…Max#WGperCU] /* Holds WG heads */ 

04: VARIABLE: PortionStatus [1…Max#WGperCU] /* Initially all portions are free */ 
 

05: LOOP N: 1…Max#WGperCU 
06:    HeadForWGs = RegPerKernel × WFPerWG × (N-1); 
07: ENDLOOP 
 

08: IF (Allocate) 
09:    AllocatedPortion = FindFirstFreeRFPortion(); 
10:    AllocatedRFHead = HeadForWGs [AllocatedPortion]; 
11:    PortionStatus [AllocatedPortion] = 1; 
12: ENDIF 
 

13: IF (Deallocate) 
14:    DeallocatedPortion = FindPortionIndex(HeadDealloc); 
15:    PortionStatus [DeallocatedPortion] = 0; 
16: ENDIF 

Figure 5. Aging-oblivious RF allocation procedure 

While copying the work-group data to the wavefront queue, the 
ultra-threaded dispatcher also requests a portion of the RF by 
issuing Allocate for the RF allocator. The aging-oblivious 
allocator responds to this command [Lines 8-12] by examining 
PortionStatus for the first-indexed free portion [Line 9]. The head 
of that portion will be returned as the head of the allocated space 
[Line 10]. Then, that portion will be marked as occupied [Line 
11]. Once the allocation is completed, the wavefront scheduler 
marks the work-group as a ready work-group and schedules it for 
execution. Finally, when the work-group finishes its execution, 
the wavefront scheduler asks the RF allocator for deallocating the 
work-group’s RF portion [Lines 13-16]. 

For a large category of applications that utilize only part of RF (as 
discussed in Section 3.1), the simple aging-oblivious allocator 
results in more accesses to lower-indexed portions of the RF 
rather than higher-indexed portions. 

5.3.2 ARGO Scheme 
In contrast to the aging-oblivious scheme, ARGO responds to the 
allocation requests by greedily choosing portions of RF with 
lower aging based on the virtual sensing as described in Section 
5.1.  



As shown in Figure 6, ARGO requires the same architectural 
interface [Lines 1-2] as the aging-oblivious allocator. However, in 
contrast to the aging-oblivious scheme, ARGO always returns the 
least recently used portion for allocation [Line 5], instead of 
returning the first free portion of the RF. ARGO assumes all the 
manufacturing variation induced SRAM mismatches are 
compensated during burn-in using the technique in [16]. 
Therefore, to simplify tracking of the least recently used RF 
region without requiring the aging sensors and searching the 
sensor data, we rotate the allocated space at a constant rate (once 
per work-group). Because of this constant rate rotation, the next 
candidate is always the portion right after recently allocated space 
of RF [Line 6]. Once the request is received, ARGO wakes up the 
newly allocated portion [Line 7]. When all of the wavefronts of a 
work-group have finished their execution, the wavefront 
scheduler informs the RF allocator by issuing the Deallocate 
command and providing the head of allocated RF space for that 
specific work-group via HeadDealloc. The RF allocator then 
shuts off the corresponding memory blocks through PG signals 
and puts them into recovery mode [Lines 9-11]. 

00: ARGO () 
01: INPUTS: Allocate, Deallocate, HeadDealloc, RegPerKernel, WFPerWG 
02: OUTPUTS: AllocatedRFHead, PG[1…#ofBanks] 
 

03: VARIABLE: NextAllocCandidate /* Initially all blocks are power-gated */ 
 

04: IF (Allocate) 
05:     AllocatedRFHead = NextAllocCandidate; 
06:     NextAllocCandidate = NextAllocCandidate + RegPerKernel × WFPerWG; 
07:     Wake-up register space [AllocatedRFHead…NextAllocCandidate - 1];  
08: ENDIF 
 

09: IF (Deallocate) 
10:  Turn-off register space [HeadDealloc…HeadDealloc + (RegPerKernel × 

WFPerWG) -1]; 
11: ENDIF 

Figure 6. ARGO procedure 

5.4 ARGO Overhead   
We now discuss the overheads incurred for the hardware 
implementation of ARGO. To quantify ARGO’s performance, 
area, and power overheads, we implemented both ARGO and the 
baseline aging-oblivious allocators using Verilog RTL. Then both 
allocator modules were synthesized using Synopsys Design 
Compiler with TSMC 45-nm general purpose technology. 

Performance Overhead: ARGO does not impose any 
performance penalty thanks to its careful single-cycle 
implementation. ARGO and the aging-oblivious allocator meet 
the target frequency of 800MHz at the worst-case corner. 
Regarding the wake-up latency from the sleep state, recent efforts 
[32],[33],[43] have shown the latency is less than ten cycles for a 
power-gated cell. Due to availability of other ready wavefronts in 
the queue, these ten cycles are effectively hidden. Note that these 
ten cycles are not in the critical access path; the allocation 
portions are rotated at the mapping stage and once a work-group 
is mapped to a compute unit, the logical to physical mapping does 
not change for the whole execution time of that work-group.  

Area Overhead: Hardware implementation of the ARGO module 
incurs a relative area overhead of 2.1× compared to the aging-
oblivious module. The other area overhead is due to addition of 
the sleep transistors which is < 1% based on an analysis with an 
industrial memory compiler [40]. Note that we need an address 
translator for each compute unit. This address translator takes 
head of allocated space for work-group, index of the current 
wavefront, and the register number and does the job of logical to 

physical mapping. However this address translator is not an 
overhead of our approach: it is also required in the aging-
oblivious scheme for the logical to physical address mapping [37]. 
To hide this latency, two separate wavefronts execute in an 
interleaved fashion: the first wavefront accesses the RF, while the 
other executes; and then they switch. 

Power Overhead: ARGO consumes 0.92mW at the operating 
temperature of 125°C with 800MHz clock frequency. This incurs 
a power overhead of 74% in comparison with the aging-oblivious 
module (0.56mW). The power overhead of power-gater transistors 
is negligible. However, these power overheads could be 
efficiently compensated by the side benefit of power savings in 
ARGO as presented in Section 6.2.6. 

6. EXPERIMENTAL RESULTS 
Our goal is to show to what extent ARGO’s opportunistic actions 
can improve reliability and extend the lifetime of the RF for a 
wide range of applications and different operational conditions. 

6.1 Experimental Setup 
We have enhanced Multi2Sim [25][26], a cycle-accurate 
simulation framework − a CPU-GPU model for heterogeneous 
computing targeting AMD Evergreen ISA – with the logical to 
physical mapping of register accesses in order to collect statistical 
data of physical RF accesses. We have also modified the 
framework to support the microarchitectural modeling proposed 
in this work. The kernels of AMD APP SDK 2.5 [24], with the 
large parameters listed in Table 2, are executed on the simulator. 
To be conservative, we choose the parameters so as to put the 
highest possible load on compute devices of HD 5870 while 
executing the corresponding benchmark. 

For Vth and SNM measurements, we use Predictive Technology 
Model (PTM) 65nm, and 45nm Bulk transistor models [30] and 
the NBTI modeling discussed in Section 4. The SNM is 
numerically extracted by using the graphical method described in 
[22]. Using Synopsys HSPICE, the characteristics of the two 
inverters are plotted into a two coordinate systems where the axes 
are rotated of 45º relative to each other. The maximum and 
minimum values of the resulting curve represent the side length of 
the maximum and minimum squares nested between the two static 
characteristics, namely the SNM values. The SNM with the 
minimum absolute value represents the actual SNM of the SRAM 
cell. 

Table 2. AMD APP SDK 2.5 kernels with selected parameters 
Kernel Parameter 

Reduction Rdn N=4000000 
BinarySearch BSe N=50000000 
DwtHaar1D DH1D N=500000 
BitonicSort BSo N=10000 
FastWalshTransform FWT N=100000 
FloydWarshall FW N=1000 
BinomialOption BO N=600 
DiscreteCosineTransform DCT X=600, Y=600 
MatrixTranspose MT X=800, Y=800 
MatrixMultiplication MM X=1000, Y=1000, Z=1000 
SobelFilter SF default input file 
URNG URNG default input file 
RadixSort RS N=600000 
Histogram HS X=2500, Y=2500 
BlackScholes BSc N=3000 



6.2 Simulation Results 

6.2.1 Improvement in ΔVth 
Figure 7 shows the improvements in Vth drift with regard to the 
aging-oblivious scheme after five years of execution. We observe 
worst-case Vth degradation of 22% (19%) for 45nm (65nm) 
technology, when the aging-oblivious allocator is used. Our 
approach can improve shift in Vth up to 43% for 65nm technology 
and up to 46% for 45nm technology. The average improvement is 
26% (27%) for 45nm (65nm) technology. There is no opportunity 
for the SobelFilter benchmark since the limiting parameter in the 
occupancy calculator for this benchmark is the number of 
available registers. Therefore almost all the RF space (98.88%) is 
being used when the kernel puts the highest possible load on the 
HD 5870. Because of that, our approach is not effective in this 
case, although it does not incur any performance overhead. From 
now on, we consider SobelFilter as the representative of baseline 
for comparison purpose. 
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Figure 7. ΔVth improvement after 5 years of execution 

6.2.2 Improvement in SNM Degradation 
Figure 8 shows the SNM improvements after five years of 
execution. As the comparison of Figure 7 and Figure 8 suggests, 
improvements in SNM and Vth show the same trend. Indeed, this 
has been analytically proved in [23] that SNM sensitivity to Vth 
degradation (dSNM/dVth) retains near a constant value throughout 
the whole lifetime.  
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Figure 8. Read SNM improvement after 5 years of execution 

6.2.3 Trend of SNM Degradation 
The lifetime of an SRAM is typically defined as the time after 
which the SNM of a cell has decreased by 20% [38]. Figure 9 
shows the trend of SNM degradation over the course of five 
years. The baseline (SF) will fail after 3.2 years in 45nm 
technology. Similar aging rate has been reported in [38]. ARGO 
facilitates all other benchmarks to reliably execute for at least 5 
years. ARGO can improve absolute value of SNM up to 9.8%. 
This is significant compared to the 20% SNM guardband for 
NBTI that is needed if no adaptation is done. 

 
Figure 9. Trend of SNM degradation (45nm) 

6.2.4 Various Operational Conditions 
To quantify achievable gain of employing ARGO in different 
operational conditions, we have conducted experiments where the 
cell voltage and temperature are varied. Figure 10 shows the 
percentage of improvement in SNM degradation in four different 
operational conditions, summarized below: 

 Keeping the temperature constant, achievable gain is the 
same while varying the cell voltage from 0.9 to 1. 

 Changing the operating temperature from 25°C to 110°C, the 
achievable gain will approximately double. 

 The achievable gain is consistent across a wide range of 
timing scales thanks to the adaptiveness of ARGO. 

 
Figure 10. Achievable SNM improvement in various 

conditions for BSe benchmark 

6.2.5 Recovery Time vs. Bank Size 
If the overhead of power gating logic is of concern, we can 
increase the bank size, thereby reducing the power gater 
addressing logic power and area overhead. The trade-off is 
illustrated in Table 3 by showing worst case recovery time (i.e., 
the time that bank remain power gated) for different bank sizes. 
Remarkably, in most cases we can achieve the same recovery 
percentage without any performance overhead with regard to case 
of 1K banks. The same recovery percentage comes from the well-
organized RF; each row of RF corresponds to one register for 
whole work-items inside a wavefront. In many cases, wavefronts 
per work-group × number of required registers is already a 
multiple of bank size. Therefore there is no difference between 
the power-gating at that granularity or at a lower granularity. The 
results suggest to bank up the RF at the granularity of 2K or 4K 
where the recovery percentage is still comparable with case of 1K 
banks.   



Table 3. Worst case recovery time vs. bank size  

Kernel 
Recovery Time (%) 

1K  2K 4K 8K 
Rdn 48% 48% 48% 48%
BSe 63% 63% 63% 63%

DH1D 44% 44% 44% 44%
BSo 87% 87% 87% 87%
FWT 53% 53% 53% 53%
FW 29% 29% 29% 29%
BO 13% 13% 13% 8% 

DCT 77% 73% 73% 73%
MT 56% 56% 56% 42%
MM 21% 21% 14% 14%
SF 0% 0% 0% * 

URNG 81% 81% 75% 75%
RS 86% 86% 86% 86%
HS 78% 78% 78% 78%
BSc 9% 9% 9% 4% 

* Bank size=8K cannot be selected since it  
results in performance degradation 

6.2.6 RF Leakage Power Reduction Estimation 
At a first order of approximation, SRAM leakage power is 
proportional to its size [31]. Figure 11 shows the achievable 
reduction in leakage power of RF for different benchmarks: an 
average of 54% and up to 94%. This power saving compensates 
the power overheads, except for the SF benchmark. 
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Figure 11. Estimated reduction in register file leakage power 

6.3 Discussion on Wakeup Latency 
When a RF portion is coming out of the sleep mode, the switch 
cells are turned on to supply power to the cells. The simultaneous 
switching current of charging the design to a full power-on state 
might be too high to tolerate in some cases. A practical method to 
control the wakeup rush current is to implement the switch cells 
in a daisy chain where the switch cells are driven by a buffer 
chain and turned on gradually in the delayed sequence [34]. Our 
analysis on a commercial 45nm memory compiler shows that it 
could be up to 100 cycles depending of the rush current that can 
be tolerated. Our technique is still applicable in that scenario. For 
that purpose we modify RF allocator in a manner that performs 
the rotation in intervals of 10’s of seconds (which can completely 
amortize 100 cycles wakeup latency) instead of rotating the 
allocations once per work-group. Since in long term the fraction 
of time that cells are in recovery mode does not change, this leads 
to same Vth improvement. Also it simplifies RF allocator and 
power gating logic, therefore reduces their area and power 
overheads. Instead we need a watch-dog timer per each compute 
unit to count for intervals that incur area and power overheads. 

7. CONCLUSION AND FUTURE WORK 
We proposed ARGO, an architectural technique suitable for 
GPGPUs parallel applications, to uniformly distribute the stress 
within RFs, with the aim of improving the NBTI-induced 

degradation. ARGO not only improves the RF’s static noise 
margin up to 46% (on average 30%), but also incurs no 
throughput penalty over fifteen general-purpose kernels 
execution. This is achieved by leveraging the underutilized 
portion of RFs, and deliberated power-gating of stressful banks. 
Moreover, leakage power is reduced by 54% thanks to power-
gating of unused banks. 

Ongoing work is focused on generalizing the proposed approach 
on other memory subsystems, and exposing the aging 
characterization to OpenCL runtime software for obtaining a 
favorable tradeoff between performance and lifetime. 

8. ACKNOWLEDGMENTS 
This research was partially supported by NSF Variability 
Expedition Grant Numbers CCF-1029783 and CCF-1029030. 

9. REFERENCES 
[1] G. Chen, M. F. Li, C. H. Ang, J. Z. Zheng, and D. L. 

Kwong, “Dynamic NBTI of p-MOS Transistors and its 
Impact on MOSFET Scaling,” IEEE Electron Device 
Letters, vol. 23, no. 12, pp. 734-736, December 2002. 

[2] G. Chen, K. Y. Chuah, M. F. Li, D. S. Chan, C. H. Ang, J. 
Z. Zheng, Y. Jin, and D. L. Kwong, “Dynamic NBTI of 
PMOS Transistors and its Impact on Device Lifetime,” 
Proc. IEEE IRPS, pp. 196-202, 2003. 

[3] K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L. 
Ji, S. R. Nassif, E. J. Nowak, D. J. Pearson, and N. J. 
Rohrer, “High-performance CMOS Variability in the 65-
nm Regime and Beyond,” IBM Journal of Research and 
Development, vol. 50, no. 4.5, pp.433-449, July 2006. 

[4] S. Chakravarthi, A.T. Krishnan, V. Reddy, C.F. Machala, 
and S. Krishnan, “A Comprehensive Framework for 
Predictive Modeling of Negative Bias Temperature 
Instability,” Proc. IEEE IRPS, pp. 273-282, 2004. 

[5] W. Wang, S. Yang, S. Bhardwaj, S. Vrudhula, F. Liu, and 
Y. Cao, “The Impact of NBTI Effect on Combinational 
Circuit: Modeling, Simulation, and Analysis,” IEEE Trans. 
on VLSI Systems, vol. 18, no. 2, pp. 173-183, February 
2010. 

[6] S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao, and S. 
Vrudhula, “Predictive Modeling of the NBTI Effect for 
Reliable Design,” Proc. IEEE CICC, pp. 189-192, 2006. 

[7] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “An 
Analytical Model for Negative Bias Temperature 
Instability,” Proc. IEEE/ACM ICCAD, pp. 493-496, 2006. 

[8] M. Gebhart, S. W. Keckler, B. Khailany, R. Krashinsky, 
and W. J. Dally, “Unifying Primary Cache, Scratch, and 
Register File Memories in a Throughput Processor,” Proc. 
IEEE/ACM MICRO, pp. 96-106, 2012. 

[9] A. Rahimi, L. Benini, and R. K. Gupta, “Hierarchically 
Focused Guardbanding: An Adaptive Approach to Mitigate 
PVT Variations and Aging,” Proc. IEEE/ACM DATE, pp. 
1695-1700, 2013.  

[10] A. Calimera, E. Macii, and M. Poncino, “NBTI-aware 
Power Gating for Concurrent Leakage and Aging 
Optimization,” Proc. IEEE/ACM ISLPED, pp. 127-132, 
2009. 

[11] M. Loghi, H. Mahmood, A. Calimera, M. Poncino, and E. 
Macii, “Energy-optimal Caches with Guaranteed Lifetime,” 
Proc. IEEE/ACM ISLPED, pp. 141-146, 2012. 



[12] E. Gunadi, E. Gunadi, A. A. Sinkar, N. S. Kim, and M. H. 
Lipasti, “Combating Aging with the Colt Duty Cycle 
Equalizer,” Proc. IEEE/ACM MICRO, pp. 103-114, 2010. 

[13] F. Ahmed, M. M. Sabry, D. Atienza, and L. Milor, 
“Wearout-aware Compiler-directed Register Assignment 
for Embedded Systems,” Proc. IEEE ISQED, pp.33-40, 
2012. 

[14] S. Wang, T. Jin, C. Zheng, and G. Duan, “Low Power 
Aging-Aware Register File Design by Duty Cycle 
Balancing,” Proc. IEEE/ACM DATE, pp. 546-549, 2012. 

[15] J. Lee, P. P. Ajgaonkar, and N. S. Kim, “Analyzing 
Throughput of GPGPUs Exploiting Within-die Core-to-core 
Frequency Variation,” Proc. IEEE ISPASS, pp.237-246, 
2011. 

[16] J. Wang, S. Nalam, Z. Qi, R. W. Mann, M. Stan, and B. H. 
Calhoun, “Improving SRAM Vmin and Yield by Using 
Variation-aware BTI Stress,” Proc. IEEE CICC, pp.1-4, 
2010. 

[17] A. Rahimi, L. Benini, and R. K. Gupta, “Aging-aware 
Compiler-Directed VLIW Assignment for GPGPU 
Architectures,” Proc. IEEE/ACM DAC, 2013. 

[18] A. Calimera, E. Macii, and M. Poncino, “Design 
Techniques for NBTI-Tolerant Power-Gating 
Architectures,” IEEE Trans. on Circuits and Systems II, 
vol.59, no.4, pp.249-253, April 2012. 

[19] AMD Corporation. ATI Radeon HD 5870 Graphics 

[20] W. Wang, Z. Wei, S. Yang, and Y. Cao, “An Efficient 
Method to Identify Critical Gates under Circuit Aging,” 
Proc. IEEE/ACM ICCAD, pp.735-740, 2007. 

[21] S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao, and S. 
Vrudhula, “Predictive Modeling of the NBTI Effect for 
Reliable Design,” Proc. IEEE CICC, pp. 189-192, 2006. 

[22] E. Seevinck, F. List, and J. Lohstroh, “Static-noise Margin 
Analysis of MOS SRAM Cells,” IEEE J. Solid-State 
Circuits, vol. SSC-22, no. 5, pp. 748–754, October 1987. 

[23] K. Kang, H. Kufluoglu, K. Roy, and M. A. Alam, “Impact 
of Negative-Bias Temperature Instability in Nanoscale 
SRAM Array: Modeling and Analysis,” IEEE Trans. on 
Computer-Aided Design of Integrated Circuits and Systems, 
vol. 26, no. 10, pp. 1770- 1781, 2007. 

[24] AMD Accelerated Parallel Processing (APP) SDK 2.5. 
Available: http://developer.amd.com/gpu/AMDAPPSDK  

[25] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. R. Kaeli, 
“Multi2Sim: a Simulation Framework for CPU-GPU 
Computing,” Proc. ACM PACT, pp. 335-344, 2012. 

[26] Multi2Sim [Online]. Available: http://www.multi2sim.org 

[27] M. Abdel-Majeed and M. Annavaram, “Warped Register 
File: A Power Efficient Register File for GPGPUs,” Proc. 
IEEE HPCA, 2013. 

[28] P. Singh, E. Karl, D. Blaauw, and D. Sylvester, “Compact 
Degradation Sensors for Monitoring NBTI and Oxide 
Degradation,” IEEE Trans. on VLSI Systems, vol. 20, no. 9, 
pp. 1645-1655, September 2011. 

[29] P. Singh, E. Karl, D. Sylvester, and D. Blaauw, “Dynamic 
NBTI Management Using a 45 nm Multi-Degradation 
Sensor,” IEEE Trans. on Circuits and Systems, vol. 58, no. 
9, pp. 2026-2037, September 2011.  

[30] PTM, “Predictive Technology Model,” in Nanoscale 
Integration and Modeling (NIMO) Group at ASU, 
Available: http://ptm.asu.edu 

[31] S. Kaxiras, S. Kaxiras, Z. Hu, and M. Martonosi, “Cache 
Decay: Exploiting Generational Behavior to Reduce Cache 
Leakage Power,” Proc. IEEE/ACM ISCA, pp. 240-251, 
2001. 

[32] Y. Wang, S. Roy, and N. Ranganathan, “Run-time Power-
gating in Caches of GPUs for Leakage Energy Savings,” 
Proc.  IEEE/ACM DATE, pp. 300-303, 2012. 

[33] A. Kahng, S. Kang, T. Rosing, and R. Strong, “TAP: 
Token-based Adaptive Power Gating,” Proc. IEEE/ACM 
ISLPED, pp. 203-208, 2012. 

[34] K. Shi and J. Li, “A Wakeup Rush Current and Charge-up 
Time Analysis Method for Programmable Power-gating 
Designs,” Proc. IEEE SoCC, pp. 163-165, 2006. 

[35] A. Calimera, E. Macii, and M. Poncino, “Analysis of 
NBTI-induced SNM Degradation in Power-gated SRAM 
Cells,” Proc. IEEE ISCAS, pp. 785-788, 2010.  

[36] N. Gong, S. Jiang, A. Challapalli, M. Panesar, and R. 
Sridhar, “Variation-and-aging Aware Low Power 
Embedded SRAM for Multimedia Applications,” Proc. 
IEEE SoCC, pp. 21-26, 2012.  

[37] P. Xiang, Y. Yang, M. Mantor, N. Rubin, and H. 
Zhou, “Many-Thread Aware Instruction-level Parallelism: 
Architecting Shader Cores for GPU Computing,” Proc. 
ACM PACT, pp. 449-450, 2012.  

[38] A. Calimera, M. Loghi, E. Macii, and M. Poncino, 
“Partitioned Cache Architectures for Reduced NBTI-
induced Aging,” Proc. IEEE/ACM DATE, pp. 938-943, 
2011.  

[39] H. Yang, S.Yang, W. Hwang, and C. Chuang, “Impacts of 
NBTI/PBTI on Timing Control Circuits and Degradation 
Tolerant Design in Nanoscale CMOS SRAM,” IEEE Trans. 
on Circuits and Systems, vol. 58, no. 6, pp. 1239-1251, June 
2011. 

[40] ARM Memory IP: www.arm.com 

[41] H. Tabkhi and G. Schirner, “AFReP: Application-guided 
Function-level Register file Power-gating for Embedded 
Processors,” Proc. IEEE/ACM ICCAD, pp. 302-308, 2012. 

[42] J. L. Ayala, A. Veidenbaum, and M. López-Vallejo, 
“Power-aware Compilation for Register File Energy 
Reduction,” Springer International Journal of Parallel 
Programming, vol. 31, no. 6, pp. 449-465, December 2003. 

[43] E. Pakbaznia and M. Pedram, “Design of a Tri-modal 
Multi-threshold CMOS Switch with Application to Data 
Retentive Power Gating,” IEEE Trans. on VLSI Systems, 
vol. 20, no. 2, pp. 380-385, February 2012. 

[44] J.C. Lin, A. Oates, H. Tseng, Y. Liao, T. Chung, K. Huang, 
P. Tong, S. Yau, and Y. Wang, “Prediction and Control of 
NBTI – Induced SRAM Vccmin Drift,” Proc. IEEE IEDM, 
pp. 1-4, 2006. 

[45] C. T. Boon, V. Balakrishnan, Y. Cao, and P. Gupta, 
“Extended Burn-in for Vth Variation Reduction Using 
NBTI,” Proc. IEEE DFM&Y, pp. 25-28, 2009. 

 


